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Abstract

The semi-continuous quadratic mixture design problem (SCQMDP) is
described as a problem with linear, quadratic and semi-continuity con-
straints. Moreover, a linear cost objective and an integer valued objective
are introduced. The research question is to deal with the SCQMD prob-
lem from a Branch-and-Bound perspective generating robust solutions.
Therefore, an algorithm is outlined which is rigorous in the sense it iden-
tifies instances where decision makers tighten requirements such that no
ε-robust solution exists. The algorithm is tested on several cases derived
from industry.

keywords: Blending, Branch-and-Bound, Semi-continuity, Quadratic Pro-
gramming.

1 Introduction

The mixture design problem consists of identifying mixture products, each rep-
resented by a vector x ∈ Rn, which meet certain requirements. The set of
possible mixtures is mathematically defined by the unit simplex S = {x ∈
Rn|∑j xj = 1.0; xj ≥ 0}, where the variables xj represent the fraction of the
components in a product x. In mixture design (blending) problems, the cost of
the material, f(x) = cT x is minimised, where vector c gives the cost of the raw
materials. In practical situations, such problems are solved on a daily base in
fodder and petrochemical industry where often requirements are modelled by
linear inequalities, see e.g. [10]. The current article is a result from a larger
project on product design at Unilever Research. Products that are produced in

∗This work has been partially supported by the Ministry of Education and Science of Spain
through grants TIC2002-00228 and TIN2005-00447
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Figure 1: 2D and 3D simplices where the minimum dose region has been re-
moved.

large quantities require extensive testing and careful designing where many as-
pects such as robustness, cost, choice and availability of raw materials etc. play
a role. Four aspects get additional attention in the SCQMD Problem compared
to the traditional blending problem [10].

1. The variables have a semi-continuous character.

2. The number of used raw materials is minimised in a separate objective
function.

3. The requirements for the product are modelled by quadratic constraints.

4. A generated solution should have a certain robustness.

The semi-continuity of the variables models a minimum acceptable dose md
that the practical problems reveal, i.e. either xj = 0 or xj ≥ md. Figure 1 shows
a graphical example of the search space in 2D (left hand side) and 3D (right
hand side) consisting of unit simplices removing the space where the minimum
dose constraint is not satisfied. The number of resulting sub-simplices (facets)
is

n∑
t=1

(
n

t

)
= n! + 1, (1)

where t denotes the number of raw materials in each sub-simplex.
A common way to formulate semi-continuity is as follows [10]:

xj ≤ δj ; j = 1, . . . , n (2)

and
xj ≥ δj ·md; j = 1, . . . , n (3)

where implicitly the number of raw materials is minimised. So far, having
linear constraints, a linear objective function and semi-continuous variables, a
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general MILP (Mixed Integer Linear Programming) solution method can be
applied. In practical problems, linear constraints hi(x) ≤; i = 1, . . . , l exist
that have the interpretation of bounding the design space of production. An
additional feature is the appearance of quadratic inequalities that represent the
requirements (production specifications) given as

gi(x) = xT Aix + bT
i x + di ≤ 0; i = 1, . . . , m (4)

where Ai is a symmetric n by n matrix, bi is an n-vector and di is a scalar. The
quadratic mixture design problem is studied in [5], where a specific Branch-
and-Bound approach is constructed. The interesting characteristic is that even
without the semi-continuity requirements we are dealing with a global optimiza-
tion problem. One could also think of trying approaches based on quadratic
inequalities by reformulating the semi-continuity by

xj · (md− xj) ≤ 0; j = 1, . . . , n (5)

The question is whether this is the best thing to do. Probably it is better
to make use of the semi-continuous character of the SCQMD problem and to
construct a specific algorithm. Moreover, the practical problem requires some
more additions to the model.

Not only the cost of the material, f(x) = cT x should be minimised, but also
the number of raw materials in the mixture given by

∑n
j=1 δj , where

δj =
{

1 if xj > 0,
0 if xj = 0.

(6)

Discussion with the problem owners resulted into leaving out the idea of having
fixed cost for the number of raw materials. However, it seemed more appro-
priate for the decision makers to take a multi-objective approach: The solution
approach should provide the minimum possible cost for each. The idea is also
sketched in Figure 2.

Applying standard software, the mathematical structure of the problem re-
quires dealing with linear and quadratic (nonconvex) constraints and binary
variables. From a complexity viewpoint finding solutions is a challenge, cer-
tainly when looking for rigorous approaches instead of applying heuristics.

The challenge gets bigger when considering another feature of the model.
From a practical consideration it would be desirable, that small mistakes in the
production process do not lead to “out of spec” products, i.e. the production
based on the design should still fulfill the quadratic requirements despite small
(ε) variations in the process. This can be handled by the concept of robustness.
Consider the set of designs on the unit simplex fulfilling the quadratic require-
ments D = {x ∈ S|gi(x) ≤ 0; i = 1, . . . , m}. Robustness R(x) of a design x
with respect to D can be defined as R(x) = maxR s.t. (x+h) ∈ D, ∀h, ‖h‖ ≤ R.
Notice that for mixture problems x + h is projected on the unit simplex. In [4]
the robustness is calculated analytically for linear mixture design problems.
However, this is not straightforward for quadratic inequalities. No analytic ex-
pression exists to determine the inequality nearest to x. Algorithms as described
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Figure 2: Rejection by domination. Pareto optimality

in [2] are needed. Moreover, [4] shows that determining the maximum robust
point becomes a global optimization problem. We are mainly interested in gen-
erating ε-robust solutions, i.e. an element of {x ∈ D|(x + h) ∈ D, ∀h, ‖h‖ ≤ ε}.
The research question is to compose an algorithm that has the aim to find an
ε-robust solution as cheap as possible and that is rigorous in the sense it guar-
antees to identify the case that does not contain an ε-robust solution. Moreover,
we have to keep track of the number of raw materials a design uses. Figure 2
shows how an ε-robust solution is discarded because it is dominated by another
ε-robust solution with less cost and with a number of raw materials that is less
or equal.

A specific algorithm has been designed for this case. The developed algo-
rithm is based on the Branch-and-Bound concept applying simplicial partition
sets. Several options are described and tested how to check feasibility of a subset
and how to determine lower bounds on the robustness. In Section 2, a detailed
description of the branch-and-bound algorithm to solve the above problem is
given. Results obtained by solving test and real problems are given in Section
3 and conclusions and future work are discussed in Section 4.

2 Branch-and-Bound Algorithm

The scheme outlined here for solving the optimization problem falls into the
general framework of Branch-and-Bound (B&B) algorithms. The basic idea in
B&B methods consists of a recursive decomposition of the original problem into
smaller disjoint subproblems until the solution is found. The method avoids
visiting those subproblems which are known not to contain a solution. B&B
methods can be characterized by four rules: Branching, Selection, Bounding,
and Elimination [8, 9]. For problems where the solution is determined with a
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desired accuracy, a Termination rule has to be incorporated.

Algorithm 1 : Branch-and-Bound algorithm for finding robust solutions of
SCQMDP.
Funct B&B(n, f, g1,...,m, h1,...,l)

1. Set ns = n! + 1 number of simplices

2. Set the working list Λ := {C1, . . . , Cns}
3. Set the final list Q := {}
4. while ( Λ 6= {} )
5. Select a simplex C = Ck from Λ Selection rule

6. Evaluate C
7. Compute a lower bound fL(C) of f on C Bounding rule

8. if C cannot be eliminated Elimination rule

9. if C satisfies the termination criterion Termination rule

10. Store C in Q
11. else
12. Divide C into Cns+1, Cns+2 Division rule

13. ns = ns + 2
14. C = argmin{fL(Cns+1), fL(Cns+2)} Select the cheapest simplex

15. Store {Cns+1, Cns+2}\C in Λ
16. Goto 6
17. return Q

We will denote a simplex by Ck, where k determines the order in which the
simplex was generated and tk specifies the number of raw materials of Ck. In the
algorithm all the tk vertices of a simplex Ck, denoted by vk,j , j = 1, . . . , tk, are
evaluated, i.e. the values of the quadratic constraints gi(vk,j), i = 1, . . . , m, the
linear constraints hi(vk,j), i = 1, . . . , l and the cost value f(vk,j) are determined.
The cost value is used to update global upper bound values fU

t , t = 1, . . . , n. If
vk,j happens to be feasible as well as ε-robust, it is stored as a Pareto optimal
design if f(vk,j) ≤ fU

tk
and the upper bounds are updated accordingly.

Algorithm 1 starts by generating the initial set of n! + 1 sub-simplices (see
Equation 1) which defines the search space resulting from removing the minimal
dose region from the original simplex (see Figure 1). This initial set of simplices
are stored in the working list Λ (line 2). While the working list is not empty,
a simplex Ck from Λ is selected and evaluated (lines 5 and 6). If Ck can not
be eliminated (line 8) and neither satisfies the termination criterion (line 9), it
is bisected. From the two generated simplices the most expensive simplex is
stored in the work list Λ while the algorithm proceeds with the cheapest one
(Depth first search). Those simplices which satisfy the termination criterion are
stored in the final list Q that determines the set of all simplices where the global
ε-robust optimal mixture can be located (if any). The algorithm also stores the
best ε-robust mixtures found for each number of raw materials t = 1, . . . , n.

In the next subsections a detailed description of the rules of Algorithm 1 are

5



provided. The underlying theoretical foundation of the elimination procedures
is given in other papers of the authors, see [1, 3].

2.1 Bounding Rule

The objective lower bound of the linear cost function f on Ck in the Bounding
rule of Algorithm 1 can be taken as fL

k = min
j=1,...,tk

{f(vk,j)} due to the linearity

of f . This lower bound is used by the Pareto-Cost elimination test as described
in Subsection 2.5.4.

2.2 Branching Rule

The branching rule applied in Algorithm 1 consists of: given a simplex Ck, with
tk ≥ 2, its longest edge is bisected generating two new simplices. Notice that
this does not always generate a new point, as a generated vertex can be shared
by different simplices. Due to bisection the length of the longest edge is at most
twice the length of the shortest edge. Therefore simplices never get a needle
shape [7]. If all edges are of equal length, the edge in between the cheapest
and most expensive vertex is bisected. Therefore, the branching rule generates
an on average more expensive and on average cheaper simplex. This helps the
selection rule (Section 2.4) which gives higher priority to “cheaper” simplices.

100 e.200 e.

300 e.

1

2

Figure 3: Example of division according to the raw material costs.

Figure 3 shows an example of the branching rule of Algorithm 1. First, the
vertex labeled with 1 is generated taking into account the value of the cost at
the vertices of the equilateral simplex. Vertex 2 is generated by bisecting the
longest edge. Dashed lines represent future subdivisions that end in a vertex
(drawn as a square) which is shared by four simplices. A discussion about lower
and upper bounds on the number of simplices generated in the worst case by
bisection can be found in [3].
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2.3 Termination Rule

A simplex is not divided further when its size is smaller than the value of the
accuracy α. The size is given by the length of its longest edge, i.e. Size(Ck) =
max

v,w∈Ck

‖v − w‖. If it has not been rejected by the elimination rules, it is saved

in a final list Q. Algorithm 1 ends when the working list Λ is empty. List Q
provides the set of simplices where the optimal ε-robust solution can be found
(if any).

2.4 Selection Rule

The selection rule has been designed to reach two goals: to facilitate discard-
ing simplices with a large number of raw materials and to reduce the memory
requirements. The first goal is met by giving priority to simplices with a few
number of raw materials and low cost. Simplices with more raw materials and/or
higher cost value can be dominated by those with less raw materials, which im-
proves the efficiency of the Pareto test (see Subsection 2.5.4). In the algorithm,
the cost of a simplex is measured by the sum of the costs at its vertices, i.e.

Cost(Ck) =
tk∑

j=1

f(vk,j).

The second goal is met by applying a depth-first selection rule. Once a
simplex is selected and divided, its cheaper child will be the new selected simplex
until no further subdivision is allowed. This reduces the memory requirement
of the algorithm.

2.5 Rejection Rule

The rejection rule consists of a set of tests which takes into account feasibility
conditions associated to the linear and quadratic constraints and the require-
ments related to the robustness of the solution as well as the minimization of the
number of raw material and the cost function. The following rejection tests have
been designed to be applied to the selected simplex. The order in which these
tests are applied does not affect the final result of the algorithm in terms of the
final solution but it may influence the efficiency related to the computational
effort (time).

2.5.1 Linear infeasibility.

If for one of the linear constraints hi(x) ≤ 0 all vertices are infeasible (hi(vk,j) >
0, j = 1, . . . tk), then Ck is discarded because Ck does not fulfill hi(x) ≤ 0.

2.5.2 Quadratic infeasibility.

Given a simplex Ck and the set of quadratic constraints gi(x) ≤ 0, i = 1, . . . , m,
Ck can be rejected if ∀x ∈ Ck ∃ i gi(x) > 0. This is equivalent to ∀x ∈
Ck maxi gi(x) > 0; i.e. minx maxi gi(x) > 0.
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In [1], around each vertex vk,j , a so-called infeasibility sphere Bk,j is defined
that cannot contain a feasible point

Bk,j = {x ∈ Rn, ‖x− vk,j‖2 < ρ2
k,j} (7)

Two possible ways of calculating a value for ρk,j are described in [1]. One way
is illustrated in Figure 4. Based on Lipschitz constant:

Li(Ck) = max
v∈Ck

‖∇gi(v)− 1T∇gi(v)1
n

‖ (8)

one can derive an infeasibility radius

ρk,j = max
i

gi(vk,j)
Li(Ck)

(9)

Figure 4 sketches (9) for a 2-dim case with two vertices and two requirements

g1(vk,2)
g1(vk,1)

vk,1

g2(vk,1)

vk,2

k,1

Ck

k,2

g2(vk,2)

0

Figure 4: Example of quadratic infeasible radius taking Li = maxx∈Ck
| g′i(x) |

gi(x) ≤ 0. Although it is known that the vertices are infeasible, the two spheres
do not cover the simplex completely.

A second way to derive infeasibility spheres is to make use of the minimum
(negative) eigenvalue ηi of matrix Ai. In [3] it is proven that a valid radius is
given by

ρk,j(C) = max
i with ηi<0

‖∇gi(vk,j)‖ −
√‖∇gi(vk,j)‖2 − 4ηigi(vk,j)

2ηi
(10)
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which appeared to be useful (larger) for small simplices. If none of the vertices
of Ck happens to be feasible, the spheres can be used to prove that Ck cannot
contain a feasible quadratic solution. For instance, ρk,j > maxx∈Ck

‖vk,j −
x‖ means that C is completely covered by Bk,j . The following tests to prove
infeasibility of simplex Ck have been used by the algorithm.

SCTest (Single Cover test): One of the spheres ρk,j ; j = 1, . . . , tk covers the
simplex completely; i.e. Ck is proven infeasible if there exists a vertex vk,j

such that ρk,j > maxs ||vk,j − vk,s|| s = 1, . . . tk.

MCTest (Multiple Cover Test): A simplex Ck which is not covered by a single
sphere Bk,j can still be covered by ∪tk

j=1Bk,j . In [3], is proven that if there
exists a mixture x ∈ Ck which is covered by all spheres i.e. x ∈ ∩tk

j=1Bk,j

then Ck ⊂ ∪tk
j=1Bk,j . This means that all the possible mixtures in Ck

are covered by at least one sphere Bk,j and consequently Ck is infeasible.
The two heuristic points suggested in [1] are considered good candidate
mixtures to be covered by all the spheres. The mixture described by
weighted average (11) is considered a good guess.

ξk =
1∑

j
1

ρk,j

∑

j

vk,j

ρk,j
(11)

In case point ξk is not covered by the smallest sphere, the candidate will
be θk = vk,s + ( ρk,s

‖ξk−vk,s‖ − δ)(ξk − vk,s), with s = argminjρk,j which is a
point just within the interior of the smallest sphere.

PCTest : If the SCTest and MCTest fail, Algorithm 1 focuses on the unfeasi-
bility sphere centered at the generated interior point, either ξk or θk. It is
known to be infeasible for at least one of the constraints. The quadratic
constraints gi and the corresponding radius of a new infeasibility sphere ρ
are generated. The advantage of using an interior point is that its distance
to the farest vertex is smaller than for the largest distance in between the
vertices.

2.5.3 ε-infeasibility.

The ε-robustness requirement gives the opportunity to reject a simplix Ck that
is in total so close to an infeasible solution, that it certainly cannot contain an
ε-robust solution. A simplex Ck with an infeasible point x such that maxj ‖x−
vk,j‖ < ε, can not contain an ε-robust solution. The ε-infeasibility test checks
this condition for x = vk,j (j = 1, . . . , tk), x = ξk and possibly θk.

2.5.4 Pareto bounding.

We are dealing with the minimization of the number of raw materials and the
composition cost. If an ε-robust solution has been found with tk raw materials
and a lower cost than fL

k , then Ck can be eliminated, i.e. discard Ck if fU
tk

< fL
k .
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The algorithm keeps track of fU
t which is initially set to infinity. When an ε-

robust mixture vk,j is found with f(vk,j) < fU
tk

, the value of fU
t is updated for

t = tk, . . . , n. Algorithm 1 returns the Pareto vector fU and the corresponding
mixtures.

2.6 Robustness underestimation

Algorithm 1 has been designed to deal with mixture design problems where the
solution (if any) has to be ε-robust. Robustness R(x) of a design x with respect
to D has been defined as R(x) = maxR s.t. (x + h) ∈ D,∀h, ‖h‖ ≤ R. For
quadratic inequalities this is not easy to determine. The algorithms applies an
underestimation RL(x) based on either a global Lipschitz constant, or maximum
positive eigenvalue similar to (9) and (10). For the details we refer to [1]. In this
way the algorithm identifies an evaluated point x as being ε-robust if RL(x) > ε.

3 Numerical testing of the algorithm

In this section numerical results of the evaluation of Algorithm 1 are discussed.
The wider question is whether the algorithm is able to solve realistic problems
in reasonable time. Earlier results have shown the functioning of the robustness
calculation and infeasiblity tests for small examples, see [1]. The further ques-
tion is to add the realistic perspective of semi-continuity and Pareto optimality
of the problem to be solved. Moreover, results were given for two cases pro-
vided by Unilever Research. The exact numbers were mutated, but “could be
realistic”. Solutions found by standard solvers for the cases without robustness
considerations and semi-continuity were provided. As far as we know, no other
optimization research has tried to generate robust solutions to such problems in
a rigorous way. The question is whether the algorithm is able to do so for these
practical cases.

Executions were carried out on a dual Intel XEON 3.6GHz with 12GBytes
of RAM running Linux. The algorithm was coded in C and uses the Lapack
library. To check the algorithm two test problems taken from [5] were tested.
Both are three dimensional problems. The first one (RumCoke) has two linear
constraints and two quadratic constraints. The second one (Case 2) was taken
from an industrial example having five quadratic constraints. Additionally, the
algorithm was tested with the two seven dimensional problems (UniSpec1 and
UniSpec5b) provided by Unilever Research based on similar quadratic func-
tions, but with different requirements. UniSpec1 has one linear constraint and
five quadratic constraints and UniSpec5b has four quadratic constraints. A de-
tailed description of these four mixture problems is given in the Appendix. For
all problems the robustness is given by ε =

√
2

100 and the semi-continuity by a
minimum dose value of md = 0.03.

It is worth mentioning that in addition to the ε-robust solution of the blend-
ing problem (if any), Algorithm 1 is able to provide a set of simplices which
contains all the feasible solutions that may also be ε-robust mixtures. Our nu-
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merical results show that it is possible to provide solutions for hard problems
in less than half an hour using.

Table 1 shows the figures obtained by the algorithm. All problems were
solved with an accuracy of α = ε. The meaning of the notation is:

Problem Problem name.
NSimplex Number of evaluated simplices.
NVertex Number of evaluated vertices.
End NSimplex Number of simplices in list Q.
End NVertex Number of vertices associated to simplices in list Q.
ε-Infeas. Number of simplices rejected by ε-infeasibility test

applied to the vertices.
Pareto Number of simplices rejected by Pareto bounding.
SCTest Number of simplices rejected by SCTest.
MCTest Number of simplices rejected by MCTest.
ξ-θ-ε-infeas. Number of simplices rejected by the ε-infeasibility test

applied to ξ or θ.
PCTest Number of simplices rejected by PCTest.
LC Number of simplices rejected by Linear infeasibility.
Time The running time in hh:mm:ss format.
Memory The memory required by the algorithm.
N. Sol. A binary vector which shows if for a given number of

raw materials the algorithm found a solution.

For UniSpec1 and UniSpec5b the solutions found by Algorithm 1 improves
or are similar to previous known solutions, whereas they are guaranteed to be
ε-robust. Theoretically the algorithm converges in a ”finite number of steps”,
which practically still can require more than a human life time. To deal with the
more than 100 million of simplices, efficient data structures have been designed
and efficient data handling is necessary.

The best ε-robust Pareto solutions found were:

RumCoke : No robust solution was found.

Case2 :f(0.552539, 0.293046, 0.154414) = 1.414801

UniSpec1 : f(0.654218, 0.345781, 0.0, 0.0, 0.0, 0.0, 0.0) = 114.345781
and f(0.428125, 0.0, 0.435234, 0.0, 0.136640, 0.0, 0.0) = 111.09

UniSpec5b : f(0.165078, 0.0, 0.303711, 0.531211, 0.0, 0.0, 0.0) = 118.779766
and f(0.129687, 0.0, 0.215625, 0.274063, 0.380625, 0.0, 0.0) = 116.434062.

The solutions for the case UniSpec5b means that the cheapest solution has 4
raw materials, which was also confirmed by solutions found before. The case
was designed in such a way that it is much harder to find feasible solutions
than for the UniSpec1 case, which has a solution with even two raw materials.
As soon as ε-robust mixtures are found, the Pareto bounding is able to discard

11



Table 1: Numerical results
Problem RumCoke Case2 UniSpec1 UniSpec5b

NSimplex 581 401 73,831 97,183,929
NVertex 257 184 34,066 33,706,308
End NSimplex 51 28 701 1,763,137
End NVertex 44 26 295 136,820
ε-infeas. 132 86 4,566 14,737,579
Pareto 0 9 6,343 2,551,778
SCTest 76 61 11,899 16,155,990
MCtest 33 19 5,686 10,396,930
ξ-θ-ε-infeas. 0 1 431 2,457,144
PCTest 0 0 270 529,470
LC 2 0 7,083 0
Time 00:00:00 00:00:00 00:00:00 00:17:57
Memory 17 KB 12 KB 294 KB 635 MB
N.Sol. 0,0,0 0,0,1 0,1,1,0,0,0,0 0,0,1,1,0,0,0

large portions of the search region. On the other hand, the ε-infeasible test is
only efficient when simplices are small enough, i.e. deep enough in the search
tree. One should keep in mind that the order in which the rejection tests are
applied is the order in Table 1. Therefore, one cannot determine the efficiency
of each test individually because it may depend on the order in which they are
applied.

4 Conclusions and Future work

The semi-continous quadratic mixture design problem is described as a (Vector)
optimization problem that adds to the classical blending problem the following
features. 1. The variables have a semi-continuous character. 2. The number
of used raw materials is minimised in a separate objective function. 3. The
requirements for the product are modelled by quadratic constraints.

Such a problem could be approached with an algorithm that handles (non-
convex) quadratic constraints and binary variables. A specific algorithm is de-
scribed with the aim to generate solutions that have a certain robustness. The
algorithm is rigorous in detecting cases that do not contain ε-robust solutions.
The new aspect of the algorithm is that it guarantees that the generated so-
lutions are ε-robust. The termination rule based on parameter α guarantees
convergence in a finite number of steps, see e.g. [6]. Practically, efficient data
handling is necessary to handle the 100 million of generated subsets within half
an hour. Keeping in mind the exponential behaviour in dimension of the worst
case number of subsets, one is lucky the current dimension represents the size
the industrial counterpart is interested in.

Sufficient challenges for further investigation remain. As noticed, the effi-
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ciency depends on the instance. Further tests with real cases, not reported due
to confidentiality of data, gave promising results in terms of the amount of cal-
culation time and memory requirement. The next step is to extend the model
in the direction of multiple end products, in literature called the ”multi-blend”
problem. In this problem the individual product simplices are connected due to
common constraints on availability and use of raw materials.
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Appendix; Test Problems

RumCoke

Dimension = 3; Raw material cost = (0.1, 0.7, 4.0)
Linear Contraints:
h1(x) = −1.5x1 + 0.5x2 − 0.5x3 ≥ 0.0
h2(x) = 0.3x1 − 0.5x2 − 0.3x3 ≥ 0.0
Quadratic constraints (gi(x) = xT Aix + bT

i x + di ≤ 0; i = 1, 2 ):
A1[3× 3] = (0,−16, 0,−16, 0, 0, 0, 0, 0)
b1[3× 1] = (8, 8, 0); d1 = −1
A2[3× 3] = (10, 0, 2, 0, 0, 0, 2, 0, 2)
b2[3× 1] = (−12, 0,−4); d2 = 3.7

Case2

Dimension = 3; Raw material cost = (1.1, 1.7, 2.0)
Quadratic constraints (gi(x) = xT Aix + bT

i x + di ≤ 0; i = 1, . . . , 5 ):
A1[3×3] = (0.001,−0.001, 0.0085,−0.001, 0.008,−0.0105, 0.0085,−0.0105,−0.021)
b1[3× 1] = (−0.0145,−0.0205, 0.073); d1 = −0.0165
A2[3× 3] = (−0.004, 0.0005, 0.002, 0.0005,−0.001,−0.003, 0.002,−0.003, 0.014)
b2[3× 1] = (0.0155, 0.0515,−0.121); d2 = −0.006
A3[3×3] = (20.605,−5.087,−10.9885,−5.087, 32.003,−43.476,−10.9885,−43.476,−81.278)
b3[3× 1] = (0.1995,−0.097, 126.7685); d3 = −20.5063
A4[3×3] = (0.766,−0.1205, 2.4735,−0.1205, 0.528, 1.9835, 2.4735, 1.9835,−7.822)
b4[3× 1] = (−2.432,−15.191, 10.712); d4 = 3.21125
A5[3×3] = (116.75,−3.09, 168.553,−3.09,−67.424, 515.114, 168.553, 515.114,−845.215)
b5[3× 1] = (−287.43,−645.926, 354.537); d5 = 115.0953

UniSpec1

Dimension = 7; Raw material cost = (114, 115, 107, 127, 115, 106, 108)
Linear Contraint:
h1(x) = 0.1493x1 + 0.6927x2 + 0.4643x3 + 0.7975x4 + 0.5967x5 + 0.6235x6 +
0.5284x7 ≥ 0.35
Quadratic constraints (gi(x) = xT Aix + bT

i x + di ≤ 0; i = 1, 2, 3 ):
A1[7 × 7] = (-1.473, 8.215, -27.204, 46.119, 2.059, -11.929, -12.768, 8.215,
37.733346, 5.127, 95.691, 34.954, 20.165, 19.445, -27.204, 5.127, -21.743, 36.843,
-7.126, 4.029, -4.152, 46.119, 95.691, 36.843, 189.643, 93.359, 52.904, 54.802,
2.059, 34.954, -7.126, 93.356, 31.885, 7.528, 10.248, -11.929, 20.165, 4.029,
52.904, 7.528, 11.951, 10.964, -12.768, 19.445, -4.152, 54.802, 10.248, 10.964,
7.197)
b1[7×1] =(4.5675, 34.7289, 70.5707, -82.2761, 29.3169, 71.0818, 63.7614); d1 =-
35
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A2[7 × 7] =(1.35, -4.41, 17.60, -92.45, 2.74, -29.94, -14.05, -4.41, -39.13, -6.11,
-126.38, -29.81, -63.42, -43.97 , 17.60, -6.11, 15.45, -76.60, 5.93, -44.05, -20.54
, -92.45, -126.38, -76.60, -240.64, -117.46, -125.18, -114.98, 2.74, -29.81, 5.93,
-117.46, -22.90, -47.37, -30.68, -29.94, -63.42, -44.05 , -125.18, -47.37, -73.39,
-73.99, -14.05, -43.97, -20.54, -114.98, -30.68, -73.99, -55.33)
b2[7×1] =(-2.1232, -9.0403, -42.2072, 190.5292, -9.9529, 1.8162, 5.1622); d2 =10
A3[7 × 7] =(-0.670, 4.284, -12.837,23.708, 1.677, -8.964, -4.859, 4.284, 21.380,
-1.188, 28.990, 13.216, 17.177, 16.620, -12.837, -1.189, -21.376, 9.841, -7.298,
-10.043, -8.981, 23.708, 28.990, 9.841, 49.385, 25.574, 15.561, 21.666, 1.677,
13.216, -7.298, 25.574, 8.419, 4.149, 6.595, -8.965, 17.177, -10.043, 15.561, 4.149,
1.090, 6.292, -4.859, 16.620, -8.981, 21.666, 6.594, 6.292, 5.906 )
b3[7 × 1] =(0.7097, -13.0982, 27.5078, -49.1608, -7.3725, 33.6731, 11.3136);
d3 = −2

UniSpec5b

Dimension = 7; Same raw material cost and similar quadratic requirements as
UniSpec1
Quadratic constraints (gi(x) = xT Aix + bT

i x + di ≤ 0; i = 4, 5, 6, 7 ):
A4 = −A1; b4 = −B1; d4 = 45
A5 = −A2; b5 = −B2; d5 = −21
A6[7 × 7] =(0.0, -11.556, -1.114, 14.690, -11.411, 0.121, -0.150, -11.556, -3.316,
-2.116, 7.313, -8.800, 19.897, 9.051, -1.114, -2.116, 4.728, 16.250, -4.535, 18.319,
11.537, 14.690, 7.313, 16.250, 40.428, 9.766, 21.512, 15.266, -11.412, -8.800, -
4.535, 9.766, -10.165, 10.088, 1.889, 0.121,19.897, 18.319, 21.511, 10.088, 28.569,
27.239, -0.150,9.051, 11.537, 15.266, 1.889, 27.239, 19.965 )
b6[7 × 1] =(1.7278, 23.5166, 5.6724, -32.0798, 19.0154, 16.5074, 7.31003); d6 =
−5
A7 = A3; b7 = B3; d7 = −1
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