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Abstract

Metabolic engineering of terpenoids in plants is a fascinating research topic from two main perspectives. On
the one hand, the various biological activities of these compounds make their engineering a new tool for
improving a considerable number of traits in crops. These include for example enhanced disease resistance,
weed control by producing allelopathic compounds, better pest management, production of medicinal
compounds, increased value of ornamentals and fruit and improved pollination. On the other hand, the
same plants altered in the profile of terpenoids and their precursor pools make a most important contri-
bution to fundamental studies on terpenoid biosynthesis and its regulation. In this review we describe our
recent results with terpenoid engineering, focusing on two terpenoid classes the monoterpenoids and ses-
quiterpenoids. The emerging picture is that engineering of these compounds and their derivatives in plant
cells is feasible, although with some requirements and limitations. For example, in terpenoid engineering
experiments crucial factors are the subcellular localisation of both the precursor pool and the introduced
enzymes, the activity of endogenous plant enzymes which modify the introduced terpenoid skeleton, the
costs of engineering in terms of effects on other pathways sharing the same precursor pool and the phyto-
toxicity of the introduced terpenoids. Finally, we will show that transgenic plants altered in their terpenoid
profile exert novel biological activities on their environment, for example influencing insect behaviour.

Abbreviations: DMADP — dimethylallyl diphosphate; FDP — farnesyl diphosphate; GDP — geranyl
diphosphate; GGDP — geranylgeranyl diphosphate; IDP —isopentenyl diphosphate; MEP — methylerythritol
4-phosphate; TPSs — terpene synthases.

Introduction

Terpenoids are the most structurally varied class
of plant natural products. They are commercially
important due to their wide application in a vast
number of industrial products such as flavouring
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agents, pharmaceuticals, perfumes, insecticides
and anti-microbial agents (Martin et al., 2003). In
nature, they play significant roles in plant-envi-
ronment interactions, plant—plant communication
and plant—insect and plant-animal interactions
(Pichersky and Gershenzon, 2002). Although
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many of them are associated with primary
metabolism (e.g. the phytol side chain of chloro-
phyll, carotenoid pigments, and the plant hormone
gibberellin) others are typical plant secondary
metabolites.

All terpenoids are synthesized through the
condensation of isopentenyl diphosphate (IDP)
and its allylic isomer dimethyl allyl diphos-
phate (DMADP) (Carretero-Paulet et al., 2002).
The sequential head-to-tail addition of IDP units
to DMADP yields the prenyl diphosphates geranyl
diphosphate  (GDP), farnesyl diphosphate
(FDP) and geranylgeranyl diphosphate (GGDP)
(Figure 1). These three components serve as pre-
cursors for the monoterpenes, sesquiterpenes and
diterpenes, respectively. Terpenoid synthases or
cyclases catalyze the reactions in which the pri-
mary terpene skeletons are formed from these
substrates. The parent skeletal type of mono-,
sesqui- and diterpenes is normally further modified
by the activity of an array of different enzymes
(e.g. hydroxylases, dehydrogenases, reductases and
glycosyl, methyl and acyl transferases) which to-
gether generate the many thousands of different

terpenoid structures (Lucker et al., 2001). Terpe-
noid biosynthesis occurs in the cytosol and the
plastids (Figure 1). IDP and DMADP are synthe-
sized through the 2-methylerythritol 4-phosphate
pathway (MEP) via deoxy-p-xylulose 5-phosphate
in plastids. However, IDP is also synthesized in the
cytosol via the mevalonate pathway (Bick and
Lange, 2003). It is generally accepted that GDP
and GGDP in the plastids are used as substrate for
monoterpene and diterpene biosynthesis, respec-
tively whereas FDP in the cytosol is used for ses-
quiterpene biosynthesis (Figure 1).

Why would we like to engineer terpenoid pro-
duction in plants? Primarily, plants engineered for
their terpenoid profile could serve as a tool for
improving a large number of traits in different
crop species. Examples for such traits are
enhanced disease resistance, weed control by pro-
ducing allelopathic compounds, improved pest
control, increased value of ornamentals and fruit
(fragrance and flavour) and improved pollination
by altering scent profiles. In addition, large-scale
production of terpenoids in plants, either for
medicinal uses or for other industries such as
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cosmetics and food would be attractive. A second,
but not less important reason is that plants altered
in the profile of terpenoids (and pool of precur-
sors) make an important contribution to funda-
mental studies on their biosynthesis and
regulation. For example, metabolic engineering
experiments often reveal undiscovered branches to
an already known metabolic pathway or point to
feedback loops within a pathway or between
pathways.

In recent years attempts to produce high levels
of monoterpenes in transgenic plants have been
successful. Several different plant species were
engineered, mainly by overexpressing terpene
synthases under constitutive promoters. Petunia,
tomato, carnation, potato and Arabidopsis plants
were generated that over-expressed genes encoding
linalool synthases. Such plants produced and
emitted the monoterpene linalool and its glycosy-
lated or hydroxylated derivatives (Lewinson et al.,
2001; Lucker etal., 2001; Lavy etal., 2002;
Aharoni et al., 2003). Mint and tobacco plants
expressing limonene, 7-terpinene and o-pinene
synthases were also altered in their terpenoid
profile (Diemer et al., 2001; Lucker et al., 2004b).
Levels of terpenoid precursors could also be ele-
vated by overexpressing genes encoding enzymes
from various steps of the MEP pathway (DXR and
HDR) (Mahmoud and Croteau, 2001; Botella-
Pavia et al., 2004). In addition, genes encoding
enzymes which modify monoterpene structures
have been successfully over-expressed or knocked
down in tobacco and mint (Mahmoud and
Croteau, 2001; Wang et al., 2001; Lucker et al.,
2004a; Mahmoud et al., 2004). In conclusion, in
many studies it was demonstrated that it is feasible
to engineer several steps of the monoterpenoid
pathway. However, attempts to engineer sesquit-
erpenes in plants using terpene synthases resulted
in only low level production (Hohn and Ohlrogge,
1991; Wallaart et al., 2001).

In this report we will describe our recent work
on engineering mono- and sesquiterpenes in Ara-
bidopsis and potato. Several issues important for
this field of research will be discussed, including:
(a) metabolic fate of engineered terpenoids, (b)
ease of engineering monoterpenes versus sesquit-
erpenes, (c) availability of precursors (in different
sub-cellular compartments) (d) cost of engineering
terpenoids (e) biological activity of transgenic
plants altered in their terpenoid profile.
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The FaNES|1 protein as a ‘sensor’ for both
mono- and sesquiterpene precursors

We chose the strawberry FaNES! (Fragaria anan-
assa Nerolidol Synthase 1) gene for performing
metabolic engineering experiments in several plant
species (Aharoni et al., 2004). The recombinant
FaNESI1 protein was previously shown to catalyze
the conversion of GDP and FDP to (S)-linalool
and (3S)-(E)-nerolidol, respectively with equal
efficiency. The ability of other recombinant terpene
synthases to generate both sesquiterpenes and
monoterpenes was already observed earlier (Crock
et al., 1997; Steele et al., 1998). However, in these
cases the recombinant enzyme could generate the
sesquiterpene with high efficiency while a combi-
nation of monoterpenes would be formed from
GDP but with low efficiency. FaNES1 could
therefore serve as an excellent ‘sensor’ for levels of
both monoterpene and sesquiterpene precursors in
the cell or even, as will be described later in this
report, in a specific sub-cellular compartment.

Engineering monoterpenoids in Arabidopsis plants

Recent research in Arabidopsis revealed that what
at first seemed a metabolically simple plant species
is in reality a reasonable producer of secondary
metabolites (D’Auria and Gershenzon, 2005). For
example, nearly two dozen monoterpenes and ses-
quiterpenes are emitted from its flowers (Aharoni
et al., 2003; Chen et al., 2003; Tholl et al., 2005).
Leaves of Arabidopsis on the other hand emit only
traces of one monoterpene, limonene. Transgenic
Arabidopsis plants were raised which expressed the
FaNES| gene driven by the CaMV 35S promoter.
The FaNESI1 protein was targeted to the plastids
by fusing the wild strawberry FvNES1 (Fragaria
vesca Nerolidol Synthase 1) plastid targeting region
to the N-terminal of FaNES1. Various headspace
analyses methods revealed that the volatile profile
of rosette leaves derived from transgenic lines was
altered compared to control plants. High levels of
linalool were produced by transgenic lines and
levels of linalool released from the highest pro-
ducing lines reached 7.2 to 13.3 ug day™' plant™
(Aharoni et al., 2003). Multidimensional GC-MS
analysis revealed that transgenic Arabidopsis lines
produced exclusively (S)-linalool. This result mat-
ches with the linalool enantiomer produced by ripe
fruit of cultivated strawberry and the recombinant
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FaNESI1 enzyme in vitro. Interestingly, emission of
the newly produced linalool showed a diurnal
rhythm in the same way as other mono- and ses-
quiterpenes naturally emitted by flowers of wild-
type plants (Aharoni et al., 2003).

Plants overexpressing FaNESI not only
produced and emitted linalool, but also three
linalool derivatives including E-8-hydroxy linalool,
Z-8-hydroxy linalool and E-8-hydroxy-6,7-di-
hydrolinalool. E-8-hydroxy linalool and E-8-hy-
droxy-6,7-dihydrolinalool were identified as both
glycosidically bound and as aglycons and Z-8-hy-
droxy linalool only as glycoside (Aharoni et al.,
2003). Formation of these derivatives is most
probably a result of endogenous enzyme activities
mediating hydroxylation, double bond reduction,
and glycosylation (e.g. cytochrome P450s, reduc-
tases and glycosyl transferases). E-8-hydroxy
linalool and its glycoside were detected to the
highest levels. This might be explained by the fact

that low levels of glycosidically bound E-8-hydroxy
linalool could also be detected in leaves of wild-
type Arabidopsis, and, therefore, active endoge-
nous enzymes apparently were present that could
also act efficiently on the newly produced linalool.

Engineering monoterpenoids in potato plants

To engineer monoterpenes in potato plants we
expressed the FaNES! gene using the same con-
struct as the one used for transforming Arabid-
opsis (see above). Leaves of wild-type potato
plants already emit linalool but transgenic lines
emitted linalool to much higher levels (Figure 2).
As described earlier (Aharoni et al., 2004), the
FaNES! recombinant protein catalyzes the bio-
transformation of GDP to S-linalool. We per-
formed chiral analyses on linalool produced by
transgenic and wild-type plants using multidi-
mensional gas chromatography mass spectrometry
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Figure 2. Concentration of linalool, nerolidol, E-8-hydroxy-6,7-dihydro-linalool, Z-8-hydroxy-linalool, and E-8-hydroxy-linalool in
wild-type (WT) and transgenic potato (S. tuberosum) leaves expressing FuNESI with a plastidic targeting signal (TM) (a). Concen-
tration of the metabolites released from their glycosides by enzymatic hydrolysis (b). Detection limit was 0.01 mg kg’1 with phenol

as internal standard and assuming a response factor of 1.



(MDGC-MS). The results showed that wild-type
potato leaves contain linalool with an average
enantiomeric ratio of 98:2 (R:S) while in trans-
genic potato plants overexpressing FaNESI the
enantiomeric ratio of linalool is completely
the opposite with an average ratio of 8:92 (R.S)
(Figure 3). Transgenic potato plants emitting high
levels of linalool had a very distinct smell com-
pared to wild-type plants. While leaves of wild-
type plants had the typical green odor, leaves of
transgenic lines had a sweet, flowery, citrus fruity
impression which is characteristic of S-linalool.
Volatiles and glycosidically bound terpenoids
produced by young potato leaf tissue were also

R - Linalool
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analyzed in more detail. Wild-type leaves already
produce linalool and E-8-hydroxylinalool (Fig-
ure 2a). However, in leaves of FaNES] transgenic
plants, levels of linalool and E-8-hydroxylinalool
were considerably higher than in the wild-type
leaves and Z-8-hydroxylinalool as well as E-8-hy-
droxy-6,7-dihydrolinalool were also detected
(Figure 2a). Glycosidically bound terpenoids were
determined after enzymatic hydrolysis of glyco-
sides (Figure 2b). GC-MS analysis of liberated
alcohols showed that glycosylated linalool and
E-8-hydroxylinalool were present in wild-type
plants but that their levels were considerably
higher in leaves of transgenic plants. Transgenic
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Figure 3. Enantiomeric distribution of linalool in transgenic potato plants compared to wild-type plants. Enantio-selective analysis
of endogenous linalool in wild-type potato leaves and linalool extracted from leaves of transgenic potato plants expressing the
FaNES] gene. Analysis was conducted by using Multidimensional Gas Chromatography-Mass Spectrometry (MDGC-MS; for

methods see Aharoni et al., 2004).
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plants also produced glycosylated E-8-hydroxy-
6,7-dihydrolinalool and  Z-8-hydroxylinalool,
which were not detected in wild-type plants.
HPLC-MS analysis confirmed the presence of
linalyl--p-glucopyranoside in wild-type and
transgenic potato leaves and we assume that the
carbohydrate moiety in the glycosylated 8-hydroxy
linalool derivatives are also attached to the tertiary
hydroxyl group (Figure 4). Thus, the glycosylation
patterns of identical linalool derivatives are
different in potato and Arabidopsis.

Attempts to engineer sesquiterpenes in Arabidopsis

Transgenic Arabidopsis plants overexpressing the
FaNES|1 gene emitted also the sesquiterpene ner-
olidol, albeit at much lower levels (levels of ner-
olidol emitted were 100- to 300-fold lower than of
linalool) (Aharoni et al., 2003). As sesquiterpenes
are known to be produced in the cytosol, and these
transgenic lines produced the FaNES1 protein in
the plastids, this observation indicates that FDP is
also present in the plastids. In another attempt to
engineer sesquiterpenes, Arabidopsis plants pro-
ducing a cytosolic germacrene A synthase from
chicory were generated. GC-MS analysis of vola-
tiles emitted from transgenic vs. control plants did
show the presence of the thermal rearrangement
product of germacrene A, f-elemene, but only in
trace amounts (Aharoni et al., 2003). Thus, engi-
neering sesquiterpene production in plants is more
difficult as compared to the engineering of mon-
oterpenoids, most probably due to shortage in the
sesquiterpene precursor pool. Future work on
metabolic engineering of sesquiterpene production
in plants might prove to be more successful as two
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very recent reports described the formation of
higher levels of sesquiterpenes in transgenic
Arabidopsis plants. Kappers et al. (2005) could
generate higher levels of the sesquiterpene nerol-
idol by altering the localization of the strawberry
FaNESI protein to the mitochondria. Emission of
4,8-dimethyl-1,3(E),7-nonatriene [(E)-DMNT] the
homoterpene derivative of nerolidol, which plays a
crucial role in insect predator attraction in tri-
trophic interactions (Bouwmeester et al., 1999)
was also detected in the same transgenic plants.
Also in transgenic Arabidopsis, Degenhardt et al.
(2005) overexpressed the maize TPS8 and TPSI0
genes and could generate a range of sesquiterpenes
in planta.

Cost of engineering terpenoids in plants
and biological activity of transgenics

Up to now most experiments aiming at engineer-
ing terpenoids in plants utilized the constitutive
CaMV35S promoter for driving the expression of
a gene of interest. Although most of these plants
produced and emitted the expected terpenoid (in
the case of monoterpenes) it was not without
paying a price in terms of plant vitality. In most
cases, if transgenic plants were affected in their
growth, the strength of the phenotype correlated
with the production level of the new terpenoid.
For example, Arabidopsis plants expressing
FaNES1 were retarded in growth compared to
their wild-type counterparts (Aharoni et al., 2003).
An even stronger phenotype was observed in
potato plants when expressing the FuNESI gene
under the Rubisco small subunit promoter from
chrysanthemum (Figure 5). This promoter is
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Figure 4. Structures of linalool and derivatives formed in transgenic potato plants over-expressing the strawberry FaNESI gene.
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Figure 5. Phenotypic effect in potato plants with very strong expression of the strawberry FaNES! gene under the control of the
chrysanthemum rubisco small subunit promoter. Upon transfer from in vifro to the greenhouse leaves of plants with the highest

levels of expression turned white and were retarded in growth.

approximately 10-fold stronger and transgenic
potato lines with such high levels of linalool pro-
duction were strongly reduced in growth, but also
showed heavy bleaching in leaves upon transfer
from in vitro to the greenhouse (Figure 5). Again,
plants with the highest levels of linalool showed
the most severe phenotype. It is still not clear
whether these effects are due to terpene toxicity or
the reduction in the availability of precursors for
isoprenoid primary metabolite pathways such as
chlorophyll and carotenoid biosynthesis.

The biological effects and possible practical
application of these compositional changes in the
terpenoid profiles of engineered plants have so far
hardly been tested. The first indications of the
possibility of altering insect behaviour were
provided by transgenic tobacco plants producing
higher levels of the diterpene cembratriene-ol
(Wang et al., 2001). Not only did exudates from

transgenic plants have higher aphidicidal activity,
in vivo assays with these plants showed greatly
reduced aphid colonisation. Aphid behaviour was
also altered in transgenic Arabidopsis plants
producing linalool (Aharoni et al., 2003). In
dual-choice assays with Myzus persicae, transgenic
lines producing linalool significantly repelled the
aphids. Similar results were recently obtained with
transgenic chrysanthemum (Chrysanthemum x
grandiflorum) and the western flower thrips,
Frankliniella occidentalis (M.A. Jongsma, 2004.
Novel genes for control and deterrence of sucking
insect pests. http://www.isb.vt.edu/news/2004/
Nov04.pdf). The transgenic Arabidopsis plants
engineered to emit (3S)—E-nerolidol and (E)-
DMNT, as described above, attracted carnivorous
predatory mites (Phytoseiulus persimilis), the
natural enemies of spider mites (Kappers et al.,
2005).
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Concluding remarks

The recent reports on metabolic engineering of
terpenoids in plants have clearly shown that these
type of approaches could be used successfully to
generate substantial levels of terpenoids. Engi-
neering of some classes of terpenoids is apparently
more difficult than others as the pool of terpenoid
precursors may not be sufficient for the production
of substantial amounts of the required terpenoid.
In the case of monoterpenes, the availability of
GDP is apparently high in both leaf tissues (as we
observed in both potato and Arabidopsis and
others in additional plant species such as tobacco
and mint) as well as in fruit (Lewinson et al.,
2001), tuber (Aharoni and Jongsma, unpublished)
and flower tissues (Lucker et al., 2004b). Newly
introduced monoterpene skeletons, but most likely
also those of other terpene classes, will be trans-
formed by endogenous modifying enzymes such as
cytochrome P450s, reductases and glycosyl trans-
ferases. Interestingly, in Arabidopsis and potato
we detected the same 8-hydroxy derivatives
(E-8-hydroxy linalool, Z-8-hydroxy linalool and
E-8-hydroxy 6,7-dihydrolinalool) but their glyco-
sylation pattern was different. In both plant
species E-8-hydroxy linalool was also present at
low levels in the wild-type plants, and, thus,
endogenous enzymes already active in the wild-
type plants could act on the introduced monoter-
pene and produce substantially higher levels of this
particular derivative.

Engineering of sesquiterpene production in the
cytosol compared to the plastidic production of
monoterpenes seems more difficult. At this point it
is not clear why only such a small amount of FDP,
the sesquiterpene precursor is available although it
was earlier speculated that this is due to tight
metabolic regulation directing precursors to sterol
biosynthesis (Chappell et al., 1995). In recent years
several studies showed that transport of terpenoid
precursors occurs between subcellular compart-
ments (McCaskill and Croteau, 1998; Bick and
Lange, 2003; Hemmerlin et al., 2003; Laule et al.,
2003; Schuhr et al., 2003; Dudareva et al., 2005).
We discovered, however, that in ripe strawberry
fruit monoterpene synthase proteins are localized
to the cytosol and not as expected to the plastids.
Two independent strawberry monoterpene syn-
thase proteins, which generate unrelated products
(linalool in one case and several olefinic monot-

erpenes in the other), were shown to lack a plastidic
targeting signal. This was identified by in silico
analysis as well as by testing the targeting capacity
of the N-termini of these proteins in vivo (Aharoni
et al., 2004). These two proteins were active in two
different strawberry species, wild (Fragaria vesca)
and cultivated (Fragaria x ananassa). Thus, intra-
cellular biosynthesis of the different terpene classes
and the presence of their precursors is not as strict
as believed earlier when the MEP pathway was
discovered.

Engineering experiments to alter terpenoid
biosynthesis can take advantage of these two
points (intracellular transport and biosynthesis of
precursors) by targeting proteins to different sub-
cellular compartments. For example, Arabidopsis
plants targeting the FaNES1 protein to the plast-
ids unexpectedly also produced low levels of the
sesquiterpene nerolidol (Aharoni et al., 2003).
Targeting of the same protein to the mitochondria
resulted in even higher level of nerolidol produc-
tion (Kappers et al., 2005). Ohara et al. (2003)
targeted the limonene synthase (LS) cDNA of
Perilla frutescens to the plastid, the cytosol and the
endoplasmic reticulum (ER) in transgenic tobacco.
Limonene formation was detected in leaf extracts
of both plastid- and cytosol-localized limonene
synthase transgenic plants but not in the ER. The
amount of limonene in plastid-localized LS trans-
genic plants was more than three times higher
compared to transgenic plants with cytosol local-
ized LS. Thus, targeting different cell compart-
ments when engineering terpenoids might be a
valuable tool for obtaining higher levels of terpe-
noids and producing novel ones. In addition, fur-
ther modification of the introduced terpenoid
might be different in each cell compartment.

Since the isoprenoid pathway in both the
plastid and the cytosol supplies precursor not only
for mono- and sesquiterpene biosynthesis but also
for an array of other compounds (some of them
crucial to plant growth and fitness such as sterols,
gibberellins, carotenoids and chlorophyll), strong
and constitutive expression of introduced genes
could be most harmful. It is therefore highly rec-
ommended in future metabolic engineering exper-
iments to direct gene expression to a specific tissue
or organ or use an inducible system. One example
for an inducible approach was recently reported
for the production of the diterpene taxadiene,
which was engineered using the glucocorticoid



(GR) system in transgenic Arabidopsis plants
(Besumbes et al., 2004). In contrast to plants
expressing taxadiene synthase using a strong/con-
stitutive promoter (35S CaMV) which showed a
growth retardation and yellowing phenotype,
plants engineered with the GR induction system
produced taxadiene (after induction) and had a
normal appearance.

A large number of terpenoids including mono-
and sesquiterpenes are highly bioactive molecules
which play a significant role in the interaction of
plants with other organisms. Plants producing
these compounds are therefore a perfect tool for
observing how they influence plant interaction
with micro-organisms and insects. By improving
plant disease and pest resistance they could also be
used as a biotechnological product, providing im-
proved defence properties to crops. Indeed, Ara-
bidopsis plants producing high levels of linalool
influenced aphid behaviour, deterring them com-
pared to leaves of wild-type plants when tested in a
dual choice assay. Moreover, preliminary results in
our group show that high linalool producing
potato show enhanced disease resistance, and
deter insects when tested with both aphids and
thrips in choice assays (Aharoni and Jongsma,
unpublished data). It is expected that last years
successes in metabolic engineering of terpenoids
will boost an array of future studies on the bio-
logical activities of transgenic plants engineerined
for pathways of these wonderful small molecules.
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