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Spatial scales in the assessment of risks of contaminants to 
higher organisms, with comparison to human health 
procedures by N.van den Brink, U.Schlink 

 
Introduction 

 
Recently, the research on the assessment of risks of contaminants in the environment for higher organisms 
has also been focussed on spatial aspects (see for instance Cairns et al., (1996). This included spatial 
heterogeneity of the occurrence of contaminants, but also the spatial variability in the occurrence of 
organisms. Very little literature however, is available on the explicit effects of scaling on the results of 
spatially explicit assessment of risks. Woodbury (2003) and Hope (2000) addressed this, and conclude that 
the choice of scales may affect the outcome of risk assessments. Gehlke and Biehl (1934) discussed this 
problem, and demonstrated that it is possible to estimate different results by applying different scales of an 
area of interest. 
In their habitats organisms may roam at different scales, ranging from meters for worms, to km for the 
badgers. In the current abstract the scales in environmental studies will be addressed, including the 
modifiable area unit problem (MAUP). This is related to the fact that there are no absolute levels of 
hierarchical organisation in natural systems, except as defined by perception. The definition of scales in 
spatial research is therefore subject to some degree of arbitrary. However, it has been established that the 
choice of scale may affect the results of the research. This may then result in the fact that the outcome of a 
risk assessment based on spatially explicit models, may be depending on the choice of scales. This will be 
illustrated later with a few simple examples. Before addressing the examples, some methods to upscale or 
downscale data will be presented. 
 
Methods for upscaling and downscaling  

 
Upscaling or aggregation of environmental data can be done in several ways and techniques each with its 
own advantages and disadvantages (table 1). For instance, interpolation methods like kriging or related 
techniques leave more choice in the shape and size of support units, but require specific assumptions 
concerning spatial correlation and stationarity of data. Thus, a trustworthy model on spatial correlation 
required for kriging can only be derived from numerous observations at different separating distances. 
Other techniques like inverse distance weighing are more simple, and require less detailed and specific 
information in the data, but these techniques also give less insight in the spatial characteristics of the 
interpolated results, like for instance local variance. The choice of technique depends therefore on the type 
and quality of data, and additional information that is available.  
No standard routines are available for downscaling of data. If the support is coarse, small scale variability 
can not be distinguished, because this variability is hidden within the coarser support units Downscaling of 
information can only be performed with additional information on the within-support unit variability of the 
characteristic that needs to be scaled down 
 
Spatially explicit risk assessment 

 
The first question that needs to be addressed is why a spatially explicit risk assessment (SERA) should be 
applied and why not a conventional approach (environmental risk assessment: ERA)? In table 2 some 
characteristics are given for SERA and ERA which may be used to answer this question for specific 
applications Generally, a SERA is more realistic and not based on for instance a worst case situation, and a 
SERA allows for additional solutions in space. SERA can also include spatial heterogeneity of soil 
characteristics and habitat occurrence, including spatially explicit feeding ecology of prey items and 
predators. Finally, the application of a spatially explicit risk assessment results in differentiation of risks 
within the area of concern, e.g. it illustrates where risks are relatively low, and where relatively high. This 
information may be used to allocate preferable habitat in places where risks are low, and non-preferable 
habitat at locations with highest risks. 
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Technique Data requirements Input Support size and -shape Variability within support Quantified accuracy 

Thiessen Polygons Some observations Observations Defined by configuration of 
observations 

Considered 
homogeneous 

No, or expert  
opinion 

Spatial aggregation Sufficient random  
observations within 
each map units 

Observations and 
map units 

Shape and size of  
the map units 

Estimates for map  
units 

Quantitative per unit 

Inverse distance 
interpolation 

Assumptions on 
similarity with  
distance 

Observations Same support as  
observations 

Considered  
homogeneous 

No, or expert  
opinion 

Kriging Assumptions on  
spatial correlation and 
stationarity 

Observations Larger or equal to  
the observations,  
choice of shape is free 

Considered  
homogeneous 

Quantitative for  
support 

Table 1. Different techniques for upscaling of data with some characteristics on data requirements and 

assumptions 

 
However, it should also be noted that  there are also drawbacks of a SERA. Generally a spatially explicit 
assessment demands for more specific data than a conventional non-explicit method. More observations 
may be needed, although even in non explicit assessment replication of observations is needed. This may 
result in higher costs of a spatially explicit assessment in comparison to a conventional non-explicit one. 

 SERA ERA Remarks 

Input Spatially explicit input needed No need for spatially  
explicit data 

Replicates may be needed for RA 

Costs Costs may be higher May be lower Replicates also needed for RA, hence differences in costs may be 
less than expected 

Realism More realistic,  Less realistic In a SERA spatial heterogeneity of contaminants and habitat can 
be incorporated, but also ecological characteristics of the species 
of concern 

Possible solutions Habitat  reconfiguration No differentiation within area 
of concern 

 

Table 2. Some characteristics of SERA and ERA. 

 
Examples of effects of scales on the results of spatially explicit assessment of risks 

 
As mentioned earlier, the choice of scales may affect the results of a SERA of contaminants to wildlife. 
However, the advantages of the application of a SERA may be as such that further investigations of the 
effects of scales may e worthwhile  in order to get more insight in these possible effects of scales in order 
to counteract the possible drawbacks of SERA. In the next paragraphs some simple examples will be 
presented, which can be used to discuss such effects.  
Example 1: a case with random soil contamination, random movement of the organisms and, different 

home range sizes 

In this examples we assume the following : (1) a region represented by grid cells, with a soil contamination 
that results in a certain daily intake by the organisms (5 µg/day ± 1.5 (s.d.)). (2) territories are ofdifferent 
size: 1 grid cell, 2 cells, 4 cells, and 16 grid cells.  
For each territory the average daily uptake was calculated and averaged over all territories. A total of 1024 
cells were used, so in case of territories of 1 grid cell this resulted in 1024 territories, in case of 16 grid 
cells per territories only 64 territories could be placed within the area. In figure 2 the average daily uptake 
is plotted for the different home range sizes, in combination with its standard deviation, 95% percentile and 
the maximum observation. It is illustrated that in case the home range is just one grid cell, the distribution 
of daily uptake was similar to the soil characteristics, as expected (i.e. mean is 5, standard deviation 1.5). 
When the home range size increased the mean daily uptake did not change, however the standard deviation 
and 95% percentile of the observations decreased. The standard deviation decreased with the square root of 
the ratio between the number of grid cells between the home range sizes. Hence, when increasing the home 
range from one to two grid cells the standard deviation decreased on average by a factor 1.41 (square root 
of 2). 
Example 2: a case with non-random soil contamination, random movement of the organisms and, different 

home range sizes 

In this example the characteristics of the organisms are similar to examples 1 (random movement, and sizes 
of territories), but the soil contamination occured non-random or clustered, which can be illustrated by the 
autocorrelation of the data (figure 2). The higher the autocorrelation the more clustered the data are, hence 
in this figure there is a situation with high clustering, low clustering and non clustering (random). We 
applied this on two levels of contamination: 5ug/g (50% of the cells), and 20ug/g (also 50%). The average 
contamination level is then 12.5 ug/g. 
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Figure 1. Results of example 1 (random soil contamination, random movement organisms, different sizes of 

territories), indicating that increase in home rang sizes (territory) results in a decrease in the variability of the 

uptake rates. 

 
 

 

Figure 2. Three different soils: random (crosses), slightly clustered (squares) and highly clustered (triangles). 

 
In figure 3 it is illustrated that increasing the autocorrelation did not affect the average concentrations at all, 
and this was also independently for the size of home range. The increasing home ranges (from Figure 3A to 
3D) resulteed in decreasing standard deviations as could be expected based upon the results discussed 
earlier. However, this effect was different for soils with different aggregated soil concentrations. Generally, 
when the concentrations were more autocorrelated (15 cells) the effect of increasing home ranges on the 
standard deviation of the average uptake was smaller.  
 

 

Figure 3. The effect of increasing home ranges (from 3A to 3D) on the standard deviation and 95
th

 confidence 

interval of the average daily uptake by soil types with different degrees of autocorrelation (see figure 2). 
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Example 3: a case with random soil contamination, non-random movement of the organisms and, different 

home range sizes 

In this example the distribution of the contaminants is random like in example 1, but the foraging pattern of 
the organisms was non-random. This may be due to the fact that the spatial distribution of prey items may 
not be random in space but for instance also be related to soil characteristics. Then, the predator may feed 
selectively within its home range. In this example a fictive situation is assumed in which a predator that 
lives in a home range of 16 grid cells only feeds in 4 of those grid cells.  
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Figure 4. Effect of selective feeding in 4 cells in a home range of 16 cells on the statistics of the average daily 

uptake. 

 
Based upon the size of the home range one would expect the statistics related to 16 cells size, however due 
to the fact that only 4 cells were effectively used, it can be deduced that the statistics of the average uptake 
were not related to the size of the home range, e.g. 16 cells, but to the size of the feeding range, e.g. 4 cells 
(figure 4). This resulted in a more variable uptake than expected on home range size. This example 
illustrates that not just the home range of an organisms is of importance for scaling issues, but even more 
so the functional use of the home range. 
 
Effects of scaling issues in environmental issues: overview 
 
The examples show that there are clear effects of the choice of scales to be expected on the uptake 
statistics. It should be noted that these effects are related to the ratio between the size of the grid cells and 
the size of the home range or feeding area. So, the results above can also be interpreted as such that the 
aggregation of information into larger grid cells, and the same home range or feeding range will decrease 
the variability of the resulting uptake figures. 
In table 3 the effects of some spatially explicit factors are listed. It can be seen that size of home range, or 
clustering of soil contamination mainly affect the variance of the average uptake. Selective feeding, and 
habitat related feeding or feeding on specific food chains may result in an increase or decrease of the 
average uptake. This is depending on the relationships between for instance food availability in a certain 
area and the concentrations in that area. It is known that for instance earthworms may occur in areas with 
higher amounts of organic carbon in the soil, but this may also be the most polluted areas in floodplains. In 
such case specific feeding on earthworms may not only increase the variability of the uptake figures but 
also the average uptake. 
 
 

 
Table 3. effects of some spatially explicit factors on the statistics of exposure 

 

+ + Habitat relationships/food chain 
+ + Selective feeding in space 
+ - Clustering soil concentrations 
+ - Home range size 

variance 
exposure 

average 
exposure 

Scaling factor 
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Scaling issues in human exposure modelling 

 
Models used in human health assessment and described by Strebel et al (2006) are different to the models that 
are applied in ecological risk assessment, which are generally based on simulation models. This is due to the 
fact that in human health assessments, data on incidence of diseases, effects or exposure are mostly available. 
In the ecological risk assessment only environmental concentrations and conditions can be assessed, and 
sometimes some indication on the levels in organisms is available. The exposure of organisms to the 
compounds under study needs to be calculated, using the spatially explicit exposure models of the risk 
assessment procedure. This difference between the data in a human health assessment and ecological risk 
assessment demand for different methods and models to analyse the risks, e.g. more statistical for human 
health and simulation models for environmental assessment.  Due to these differences, issues on scales may 
affect the results of an assessment of human risks and ecological risks differently. Nevertheless, application of 
larger scales in both the human risk assessment and the ecological risk assessment generally results in the 
smoothing of spatial heterogeneity, and thus may result in a decrease of the variance of the results. In both 
disciplines specific methods and techniques are available to upscale data. For human health assessment both 
aggregation methods and clustering methods can be used, while for basic data in ecological risk assessment 
interpolation methods may play a more important role. Furthermore, in ecological risk assessment food web 
models are considered to be of prime importance, because exposure of organisms to soil contaminants is 
assumed to be mainly through food web interactions. In human health assessment other routes of exposure 
(inhalation, occupational), each with its specific scales, may also play an important role. 

 
Rules of thumb in scaling issues related to SERA 

 
Firstly there is no generic answer to the question which scale should be used in specific cases. This is case 
specific and related to data availability and quality, range of scales present in the case, types of answers 
needed etc. However, if one would like to retain as much variance and details as possible, one should aim 
for a small scale approach. This may be useful when not only the average uptake is demanded for but also 
the distribution or the 95th percentile of the uptake. Another factor for choosing the scale may be that one 
of the needed parameters is coarse scaled and no information is available to downscale this to a more 
detailed scale. When this is the case, there may be no need for more details in other parameters. 
Furthermore, information on movement of prey items may be limited. If so, the assumed home range or 
dispersion range of the prey items may be the scale to work with. In this respect different arguments can be 
presented, but it should be noted that: Scales matter, and that the choice of scale may affect the results! 
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