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[1] Characterization of the space-time variability of soil
moisture is important for land surface and climate studies.
Here we develop an analytical model to investigate how, at
the dry-end of the soil moisture range, the main
characteristics of the soil moisture field (spatial mean and
variability, steady state distribution) depend on the
intermittent character of low intensity rain storms. Our
model is in good agreement with data from the recent
National Airborne Field Experiment (NAFE’06) held in the
semiarid Australian Murrumbidgee catchment. We find a
positive linear relationship between mean soil moisture
and its associated variability, and a strong dependency
of the temporal soil moisture distribution to the amount
and structure of precipitation. Citation: Teuling, A. J.,

R. Uijlenhoet, R. Hurkmans, O. Merlin, R. Panciera, J. P. Walker,

and P. A. Troch (2007), Dry-end surface soil moisture variability

during NAFE’06, Geophys. Res. Lett., 34, L17402, doi:10.1029/

2007GL031001.

1. Introduction

[2] The central role of soil moisture in the climate system
is nowadays widely recognized. Soil moisture directly
controls the water- and energy budgets at the land surface,
and may also affect the peristence of anomalous atmospher-
ic conditions. Global soil moisture monitoring, however, is
complicated due to large spatial and temporal variability of
soil moisture. Passive microwave remote sensing is among
the most promising techniques, but its applicability is
complicated by its shallow sensing depth (few cm) and
the coarse spatial resolution (tens of km) of space-borne
sensors (such as the upcoming Soil Moisture and Ocean
Salinity mission, SMOS). Methods to quantify the space-
time dynamics of the surface soil moisture field can lead to
improved sampling, retrieval, validation, and downscaling.
[3] Previous field experiments have shown that the

spatial variability of surface soil moisture may depend,
among other factors, on the spatial mean soil moisture
state. Reynolds [1970] has already hypothesized that due
to the effect of soil heterogeneity, spatial variability
increases during infiltration, and is minimum after dry-

down. Based on detailed observations along a hillslope
transect, Famiglietti et al. [1998] found that the spatial
mean and variance have identical behavior. Both peaked
after rainfall events, and decreased rapidly during dry-
down. While both studies reported a decrease in variability
with decreasing spatial mean soil moisture, opposite or
more complex relations have also been reported [e.g.,
Teuling and Troch, 2005; Teuling et al., 2007]. A theoret-
ical framework to analyze the changes in spatial variability
of root-zone soil moisture was presented by Albertson and
Montaldo [2003]. Here we apply this framework to study
surface layer soil moisture in the dry-end of the soil
moisture range. The model is a limited case of the more
comprehensive models utilized by Albertson and Montaldo
[2003] and Teuling and Troch [2005], and allows for full
analytical characterization of the spatial and temporal soil
moisture variability. The model is subsequently tested on a
unique, recently collected data set.

2. Data

[4] The 3-week long National Airborne Field Experi-
ment 2006 (NAFE’06) was undertaken in the Australian
Murrumbidgee catchment (Figure 1A) during October–
November 2006. The region experienced severe drought
conditions from 2001 onwards, and had no rainfall in
the five weeks preceding the campaign. In the Murray
Darling basin, 2006 was the third driest year on record.
Fortunately, during NAFE’06 there were several minor
rainfall events totaling �20 mm (Table 1, Figure 2A). The
objective of NAFE’06 was to provide data for SMOS soil
moisture retrieval, downscaling, and data assimilation (see
http://www.nafe.unimelb.edu.au). Ground observations of
surface soil moisture were made at 6 field sites in the 60 �
60 km Yanco region (35�S, 146�E, Figure 1B). At each
field, point soil moisture and precipitation were recorded
at 20 min resolution. Here we analyse soil moisture
variability in the non-irrigated fields Y2, Y7, and Y10,
which are all dry pastures used for grazing. The predom-
inant soil type is clay.
[5] Soil moisture observations were made by means

of the Hydraprobe Data Acquisition System [HDAS,
Panciera et al., 2006], which integrates a GPS and the
Vitel Hydra Probe1 [Seyfried and Murdock, 2004] in a
GIS environment. (The mention of product names does not
constitute an endorsement of this product.) HDAS made
it possible to rapidly monitor surface (0–5 cm) soil
moisture on a predefined grid within large field sites.
During NAFE’06, the different teams took a total of
16,937 HDAS readings. A maximum number of 3 separate
readings were taken at each sampling location in order to
get a representative point-scale value. HDAS observations
were calibrated against gravimetric measurements (taken
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throughout the campaign at different locations) by means
of a third-order polynomial regression. Some field-scale
statistics are summarized in Table 1.

3. Temporal Dynamics

[6] In developing our model, we consider the volumetric
soil moisture q in a shallow surface layer of depth L. In dry
conditions, this layer is effectively ‘‘decoupled’’ from the
deeper soil moisture [Capehart and Carlson, 1997]. For
convenience, we only model the dynamics of the trans-
formed soil moisture # = q � x, where x is the residual soil
moisture content. In the following, we denote the field-scale
mean of any quantity x by x, and its standard deviation by
sx. With little vegetation and low intensity rainfall, the
water balance is dominated by infiltration of precipitation
(P) and evaporation. Both processes occur in an alternating
fashion, with the latter process being much slower.
[7] During storms (P > 0), point-scale variability in

land surface properties (e.g., texture, vegetation, micro-

topography, macropores) causes variable infiltration [e.g.,
Reynolds, 1970]. Without explicitely modeling these pro-
cesses, we assume that at any point a fixed fraction (a) of P
contributes to the antecedent soil moisture. During interstorm
periods (P = 0), daily evaporation is proportional to the
available surface moisture # [Kurc and Small, 2004]. The
resulting point-scale water balance is:

d#

dt
¼

aP=L; P > 0

�#=t; P ¼ 0;

8<
: ð1Þ

where t is the time scale of surface evaporation. In practice,
t will also be subject to spatial variability. In the model
however, a spatial variability in t introduces a complicating
time-dependent covariance between a and #, which would
also destroy rank stability (see below). Since drydown is a
dissipative process, this simplification has little impact on
the results. The horizontal average of (1) at the field-scale
(�1 km2) is obtained by replacing # and a by their field-
scale means # and a, respectively:

d#

dt
¼

aP=L; P > 0

�#=t; P ¼ 0;

8<
: ð2Þ

where spatial variability of P at the field-scale is neglected.
Integrating (2) over different periods with constant P, each
starting at subsequent t0 and of duration Dt, yields:

# t0 þDtð Þ ¼
# t0ð Þ þ a P

L
Dt; P > 0

# t0ð Þe�Dt=t ; P ¼ 0:

8<
: ð3Þ

[8] The simplified water balance can also be written in
terms of its deviations (#0) from the spatial mean (i.e., #0 =

Figure 1. Map of the Yanco region. (A) Location within
the Murray Darling basin (red) and the Murrumbidgee
catchment (blue). (B) Location of the NAFE’06 field sites
(blue) and rainfall stations (	).

Table 1. Regional precipitation P, and mean (q) and standard deviation (sq) of the field-scale soil moisture surveys

DOY P, mm

Y2a Y7b Y10b

q sq q sq q sq
304 0.0 0.0319 0.0166 - - - -
305 0.0 - - 0.0310 0.0154 0.0218 0.0107
306 0.0 0.0319 0.0169 - - - -
307 5.7 - - 0.0801 0.0213 0.0763 0.0237
308 0.1 0.0578 0.0240 - - - -
309 0.0 0.0400 0.0190 - - - -
310 0.0 - - - - - -
311 0.0 0.0315 0.0162 - - - -
312 0.0 - - 0.0320 0.0146 0.0245 0.0135
313 0.0 0.0294 0.0157 - - - -
314 0.0 - - 0.0312 0.0146 0.0262 0.0138
315 0.0 - - - - - -
316 0.0 - - - - - -
317 2.1 0.1592 0.0444 - - - -
318 11.3 0.1151 0.0426 - - - -
319 0.0 - - 0.0800 0.0275 0.0828 0.0284
320 1.0 0.0849 0.0234 - - - -
321 0.0 - - 0.0741 0.0253 0.0654 0.0310
322 0.0 0.0683 0.0249 - - - -
aRegular 12 � 12 grid, 250 m spacing (3 � 3 km2).
bRegular 46 � 5 grid, 50 m spacing (2.3 � 0.25 km2).
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# � #). Multiplying the resulting equation by 2#0, apply-
ing the chain rule (2#0d#0/dt = d#02/dt), and spatially
averaging the result yields the spatial variance budget
Albertson and Montaldo [2003]:

d#02

dt
¼ ds2

#

dt
¼

2P
L
a0#0; P > 0

� 2
t s

2
#; P ¼ 0;

8<
: ð4Þ

where a0#0 is the covariance between a and #. By using
a0#0 = sas#ra,#, where ra,# is the correlation coefficient
between a and #, and the chain rule (ds#

2/dt = 2s#ds#/dt),
(4) can be further simplified. In this case, #0 is linearly (and
only) related to a0, so ra,# = 1. Time integration yields:

s# t0 þDtð Þ ¼
s# t0ð Þ þ sa

P
L
Dt; P > 0

s# t0ð Þe�Dt=t ; P ¼ 0;

8<
: ð5Þ

which, due to the linear character of the model, is
functionally equivalent to (3). For simplicity, we also
assume ra,x = 1, so that sq = s# + sx. Through our
formulation we ensure perfect rank stability of point-scale
soil moisture (i.e., temporal persistence in the spatial
pattern), which is required in order not to violate the
assumption that ra,# = 1. The existence of rank (or time)
stability in surface soil moisture fields was shown by Jacobs
et al. [2004]. Since changes in q and sq in (3) and (5),
respectively, are both proportional to P, the relation between
q and sq is linear:

sq q
� �

¼ CVa q� x
� �

þ sx; q 
 x: ð6Þ

where CVa = sa/a is the coefficient of variation of a.

[9] The parameter values are given in Table 2. First, x
was taken as the average observed values of q before the
first rainfall (here DOY 306). t was taken from Kurc and
Small [2004], and a was optimized such that the amplitude
of q was in correspondence with the observations. Next, sa
and sx were adjusted such that (6) corresponds to the linear
regression sq = aq + b between all observed q and sq (sa =
aa and sx = b + xsa/a). Initial conditions for # and s# are x
and sx, respectively. We use Dt = 20 min.
[10] The simultaneous increase of q and sq during storms

of low intensity, and their subsequent decrease during
interstorm periods, is apparent in both the simulations and
observations (Figure 2B). The decay timescale of Kurc and
Small [2004] works well for the NAFE’06 conditions, with
the observed amplitude and dynamics of q and sq captured
by the model. Regional scale precipitation variability indu-
ces only small variability in the field-scale responses of q,
which is also suggested by the similar pattern of observed q
and sq. The changes in top 5 cm soil moisture were found to
account for over half of the precipitation (a = 0.53).

4. Mean Versus Variability

[11] The relation between the spatial mean and variability
is of interest for scaling. The modeled relation between q
and sq is given by (6). Note that (6) is independent of the
interstorm decay time t. Recently, Choi et al. [2007]
investigated the relation between the spatial mean soil
moisture and coefficient of variation (CVq) for a number
of datasets. They optimized the parameters A and B in the
empirical model CVq(q) = A exp (Bq). Here, this relation is
hyperbolic:

CVq q
� �

¼ CVa þ 1

q
sx � xCVa
� �

; q 
 x: ð7Þ

[12] Figure 3 shows the observed and simulated relation
between q and sq. Overall, the (linear) model explains 88%
of the variance in all observed sq. Separate analysis of Y2,
Y7, and Y10, yields R2 values of 0.92, 0.86, and 0.83,
respectively. The regressions are similar for all sites, con-
firming the validity of our assumption that the field-scale
soil moisture within the region responds similarly to a given
precipitation input.
[13] The relative variability CVq decreases with increasing

q (Figure 3). Since the absolute variability increases with q,
the decrease of CVq can be attributed to the increase in q.
For the exponentialChoi et al.model, we find parameters A=

Figure 2. Precipitation and soil moisture during
NAFE’06. (A) Regional average precipitation (20 min).
(B) Soil moisture dynamics. Points are observed field-scale
means, inner bounds the 95% confidence bounds for q, and
outer bounds q ± sq. Solid line is simulated q with (3) forced
with regional average P, dash-dotted lines are q ± sq with
(5). Grey area markes the range in q in response to regional-
scale variability in P.

Table 2. Parameters and their values

Parameter Symbol Value Units

Surface layer depth L 50.0 mm
Infiltration fraction (mean) a 0.53 -

Infiltration fraction (sd) sa 0.13 -
Evaporation decay time t 2.8a d
Residual moisture content (mean) x 0.029 -

Residual moisture content (sd) sx 0.015 -
Mean storm depth h 2.1 mm
Mean storm arrival rate l 0.50 d�1

aTaken from Kurc and Small [2004] for semiarid grassland.
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0.61 and B =�0.067 [with soil moisture expressed in % as in
Choi et al., 2007]. The difference between the models
increases for q > 0.10, partly due to the different fitting
procedures (i.e., fitting CVq or sq). Although there is an
obvious physical limit to the increase of sq with q due to the
presence of the upper bound at porosity, this limit was not
reached during NAFE’06. The added value of our model (7)
with respect to the Choi et al.model lies in the fact that it can
be interpreted in terms of the underlying processes.

5. Steady State Distribution

[14] The dynamics of soil moisture is governed by the
occurence and amount of rainfall (Figure 2), which are both
stochastic. We investigate the impact of climate variability
(through P) on the steady-state soil moisture distribution
f(#) (or f(#)) by including a stochastic representation of
rainfall pulses in the model. Here, storms occur instanta-
neously, and can be described by a marked Poisson process.
The depth of storm events and the interarrival times are
considered independent random variables. Both are expo-
nentially distributed with mean h and l�1, respectively. The
mean rain rate hPi equals hl. We estimate l from the
(spatial) average number of non-interrupted rainless sequen-
ces during NAFE’06 at the 20 min resolution, and h from
the corresponding total rainfall over the same period
(Table 2). In this simplified case, the resulting steady-state
distribution is a shifted Gamma pdf (Appendix A):

f #
� �

¼
#
� �lt�1

exp �c#
� �

c�ltG ltð Þ ; ð8Þ

where c = (ah/L)�1. This distribution has mean x + ltc�1

and standard deviation (lt)1/2c�1. For lt = 1, (8) reduces to
a shifted exponential distribution. Although (8) is written in
terms of field-scale averages, it is equally valid at the point-
scale by using the appropriate a. Figure 4 shows the
resulting f(q) and its sensitivity to climate scenarios. In the
wet scenario (hPi+), hPi is doubled either by an increase in h
or l (h+ and l+, respectively). Similarly, we assume hPi to
be halved in the dry scenario (hPi�).

[15] For the NAFE’06 conditions, which were below the
climatic average, the mean and standard deviation of the
steady-state soil moisture distribution are 0.061 and 0.027,
respectively. Its distribution is unimodal and positively
skewed. The positive skew is due to the decreasing evap-
oration towards x, corresponding to smaller d#/dt, and
subsequently larger f(#). Independent high resolution
point-scale observations at Y10 (Figure 4) confirm the
validity of the model. Their distribution is also unimodal
and positively skewed, with mean 0.064 and standard
deviation 0.028. The wet scenario hPi+ results in a mean
soil moisture of 0.093, the dry scenario hPi� in 0.045.
While the mean soil moisture depends on hPi and not on its
temporal structure (i.e., on the balance between h and l),
this structure does influence the steady state variability.
When changes in hPi are caused by changes in mean storm
depth h (i.e., h+ and h�), the temporal variability is largest.
Since the temporal standard deviation is proportional to h, it
is twice as high under h+ than under NAFE’06 conditions
(0.054 and 0.027, respectively). A reduction in mean storm
frequency (l�) causes a shift in the mode of f(q) towards x.

6. Discussion and Conclusion

[16] An analytical model to study daily surface soil
moisture variability dynamics in the dry-end of the soil
moisture range has been developed. Under the low intensity
rainfall encountered during NAFE’06, the dynamics of soil
moisture are well reproduced by using a linear relationship
between soil moisture and daily evaporation. We found that
the spatial mean and standard deviation rapidly increased
during rainfall, and slowly decreased during interstorm
periods. The temporal distribution of surface soil moisture
was found to be highly sensitive to the amount and
structure of precipitation. The results are consistent with
previous experiments [Kurc and Small, 2004; Reynolds,
1970; Famiglietti et al., 1998], and allow for a more
quantitative (water balance-based) approach to surface soil
moisture variability. More comprehensive models, for
instance those utilized by Albertson and Montaldo [2003]

Figure 3. Relation between field-scale spatial mean and
spatial variability of surface soil moisture.

Figure 4. Steady-state distribution of field-scale mean soil
moisture during NAFE’06 and its sensitivity to precipitation
characteristics. Histogram shows the distribution of 20 min
resolution point-scale soil moisture (0–5 cm) at Y10 for
DOY 298–327.
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and Teuling and Troch [2005], are valid at the full soil
moisture range, but require numerical solution.

Appendix A: Derivation of f (q)
[17] Let an instantaneous rainfall event contribute an

exponentially distributed amount I with mean m (= c�1) to
transformed soil moisture #. Furthermore, let #� be the
value of # immediately preceding, and #+ directly after the
event (#+ = #� + I). In the steady state, the pdf of #�
(f#�

(#)) equals the pdf of soil moisture at the end of the
drydown following the event. In addition, if rainfall
occurrence follows a Poisson process, then f#(#) equals
f#�

(#).
[18] We have to show that:

f#� #ð Þ ¼
#lt�1 exp � #

m

� �
mltG ltð Þ ; ðA1Þ

is the steady state pdf of #. Because soil moisture decays
exponentially (with constant t) during drydown, and the
duration of drydown periods follows an exponential pdf
with mean 1/l, the conditional pdf f#�j#+

(#) is:

f#�j#þ #ð Þ ¼ lt
#

#

#þ

� 	lt

: ðA2Þ

Hence the unconditional pdf of #� becomes:

f#� #ð Þ ¼
Z 1

#

f#�j#þ #ð Þf#þ #þð Þd#þ: ðA3Þ

Because #� and I are independent random variables, f#+
(#)

is the convolution of fI(I) and f#�
(#):

f#þ #ð Þ ¼ 1

m

Z #

0

exp �#� I

m

� 	
f#� Ið ÞdI ðA4Þ

Substituting (A1) in (A4) leads to f#+
(#). Subsequently

substituting this result in (A3) again produces (A1).
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