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ABSTRACT: 
 
The possibilities of using MERIS full resolution (FR) data to extract sub-pixel land cover composition over The Netherlands are 
explored in this paper. More precisely, the use of MERIS FR time series is explored in this paper since it should facilitate the 
discrimination of spectrally similar land cover types because of their seasonal variations. The main steps of the methodology used to 
extract sub-pixel information can be summarized as follows. First, a set of seven MERIS FR Level 1b images that covered the period 
February to December 2003 were selected. Second, the images were projected into the Dutch national coordinate system. Special 
attention was paid to this process in order to account for the orbital differences of each MERIS acquisition. Third, a cloud screening 
algorithm was applied to all MERIS images. Next, the MERIS level 1b TOA radiances were converted into surface reflectance. 
After that, the latest version of the Dutch land use database (LGN5) was used to support the selection of the endmembers from the 
MERIS images. Finally, a constrained linear unmixing algorithm was applied to each of the MERIS scenes and to the multi-temporal 
dataset. The results were validated both at sub-pixel and per-pixel scales using the LGN5 as a reference. The paper concludes by 
describing the potential and limitations of the selected approach to extract sub-pixel land cover information over heterogeneous and 
frequently clouded areas. 
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1. INTRODUCTION 

Obtaining reliable and up-to-date land cover information is 
essential to better understand the Earth’s system. In this respect, 
the MEdium Resolution Imaging Spectrometer (MERIS) that 
flies on board the ESA/ENVISAT satellite provides 
hyperspectral data at unprecedented spatial, spectral and 
temporal resolutions (Rast and Bezy, 1999). Indeed, MERIS 
delivers data at 300m (full resolution mode) and at a very high 
spectral (15 narrow bands) and temporal resolution (revisit time 
2-3 days). Because of these characteristics, MERIS has found a 
number of applications in land remote sensing. For instance, 
due to its high spectral and temporal resolutions MERIS has 
been selected to produce a new global land cover map (Arino et 
al., 2005). However, the use of MERIS for land cover mapping 
over highly heterogeneous landscapes might not be very 
appropriate because a number of land cover types will be 
present in each MERIS pixel. This will lead to the so-called 
mixed pixel problem. In this kind of landscapes, the use of high 
spatial resolution sensors, like Landsat TM, would be more 
appropriate. Nevertheless, the temporal and spectral resolutions 
provided by high spatial resolution sensors are usually not 
sufficient to accurately map/monitor vegetation dynamics in 
heterogeneous landscapes. This problem is especially important 
for areas having persistent cloud coverage throughout the year 
and/or for areas that have spectrally similar land cover types. 
Linear spectral mixture analysis is a relatively straightforward 
method that can be used to deal with the mixed pixel problem 
(Settle and Drake, 1993; Ichoku and Karnieli, 1996). In this 
analysis each pixel is modelled as a linear combination of the 
pure spectral response of each of the classes that are present in 
the pixel. Several studies (e.g. Lobell and Asner, 2004) have 
shown that linear mixture analysis can benefit from a high 
temporal resolution because, in this case, the classes are not 

only defined by their spectral signature but also by its evolution 
over time.  
In this paper we are thus concerned with exploring the use of 
MERIS full resolution (FR) time series to extract sub-pixel land 
cover information from highly heterogeneous and cloudy areas.  
 

2. STUDY AREA AND DATASETS 

2.1 MERIS Full resolution data  

A temporal series of MERIS FR level 1b images (geo-located 
TOA radiances) acquired over The Netherlands in 2003 was 
selected to illustrate this work.  The Netherlands was selected 
as study area because of the heterogeneity of its landscapes, 
cloud coverage and the availability of an up-to-date high spatial 
resolution land use database that can be used to validate the 
results. The acquisition dates were chosen according to two 
criteria: (i) to maximize the number of cloud free pixels in each 
scene and (ii) to get, at least, one image per month so that the 
phenological cycle is fully captured. Unfortunately, no suitable 
MERIS FR scene was found for the months of January, March, 
June, September and November. Therefore, an uneven temporal 
series of seven images is considered (Table 1). 
 

Table 1. MERIS acquisition dates 
18 February 6 August 
16 April 15 October 
31 May 8 December 
14 July  

 
The MERIS FR images were first projected into the Dutch 
national system (RD) using the geo-location information 
provided with the data and a nearest neighbour resampling 
method. After that, a cloud screening algorithm (Gomez-Chova 
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et al., 2006) was applied to all the images to identify and mask 
out cloud contaminated pixels. Then, the TOA radiances were 
transformed into surface reflectance using an algorithm 
specifically designed for the MERIS sensor (Guanter et al., 
2007).  This algorithm is intended for correction of land targets 
because the low accuracy of aerosol optical thickness retrievals 
over water. However, in this study, the algorithm was modified 
to include the first 10km of water from the shoreline in order to 
obtain surface reflectance over coastal and inland waters, which 
represent a high percentage of the total area of The Netherlands. 
 
2.2 Reference dataset 

The latest version of the Dutch land use database, the LGN5, 
was used as a reference in this study. This geographical 
database is based on a multi-temporal classification of high 
resolution satellite data acquired in 2002 and 2003; several 
types of ancillary data were also used to produce the land use 
database – see (Hazeu, 2005) for more details. The LGN5 has a 
pixel size of 25m and maps 39 classes. The unmixing of all 
these classes would be unrealistic, since some of the classes are 
rather small and/or sparsely distributed and/or heavily based on 
available ancillary data, which mainly describes land uses 
rather than land covers types. Consequently, the LGN5 was 
thematically aggregated into the main 12 and 4 land cover types 
of The Netherlands. The aggregation to 12 classes is meant to 
offer a detailed distribution of the following classes: grassland, 
summer crops, winter crops, orchards, deciduous forest, 
coniferous forest, water, built-up, greenhouses, bare soil 
(including sand dunes), heathlands, and swamps. The 
aggregation to 4 classes considers the following main land 
cover classes: vegetation, bare soil, water and built-up. Despite 
its simplified legend, the aggregation to 4 classes is of great 
interest because it can be used as a proxy of fractional 
vegetation cover and because it might be of help during the 
inversion of biophysical and biochemical parameters. For 
example, the presence of sub-pixel water in a pixel might bias 
the LAI estimate.  
 

3. SPECTRAL UNMIXING  

A fully constrained linear spectral unmixing (FCLSU) was 
applied to each MERIS image (mono-temporal case) as well as 
to a multitemporal composite (layerstack) of all the MERIS 
images. The FCLSU (Heinz and Chang, 2001), which 
guarantees a physical interpretation of the results, can be 
formalized as follows:  
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where pi is the pixel value for the band-i, nc represents the 
number of classes that are being unmixed, fc is the fraction of 
class-c present in the pixel, and μci is the pure signal of the 
class-c in the band-i (this signal is commonly known as “class 
endmember”). Finally, the term εi represents the per band 
residual error.  

Notice that the number of dates used in multitemporal unmixing 
is pixel dependent (each pixel was unmixed with the maximum 
number of cloud free dates). This means that the quality of the 
unmixing might also be pixel-dependent and that, if critical 
(phenological) dates are missing for a number of pixels (areas), 
the accuracy of the results on those pixels (areas) might be 
lower.  
 
3.1 Selection of endmembers 

A fully automatic class endmember selection method was used 
in this study. The method only needs the land cover fractions 
computed for each MERIS date using the LGN5 as a reference 
and the cloud mask that belongs to each MERIS image. First, 
the fractions of each land cover class were summed up for all 
the acquisition dates. Next, these “multitemporal fractions” 
were used to compute a multitemporal version of the standard 
purity index, SPI (Zurita-Milla, 2007): 
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where fc represents the multitemporal fraction of class-c in a 
given pixel and fmaxclass is the maximum multitemporal fraction. 
Therefore, the multitemporal SPI equals one when the pixel has 
only one class for all the dates under study, and it equals zero 
when the sum of the fractions is the same for all the classes (fc = 
fmaxclass = 1/nc). 
 
Pure pixels were identified for each date by first applying the 
corresponding cloud mask to the multitemporal SPI image and 
then applying a SPI threshold to the remaining (cloud free) 
pixels. The SPI threshold was adaptively tuned until at least 20 
pixels were found for all classes. After that, a neighbourhood 
constraint is applied to these SPI pure pixels: only the pure 
pixels surrounded by pure pixels of the same land cover class 
are selected to compute the endmembers (erosion filter of 3 by 
3 pixels). If after applying the neighbourhood constraint a class 
has less than 5 pixels left, then the constraint is relaxed and all 
the pixels identified in the previous step are selected as pure 
pixels to compute the endmember of that class. Finally, the 
endmembers of each class were created by averaging the pure 
pixels identified in the previous step. 
 
3.2 Validation datasets  

Although the MERIS sensor has a large swath that allows a 
revisit time of 2-3 days, the ENVISAT platform only repeats 
orbit every 35 days. This means that each of the MERIS images 
that were selected for the analysis might have been acquired 
from a slightly different orbit. This, in turn, implies that each of 
the MERIS images might have a slightly different observation 
geometry. Therefore some (sub-pixel) differences in the 
instantaneous field of view of each “pixel” are to be expected 
when using images acquired from different orbits.  
In order to account for this effect, each MERIS pixel was 
reprojected into the original LGN5 25m grid so that the “actual 
land cover fractions” seen by MERIS at each acquisition date 
could be computed. After this, the sub-pixel land cover 
fractions were assigned to the corresponding 300 by 300m 
MERIS pixel. The class having the highest fractional coverage 
was used to produce a hard land cover classification for each 
MERIS acquisition date. This processing step allows both a 



sub-pixel and a per-pixel validation of the unmixing results for 
each of the MERIS FR images.  
In order to create a validation dataset for the multitemporal 
results, the LGN5 was spatially aggregated to match the 
nominal MERIS FR pixel size. A majority filter with a kernel of 
12 by 12 LGN5 pixels was used to obtain a land cover 
classification map at 300m. During this spatial aggregation, the 
fractions of the different land cover types present in each 300 
by 300m pixel were recorded. 
 
3.3 Accuracy assessment  

The fractional maps computed in the previous section were used 
as ground truth for the validation of the monotemporal and 
multitemporal unmixing. Assuming that the unmixed fractions 
are correctly positioned within each pixel, a kind of overall sub-
pixel accuracy (OSA) can be computed as follows: 
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where dc are the correctly classified abundances for each pixel. 
These abundances can be computed as the minimum of fc

LGN5 
and fc, which respectively are the LGN-based and the unmixed 
abundances. Notice that the sum of fc for all classes adds to 
unity (Eq. 2). 
After the sub-pixel accuracy assessment, the unmixed fractions 
were used to produce land cover classification maps for each 
date. The class having the maximum fractional coverage was 
used to label each pixel. Subsequently, a classical classification 
accuracy assessment was done by comparing these images with 
the land cover maps that were computed for each date. 
Similarly, the hard classified multitemporal image was 
validated using the aggregated LGN5 as a reference. The 
confusion matrix and the kappa index were used for the per-
pixel accuracy assessment.   
 

4. RESULTS AND DISCUSSION 

4.1 MERIS pre-processing 

A visual inspection of the reprojected MERIS images did not 
show any major shift between them (besides the expected 

differences due to different acquisition orbits). Images also 
overlapped quite well the reference dataset. This can be 
considered as a preliminary quality proof of the ground control 
points provided with the images. Although a quantitative 
assessment of the geolocation accuracy might have been more 
appropriate, here we decided to keep it simple in order to also 
test the operability of the unmixing of MERIS FR time series. 
Therefore, in this study, the pre-processing steps were reduced 
as much as possible.  
With respect to the cloud screening method, all the clouds and 
cloud borders were masked out. The validation of the cloud 
mask revealed that a small amount of pixels belonging to the 
classes greenhouses (sun glint on glass roofs) and bare soil 
(sand dunes) were identified as clouds because these classes 
have similar reflectance behaviour as clouds. However, the 
classes that were misclassified represent less than 0.5% of The 
Netherlands and, therefore, they are not statistically 
representative in the clustering process used by the cloud 
screening algorithm. 

 
Figure 1. Total number of usable dates  

 
Figure 1 shows the number of usable dates for each MERIS FR 
pixel. It should be noted that the northern and south-eastern 
parts of the Netherlands have less usable pixels than the rest of 
the country. This is not only because of the cloud coverage but 
also because some of the MERIS FR images did not cover the 
whole of The Netherlands.  
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Figure 2. Spectral signature of the endmembers extracted from the MERIS FR time series.   



 
4.2 Endmembers  

Most of the endmembers were computed as average of the 
pixels selected using the initial SPI threshold of 0.95. 
Nevertheless, for some small classes, the SPI threshold was 
reduced in order to get, at least, 20 pixels for those classes. 
For instance, the SPI threshold had to be reduced to 0.87 to 
extract 20 “pure pixels” of the greenhouse class on cloudy dates 
(31st May and 6th August). For the small and sparse classes the 
neighbourhood constraint was, in general, not applied because 
very few clusters of 3 by 3 pure pixels can be found.  
Figure 2 shows the spectral signature of the endmembers 
selected in this study. Grassland presents the highest NIR 
reflectance all year around. During the months of May, July and 
August the endmember of deciduous forest also shows high 
reflectance (high greening of vegetation). The rest of the 
vegetated classes appear to have a very similar spectral 
signature. Therefore, high confusion is expected among most of 
the vegetated classes.  
 
4.3 Unmixing  

A fully constrained linear spectral unmixing was applied to 
each of the seven MERIS images and to the multitemporal time 
series using the 12 endmembers depicted in figure 2. The 
fractions for the 4 classes case were computed by aggregating 
all the fractions of vegetated classes into a single vegetation 
class and by grouping the fractions of greenhouses and built-up 
into a single built-up class. The unmixed fractions were then 
compared with the reference fractions that were generated 
according to the viewing geometry of each date (see section 
2.3). The overall sub-pixel accuracy (OSA; Eq. 4) was used to 
do this comparison. As an example, figure 3 illustrates the OSA 
for the multitemporal unmixing of 12 and 4 classes. In general, 
homogeneous areas tend to agree well with the reference dataset 

and, as expected, the 4 classes case offers better OSA values 
because the spectral confusion among vegetated classes is now 
removed. However, in the case of 12 classes, low agreements 
are found in the north and south eastern part of the country. 
These areas do not only have more heterogeneous pixels than 
the rest of the country but were also unmixed using fewer dates. 
Subsequently, the unmixed fractions were transformed into a 
hard classification map and the overall classification accuracy 
(OA) and the kappa statistic were computed by comparing these 
maps with the reference land cover maps.  
 

 
Figure 3. Overall sub-pixel accuracies (OSA) for the 

multitemporal unmixing of 12 (left) and 4 (right) classes. 
 
Tables 2 and 3 summarise the results of the sub-pixel and per-
pixel classification accuracy assessment for the 12 and 4 classes 
cases. Three main conclusions can be drawn from these tables. 
(i) Classification results for the 4 classes case are much higher 
than the results obtained for 12 classes. This is mainly because 
the vegetated classes are spectrally very similar. (ii) The 
multitemporal approach yielded the highest classification 
results, since adding the temporal evolution (phenology) 
simplifies the discrimination of spectrally similar land cover 
types. Nevertheless, the difference between the classification 
results of the best monotemporal image (April) and the 

Table 2. Summary of the accuracy assessment for the 12 classes case  
Date 18-2-2003 16-4-2003 31-5-2003 14-7-2003 6-8-2003 15-10-2003 8-12-2003 Multitemp 

mean OSA 43.54 52.70 42.35 45.46 36.88 41.56 44.78 52.72 
Kappa 0.33 0.44 0.33 0.36 0.27 0.30 0.32 0.45 

OA 44.29 54.17 43.88 46.06 35.29 41.87 45.68 55.17 
 

Table 3. Summary of the accuracy assessment for the 4 classes case 
Date 18-2-2003 16-4-2003 31-5-2003 14-7-2003 6-8-2003 15-10-2003 8-12-2003 Multitemp 

mean OSA 77.20 82.84 78.21 83.07 80.01 74.52 74.28 82.51 
Kappa 0.52 0.73 0.60 0.69 0.58 0.50 0.50 0.71 

OA 80.83 88.27 83.09 87.28 82.54 76.66 77.56 87.81 
 

Table 4. User’s and producer’s accuracies (UA and PA, respectively) for the 12 classes case 
Class Grassland Summer Crops Winter Crops Orchards Greenhouses Deciduous. Forest 
UA 70.96 58.40 17.59 4.19 16.27 13.40 
PA 72.90 26.29 18.58 0.97 68.66 35.79 

Class Coniferous Forest Water Built-up Bare soil Heathlands Swamps 
UA 50.09 86.95 71.67 10.79 13.72 5.05 
PA 71.78 88.70 41.45 37.17 31.88 15.17 

 
Table 5. User’s and producer’s accuracies (UA and PA, respectively) for the 4 classes case 

Class Vegetation Bare soil Water Built-up 
UA 87.58 36.65 92.55 78.42 
PA 98.05 24.71 84.79 25.59 

 



multitemporal approach is not very large. This indicates that the 
selection of the dates for the unmixing is critical (e.g. in spring 
most of the vegetated classes appear to have a large 
separability). (iii) The OSA and the OA values are in the same 
order of magnitude. However, the OSA refers to the sub-pixel 
abundances and therefore it inherently contains more 
information than the OA computed from the hard classified 
images. 
Figure 4 shows the reference datasets and the hard classification 
results that were obtained for the multitemporal 12 and 4 
classes cases. Notice that the gap in the inland waters of the 
north of Netherlands is caused by the atmospheric correction 
(recall that only the first 10 km of coastal water were 
atmospherically corrected). 
Finally, Tables 4 and 5 show the user’s and producer’s 
accuracies for the multitemporal case. For the 12 classes 
unmixing, the classes orchards, swamps and winter crops 
present the three poorest producer’s and user’s accuracies 
followed by the classes heathlands, bare soil and deciduous 
forest. This suggests that a further simplification of the 12 
classes cases is needed.  With respect to the 4 classes case only 
the bare soil class appears to have poor user’s and producer’s 
accuracies. This could be due to fact that the class bare soil is 
rather small (it mainly comprises sand dunes in coastal areas). 
 

5. CONCLUSIONS 

This study has shown that the use of MERIS FR data has a great 
potential to extract sub-pixel land cover composition over 
heterogeneous and frequently clouded areas. The multitemporal 
unmixing of MERIS FR data yielded sub-pixel and per-pixel 
overall accuracies that were very similar to the ones obtained 
for the best monotemporal image. This indicates that the 
selection of dates used for the unmixing is critical. Vegetation 
phenophases and the spectral separability of the endmembers 
should be further studied in order to optimize the best 
combination of dates and classes to be unmixed. Nevertheless, 
we should keep in mind that all the unmixing results have been 
validated using a static dataset produced using a combination of 
high resolution satellite data from 2002 and 2003 and several 
sources of ancillary data. Thus, validation results might be 
slightly affected by the period in which the reference dataset 
was produced. 
The overall classification accuracy (OA) for the multitemporal 
12 classes case was moderately good (around 55%) while the 
aggregated 4 classes case yielded better OA (around 88%).  
Furthermore, the overall sub-pixel accuracies (OSA values) 
were in the same order of magnitude as the overall 
classification accuracy. Therefore, we are confident that the 
extracted sub-pixel information might be of great utility in 
remote sensing monitoring activities, such as land cover change 
detection or retrieval of biophysical parameters from MERIS 

                   

                        
 
Figure 4. Reference dataset (left) and Multitemporal hard classified images (right) for 12 (top row) and 4 (bottom row) classes. 



FR data. Additional work will be devoted to the use of the 4 
classes case as a proxy of fractional vegetation cover. 
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