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1 Introduction 

The intention of this report is to accomplish the first objective of Research Area 6, namely to 

“review existing modelling techniques that relate to the DPSIR framework and identify gaps in 

the modelling effort where models are either clearly needed or may have long-term potential”. 

The report contains five chapters: 

 

• Introduction and background 

• Model vocabulary - what is modelling? 

• The role of modelling in ALTER-net 

• An overview of existing model expertise in ALTER-net 

• Perspectives and new directions 

 

A main aim of ALTER-net is to forecast changes in biodiversity based on the combined impacts 

of main natural and socio-economic drivers and pressures. 

The development of tools for forecasting is an iterative process and requires sound understanding 

of biodiversity and its underlying causality. The construction of models is intended to help focus 

the research in all activities and is thus a major instrument to integrate research in ALTER-net. 

Another important goal is to make sure that both researchers and end-users understand what 

models and forecasting can be used for and – equally important – what their limits are. 

 

Modelling in ALTER-net will focus on biodiversity in the context of the driver-pressure-state-

impact-response-policy (DPSIR) framework. This framework is well suited to encompass the 

integrated impacts on biodiversity of the main natural and human-induced drivers. Due to their 

importance, an extended definition of these two concepts follows here: 

1.1 The DPSIR concept 

The widely used DPSIR framework implies the integration of socio-economic and ecological 

processes to understand the forces that drive patterns of biodiversity change. For this reason, it 

was agreed that the DPSIR framework provides a convenient approach to fulfil the objectives 

described in the previous paragraph.  
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Figure 1 presents a conceptual model that is a simplified version of a DPSIR framework to 

illustrate how socio-economic and biophysical drivers of change are brought together to 

understand biodiversity changes. In this conceptual model, socio-economic drivers 

(demographic, economic, or political) or biophysical forces (e.g. physical geography or climatic 

conditions) cause the emergence of observable patterns. These patterns relate to the spatial and 

temporal distributions of socio-economic or biophysical drivers.  Additionally, the interactions 

among the drivers set in motion processes that affect ecological conditions, which in turn cause 

changes not only in biodiversity but also socio-economic circumstances (human welfare) which 

finally affect the main drivers themselves. Hence the process can be seen as an iterative cycle. 

 

The key point here is that this conceptual framework may enable modellers to have a common 

approach in incorporating various drivers in more or less uniform manner while autonomously 

developing models for different aspects of biodiversity at different spatial scales.  The uniform 

approach would facilitate the groundwork for synthesising results from different models. 

 

DRIVERS:
§ demographic (changes in population

size or settlement, lifestyle, etc)
§ economic (growth rates, policy

changes, etc)
§ biophysical (terrain, climate, etc)

PATTERNS:
§ Land use and land cover
§ Infrastructure (roads, sewerage,

residential buildings, etc)
§ transportation

PROCESSES:
§ Movement of organisms
§ Soil erosion
§ nutrient cycles

Effects/changes:
§ Natural productivity
§ Biodiversity
§ household welfare
§ Physical and chemical

 
Figure 1: A conceptual model for modelling biodiversity changes Source: adapted from The Impact of Urban 
Patterns on Ecosystem Dynamics, http://www.urbaneco.washington.edu/ 
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1.2 What is biodiversity? 

The biodiversity concept is a central theme in the ALTER-Net project. All work packages deal 

with different aspects of biodiversity. Despite the wide use of the term, it has different meaning 

to different people. To a majority of the lay public it probably means the number of species. For 

scientists, the biodiversity concept has a wider meaning including genetic, species and ecosystem 

diversity. The latter definition is adopted from the Rio convention on biological biodiversity. 

Using this definition, biodiversity becomes divided into two parts. The first part is the living 

organisms, and the second is processes created by the living organisms. Together these two parts 

widen the biodiversity concept to encompass interactions between ecosystem composition, 

structure and function.  

1.2.1 Use of biodiversity 

Arguments for preservation of biological diversity can be divided into two groups, 

anthropocentric and biocentric. The former puts humans and mankind in the centre and 

focuses on how high biodiversity is beneficial for our present and future survival. The biocentric 

arguments are based on the preservation of biodiversity for its own sake. A third set of 

arguments that are closely related to the anthropocentric are economic values and costs linked 

with biodiversity.  

 

The anthropocentric arguments can be divided into four main categories or arguments. 

 

• The first argument may be called “the utilisation argument”. We (the humans) need to 

preserve the biodiversity as we utilise or will utilise it. This applies directly to agriculture, 

forestry and fishery. This argument may also be applied to the preservation of genetic 

diversity, as the genes are codes for the production of millions of substances that may be 

utilised by us. 

• Another argument concerns the ecological services that the ecosystems provide to us. 

Examples are micro-organisms that mediate the nutrient cycles, or pollination performed by 

insects. 

• A third argument is based on the aesthetic values that flourishing and variable ecosystems 

provide.  
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• The final group of arguments involves ethical motives. The biological diversity is the result 

of billions years of evolution. According to the ethical motives, we have no right to 

extinguish a major part of the species within a few human generations. 

 

Effects on ecosystems by decreased biodiversity have been subject to substantial research. Yet, 

there is no single theory on the relationship between diversity and ecosystem functions (Chapin 

et al., 2000). Ideally, hypotheses with subsequent experiments should test this relationship. 

However, large-scale scientific experiments on biodiversity are impossible, as we cannot 

manipulate whole ecosystems. The more or less anthropocentric arguments for preservation of 

diversity mentioned above do not include any functional relationships. Thus, they cannot serve 

as a basis for scientific hypotheses for testing the importance of biological diversity from a 

functional or ecological point of view. However, a number of theoretical hypotheses have been 

formulated for hypothetical or small-scale testing of the importance of biological diversity. The 

first is generally known as “The rivet popper hypothesis” (Ehrlich and Ehrlich, 1981). In this 

hypothesis species are seen as rivets in a flying aircraft, and the aircraft is seen as an ecosystem. 

Removing (popping) one randomly selected rivet will probably not cause any trouble, neither 

popping a second or third rivet. Eventually, a critical number of rivets have been popped and the 

aircraft will fall into pieces if another rivet is removed. The second hypothesis is called “The 

Redundancy hypothesis” (Walker, 1992). This hypothesis is based on the assumption that an 

ecological function is maintained as long as at least one species in a functional group is 

preserved. A third hypothesis is based on “Mutual losses” (Naeem et al., 1995), saying that loss 

of species is directly related to reduced ecosystem function.  

1.2.2 Species richness and ecosystem functions and stability 

The relationship between biodiversity and ecosystem function is one of the fundamental 

assumptions in the argumentation for preservation of biodiversity. However, this assumption is 

questioned by some of the theoretical hypotheses noted above, and there has been a debate on 

both the relationships between species richness and ecosystem function, and the underlying 

mechanisms. If all species in a community contributes in a unique way to an ecosystem process, 

the relationship between species richness and process stability will increase linearly. An 

increasing niche overlap or species redundancy at higher species densities will lead to an 

asymptotic behaviour of the relationship. This asymptotic, or nonlinear, behaviour of the 

relationship may make it difficult to find statistical relationships between species richness and 

ecosystem functions. In such cases, the mechanisms behind the relationship must be determined 
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by studies of food webs to find important interactions between producers and consumers 

(McCann, 2000).  

 

It has been suggested that weakly interacting species stabilizes communities by levelling out 

community oscillations caused by strong predator-pray interactions (Odum, 1971). It is 

hypothesised that the diversity per se is not the driver of this relationship. Instead, the stability 

depends on the ability for communities to contain species or functional groups that are capable of 

different responses to competition, stress and predation. Empirical data have shown that weak 

trophic interactions in communities are stabilizing the food webs (McCann, 2000). Any removal, 

or addition, of species may lead to altered interactions, which in turn may lead to increased 

oscillations and instability. Thus, both reduced diversity as well as addition of alien species may 

be destabilizing factors. Some studies have shown that decreasing naturalness of the environment 

causes greater sensitivity to invasion of alien species and extinction of the natural flora and fauna 

(Moyle, 1976). 

1.2.3 Biodiversity assessment within the DPSIR framework 

If we agree that biodiversity is more than the number of species, an assessment of biodiversity 

becomes complex. By counting species numbers, lot of important information on system 

complexity and function is excluded. Wider information is included if number of genera and 

families are included. Combining data on number of species and their abundance in an index 

gives us a somewhat more complex figure on diversity, but far form complete. Even more 

information is included if data on endemism and naturalness is given.  

 

The quality of data on species richness may be insufficient (Nilsson and Nilsson, 1985). Many 

taxa are difficult both to find and to determine in the field. No studies can include all taxa in 

survey protocols. Since species are also commonly overlooked in the field, Chao & Shen (2003) 

have suggested a method for estimating true species diversity from incomplete species lists. If 

detailed surveys are not practical, an indirect way to assess the diversity is to use indicator taxa 

or surrogate measures of biodiversity. These include either taxa that are more easily surveyed 

than others, or physical structures that indicates a high probability of high biodiversity. 

1.2.4 Biodiversity within the DPSIR framework 

The ALTER-Net framework assumes cause-effect relationships between interacting components 

of social, economic, and environmental systems. The DPSIR model is used to evaluate and 

visualize relevant and important relationships between drivers and pressures, and state of 
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biological diversity. Driving forces that may affect the biological diversity are: human 

demographics, economic growth, urbanization, technological advances, culture and transports. 

These drivers may cause pressures such as: climatic change, pollution, altered land use, and 

species introductions. Assumed impacts by decreased biodiversity are more fragile ecosystems, 

and loss of functional redundancy. Societal responses to mitigate these effects may be protected 

areas and national and international legislation. 
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2 Model vocabulary – what is modelling? 

The purpose of this chapter is to introduce the reader to a number of terms and concepts that are 

useful when dealing with modelling and models used in biodiversity research. One of the most 

important criteria for models to be applicable in ALTER-net is that they must fit into the DPSIR 

concept. Most ecological models inform us about States and Impacts only a few integrate socio- 

or economic aspects. To be part of the DPSIR framework ecological models must at minimum 

be able to accept input from Pressure models and give output applicable to Response models. 

This gives restrictions on in- and output-parameters especially related to dimensions (space and 

time), but can sometimes be overcome by the linking of models such that one model (socio-

economic) provides data input for ecological models to address aspects of biodiversity. 

 

Models are tools used to represent reality in a simplified state. The type of model chosen will 

depend upon the problem to be addressed, i.e. there is no need to use a sledgehammer to crack a 

walnut. No single best model exists to describe all possible ecological problems, however to 

decide what model should be applied some criteria and definitions need to be considered. 

2.1 Criteria  

There are a number of issues that are important to consider when creating or using a model. 
Some of these are considered below: 
 

Model scope:  System/species level; ecological/socio-economic/integrated? The scope 

refers to the purposes of the model for scientific and policy aims. 

Furthermore, it should be noted to what extent the model is accepted for 

scientific and policy purposes.  

Model type: Qualitative/Statistic/Mechanistic/Dynamic? Has the model an empirical 

(i.e. statistical) or theoretical (mechanistic) basis? What are the main 

assumptions? Is the model based on relevant processes? Which 

processes and mechanism are ignored in the model?  

Model scale: What are the time and spatial scales for which a model can be applied? 

Is the model restricted to a certain time or spatial scale? Can the model 

be extrapolated to other time or spatial scales? 
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Model feasibility:  Is the model comprehensible? Is good documentation available? Model 

complexity and comprehensibility of underlying mechanisms may 

influence the usefulness of a model if users are not able to run the 

model without advanced programming or modelling knowledge. Good 

documentation of the model or setting up courses for novice users may 

aid potential users.  

Model input: Data requirements? Are input parameters measurable? Does the model 

give reliable output for the whole range of input data?  

Model output: Generality/predictability? Are the model results analytically tractable 

and/or can they be verified against real-world data. 

 

Alternative models: Are there alternative models? What are the differences? If the model 

was compared with alternative models, the outcome of this comparison 

may also be presented.  

 

Model references:  What are the most important resources about these models is presented. 

These sources may consist of model descriptions, examples of model 

use, discussions on calibration and validation methods, etc. 

2.2 A model classification 

When communicating models and model results it is important to have a grasp of the basic types 

of model and their properties. This classification is an attempt to present the major modelling 

styles usually encountered in modelling of different aspects of biodiversity. 

 

Models can be categorised on the basis of their unit of study and spatial resolution. This method 

of classification follows and extends Munns et al (subm.)’s classification of population models 

(Figure 2). It is important to note that although there is a spatial axis, this does not relate to 

spatial scale extent but to spatial resolution (or grain). The five model types of Munns et al 

(subm.) have been extended with a further two types (Community & Distribution models) to 

represent those kinds of models most commonly used in biodiversity studies. 
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Figure 2: A proposed classification of models typically used for biodiversity research (after Munns et al, subm.). 

 

Scalar models - Probably the simplest form is that suggested by Malthus in 1798:  dN/dt=rN  

(where N is population size, t is time and r is birth-death rate). Assumptions are that the 

population can be represented as a single uniform entity, no demographic or environmental 

structure, and usually few variables describing specific properties. Their uncomplicated and 

aggregated nature emphasises generality at the expense of realism and accuracy. 

 

Biologically-structured models - These models assign demographic characteristics or vital rates 

to unique classes of individuals in the population. These models begin to incorporate a higher 

degree of realism and are useful where biological structure is important. Typical 

implementations involve the use of projection matrix representations such as the Leslie model. 

This type of formulation can incorporate discrete time and can include time-dependent variation 

in vital rates. Other implementations include a variety of differential equation based models. 

 

Metapopulation models - Takes into account the disjunctive spatial distribution of many natural 

populations by simulating these as a set of interacting sub-populations. The level of biological 

aggregation can encompass all three of the preceding types. This modelling format has been 

extensively used in the past but is beginning to fall out of favour following the recognition that 

the assumption of discrete sub-population is not valid for the majority of species. For those 

systems compatible with the assumptions of the model, metapopulation models represent a 



 14 

relatively easy approach to implement and parameterise. Levels of realism can be scaled 

according to the data availability and aims. 

 

Individual-based models (IBMs) - IBMs consider individuals as the unit of study. Their data 

needs are very specific to the species modelled and they tend toward a high degree of realism 

(and hopefully accuracy) at the expense of generality. Two classes of IBMs are recognised: i-

state distribution (based on partial differential equations to manage the activities of individuals) 

and i-state configuration (characterised as summing the activities of all individuals as they are 

modelled separately). IBMs require higher volumes of data and longer development times than 

the previous model types. 

 

Spatially-explicit models – From simple spatial representations to the extreme of spatial 

disaggregation. These models consider the characteristics of the environment, habitat quality, 

types, arrangements, as well as the spatial arrangement of environmental stressors. These models 

strongly emphasise ecological realism and accuracy over generality and are often parameterised 

for specific cases. Like IBMs they are generally employed for specific case studies where their 

realism is necessitated by the decisions or detailed research they support. Development cycles 

are long, and the data volume required is high. 

 

Community Models - Differ from the preceding models in that the community not the population 

is the unit of focus. Community models come in all degrees of spatial aggregation. Typical 

model types include GIS based systems and multivariate statistical models. 

 

Distribution models - refer to the prediction of occurrence of a species in space. Typically GIS 

based information models. These models pre-suppose a spatial element. 

 

When considering genetics as a biodiversity trait a range of models can be used, but these are 

based upon a type of model construct represented here and therefore do not require a special 

model definition. 
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2.3 A note on integration 

When developing models that integrate knowledge from different disciplines or sub-disciplines it 

is important to be aware of different modelling cultures. This is likely to be critical especially 

when knowledge from natural and social sciences is to be integrated. Such differences may 

substantially complicate the co-operation between scientists from the different disciplines. At 

UFZ (Drechsler et al. 2005) such differences were investigated between ecological and economic 

modelling with regard to problems of biodiversity conservation. Sixty models that address issues 

relevant to biodiversity conservation were selected randomly from eight international economic 

and ecological journals. The models were compared according to a number of criteria including 

the level of generality the models are aiming at, the mathematical technique employed for the 

formulation and solution of the model, the level of complexity and the consideration of real 

world phenomena such as time, space and uncertainty. As a result, the economic models sampled 

are formulated and analysed analytically, tend to be relatively simple and to be used for the 

investigation of general questions, however often ignoring space, dynamics and uncertainty. 

Some of the ecological models sampled have similar properties, however, there are also many 

other ecological models that are relatively complex and analysed by simulation. These models 

tend to be rather specific and often explicitly consider dynamics, space and uncertainty. With 

regard to model integration it is also interesting to know how ecological-economic models that 

contain aspects from both disciplines behave in this context. These models were observed to lie 

in the middle between ecological and economic models, an important result being that they are 

not more complex than ecological and economic models (as one could have expected from naive 

“merger”), but have an intermediate complexity! 
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3 The role of modelling in ALTER-net 

ALTER-net should be viewed not only as a consortium of more or less linked organisations 

across Europe, having different, although sometimes convergent, experiences in identifying, 

describing and dealing with ecological problems. The extent of the network, which covers a 

broad range of cultures, traditions, socio-economic conditions and biodiversity levels provides 

excellent background for developing communication tools (also those based on modelling). The 

first tests for such tools are provided by ALTER-net team itself. Making sure that we are able to 

describe processes and links between them, produce scenarios and visualise predictions in a way 

acceptable and easy understood by all partners is a first step for developing common 

communication systems. Systems focused on propagation of long-term biodiversity, ecosystem 

and awareness research. 

3.1 Models to help relate socio-economic factors to biodiversity 

change. 

It is expected that modelling will enable us to bring together disparate issues surrounding 

biodiversity changes.  As noted in the project proposal, one important component of the 

modelling task would be identifying important socio-economic drivers of biodiversity change 

and analysing their political and economic dynamics, as well as identifying policy options to 

mitigate the negative impacts of these drivers.  It is believed that this approach will lead to a 

better understanding of the role of socio-economic drivers in ecosystem dynamics and thus to 

improve our capability to anticipate the impacts of socio-environmental trends to allow the 

European Union to make well-founded decisions about its own sustainable development.  This 

overall objective was further elaborated and five specific objectives were formulated: 

 

1. To identify the gaps in our understanding of the main socio-economic drivers and 

anthropogenic pressures on biodiversity and conservation policies related to these drivers and 

pressures. 

2. To deliver an adequate vocabulary and methodology to describe, analyse and understand the 

integrated dynamics of socio-economic and natural environmental systems, henceforth 

referred to as socio-environmental dynamics. 
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3. To have defined key research hypotheses on the role of main drivers for biodiversity change 

in a socio-environmental context at different spatial and temporal scales.  

4. To have analysed the political and economic processes behind these drivers. 

5. To develop [in co-operation with Research Activities 3 and 6, below] models characterising 

the main components and functions of the socio-environmental systems and the relationships 

between them and biodiversity.  

 

3.2 Models as a basis for data analysis and design of LTER 

network 

An emerging assumption is that experimental and monitoring data extend to larger scales and 

crosscut disciplines facilitating an improved forecasting capability (Clark et al. 2001, Osmond et 

al. 2004). May (1999) noted that “many of the most intellectually challenging and practically 

important problems of contemporary ecological science are on much longer time-scales and 

much larger spatial scales” than are currently being investigated. 

  

ALTER-Net’s Multifunctional long-term research platforms (MFRP) provide a solution to this 

problem. Fully integrated landscape sites or regions like UNESCO Biosphere reserves, Zones 

Atelier in France or Multifunctional Research Platforms in Austria operate at a scale required to 

measure combined socio-environmental processes (see relevant documents of Integrating 

Activity 3). These sites should be designed to provide appropriate information for modellers to 

develop and test process-based integrated models able to predict biodiversity change and change 

in ecosystem functions driven by anthropogenic and natural drivers and pressures (Figure 3). The 

focus on modelling the processes and mechanisms involved is certainly the core area of fully 

integrated LTER sites and contrasts with correlative empirical (descriptive) models, which 

describe patterns in space and time with no explicit need to understand the underlying processes 

(see Chapter 2 for different types of models) 

 

Several research questions need solving in order to achieve this goal:  

 

1. What might be a common framework for this multidisciplinary modelling approach?  

2. Do we have models that provide appropriate exchange parameters, allowing model 

integration/linking?  
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3. How do we scale-up and –down (in space and time) ecological and socio-economic 

parameters to be applicable in a unifying model? 

4. How can we handle multiple sources of stochasticity, non-linearity and uncertainty? 

 

At least some approaches have been under intensive debate, which tackle the above questions. 

The principles of DPSIR have been widely applied for the purpose of environmental assessment. 

However, how this framework can be used to model the consequences of environmental change 

for biodiversity is not fully explored (Petit et al. 2001). If such a model is to capture cause-effect 

chains then appropriate exchange parameters, particularly between the societal and the ecological 

compartments, have to be defined. One such link is between land-use and/or land-cover change 

and socio-economic changes. This principle is underlying the SENSOR IP where outcomes of 

socio-economic models are being used to predict future land use, and in turn evaluate the 

impacts of such changes on sustainability.  

 

Most often ecological and social processes operate at a wide variety of scales and levels and 

cross-scale/level interactions are rather typical (Giampietro 2004). Interfaces of submodels need 

to take different spatial and temporal scales into account (Millennium Ecosystem Assessment 

Advisory Board 2003).  

 

Finally, many sources of uncertainty exist in predicting biodiversity change due to anthropogenic 

and natural impacts. These uncertainties include human responses to environmental changes but 

also system inherent uncertainty (e.g. extinction risk of species). Many approaches for handling 

uncertainty are currently being developed including model averaging or hierarchy-models (Clark 

et al. 2001). 

 



 19 

Socio-
economic

system

Ecosystem
function

Biodiversity

How do ecosystem functions (and their human-
induced changes) influence biodiversity

How does
biodiversity

affect ecosystem
functions

Ecosystem
services

Ecosystem mana-
gement, land use

Material-
& Energy
flow

Direct human
impacts on
biodiv.

Cultural
aesthetic
values 
of biodiv.

 
 

Figure 3: Processes to be modelled in order to link socio-economic systems with biodiversity and ecosystem 
function (source: Haberl, H. Sing, S.; Research activity 3; Workshop Halle; 21.-22.10.2004) . 
 

3.3 Models as scenario tools 

Scenarios are imaginative pictures of potential futures. The objective of scenarios is not to 

forecast or predict the future development of landscapes, but to imagine a variety of possible and 

plausible futures (Penker & Wytrzens, 2005, Mohren 2003). Scenarios are hypothetical, 

describing alternative future pathways, and elements are judged with respect to importance, 

desirability and/or probability (EEA 2000). Scenarios describe processes representing sequences 

of events over a certain period of time. Alternative policies can be evaluated in light of 

contrasting scenarios and their robustness to possible futures can be compared.  

 

While scenarios are often based on qualitative stories (narratives), computer models are tools to 

explore future consequences of assumptions and consistency of the developed scenarios in a 

quantitative way. Besides advising the decision-making process a key function of scenarios is its 

power for combining both qualitative (expert knowledge) and quantitative (data and model 

based) output (Rotmans & van Asselt 1996; Penker & Wytrzens, 2005). Models and scenario 

analysis can provide a very powerful tool for explorative studies, provided they use reliable input 

data, and are based on thorough understanding of ecosystem functioning as well as of needs and 

demands from society (Mohren 2003).Scenarios are now developing towards integrated 

assessment, which is a relatively new field of decision support paying attention to the harsh 

complexity of major social and environmental problems (Rotmans & van Asselt 1996).  
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Usually forecasting biodiversity change is based on existing scenarios of one (Kopácek et al. 

2003; Kovács-Láng et al. 2000; Pontius et al. 2001; Skov & Svenning 2004; Virkkala et al. 

2004) some (Dirnböck et al. 2003; Dullinger et al. 2004; Klok et al. 1997), or multiple pressures 

(Petit et al. 2001; Topping, 2005). The explicit incorporation of socio-economic drivers in one 

model remains a rarity and was done particularly at the regional scale (Tasser & Tappeiner 

2002). Furthermore, integrating several scales in developing scenarios, which means being 

developed at one scale (e.g. continental) but including trends at other scales (global, regional), is 

still a rarity. 

 

The most elaborate biodiversity change scenario exercise at the global scale so far has been 

carried out by the Millemium Ecosystem Assessment (Millennium Ecosystem Assessment 

2003). Terrestrial biodiversity was modelled via the IMAGE land cover change scenario and the 

species-area relationship, the potential biome and species shift due to climate change, and the 

critical loads concept for nitrogen deposition. Other approaches were adopted for freshwater and 

marine environments. In addition to biodiversity loss itself related ecosystem services were 

assessed. Although uncertainty is still unsatisfactorily high, the approach employed relies on 

ecological theory and is of high scientific quality. 

 

Clark et al. (2001) point out that scenarios can be uncertain as long as they are as consistent as 

possible with current scientific understanding and that uncertainty is communicated 

transparently. Much more crucial for scenarios to be successful is that priorities for ecological 

forecasting must come from dialogue that ensures active participation by policy-makers, 

managers and the general public. A first step in scenario building would thus focus on the 

definition of forecasting priorities via user needs. IPCC Scenarios have been influential because 

they respond to a request from governments. 

 

The use of alternative scenarios is becoming increasingly popular in environmental decision 

making, because scenarios combine assumptions and values in coherent packages that are easier 

to understand than are complex models with innumerable premutations of parameters (Kareiva 

2001). In landscape ecology, scenarios are usually applied to understand more about landscape 

development, to support decisions for policy interventions in landscapes, and to support 

participation processes in landscape and regional planning. For these purposes, the scenario 

technique is considered to be a useful means of gathering and structuring diverse expert 
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knowledge (Penker et Wytrzens, 2005). The spatially detailed modelling tools can be 

successfully used in definition and assessment of scenarios. Premises behind scenario set up and 

the related outcomes are made accessible for all stakeholders, such as political decision-makers, 

farmers or the general public (Münier et al. 2004). Despite some methodological limitations, 

scenarios can deal with uncertainty concerning the socio-economic driving forces of landscape 

change and therefore can be used as a preliminary step in formulating robust strategies for 

landscape management (Penker & Wytrzens, 2005).  

 

3.4 Models as a tool for communication with the public 

Science and society is linked in many different ways and conveying information between 

stakeholders has become crucial. Simultaneously, our knowledge has expanded and become 

rooted in huge data bases and its translation into policy has become more and more dependent on 

problem understanding and good will of people not dealing with scientific issues. Finally the 

policy implementation has become dependent on common acceptance by users and therefore 

effective exchange of information through direct or indirect contact with people is crucial.  

3.4.1 Communication tools 

Communication between science, technology and the public may be based on a variety of tools 

such as papers and books, brochures, films, Internet and models. However, among those, only 

models have the potential to get people directly involved in some processes and translate 

complicated problems into relatively simple language of signs. This is the case for four important 

reasons: 

 

1. models allow (or even force) scientists and scientific organisations to communicate 

directly with their audience; 

2. models allow the use and combination of very complex data bases, provide summarised 

information, detect relations between different variables, and allow forecasting and 

scenario building;  

3. they have a demonstration power not comparable to any other communication tool in that 

they allow both visualisation of present data and future scenarios. 
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3.4.2 Communication to decision makers  

Decision makers make comparative judgements about the hierarchy of importance of different 

issues while the attentive public (other scientists, lecturers, land owners and land users, NGOs) 

requires to understand basic processes, relations and model elements. These two groups are 

involved in designing strategies in conservation and management of biodiversity and such issues 

have to be incorporated into models, which use and generate specialised and precise information, 

forecasting and simulation of impacts of certain management options on the ecosystem 

properties. They should also be aimed at the creation of policy assessment instruments useful in 

spatial and temporal planning of human activities and conflict solving. By presenting 

information in a recognizable and understandable format, models can stimulate meaningful 

discussions and dialogue between groups traditionally associated with conflicting opinions.  

3.4.3 Communication with the public public 

The attentive public expect models describing and presenting processes, and here visualisation 

allows models to communicate, educate, inform and involve public and stakeholder groups in 

management decisions. The non-attentive public ignores ecological and environmental 

information, but as in many countries they constitute over 50% of audience; it is important to 

attract their attention using nice-looking, pictorial, game models (communication for education).  

The interested public requires the same kind of communication as, despite an interest in the 

issues, it lacks understanding of the processes involved.  

Education requires mathematical models to be presented as graphs, equations, or algorithms. By 

using simulations, students can understand environmental processes playing important roles in 

whole complex and dynamic systems and they have an opportunity to view an ecosystem as an 

integral part of the natural and socio-economic environment. This creates public sensitivity to 

biodiversity-related issues.  

 

 

3.4.4 Conclusions and conceptual model of communication process 

Models are a very valuable tool to ensure good quality communication between different groups 

of interest – scientists, authorities, decision makers, NGOs, environmental protection agencies, 

foundations, stakeholders and the public. Expectations, knowledge constraints, level of interest 

and data available, strictly determine the structure of a model, its predictive power and accuracy. 

What is unquestioned is the fact that modelling, like no other tool, requires and ensures 
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communication between: ‘information sources’ (education, management, science), modellers and 

scientists working directly on approach and a model (at every step of model elaboration) and 

end-users, who consciously or not incorporate results into learning activities, policy and 

investment. 

 

Along the process of model elaboration, communication takes different forms - simple 

information transfer necessary for proper tasks identification, then problem assessment for 

identification the optimal approach, translation of scientific approach into proper modelling 

approach and adjustment of that approach and deciding about model structure and properties. 

Finally results in required form – ecosystem state assessment, scenario, educational game, 

management suggestions - are transferred directly to the publics in synthetic, focused and 

visualised form; the ”Story and Simulation (SAS)” approach taken by IPCC and further 

elaborated by the Millenium Ecosystem Assessment providing narratives of model results that 

are understandable by a broader public. 

 

3.5 Improving access to data for models 

Work package R6 has to co-operate with work package I6 (a framework for distributed data, 

information and knowledge management system) in order to establish an IT framework for 

ALTER-Net that sufficiently supports the needs of establishing, tuning and applying different 

biodiversity models. Although preferred models exist (e.g. niche models) as well as a unifying 

metamodel framework (DPSIR) in order to forecast biodiversity change, it is necessary that the 

IT strategy allows for implementing a wide range of ecological models. 

 

It is assumed that I6 establishes a network for distributed data, distributed applications and 

distributed datamining based on grid technology (http://public.eu-egee.org/) so that e.g. a 

member in Poland will be able to work with a model of Denmark on data of Scandinavia and 

Poland. 

R6 needs to work out metadata standards and ontologies (semantics and structures ) together 

with I6 which will allow: 

 

- mapping of existing data to the standard ontologies 
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- establishment of semantic interfaces of (modelling-) applications (e.g. defining that a forecast 

model is only valid for certain species) (http://www.sys-con.com/xml/article.cfm?id=776)  

- a seamless access to data and applications 

 

It is crucial that existing standards for metadata, ontologies and process- and service definition 

(especially IEEE [http://standards.ieee.org/], ISO 

[http://www.iso.org/iso/en/ISOOnline.openerpage], W3C [http://www.w3c.org/], EN), existing 

software developed by others (SEEK [http://seek.ecoinformatics.org/] , e-science, e-health, 

biodiversity modeller), existing know how, and existing concepts are taken into account.  



 25 

4 An overview of existing model expertise in ALTER-net  

This chapter is not intended to be a complete overview of all types of modelling developed by 

the participating institutions of ALTER-net. Rather, the purpose is to identify and describe some 

major model ‘trends’ within the following six areas: 

 

1. Forest ecosystems 

2. Freshwater ecosystems 

3. Agro-ecosystems 

4. Broad-scale distribution modelling 

5. Land use change modelling 

6. Integrated impact modelling 

 

4.1 Models of forest ecosystems 

A number of forestry models are available that predict how environmental conditions affect 

biodiversity. Some of those models use a static approach to identify the influence of climatic 

variables on tree species distribution, the influence of environmental conditions (climate, soil) 

and forest stand structure on forest biodiversity.  There are also examples of dynamic models 

used to assess forest diversity changes over time, in relation to vegetation succession, climate 

change, disturbance, and management strategies.  

 

Most forestry models developed in the network have a small resolution, as they predict species 

diversity and forest stand dynamics for plots which size varies from a few square meters to a few 

hectares. Their domain of use is related to the spatial extension of focal species and main 

environmental drivers. However, there are also probabilistic models of tree distribution at 

continental (European) scale. 

 

Modelling tree species distribution along climatic gradients, at local, regional and 

continental scales.  At regional scale, probabilistic models have been used to explain the 

patterns of distribution and abundance of oaks along climatic gradients in Spain (Urbieta et al., 

2004). 
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Modelling forest vegetation biodiversity in relation to environment conditions and stand 

structure. The relationship between vegetation community composition in Swedish forests and 

environmental variables is used to forecast the likelihood of a species being present under 

changing environmental conditions. The methodology is based on the RIVPACS model (Wright 

et al., 2000). 

  

Modelling forest biodiversity changes over time. The OFM (Oak Forest Model) is a non-

statistical verbal model which describes the effect of global climate change on the biodiversity of 

Hungarian oak forests (based on data from the Síkfokút ILTER Project (Hungary).  

  

SAMSARA. The model SAMSARA (Courbaud et al. 2003) is a spatially-explicit individual 

based model allowing to simulate the dynamics of mixed forest stands. Competition between 

trees and between canopy and regeneration is modelled through the explicit calculation of 

radiation interception by every tree in the stand. The model is currently applied in mixed Picea-

Abies-Fagus forest stands in the Alps.  

 

The ALCALA forest management model. The ALCALA model (under construction) is a 

biology based management model aimed to predict changes in forest composition along 

topographic and disturbance gradients, and within a global change scenario. The model is 

implemented in southern Spain, but will be applicable to other Mediterranean forests. 

 

Forest tree line models. Dullinger et al. (2004) have developed an individual based model to 

predict the impact of climate change on the dynamics of mountainous treeline. The model is 

spatially explicit and handles interactions with resident vegetation. 

4.2 Models of freshwater ecosystems 

The major drivers affecting the integrity of aquatic ecosystems are overexploitation, nutrient 

enrichment and organic pollution, acidification and alterations of hydrology and morphology. To 

address the effects of human-induced stress on aquatic habitats, many European countries have a 

long history of monitoring (using benthic macroinvertebrates) the biodiversity and ecological 

integrity of freshwater ecosystems. Methods include relatively simple algorithms or biotic 
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indices, combinations of multiple indices (multimetric approaches), and relatively complex, 

multivariate approaches for pattern recognition and prediction. All three approaches are 

commonly used in biomonitoring and assessment studies to detect ecological change. 

 

Another area that shows promise is the use of modelling approaches that utilise ecological 

relationships to predict community composition in the absence of human-induced stress. Various 

initiatives are underway within ALTER-net. Among these  predictive approaches (RIVPACS-

type models), dynamic models to describe structure and dynamics of populations, construction of 

tools to identify hierarchies of components in aquatic ecosystems, and tools to predict response 

of biodiversity to stress caused by human impacts. 

 

DALIS (Wojtal et al. in prep) – a model for forecasting influence of natural (mortality, 

reproduction, predation) and human-driven factors (eutrophication, hydrology) on cladoceras’ 

dynamics and water quality (depending on filtrators density) in Sulejow reservoir in Poland. 

 

FISHEST (Zalewski 1994) estimates fish stock density using only one electrofishing, which is 

crucial for preservation of fish populations in small streams. Traditional methods based on 

multiple electrofishing may lead to fish depletion and are not applicable in natural parks or for 

studying of rare or endangered species. 

 

PROTECH (Reynolds et al. 2001) and CE-QUAL-W2 (Cole and Wells 2002) are used to 

predict phytoplankton responses to environmental change in lakes and reservoirs. MICRO-

PEG-RES (Straskrabova et al. in print) verbally describes seasonal cycles of plankton 

communities in temperate water bodies and include following pelagic groups: zooplankton 

(cladocerans, copepods, rotifers), two size groups of phytoplankton, bacteria and protistan 

grazers, their interactions and an effect of meteorological conditions upon them. 

4.3 Models of agro-ecosystems 

ALTER-net has a range of expertise within modelling of aspects of biodiversity in agro-ecology. 

Agro-ecological modelling applications require a range of temporal and spatial scales to be 

considered dependent upon the spatial unit of study (field, farm or landscape), and upon the 

biological unit, which may be from soil-dwelling Collembola to migratory birds or large grazing 

animals. This variety of applications necessitates a variety of models, however many of the more 
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simple applications require the use of simple models such as matrix population models, or 

metapopulation models (e.g. Grimm et al, 2004). Here ALTER-net has expertise and experience 

at least as wide as other competent modelling group. However, agricultural systems are highly 

dynamic both from a biological point of view (succession, spatial dynamics, nutrient dynamics), 

and from a management perspective (Tappeiner et al. 2003, Tasser & Tappeiner 2002). They 

therefore often require a multifaceted approach to their modelling. In these cases ALTER-net has 

considerable expertise to bring to bear. From an information perspective, ALTER-net consists of 

the many of institutes throughout Europe that most commonly undertake applied conservation 

projects within agricultural systems; therefore there is good basis from which to build 

knowledge-based models. Additionally there exists an expertise in construction and application 

of simulation modelling from relatively simple simulation models of animal movement (e.g. 

ALTERRA’s SmallSteps model (Jepsen et al, 2005)), invasion models (e.g. SEIBS (Higgens et 

al, 2001)), simulations of plant growth, competition and evolution (e.g. Warren &Topping 2004), 

to comprehensive simulations of the agri-environment such as the ALMaSS system (e.g. 

Topping & Odderskær, 2003). 

 

 

 

4.4 Broad-scale distribution modelling 

Broad-scale distribution modelling of species-environment relationships, i.e. based on various 

hypotheses as to how environmental factors control the distribution of species is widely used in 

ecology, biogeography and conservation planning.  These models have especially gained 

importance as tools to assess the impact of accelerated land use and other environmental change, 

e.g. climate, on the distribution of species. The statistical formulation of the model depends on 

the type of response variable (for a review, see Guisan and Zimmermann, 2000) and a number of 

indices and techniques are available to assist the assessment and deconstruction of prediction 

errors (Fielding and Bell, 1997). 

 

When applied to species distributions, broad-scale distribution modelling and mapping includes 

three different stages, (i) developing and calibrating a statistical model of the relationship 

between environmental variables and species distribution, (ii) evaluating the model with an 
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independent data set or other validating techniques, and (iii) applying the model to a geographic 

data base to create a predictive map. 

 

Predictive species-environment models are powerful tools as they provide a graphical summary 

of the results, a framework on which a field survey might be planned in order to collect empirical 

data more efficiently,  and tools for inference of properties not directly observed. 

 

Species occurrence and biodiversity patterns are primarily dependent on climate and habitat 

pattern. A central premise of biogeography is that climate exerts a dominant control over the 

distribution of biota on large scales. On smaller scales, e.g., landscapes, habitat cover and land 

use changes are often considered as the main factors affecting biodiversity patterns. 

Consequently, environmental drivers of species distribution might operate at contrasting scales. 

The occupancy of any species is thus affected by the spatial distribution of appropriate habitat 

patches on the landscape scale, whereas climatic factors are usually responsible for the large-

scale distribution patterns. 

 

4.4.1 Examples of distribution modelling in the network 
 

Distribution of alpine plants in relation to future climate and land-use. The objective of this 

study was to assess potential response of alpine plant species distribution to different future 

climatic and land use scenarios in the North-eastern Calcareous Alps of Austria. The results 

support earlier hypotheses that alpine plant species on mountain ranges with restricted habitat 

availability above the treeline will experience severe fragmentation and habitat loss. (Dirnböck et 

al. 2003). However, an extended dynamic model also revealed that considerable time lags can be 

anticipated until potential habitat losses will be reached (Dullinger et al. 2004). 

 

Prediction of suitable habitat for priority species. Habitat maps for Crex crex and priority 

grassland was made in  Poloniny Biosphere Reserve, Slovakia. Logistic regression, CART, 

Discriminant analysis and ENFA (Hirzel et al., 2002) were used in order to build statistical 

model of the relationship between environmental variables and habitat distribution. The model 

was also used to predict suitable habitat today and in 2030. Priority species and habitats were 

used as indicators of agricultural decline in the abandon mountainous region in Eastern 

Carpathians Mts. 
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Figure 4: An example of predictive habitat mapping from Slovakia. 

 

Determinants of biogeographical distribution of butterflies in boreal regions. In this study, 

the main environmental correlates of butterfly distributions in Finland were investigated. Results 

indicate that the distributional limits of butterfly species in Finland are principally set by climate 

and were used to see which species are particularly sensitive to forecasted global changes. 

 

Species richness coincidence: conservation strategies based on predictive modelling. Here it 

was explored whether hot spots of five taxonomic groups (plants, dragonflies, butterflies, 
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herpetofauna and breeding birds) coincide after correcting for differences in mapping intensity.  

This example illustrates how decisions on the designation of conservation areas may greatly 

benefit from predictive modelling performed at a regional scale.  

 

Birds as predictors for butterfly distribution. In this study it was demonstrated that 

distribution data of a very well-surveyed taxonomic group (birds) data can be used to predict the 

distribution of less well-surveyed species groups (butterflies). In addition, our results indicate 

that models built in one region could be applied in an adjacent ecologically similar region. 

 

4.4.2 Important future research areas in relation to Alter-net priorities 

Recent critiques have questioned the validity of this climatic envelope approach by pointing to 

the many factors other than climate that also affect species distributions and the rate of 

distribution changes (Davis et al. 1998, Hampe 2004). The relative importance of habitat factors 

on the one hand, and factors related to climate on the other hand, are thus essential for 

understanding the causes of biogeographical distribution patterns. The challenge is to explore 

the risks to biodiversity caused by the synergy of climate change (at the large scale) and habitat 

fragmentation (at the regional scale). The assimilation of climate and landscape level processes 

can improve our understanding of species geographical patterns, future biodiversity research 

and conservation strategies. Here below are listed some future research aims in relation to 

Alter-net priorities. 

 

 

4.5 Land use change modelling  

In this section we present as an example a landscape model which was developed in order to 

analyse landscape-scale changes of biodiversity and carbon pools in relation to historical and 

current land use, as well as explorative scenarios of future land use. This was achieved by 

integrating socio-economic drivers and spatially explicit information, scaling up biodiversity as 

well as C-pools from the ecosystem to the landscape scale.  

The approach combines: (i) historical and current land cover, (ii) scenarios of land use as 

inferred from stakeholder consultations, from a spatially explicit land use change model 

(transition matrices), from an agro-economic model, and (iii) estimation of biodiversity as well 

as of C-pools in the phytomass via a geo-statistical model. 
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Figure 5: Research approach to analyse landscape-scale changes of biodiversity and carbon pools in relation to 
historical and current land use, as well as explorative scenarios of future land use on the example of the Stubai 
Valley in Austria (region Innsbruck Land).  
 

 

The historical land cover was obtained by digitizing historical maps (Francisco-Josephinian 

Cartographical Register, M 1:25000, 1869-1887) which depict the different land-use types from 

forest, to lightly used meadows, pastures, larch meadows, permanent crops, arable land, 

settlements and others (rocks, moors, rivers). Starting from 1950 up to now, remote sensing data 

were available in the form of aerial photographs and orthophotos. Consequently, we got 

information on land cover and land use changes of the last 150 years to 200 years. 

The calculation of the scenarios of land use was based on the following methods: 

Stakeholder Consultations: The approach examined three contrasting funding scenarios (1) 

Status quo - gradual reduction of farm income support, continuation of restrictive planning 

policies; (2) Reduced area-based support - rapid reduction of area-based direct payments in 

favour of environmental or cultural landscape payments linked to labour, continuation of 

restrictive planning; (3) Rural Diversification - enhanced rural development policy with positive 

planning.   
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On workshops stakeholders such as farmers, foresters, economists, ecologists, and planners made 

a reasonable judgment of how a possible policy change might affect them and their area and 

predicted the effects on mountain landscape sites (Bayfield et al. submitted). 

Transition Matrices: The transition matrices implied the development of the past 15 years and 

forecast a continuous development in the same direction (Luijten 2003).  

Agro-Economic Model: The agro-economic model focused on the changes resulting from 

economic aspects (milk price premium, area premium or income from sideline) with the aim to 

point out the effects of economic changes on the acting of farmers and subsequently on 

agriculture by responding to agro-environmental policies (Hupfauf et al. submitted).  

As input variables we used among others site and topographical factors as well as farm size, cost 

distance between areas and farm, and accessibility with machines as basis for each farm. The 

driving variables for our model were the aforementioned economic aspects and their changes. 

 

In a next step, biodiversity as well as C-pools in the phytomass were estimated via a geo-

statistical model. The land use classes were combined with detailed phytosociological 

information (e.g. species) to enable the estimation of biodiversity changes, C-pools and other 

ecosystem services. The values result from project area relevant literature (approx. 30 

publications) and our own findings if data were not available.  

The used approach of a comparatively simple geo-statistical modelling of the results proves to be 

a very suitable measure to consider all principles of DPSIR by assuring simplicity, 

comprehensibility and clarity (Tappeiner et al. 2001; Tasser & Tappeiner 2005). 

 

4.6 Modelling the integrated impact of pressures on biodiversity at 

a European scale 

MIRABEL (Models for Integrated Review and Assessment of Biodiversity in European 

Landscapes) is a conceptual framework that applies the principles of DPSIR and is designed to 

facilitate analysis of the consequences of environmental change for biodiversity at the scale of 

Europe (Petit et al. 2001). MIRABEL was developed under contract to the European 

Environment Agency (EEA) to underpin the assessment of European biodiversity within the 

EEA successive State of the Environment report. The assessment is based, when possible, on 

spatially explicit quantitative modelling of the responses of biodiversity to environmental 

conditions (Fig. 6). 
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Figure 6: The DPSIR framework in the context of MIRABEL 

 

4.6.1 Assessing the impact of terrestrial eutrophication on Biodiversity 

Atmospheric nitrogen (N) deposition has been identified as an increasingly important driver of 

ecological change in Europe. In Mirabel II, we developed a model to assess risks associated with 

increased N levels across Europe for 22 EUNIS habitat types present in designated sites and that 

have been identified as sensitive to N deposition in recent  international workshops. The 

distribution of EUNIS habitat types was derived from the pan-European databases of designated 

sites (Natura 2000 and CORINE Biotopes). In our model, response of vegetation to N deposition 

– as estimated by EMEP grid - was affected by variables such as soil pH as it affects the 

availability of phosphorus, a component which is known to worsen the effect of N; soil moisture, 

as extreme conditions will impede the response of vegetation to N deposition; the length of the 

growing season, as again it affects the response of vegetation and finally the surrounding land 

use, which dictates the availability of sources of propagules of plants typical of eutrophic 

habitats around sites. 

This assessment showed that the amount of habitats at high risk was much less than the total 

amount of sensitive habitats found in a region and that a substantial proportion of sensitive 

habitats experiencing N deposition values above their critical load were not at high risk when 

assessed by our model. The two main factors limiting the impact of N deposition on habitats 

were phosphorus limitation and the land use surrounding the designated sites.  
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4.6.2 Assessing the impact of farming intensification on biodiversity 

There is now much evidence that the intensification of farming practices that took place after 

over the last 50 years has been a major driver for the decline in European biodiversity and today, 

there are still strong ecological signals that the decline of biodiversity in farmland has not been 

halted. 

 

In Mirabel II, a quantitative spatially explicit model was developed to assess the the impact of 

farming intensification on ecological resources at risk from this pressure. Indicators of 

intensification were the stock in 2000 and the change between 1990 and 2000 for (i) nitrogen 

surplus and (ii) livestock stocking densities and were computed using the ELPEN system (6). 

Distribution of resources at risk were derived from  the pan-European databases of designated 

sites. Models outputs were interpreted at the Biogeographical level and below in terms of  (i) the 

amount of resources potentially at risk, (ii) the state and trends in pressure and (iii) the foreseen 

impacts on responsive habitat types. Spatial coincidence of pressures with habitat types in 

designated sites were assessed across Europe for specific habitat types or for sets of habitat types 

in specific biogeographical regions. 

 

For Nitrogen surplus, the pressure seems to have decreased between 1990 and 2000 where it 

used to be very intense (Atlantic region) while it is still increasing in some other areas. Impact on 

specific habitat types varied, but in most regions, there was always a proportion of habitats that 

were predicted to be under increasing pressure (especially true for the Mediterranean region). 

Trends in stocking densities were heterogeneous within all Biogeographical regions, with similar 

amount of area predicted to have experienced increased and decreased grazing pressures (except 

in the Alpine region with more areas experiencing increases). Substantial increases in grazing 

pressure were predicted to impact on xeric grassland in the Mediterranean region and on alpine 

grassland types in the Alpine region. 

 

This assessment proves that linking agricultural statistics to biodiversity information is possible 

at a coarse scale. The spatial dimension of the indicators of farming intensification derived from 

the ELPEN system enabled to make a direct link with the nature and location of natural 

resources. The development and/or refinement of additional indicators of agricultural trends 

would provide extremely valuable tools for future integrated assessments at the regional level. 
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5 Perspectives and new directions 

The purpose of this chapter is to discuss some possible ways in which modelling may be further 

developed in the context of ALTER-net.  

5.1 Integrated modelling 

Integrated models are relatively new approaches for discussing the issue of sustainability. These 

models are aimed at bringing together the knowledge of various disciplines in assessing the 

developments in ecology and economy. Starting in the 1970s, many researchers have attempted 

to integrate various relevant systems into a comprehensive model. Different concepts and 

modelling approaches emerged in the ‘integrated modelling society’. Among these are system 

dynamics, environmental economics, biodiversity, industrial ecology, ecological economics, 

systems ecology and integrated assessment modelling. Despite the different approaches, all 

models that have been developed share one essential property: the inherent impossibility to make 

accurate predictions for long-term future developments, no matter the level of detail in the 

model. This is caused by the complexity of systems involving ecology and human behaviour, 

which confronts us with the fundamental limits of predicting future system behaviour. 

Notwithstanding these serious limitations of integrated models, they can help us to show the 

interdependence of the various activities and their consequences in time, place and scale. In that 

way models can be used to communicate knowledge on relevant system dynamics from the 

scientific community to policy makers and stakeholders. 

 

Integrated models are being applied on various issues at different scale levels. They might focus 

on ecological-economic developments at a regional or local scale. In these models, socio-

economic developments and interactions with the environment are simulated in spatial detail and 

also the development of integrated models of global systems.  

 

The first step in modelling such complex problem is developing a conceptual model of the 

system and processes involved. We expect that such a model clarify the connection across 

disciplines, reveal which research questions were better approached within a traditional single 

discipline, and identify opportunities for constructing mathematical model of biodiversity. 
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5.2 Conceptual models and Cognitive Maps 

The purpose of a conceptual model is basically to capture the scientific understanding of a given 

system. Conceptual models have proven valuable to help understand how systems work, 

highlight what we don’t know and hence help formulate new research programs. Another 

important use of conceptual models is to disseminate information to other scientists, to decision-

makers and to the public. A conceptual model may be formulated verbally or graphically on a 

piece of paper, but it is also possible to build dynamic, computerised conceptual models. Various 

methods are available. In this paper Cognitive Mapping is presented as a simple, yet powerful 

approach: 

 

The term ‘Cognitive map’ can be attributed to Axelrod (1976) who used cognitive maps to plot 

his understanding of a given system as a number of concepts affecting each other. A Cognitive 

Map is represented as a graph or network where variable concepts are represented by nodes and 

causal events (interactions between concepts) by edges or lines connecting the nodes. 

Connections are usually directional, meaning that the action is from one node to another and 

represented by an arrow. In other words, a Cognitive Map consists of individual cause-effect 

relationships tied together in a large network which makes it possible to construct large and 

relatively complicated models even though only small parts of it is understood at one time. 

 

A Cognitive Map represents a convenient way of visualising a complex scenario or system. A 

cognitive Map is dynamic and allows for feed-back and may produce simple predictions on how 

complex situations may evolve if we change some of the initial concept states, e.g. to evaluate 

what-if implications of a model. System feed-back often results in a dynamic phase where 

concept values go up and down for then, finally, to converge to an equilibrium. This equilibrium, 

or hidden pattern, is the outcome or prediction of our model. Cognitive Maps, hence, may 

provide rich insights in the behaviour of complex systems. 

 

Larks and pesticides – an illustrative example 

A useful example of the potential for linking multi-facetted models to decision making in agro-

ecology is the evaluation of the impact of different pesticide taxation scenarios on skylark 

population numbers (Topping, 2005). This problem required the consideration of a number of 

aspects including the socio-economic impact of taxation scenarios on the farmer and the changes 

in management that would result. These changes were used as input to ALMaSS (a landscape 
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scale, agent-based simulation model, Topping et al, 2003). ALMaSS models both the ecology 

and behaviour of the target animal species in detail, but also models the environment in which 

the animal is placed.  This environment includes the spatial arrangement of fields, weather, and 

most importantly a farm-by-farm, and field-by-field detailed crop management including crop 

rotations and detailed crop husbandry. Inputs from the socio-economic model resulted in changes 

in farm management and crop choices, and these changes were translated into changes in skylark 

abundance. 

 

 
 

Figure 7: Two cognitive maps showing (1) the ‘expected’ cause-effect relationship between pesticide application 
and lark population under a high and low pesticide use scenario, respectively and (2) the interpretation of the results 
from the ALMaSS simulations. Red and blue arrows show positive and negative effects, respectively. The thickness 
of the arrow indicates the relative strength of the effect (from –1 (strong negative) to 1 (strong positive)) 
 

 

The results indicated that contrary to expectations, direct pesticide taxes were far from being the 

most positive measure that could be used. Direct taxes led to a change in farmer behaviour and 

an increase in the area of detrimental crops, as well as a reduction in indirect pesticide effects. 

The overall result was a balance slightly tipped in favour of negative impacts on skylarks. An 

alternative strategy of reducing pesticide to the same degree using unsprayed field margins was 

predicted to have large positive impacts. This work demonstrated that it is important to consider 

the multifaceted nature of the agricultural system when evaluating the impacts of changes on 
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wildlife, especially since in this case the impacts of the change were smaller than the side-effects 

caused by the implementation of policy. 

 

5.3 The viability theory and biodiversity management 

The viability theory was developed by J.P. Aubin (1991). It is a mathematical theory that offers a 

precise conceptual framework and practical tools to define and control the evolution of 

dynamical systems in, e.g., biology, economics, cognitive sciences, and in game theory.  

The theory emphasises 3 main common features of these systems : 

• A nondeterministic (or contingent) engine of evolution, providing a number of  

opportunities to explore the environment. These may be interpreted as possible actions on 

the system 

• A set of viability constraints that the system must be kept inside at each instant in order to 

survive 

• An inertia principle stating that the “controls'' of the system are changed only when 

viability is at stake. 

 

Viability theorems provide selection procedures for viable solutions (evolution). They 

characterise, in other words, the connections between the dynamics and the constraints for 

guaranteeing the existence of at least one viable solution starting from any initial state. These 

theorems also provide the regulation processes (feedbacks) that maintain viability, or, even as 

time goes by, improve the state according to some preference relation.  

Contrary to optimal control theory, viability theory does not require any single decision-maker 

(or actor, or player) to ``guide'' the system by optimising an optimality criterion. System settings 

are very flexible and can be changed anytime to accommodate changes in the system allowing 

for adaptation in relation to viability constraints. 

Viability theory does not require any knowledge of the future. In a nutshell, the main purpose of 

viability theory is to explain the evolution of a system, determined by given nondeterministic 

dynamics and viability constraints, to reveal the concealed feedbacks which allow the system to 

be regulated and provide selection mechanisms for implementing them. 
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5.3.1 The viability theory in relation to biodiversity management  

The viability theory seems particularly adapted to give a conceptual framework to the problem of 

biodiversity management. We propose to formalise the problem more precisely as follows: 

 

We suppose that the state of the system is described by a set of N species each characterised by a 

number of attributes. Each species is capable of change as a respond to other species and to a set 

of environmental conditions (e.g., nutrient supply, humidity, climate). These environmental are 

also dynamical. 

 

We assume further that the global evolution of the system can be described by a number of 

equations. These equations also make it possible to include human actions such as modifications 

of the environment or direct effects on species. 

Finally, we suppose that biodiversity conditions are satisfactory when all the attributes of the 

considered species are neither too low, nor too high. Typically, this constraint means that when 

the size of a population gets below a threshold, it face an extinction risk. Conversely, if a species 

becomes too successful or invasive, the equilibrium of the ecosystem may be threatened.  

The problem can be therefore stated as: finding an action policy which guarantees that each 

species remains within these limits, or - at least – will be able to return.  Figure 8 illustrates this 

idea on a simplified example with two species. 

Then, viability theory shows that to ensure that the system does not go outside a set of limits or 

space, it must remain in an even smaller set included herein. This set of viable solutions is 

defined as the set of states where at least one action policy ensures that the system always 

remains in a viable. Once this set is identified, the simplest action policy consists in acting 

whenever the system is close to the boundary of the set of viable solutions. This is illustrated on 

figure 9. 
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Figure 8: Species 1 and 2 interact and are submitted to some policy of action.  
Trajectory 1 goes outside the limits (bad management) whereas trajectory 2 remains inside (good management). 
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Figure 9: For any point in set of viable solutions, there exists an action which keeps the system in K.  
As soon as the system crosses the border no action can prevent the system from getting outside K. 

 

In this framework, the biodiversity management would require the following actions: 

- identify constraints 

- define the dynamics interactions between species, other species and the environment and 

the impact of different actions 

- derive the viability kernel of the system (different techniques are available) 

The management of the system requires observation and action as soon as the system moves too 

to close to the boundary of the viability kernel. 
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5.3.2 Possible link with the DPSIR framework 

In the modelling research task of the ALTER-net network, it seems important to try to interpret 

the DPSIR notions into a rigorous mathematical framework. The viability framework, as 

interpreted above offers precious tools to achieve this. We propose here some preliminary 

reflections, which are open to discussion (especially according to the diverse interpretations of 

the DPSIR items). 

• Drivers: Are understood as the main driving forces of the system’s evolution. In our view, 

these driving forces are behind the definition of a driving function which defines the 

direction changes in the conditions of the system. These driving forces are therefore only 

implicit in our application of the viability theory on the problem of the biodiversity 

management. One can imagine different scenarios for these driving forces (for instance 

one corresponding to a high development of the industry), corresponding to different 

versions of the driving function. 

• Pressures: They correspond in this framework to variables, which have direct impact on 

the species dynamics. 

• State: In our framework, they correspond to the variable evolving in response to some 

given pressures.  

• Impact: This is the result of the function which defines the joint evolution of the variables 

defined above (state and pressures). This function expresses how the state changes in 

time from given values of the species number of representatives and environmental 

conditions. 

• Response: This is the action that can be taken to try to correct the evolution of the system. 

In fact, in the viability framework we are considering a policy of actions (a set of action 

in time). 

The main difference of perspective is that the viability theory considers a stochastic dynamical 

system (given by differential equations or inclusions), whereas this dynamical aspect is not 

explicit in the DPSIR framework. 
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6 Conclusion 

 

The main conclusions of this report were presented at a joint workshop in Madrid in June 2005. 

The workshop was arranged by three ALTER-net work packages: I3 (A network of long-term 

multi-functional inter-disciplinary, ecosystem research (LTER) sites; RA3 (Impacts of the main 

natural and anthropogenic drivers and pressures on biodiversity); and RA6 (Forecasting change 

in biodiversity). The purpose of the workshop was to advance collaboration and exchange of 

ideas between the work packages. 

An outline of the report was presented at the meeting to provide an overview of the modelling 

expertise within ALTER-net.  Furthermore, the two main strategies for further development were 

introduced. 

The first strategy – the development of conceptual models – is a top-down approach often used 

as a first step in the modelling of complex systems. The purpose of a conceptual model is 

basically to capture the essence of a given system, its main components and dynamics. A 

conceptual model may also highlight what we don’t know and hence help formulate new 

research programs. Another important use of conceptual models is to disseminate information to 

other scientists, to decision-makers and to the public. The approach could also include the 

construction of a meta-model, i.e. a model of models. 

The integrated model approach, on the other hand, is a bottom-up process. In an integrated 

model, the main aim is to combine explicit and detailed models from various disciplines from 

ecology to economy. The main objective is to link and combine existing work in order to 

enhance generality and predictive power. 

Both strategies have their pros and cons: The top-down approach provides a quick overview of a 

problem domain and can be implemented relatively fast. The method is well suited for the 

presentation of complex problems for decision-makers and the public. The bottom-up approach, 

on the other hand, is a slower, but much more detailed and accurate process with scientific 

appeal. A disadvantage is the rather narrow domain and poor generality covered by most existing 

models. 

During the workshop in Madrid, RA6 participants split into two subgroups. One group discussed 

a top-down approach to develop a modelling framework (on a pan-European scale). The other 

group tried to apply a bottom-up approach to the same question (case study / LTER site related). 
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During the following discussions, the groups came to the conclusion that the two approaches 

should be united in the upcoming work. Ideally, only one framework is needed provided it may 

be adjusted to and used at different scales and on different problem domains. Furthermore, it was 

decided that the work should be based on the MIRABEL framework where a matrix links 

pressures to ecological resources (e.g., habitats, communities, species or populations). Such a 

framework is well suited to organise information on available models and highlight gaps in our 

current knowledge. 

Theses decisions are reflected in the work plan for the next 12-month period. Many tasks depend 

on input from and co-ordination with other work packages. In order to identify and rank 

pressures to build the model matrix, for example, input from R3 is needed and information from 

I3 on available data from LTER-sites may be very useful for model calibration and evaluation. 

Generally, model development depends heavily on knowledge and input from all of ALTER-net 

and collaboration with other work packages will be promoted actively. 
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