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[1] We present a method for the calibration of multimodal hydraulic conductivity
distributions and apply this method to the particular case of confining layers with a
complex geological architecture. The basis of our technique is the transformation of the
original multimodal conductivity distribution to the standard normal distribution, thus
fulfilling the condition of normality which is required by the used representer-based
inverse algorithm (Valstar et al., 2004). Using this transformation, a calibration that starts
from a homogeneous prior field is shown to radically improve the estimation of the
protective properties of the confining layer compared to a unimodal approach to the
calibration. The method is also used for the calibration of multimodal heterogeneous prior
fields. The inevitable distortion of the original parameter covariances in the posterior fields
that results from the transformation process is absorbed by an iterative postprocessing
procedure, in which lithologic information obtained from the distorted calibrated fields is
used to condition the generation of a new multimodal field that complies again with the
original geostatistics. After transformation, this new field can be calibrated again, and this
process is repeated until the newly generated field agrees with the measurement
information sufficiently well. Then, the lithologic distribution of this new field is fixed,
and the intrafacies conductivity distributions are calibrated. This approach is shown to
preserve the original geostatistics, both of the lithology field and of the intralithology
hydraulic conductivity distributions.

Citation: Janssen, G. M. C. M., J. R. Valstar, and S. E. A. T. M. van der Zee (2006), Inverse modeling of multimodal conductivity

distributions, Water Resour. Res., 42, W03410, doi:10.1029/2005WR004356.

1. Introduction

[2] Many aquifers in alluvial basins all over the world are
covered by confining layers, which to a large extent
influence the impact of human activities on the groundwater
reserves below these layers. Knowledge of the hydraulic
properties of the confining layers is crucial for accurately
modeling the transport of contaminants toward the under-
lying aquifers. Confining layers often exhibit an extremely
complex and heterogeneous architecture [Bierkens, 1994]
and cannot be well described by assuming a unimodal
hydraulic conductivity (K) distribution.
[3] Whereas advanced geostatistical methods are avail-

able to generate multimodal realizations conditioned on
static data (K, porosity, etc.), the literature on the integration
of state measurements (head, concentrations, travel time,
etc.) into the conditioning procedure is very limited for the
bimodal and multimodal cases. In its simplest form, cali-
bration of multimodal hydraulic conductivity fields is per-
formed by regarding the spatial lithology distribution as
known and fixed, thus merely calibrating the intralithology
hydraulic conductivity distribution. An example of this

method is given by Hendricks Franssen and Gomez-
Hernandez [2002], who used sequential self-calibration
[Gomez-Hernandez et al., 1998] for the inversion of the
hydraulic conductivity distributions within fracture planes,
treating each fracture plane as an independent statistical
population. Another example is given by Sun et al. [1995],
who expressed the hydraulic properties (KH, KV) belonging
to every node in their model as a function of the (known)
thickness distribution of the different lithologies identified
within this nodes exclusive subdomain, and the (unknown
but assumed constant) hydraulic conductivity K associated
with these lithologies. Thus they reduced the number of
unknown parameters to the number of lithologies. In both
works, however, the assumed geological structure (respec-
tively, the fracture plane distribution and the lithofacies
distribution) is conditioned on static data and not further
updated using the state measurements. Therefore these
approaches are, in essence, not inverting the lithology field.
[4] Considerable progress toward the true inversion of

lithology fields was made by Hu [2000], who used the
Gradual Deformation method in combination with Gaussian
Truncated Simulation to invert a binary lithology field. This
method updates the lithology field by linearly combining
either (in the first iteration) a random initial Gaussian field
or (in subsequent iterations) the updated field from the
previous iteration, with a number of new and independent
realizations. The contribution of every realization to the
new, updated field is determined by an optimization search
for the set of contribution coefficients that, after truncation
of the Gaussian field, minimizes the objective function.
Another application of Truncated Gaussian Simulation for
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the inversion of lithology fields is given by Wen et al.
[2002], who use Sequential Self-Calibration for the
calibration of the Gaussian field, through its relation with
the actual conductivity field that is formed after its
truncation.
[5] Truncated Gaussian Simulation, however, is not gen-

erally suitable for the inversion of lithology fields with more
than two soil types, as it can only produce outcrops in which
the facies are sequentially ranked [Dowd et al., 2003]. An
extension of the Truncated Gaussian Simulation method, the
Truncated Pluri-Gaussian Simulation method [Galli et al.,
1994], was developed to overcome this limitation. Hu et al.
[2001] proposed the use of Truncated Pluri-Gaussian
Simulation for use in the Gradual Deformation approach for
the inversion of multilithology fields. Liu and Oliver [2004]
used the Truncated Pluri-Gaussian Truncation method in a
Bayesian scheme for conditioning the lithology distribution
to a time series of dynamic data.
[6] A serious drawback of the Truncated Pluri-Gaussian

Simulation method, that has limited the application of it for
both simulation and calibration [Liu and Oliver, 2004], is
that the parameterization of the geostatistical model
(basically the covariance and cross-variance structures of
the underlying Gaussian random fields and the threshold
parameters to truncate them) is very complex and quite
tedious. Also, it generally involves a number of ad hoc
decisions and iterative trial-and-error procedures, which
make the establishment of the geostatistical model somewhat
murky. Despite valuable recent progress in this area, for
example by Liu and Oliver [2003, 2004], who introduced a
method for the calibration of thresholds on lithology
observations, the Truncated Pluri-Gaussian Simulation
method still needs considerable improvements before it can
be expected to find wide application.
[7] In this paper, we will introduce an alternative and

much simpler method for the inversion of multilithology
fields. Furthermore, in contrast to all contributions cited
above, we will generate conditional realizations with a
continuous, multimodal hydraulic conductivity distribution,
instead of distributions of lithologies with constant hydrau-
lic conductivity. We will show that the geostatistical param-
eterization of our methodology is straightforward, and that
the misfits between the calibrated model predictions and the
measurements can be reduced to the level of predefined
measurement errors. Our method preserves the original
geostatistics, which in this work are assumed known.
Calibration of the parameters of the geostatistical model is
out of the scope of this paper.
[8] In the following sections, we first give an explanation

of the concepts and mathematics involved in the developed
inverse methodology. Then, we apply our ideas to a 2D
synthetic example of a confining layer. Using this synthetic
example, we examine the applicability of our inverse
procedure, especially with regard to its ability to reproduce
the original geostatistics.

2. Methodology

2.1. Bayesian Framework: Parameterization by
Representers

[9] The stochastic inverse algorithm that we applied is an
extension of the representer method, developed recently by

Valstar [2001]. For completeness and for a good compre-
hension of the present study, we will here briefly recall the
essence of the method.
[10] Consider the flow equation

AðaÞh� q ¼ 0; ð1Þ

where h = the vector of nodal heads, q = the vector of
driving forces, and A(a) = the system matrix depending on
the parameters a. The representer method, as described by
Valstar et al. [2004], searches for the maximum a posteriori
estimates of these parameters a given observations of h. For
a steady state system, if all parameters a and measurement
errors v are assumed to be multivariate Gaussian distributed
with known covariances and they are not cross correlated,
the maximum a posteriori estimate can be found by
minimizing the following objective function:

J ¼ z�M hð Þð ÞTP�1
v z�M hð Þð Þ þ a� �að ÞTP�1

a a� �að Þ; ð2Þ

where J = the objective function value, z = the vector of
measurement values, M() = a linear function that inter-
polates the vector of model predictions at the nodal points to
the location of the measurements, a = the vector of
parameters, �a = the prior mean of the parameters, Pv = the
covariance matrix of the measurement errors v, and Pa = the
prior covariance of the parameters. Multiplying the flow
equation (equation (1)) with two times the head adjoint
vector l and adding this to the objective function
(equation (2)) yields

J ¼ z�M hð Þð ÞTP�1
v z�M hð Þð Þ þ a� �að ÞTP�1

a a� �að Þ
þ 2lT A að Þh� q½ �: ð3Þ

The addition of the flow equation to the objective function
as a constraint allows for the parameters and heads to be
treated independently, which has major computational
advantages.
[11] The objective function is minimized if the gradients

of the objective function with respect to a, h and l are zero.
Forcing this on equation (3) yields a system of three
coupled Euler-Lagrange equations (see Appendix A). The
solution of this system of equations gives the set of
parameters a that minimizes the objective function. In order
to decouple the Euler-Lagrange equations, the parameter
and state variables are expressed as an expansion in a set of
basis functions (see Appendix A). Every measurement adds
a term to this expansion, which consists of (1) a representer,
quantifying the influence of the measurement on the
estimates of the variable for which the expansion is defined,
and (2) a representer coefficient, quantifying the weight
given to the representer (which depends on the misfit
between measurement value and measurement prediction).
[12] By inserting the representer definitions in the Euler-

Lagrange equations, explicit expressions for all representers
and their coefficients can be obtained (see Appendix A).
The adjoint head representer, the parameter representer and
the head representer are calculated, respectively, in an
iterative procedure, in which the unknowns in the repre-
senter expressions are replaced by their estimates from the
previous iteration. The last step in each iteration is the
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calculation of the representer coefficients, which are actu-
ally the independent parameters of the inverse model. Since
there is one representer coefficient for every measurement,
the number of independent unknowns is reduced to the
number of measurements.

2.2. Data Transformation and Back Transformation

[13] In the unimodal case, the condition of normality ofa in
the Bayesian framework outlined above is usually obeyed by
using the natural logarithm of K (LN(K)) for a, as previous
research suggested that K values in the field exhibit a
lognormal-like distribution [Freeze, 1975; Hoeksema and
Kitanidis, 1985]. In the multimodal case, the condition of
normality can be fulfilled by performing another, more
complex transformation, relating the cumulative probability
of the parameters to the cumulative probability density
function (pdf) of the standard normal distribution.
[14] The multimodal lognormal distribution function of

the parameter K is described by

pK Kð Þ ¼
XN
i¼1

Pi

K
ffiffiffiffiffiffi
2p

p
sLN Kið Þ

exp � LN Kð Þ � hLN Kið Þið Þ2

2s2
LN Kið Þ

 !" #
;

0 < K < 1; ð4Þ

where Pi, sLN(Ki)
and hLN(Ki)i are the marginal probability

and the standard deviation and mean value of LN(K)
belonging to lithology i, respectively. N is the number of
lithologies.
[15] The corresponding cumulative distribution function

(cdf) is then given by

FK Kð Þ ¼
XN
i¼1

ZK
0

Pi

K
ffiffiffiffiffiffi
2p

p
sLN Kið Þ

exp � LN Kð Þ � hLN Kið Þið Þ2

2s2
LN Kið Þ

 !
dK

2
4

3
5

¼ �
XN
i¼1

1

2
Pierfc

LN Kð Þ � hLN Kið Þi
sLN Kið Þ

ffiffiffi
2

p
 !" #

þ 1 ð5Þ

where erfc is the complementary error function. TheGaussian
deviate of K, denoted a, can then be found by equating the
cumulative probability of K with the cumulative probability
of the cdf of the standard normal distribution:

Fa að Þ ¼
1þ erf

affiffiffi
2

p
� 
2

; ð6Þ

where erf is the error function.

[16] As FK(K) is known from equation (5), a can be
calculated using the inverse of the cumulative standard
normal distribution function. The transformation procedure
is illustrated in Figure 1.
[17] The back transformation of a can be achieved with a

hybrid Newton-Raphson/Bisection root finding algorithm
[Press et al., 1986] to look for the value of K that equates
equation (5) with equation (6) (with an accuracy of at least
10�6). The derivative of K with respect to a, needed for the
Newton-Raphson algorithm and also for the evaluation
equations (A9)–(A11), is given by

dK

da
¼ pa að Þ

pK Kð Þ : ð7Þ

2.3. Prior Fields

[18] In this paper two different types of calibration are
performed: calibration starting from a homogeneous prior
field and Monte Carlo calibration of heterogeneous prior
fields. In our case of multimodal conductivity distributions
both require a very different approach.
[19] Calibration starting from homogeneous prior fields

can serve, for example, as a quick assessment of system
response (conditional to the available measurements), the
systems posterior covariances of the parameters and states,
and its sensitivities [Valstar, 2001; Valstar et al., 2004].
Only one realization has to be calibrated, and therefore this
approach has preference over (usually) time-consuming
Monte Carlo runs. The representer method allows for the
calculation of the posterior parameter and state variances by
applying a linearization around the last estimates [Valstar,
2001; Valstar et al., 2004], and these posterior variances can
be used, for instance, to guide future measurement
campaigns.
[20] More challenging than the calibration of initially

homogeneous fields, where reproduction of the reference
geostatistics is not a prerequisite as such, is the inverse
modeling of heterogeneous multimodal prior fields. This is
necessary if, for example, one wants to quantify the inherent
uncertainty in model predictions made with a model in
which the linearization assumption is not valid. In that case,
a Monte Carlo analysis has to be performed, which means
that a large number of unconditional realizations that obey
the reference statistics are calibrated into equiprobable
realizations that still obey the reference statistics but are
now also conditional to all measurements. The more (valu-
able) measurements are included in the calibration, the
smaller the variance in model parameters and model pre-
dictions that is encountered in the Monte Carlo series.
[21] If, however, a heterogeneous, multimodal realization

is calibrated with the procedure described above, the result-
ing calibrated realization will not obey the reference geo-
statistics. This is the case because the a variogram is a
composite variogram constructed from N + 1 different
covariance functions (CI and Ci, i = 1,2 . . .N). Since the
variance gain over a certain lag distance can never be the
exact representation of the variance gain of more than one
variable, information is always lost when variograms are
combined. The N + 1 separate variograms can therefore
(after back transformation) never be reproduced when the
a variogram is used for simulation. Furthermore, simulation

Figure 1. Illustration of the data transformation procedure
from (a) FLNK, the cumulative probability function of LN K,
to (b) Fa, the cumulative probability function of a.
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using the a variogram per definition induces cross
correlation between the intrafacies K distributions that was
originally not there.
[22] We have designed an iterative postprocessing proce-

dure that preserves the original correlation structure of the
indicator field. As the method is better explained using a
specific numerical example, its details will be discussed in
section 3.5.

3. Simulation

3.1. Conceptual Model

[23] We considered the synthetic example of a 2D com-
plex confining layer of 500 (length) by 20 (depth) m,
discretized into 250 � 40 elements. Thus, in the absence
of any direct information on the hydraulic conductivity, the
number of parameters to be estimated is 104. On top of the
confining layer we assumed a homogeneous sandy layer of
anthropogenic origin with a thickness of 3 m (discretized
into 250 � 1 elements) and a known hydraulic conductivity
of 3.0 m/d, and underneath the confining layer we assumed
a sandy aquifer with a thickness of 10 m (discretized into
250 � 1 elements) and a known value for K of 0.6 m/d.
[24] A steady state head distribution was obtained with

MODFLOW [McDonald and Harbaugh, 1984] by assign-
ing recharge (250 mm/y) to the top of every top layer grid
cell and by imposing constant heads of 0.0 m and 2.0 m in
the utmost left and utmost right cell of the aquifer layer,
respectively. A schematic representation of the flow model
is given in Figure 2.

3.2. Reference Confining Layer and Reference
Geostatistics

[25] The measurements with which the calibrations in this
study were performed were obtained from a bimodal as well
as a trimodal synthetic reference (or ‘‘true’’) field. These
reference fields were constructed in two steps: first, an
unconditional two-class (or three-class) indicator field I(x)
(x(x1,x2) is the vector of Cartesian coordinates, I = 1,2 or 3)
was generated with the GSLIB program SISIM [Deutsch
and Journel, 1998]. Then, using the GSLIB program
SGSIM, an intrafacies hydraulic conductivity distribution
was generated for every lithology type (Yi(x) = LN(Ki(x)),
i = 1, 2 or 3). The intrafacies K distributions were combined
into one continuous bimodal or trimodal realization of K(x)
according to the indicator field (K(x) = Ki(x) if I(x) = i). The

properties of the indicator fields and the continuous
intralithology distributions are given in Table 1. The
reference indicator fields are shown in Figure 3.
[26] When transforming a multimodal lognormal hydrau-

lic conductivity field into a standard normally distributed
one, its original geostatistical structure will be lost. In the
first place, the transformed field, being standard normally
distributed, will always have a mean and sill of approxi-
mately 0.0 and 1.0, respectively. Furthermore, the horizontal
(aH) and vertical (aZ) ranges change. Finally, also the type
of variogram (the variogram model) that applies for the
transformed field differs from the one for the multimodal
lognormal field.
[27] To obtain the parameter covariance matrix (Pa in

equation (2)) of the transformed field, 5000 unconditional,
equiprobable realizations of the confining layer with the
same geostatistical properties as the reference confining
layer were generated. These realizations were then trans-
formed according to the transformation procedure described
above. Using a modified version of the GSLIB program
GAM [Deutsch and Journel, 1998], the average horizontal
and vertical variogram of all transformed realizations were
calculated, constituting Pa.
[28] Table 1 gives the geostatistical parameters for the

transformed fields as they resulted from this multirealization
approach. The model to which these parameters belong is
different from the original exponential model or any other
well known variogram model. It appeared that for both the

Figure 2. Schematic representation of the flow model.
Heavy border lines indicate no-flow boundaries. Arrows
indicate water sources and sinks. CHB is constant head
boundary, and RCH is recharge.

Table 1. Geostatistics of the Unconditional Indicator Fields,

Continuous Fields, and the Transformed Fieldsa

Parameter Value

Indicator Fields
P1 for bimodal case 0.75
P2 for bimodal case 0.25
P1 = P2 = P3 for trimodal case 0.33
aH,1 = aH,2 = aH,3, m 100.0
aZ,1 = aZ,2 = aZ,3, m 10.0
Variogram model Exponential

Continuous Fields
hY1i (LN), m/d �4.0
hY2i (LN), m/d 1.0
hY3i (LN), m/d �2.0
sY1

2 = sY2

2 = sY3

2 0.05
aH,K1

, m 20.0
aZ,K1

, m 3.5
aH,K2

= aH,K3
, m 10.0

aZ,K2
= aZ,K3

, m 3.0
Variogram model Exponential

‘‘Equivalent’’ Unimodal Fields b

hYi (LN), m/d �2.75
sY
2 4.74

Variogram model equation (9)

Transformed Fields
hai 0.0
sa
2 1.0

aH,a, m bimodal/trimodal 78.01/84.00
aZ,a, m bimodal/trimodal 8.30/9.50
wH,a bimodal/trimodal 0.67/0.83
wZ,a bimodal/trimodal 0.73/0.78
Variogram model equation (8)

aNumerical subscripts indicate lithologies. Subscript H stands for the
horizontal direction and subscript Z for the vertical direction.

bOnly given for the bimodal case.
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bimodal and the trimodal case, the variograms could be
described very well with the following model:

g sð Þ ¼ c  1� exp � 3sw

aw

� � �
; ð8Þ

where g = the variance, c = the sill, s = the lag distance, w is
a constant (w < 1), a is the effective range and aw is the
actual range. Note that not only a but also w is different for
the two principal directions.
[29] Throughout the rest of the paper, the statistics given

in Table 1 for the untransformed fields will be referred to as
the ‘‘reference geostatistics’’.

3.3. Measurement Sets

[30] In the reference field, 36 measurement locations
were selected according to a regular grid. Different subsets
of these measurement locations were used as input for
the calibration procedure: we used subsets of 12, 18,
24 and 36 head measurements and equally sized subsets
of K measurements. In the following, measurement sets will
be referred to with a code consisting of the number of
measurements of each type. For example, a measurement set
with 18 head and 18 K measurements is indicated as the
18H18K measurement set. The locations sampled in
the various subsets are given in Figure 4. Figure 4 holds for
both head and K measurements (so a subset of K measure-
ments consists of the same measurement locations as the
equally sized subset of head measurements).
[31] Gaussian-distributed synthetic measurement errors

were added to the head measurement values to account
for their uncertainty: a measurement error variance
of 0.001 m2 was assumed. The method of incorporation

of K measurements in the calibration procedure depended
on whether a homogeneous prior field was being calibrated
(section 3.4) or a heterogeneous prior field in a Monte
Carlo series (section 3.5). In the first case, actual continuous
K measurements were sampled from the reference field and
transformed to a, and a measurement error was added to
them. A measurement error standard deviation of 20 and
10 percent of the mean K value of the corresponding
lithology was assumed for K measurements that fell into the
low- and high-conductivity category, respectively. Note that
the measurement variance Pij (i = j) that has to be applied to
a is dependent on the value of a. In the Monte Carlo series,
only the lithology type was extracted from the reference
field at the measurement locations, and this information was
incorporated in the calibration procedure by conditioning
the prior indicator fields on it. This point is explained
further below.
[32] The measurement information, together with the

reference geostatistics, was assumed to be the only prior
information available about the true hydraulic conductivity
field.

3.4. Calibration Starting With Homogeneous Prior
Fields

[33] We performed this type of calibration only for the
bimodal case. The absence of prior knowledge about the
distribution of the parameter a over the domain was
expressed by setting it at its mean value (a = 0.0) every-
where. For the bimodal case, this value of a corresponds to
K = 0.06 m/d. The calibration was performed with both the
36H and the 18H18K measurement set.
[34] For illustrative purposes, the calibration calculations

were repeated using a unimodal approach, an approach a

Figure 4. Configuration of the (a) 12H, (b) 18H, (c) 24H, and (d) 36H measurement sets, which are
identical to the 12K, 18K, 24K, and 36K measurement sets, respectively.

Figure 3. Reference lithology fields for the (a) bimodal and (b) trimodal cases. Black, white, and gray
correspond to indicator class I = 1, 2 and 3, respectively (see Table 1 for their properties).
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modeler inadvertently could choose if he fails to recognize
the existence of multiple statistical populations of K. The
bimodal nature of K is then replaced by the normal
distribution with the same overall mean and variance. The
covariance function that is now needed to describe the
composite geostatistical properties (see Table 1) and to fill
Pa can be obtained using the analytical result presented by
Rubin [1995], Lu and Zhang [2002], and Rubin [2003]:

C sð Þ ¼ P2
1 þ CI sð Þ

� �
C1 sð Þ þ P2

2 þ CI sð Þ
� �

C2 sð Þ þ CI sð Þ
 hY1i � hY2ið Þ2; ð9Þ

where C1, C2, CI and C are the two intrafacies covariance
functions and the indicator and composite covariance
functions, respectively.

3.5. Monte Carlo Calibration

[35] As stated above, the transformation procedure and
therefore also the calibration procedure destroy the refer-
ence geostatistics. An example of a posterior field calibrated
on the 24H measurement set, together with the average
horizontal prior, theoretical and posterior indicator vario-
grams averaged over an ensemble of 100 posterior realiza-
tions conditioned on the same measurement set, is given in
Figure 5. It is clear that the integral scales of the lithology
field are severely underestimated.
[36] However, the calibrated field does give information

on where the inverse algorithm wants to decrease the
amount of one lithology in favor of another. This
information can be used in a postprocessing procedure that
iteratively results in a conditional realization that obeys the
reference geostatistics. This postprocessing procedure con-
sists of the following steps:
[37] 1. Generate an indicator field that is conditional to

the available K measurements (if any) and that obeys the
reference geostatistics (with SISIM).
[38] 2. Generate unconditional Ki (i = 1,2. . .N) fields

(with SGSIM) and combine them according to the indicator
field.
[39] 3. Calculate the objective function (this objective

function is discussed below).
[40] 4. Calibrate the resulting bimodal realization using

the methodology described above. Note: this results in
fields with distorted geostatistics, as the field shown in
Figure 5a.
[41] 5. Determine which cells in the model have not

changed lithology during the calibration.

[42] 6. Generate (with SISIM, using the reference
geostatistics) a new indicator field conditioned on the
cells that have not changed lithology and on the available
K measurements (if any).
[43] 7. Repeat steps 2–6 until the objective function in

step 3 meets a certain convergence criterion (this conver-
gence criterion is discussed below).
[44] 8. Combine the resulting lithology field with the

initial Ki (i = 1,2. . .N) fields (from the first time that step 2
was executed).
[45] 9. Calibrate the intrafacies hydraulic conductivity

distribution.
[46] The objective function used in step 3 differs from the

objective function used in the representer method (see
Appendix A). The evaluation of the objective function used
in the representer method requires the calculation of the
representer expansions, which can only be done for the
transformed field. Instead, we simply used a least squares
objective function in step 3, summing, over all measure-
ments, the squared differences between the measurement
value and the model prediction. The value of the conver-
gence criterion, with which the value of the objective
function in step 3 is compared, was calculated as follows:

Ccrit ¼ Nmeas  Vhead þ
XNmeas

m¼1

s2head;m; ð10Þ

where Nmeas is the number of measurements, VH is the head
measurement error variance (= constant for all head
measurements), and shead,m

2 is the head variance at
measurement location m assuming a fully known spatial
lithology distribution and a completely unknown intrafacies
K distribution. Thus the first part of the right-hand side of
equation (10) accounts for the measurement errors, which
allow a certain deviation of the model predictions made
with the calibrated realization from the measurement values.
The second part of the right-hand side reflects the variance
that can be resolved by calibrating the intralithology
hydraulic conductivity distributions, after an appropriate
lithology distribution has been found. So, this variance does
not have to be resolved during the calibration of the
lithology distribution. An approximate value for shead,m

2 was
obtained by calculating the average squared difference
between the reference head value at the measurement
location and the head value at the same location in 100
realizations having the reference lithology distribution but
varying Ki (i = 1,2. . .N) realizations.

Figure 5. (a) Example of a calibrated lithology field before postprocessing and (b) the horizontal prior,
theoretical, and posterior indicator variograms averaged over 100 posterior realizations (also without
postprocessing).
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[47] The maximum number of iterations allowed in step 4
was set at 10. Because of the high nonlinearity of the
problem, it happened occasionally that convergence was
not reached after 10 iterations, or that the calibration got
stuck in a local minimum. However, even fields that are not
fully calibrated, or fields trapped in a local minimum,
contain information about necessary parameter adjustments.
Therefore, in such situations, the algorithm was set to
proceed as usual to step 5.
[48] In step 5, the lithology distribution has to be regained

from the continuous a distribution. This was done by back
transforming a to K as explained in section 2.2, and then
appointing threshold values of K to distinguish between the
lithologies. The threshold between two lithologies was set at
the value of K (between the two mean values of the
lithologies) with the lowest probability. Considering the
small intrafacies variances and the high contrasts between
the mean K values of the facies, the probability of assigning
the wrong lithology type to a certain value of a was
extremely low and did not hamper the calibration.
[49] As the number of iterations in the postprocessing

procedure increases, the number of conditioning cells used
in step 6 grows, thereby more and more fixing the newly
generated indicator field and limiting the variation that
induces progression in the convergence. This can cause the
convergence to stop preliminarily. Therefore, in runs inwhich
it was found necessary to promote the convergence speed, the
new indicator field generated in step 6 was simulated with the
Kriging of the unknown cells based on only a very small
number of previously simulated nodes (the value of nodmax
in SISIM was set at 2). This reduces the influence of the
conditioning cells on the simulation of the unknown cells,
and thus more variation is created in the simulation of these
cells. We applied this technique in case both the number of
iterations was larger than 10 and the objective function was
still larger than 50% of its original value.
[50] In step 2, new Ki (i = 1,2. . .N) fields were generated

with a randomly sampled value for the seed in every
iteration. This was found necessary in order to preserve the
reference lithology geostatistics, for the following reason. A
cell that has not changed lithology during a certain iteration,
is not likely to change lithology in upcoming iterations
either if the prior intrafacies K distribution with which the
calibration in step 4 starts remains the same. In other words:
once a cell has been added to the conditioning file used in
step 6, it is unlikely to be removed from this file in the
remainder of the postprocessing procedure. Remember that
the pattern of cells changing or keeping their lithology does
not follow the correct variogram and so neither does the set
of conditioning cells. Thus the new indicator field generated
in step 6 will be increasingly distorted. If, however, the
intrafacies K distribution that enters step 4 is changed in
every iteration, only those cells that do not change lithology
in step 4 regardless of this intrafacies K distribution, are part
of the subset of permanent conditioning cells. The set of
remaining conditioning cells changes from iteration to
iteration and therefore its disturbing influence on the
geostatistics of the newly generated indicator field in
step 6 will not increase, but instead is corrected during
subsequent iterations.
[51] The calibration of the intrafacies K distributions

(step 9) was performed using the representer method,

assuming zero correlation between cells that have a different
lithology, and using the appropriate intrafacies geostatistics
to calculate the covariance between cells that have the same
lithology.

4. Results

4.1. Calibration Starting With Homogeneous Prior
Fields

[52] Figure 6 shows the reference and the prior head
distribution within the confining layer. The prior field shows
a regular head fall from the upper right corner of the domain
to the bottom left corner, where the head was preset at 0.0 m.
The reference head field, however, shows considerable
deviations from this regular pattern, especially at the loca-
tions of the high-conductivity lenses which locally cause the
flow to be more horizontally directed than in the prior,
homogeneous field.
[53] The head and K fields calibrated on the 36H

measurement set with the unimodal and the bimodal
approach, are given in Figure 7. Although both calibration
approaches yielded head distributions that fit the head
measurements equally well, the head fields and the
calibrated K fields produced by them are clearly very
different in nature. In the unimodal approach, all necessary
parameter adjustments to make the head field fit the
measurements could be realized within the low-conductivity
lithology (see Figures 7c and 7e): although the input
variance sLN(K)

2 of the unimodal approach was 4.74, the
posterior value of sLN(K)

2 was only 0.49. This resulted in a
head field (Figure 7a) that is still rather smooth compared
with the reference head field. In contrast, the bimodal
calibration approach yielded a much more realistic K field
(Figures 7d and 7f), with two distinct lithologies just as in the
reference field. Both the unimodal and the bimodal approach
predicted the high-conductivity zones at the correct locations
(the locations of the high-conductivity lenses in the reference
field), but only in the bimodally calibrated K field the
difference between the high- and low-conductivity zones
are as pronounced as in the reference field. Therefore the
posterior head field of the bimodal approach (Figure 7b),
although equally close to the measurement values, exhibits
an overall pattern that resembles the reference head field
much better than the posterior head field of the unimodal
approach. Especially the horizontally directed flow at the

Figure 6. Comparison, for the bimodal case, between the
reference head distribution (black lines) and the prior head
distribution (white lines and gray scale) calculated from the
homogeneous prior field.

W03410 JANSSEN ET AL.: INVERSE MODELING OF MULTIMODAL DISTRIBUTIONS

7 of 13

W03410



locations of the high-conductivity lenses is much better
predicted. We also obtained the conditioned travel times
needed for particles released in the top cell of every column
in the numerical model to reach the lower aquifer, using the
particle-tracking software MODPATH [Pollock, 1994].
Figure 8 illustrates that the bimodal calibration results in
a major improvement of the transport predictions. Also the
posterior parameter and state variances and sensitivities can

be expected to be much more accurate using the bimodal
approach than using the unimodal approach.

4.2. Monte Carlo Simulation

[54] For the iterative postprocessing procedure outlined in
section 3.5 to succeed (that is, to result in equiprobable
realizations obeying the reference geostatistics and condi-
tional to all the measurements) it is crucial that during the

Figure 7. Calibration results obtained with (a and c) the unimodal and (b and d) the bimodal approach
and (e and f) histograms of LN K values as they occur in Figures 7c and 7d, respectively. Figures 7a
and 7b compare the calibrated head fields (white lines and gray scale) with the reference head distribution
(black lines). Figures 7c and 7d show the calibrated LN K distributions. In Figure 7d, no intraface
K variation is visible because of the large contrast in the mean conductivity of the facies.

Figure 8. Unconditional (‘‘Prior’’) and conditional (to (a) the 36H and (b) the 18H18K measurement
set) travel times needed for particles starting from the top of the anthropogenic layer to reach the
groundwater layer, compared with the reference (‘‘REF’’) travel times. UNI is the unimodal approach,
and BI is the bimodal approach.
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calibration in step 4 (section 3.5) the properties of a
(specifically the shape of its distribution and its variogram)
are preserved. Otherwise, a bias will be introduced that will
propagate through the iterative postprocessing procedure.
Figure 9a shows, for the bimodal case, the a histogram of
200 realizations calibrated (without postprocessing) with the
representer method, starting from random continuous bi-
modal fields and using the 24H measurement set. This
histogram is compared to the theoretical histogram defined
by the standard normal distribution. To exclude the influ-
ence of the reference field on the posterior histogram (which
would result in a systematic bias), every unconditional
realization from the Monte Carlo series was calibrated using
measurements taken from a different reference field.
Whereas the prior distribution of a matched the theoretical
distribution almost perfectly (data not shown), the calibra-
tion introduces a minor bias of a toward values that are
close to the lithology threshold (a = 0.675). It is conceiv-
able that this is due to the extremely high value of the
derivative dK/da at this threshold, which can trick cells into
an unjustified lithology switch. In later iterations, this
switch will sometimes not be completely undone anymore,
but only partially by moving the a value of this cell close to
the threshold value. However, after back transformation of
the values with which the a histogram was constructed, this
bias appears not to affect the relative proportions of the two
lithologies, and it only has an insignificant effect on the
shape of the intrafacies hydraulic conductivity probabilities
(see Figure 9b).
[55] Except for a minor reduction of the sill variance due

to the small bias discussed above, the horizontal a vario-
gram is preserved well after calibration (see Figure 9c): the
range and the model type are unaffected. The reproduction

of the vertical a variogram was equally good. In summary,
Figure 9 shows that the representer method is able to handle
the calibration of the normal transform of a bimodal variable
in a satisfactory manner, despite of the difficulties that were
to be expected because of the very high value of dK/da at
the threshold value of a. The calibration in step 4 of the
iterative postprocessing procedure will not introduce a
significant bias in the lithology distribution.
[56] Figure 9d shows, for one particular initial realization

in this Monte Carlo run, the development of the objective
function as evaluated in step 3 of the iterative postprocess-
ing procedure, as well as the number of conditioning cells
used in step 6 to generate the next lithology field.
[57] Decisive substantiation of the iterative postprocess-

ing procedure for the calibration of continuous multimodal
fields is achieved if the average statistical properties of a
sufficient number of conditional realizations are shown to be
close to the reference statistics. To this aim, 100 uncondi-
tional random continuous bimodal realizations were cali-
brated on the 24H measurement set, again using a different
reference field for every realization to be calibrated. This
number of Monte Carlo calculations appeared to be enough
to achieve convergence of the results (average variograms).
Figure 10a shows a comparison between the horizontal
indicator variogram modeled using the reference statistics
(see Table 1) and the averaged prior and posterior (line
‘‘Posterior 1’’) horizontal indicator variogram. It shows that
during calibration, the prior indicator variogram is
preserved reasonably well. The small deformation of the
variogram is caused by lowering nodmax in SISIM in
slowly converging realizations (see x3.5): the average
posterior variogram of the 51 (out of 100) realizations that
did not require lowering nodmax in their calibration (line

Figure 9. (a) Comparison of the posterior a histogram with the theoretical variogram as given by
the standard normal distribution (black line). (b) Comparison between the prior and posterior LN
K distributions. The dotted line gives the numerical difference between the two. (c) Comparison of the
averaged posterior a variogram with the averaged prior and model variogram. (d) Example of the
development of the objective function (logarithmic scale) during the calibration of one specific
multimodal field, together with the development of the number of conditioning cells used in step 6 of the
iterative postprocessing procedure.
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‘‘Posterior 2’’ in Figure 10a) resembles the prior variogram
very well. Equally good results were found for the vertical
indicator variogram.
[58] After the convergence criterion for the calibration of

the lithology distribution was met, the intrafacies hydraulic
conductivity distributions were calibrated (step 9 in x3.5).
For all 100 Monte Carlo realizations, only one extra
iteration was required with the representer method to fulfill
the convergence criterion. Figure 10b shows that the
match between the average posterior horizontal intrafacies
K variogram and the model and average prior variogram is
nearly perfect. The fact that the intrafacies conductivity
distributions could be calibrated to the measurements
without disturbing the prior geostatistics further illustrates
that the calibrated lithology fields agreed with the
measurements sufficiently well.
[59] Figures 11 and 12 show a performance test for the

iterative postprocessing procedure, respectively for the
bimodal and the trimodal field. From left to right,
the number of K measurements is increased, and from top
to bottom the number of head measurements is increased,
both from 0 to 36. Thus the image in the upper left corner of
Figures 11 and 12 shows the unconditional realization,
while the image in the bottom right corner shows the
maximally conditioned realization that is possible with the
chosen measurement sets. Figures 11 and 12 illustrate that
when both types of measurements are used together, they
have a complementary effect. A quantification of this

complementary effect is given in Figure 13, which shows
how well the calibrated fields reproduce the refer-
ence lithology field. Comparing Figure 13a with
Figure 13b reveals that, especially for head measurements,
reproducing the reference lithology distribution requires
much more sampling effort when the number of lithologies
is larger. This can easily be explained from the increased
number of possible lithology configurations that produce
the same head responses at the measurement locations and
still are conditional to the hard data. In the trimodal field
(Figure 12), it takes the most extended conditioning set to
capture most of the reference field characteristics. The poor
resemblance, still, of the right hand quarter of the
maximally conditioned field with the reference field is
due to the small prior head variance in this area (dictated by
the boundary conditions), indicating a small information
content of the head measurements in that area.
[60] In Figure 13a it can be seen that a better reproduction

of the true lithology distribution is achieved when using the
36H measurement set than when additional to this measure-
ment set observations of K are incorporated in the
calibration. The reason is that K measurements, depending
on their location, can introduce a bias into the site
characterization that is only corrected by head measure-
ments for the part that is important for reproducing the head
at the measurement locations. The opposite, a worse
lithology reproduction when including more head measure-
ments, can also happen (for instance when going from the

Figure 10. (a) Comparison of the posterior indicator variograms, both averaged over all posterior
realizations (‘‘Posterior 1’’) and averaged over only those realizations the calibration of which did not
require adjustment of nodmax (‘‘Posterior 2’’), with the averaged prior indicator variogram and the model
variogram. (b) Comparison of the averaged posterior intrafacies variogram with the averaged prior and
model variogram.

Figure 11. Performance test for the bimodal case. From left to right, the number of K measurements
increases, and from top to bottom the number of head measurements increases.
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12H24K to the 24H24K measurement set in Figure 13a).
Depending on the location of the additional head measure-
ments, the solution toward reproducing all measurements is
not always found in lithology changes toward the reference
lithology field. In other words, also head measurements
can introduce a bias. Both phenomena make that a
monotonically decreasing value of SI (the number of cells
in the posterior field not having the correct lithology) in
Figure 13 is not guaranteed.

5. Discussion and Conclusions

[61] We proposed a method that can generate realizations
of a continuous, multimodal hydraulic conductivity distri-
bution, conditioned on both state measurements and static
data. The geostatistical parameterization of the method is
simple: it only requires prior estimates of the lithology ratios
and variograms, prior estimates of the intralithology K
statistics, and a variogram analysis on (a large number of)
transformed fields. For calibrations that start with homo-
geneous prior fields, the method, when compared to the
unimodal application of the representer algorithm, only
involves (1) the replacement of the usual logarithmic
transformation applied on the hydraulic conductivity data,
(2) recalculation of the parameter covariance matrix for the
transformed parameter, and (3) a back transforma-
tion procedure. For calibration of heterogeneous, multi-
modal prior fields, we proposed an iterative postprocessing
procedure that ensures the preservation of the original
geostatistics.
[62] In the example calculations, contrasts between the

hydraulic conductivities of the various lithologies were
large. In this situation, the intrafacies hydraulic conductivity
distributions will only have a very minor influence on the
flow and therefore their calibration (step 9 in the iterative
postprocessing procedure) serves no practical purpose. We
chose to use high-contrast examples to demonstrate the
applicability of our method even when the problem is
highly nonlinear and the derivative of K to a is locally
very large, potentially causing numerical instability from
equation (7). In our examples, this did not keep the
calibration algorithm from finding realistic solutions to the
inverse problem. For less contrasting lithologies and
for wider intrafacies K distributions, problems from
equation (7) are likely to be alleviated, so the method is
readily applicable to these cases. It should be noted here that
our methodology needs modification when applied to

significantly overlapping intrafacies K distributions, as
that case asks for a more involved translation procedure
from K to lithology type.
[63] In the iterative postprocessing procedure, it was

found necessary in step 2 to generate new intrafacies K
distributions in every iteration, to avoid premature stagna-
tion of the convergence and distortion of the geostatistics.
So technically, the calibration of the lithology field and the
calibration of the intrafacies K distributions are decoupled.
In our examples this decoupling is justified, since the head
field perturbation resulting from varying the intrafacies K
realization (shead,m

2 ) hardly ever (and in the trimodal
example even never) exceeded the measurement error
variance at the sampling locations. This implies that the
head measurements did not contain any information on the
intrafacies K distribution, but merely on the lithology
distribution. Therefore it is irrelevant which intrafacies K
realizations are used to perform the calibration of the
lithology field. In cases where the head measurements do
give information on the intrafacies K distributions (for
example when the contrast in K between the different
lithologies is smaller), a technically sound calibration of
both the lithology field and the intralithology distributions
rules out random replacement of the prior intrafacies
realizations in step 2. This step should then be replaced
by a perturbation of the prior intrafacies K realization, large
enough to prevent premature convergence stagnation and
geostatistical distortion, but small enough to keep the head
perturbation at the sampling locations within the range
explainable by the measurement error.

Figure 12. Performance test for the trimodal case.

Figure 13. Quantification of the match between the
reference field and the fields shown in (a) Figure 11 and
(b) Figure 12. SI is the number of cells with a lithology that
is different from the lithology in the corresponding cell of
the reference field.
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[64] The required CPU time is the most important disad-
vantage of the proposed iterative postprocessing procedure.
Using an Intel Pentium 4 2.4 GHz processor with 256 Mb
internal memory, it took between 2 and 10 hours to calibrate
one realization on 24 head measurements.

Appendix A: Inference of the Parameterization
by Representers

[65] For easy reference, we provide a condensed deriva-
tion of the set of Euler-Lagrange equations and its solution.
For a full derivation we refer to Valstar [2001] and Valstar
et al. [2004].
[66] In the minimum of the objective function the varia-

tion of the objective function is zero for any variation of the
random variables. Forcing this condition on equation (3)
yields the Euler-Lagrange equations:

Ag f að Þlf ¼
@Mp hð Þ
@hg

P�1
v

� �
pn

zn �Mn hð Þð Þ ðA1Þ

al ¼ al � Palk
hg

@Agf að Þ
@ak

lf

� �
ðA2Þ

Agf að Þhg ¼ qf ; ðA3Þ

where f and g range from 1 to the number of head state
variables; k and l range from 1 to the number of uncertain
parameters; and n and p range from 1 to the number of
measurements. Indices repeated within a single product
term are assumed to be summed over appropriate ranges.
[67] The solution of the set of equations given by equa-

tions (A1), (A2), and (A3) minimizes the objective function.
For this solution, an efficient parameterization with repre-
senters is applied. The definitions of the representer func-
tions are

lf ¼
XNz

p¼1

Gfpbp ðA4Þ

al ¼ al þ
XNz

p¼1

Ylpbp ðA5Þ

hg ¼ hFg
þ hcorrg þ

XNz

p¼1

Xgpbp; ðA6Þ

where b = the vector of representer coefficients, Gfp = the
head adjoint representer for measurement p, calculated for
head state variable f, Ylp = the parameter representer for
measurement p, calculated for uncertain parameter l, hFg

=
the prior estimates of the heads, Xgp = the head
representer for measurement p, calculated for head state
variable g, hcorrg = a head correction term, needed to
fulfill the flow equation (as the head expansion is
performed around the last estimates, whereas the param-
eters are expanded around their prior means), Nz = the

number of measurements, and �al = the prior estimates of
the parameters. Defining b as

bp ¼ P�1
v

� �
np

zn �Mn hF þ hcorr þ Xp

� �� �
; ðA7Þ

and subsequently inserting the representer definitions in the
Euler-Lagrange equations and dividing by equation (A7)
yields explicit expressions for all representers and the
correction term. These expressions still depend on the
optimal estimates for the parameters and state vari-
ables, which are unknown initially and have to be found
iteratively. During iteration h, the head adjoint representer
Gfp
h is given by

Ag f âh�1
� �

Gh
fp ¼

@Mp ĥh�1
� �
@hg

: ðA8Þ

The expression for the parameter representer Ylp
h is

Yh
lp ¼ �Pa

lk
ĥh�1
g

@Agf âh�1ð Þ
@ak

Gh
fp

� �
: ðA9Þ

The expression for the head representer Xgp
h is

Afg âh�1
� �

Xh
gp ¼ � @Afg âh�1ð Þ

@ak

Yh
kpĥ

h�1
g : ðA10Þ

The expression for the head correction term hcorrg is

Afg âh�1
� �

hcorrg ¼ qf þ
@Afg âh�1ð Þ

@ak

âh�1
k � ak

� �
ĥh�1
g

� Afg âh�1
� �

hFg
: ðA11Þ

Finally, the representer coefficients bp
h can be calculated by a

rearrangement of equation (A7):

Pv½ �np þ Mn Xn
p

� �� �
bnp ¼ zn �Mn hF þ hhcorr

� ��
; ðA12Þ

whereMn(Xp
h) is the representer matrix, which consists of all

representers at the locations of the measurements.
[68] The algorithm was assumed to have reached conver-

gence when all differences between the measurement pre-
dictions from the representer expansion (hF + hcorr + Xb)
and the measurement predictions from the forward model
with the updated parameters were smaller than a threshold
value. For this research, this threshold value was set at
0.015 m.
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