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Abstract We studied the effects of inter-annual vari-
ability and serial correlation on the statistical power of
monitoring schemes to detect trends in biomass of
bream (Abramis brama) in Lake Veluwemeer (The
Netherlands). In order to distinguish between ‘true’
system variability and sampling variability we simu-
lated the development of the bream population, using
estimates for population structure and growth, and
compared the resulting inter-annual variabilities and
serial correlations with those from field data. In all
cases the inter-annual variability in the field data was
larger than in simulated data (e.g. for total biomass of
all assessed bream σ=0.45 in field data, and σ=0.03–
0.14 in simulated data) indicating that sampling
variability decreased statistical power for detecting
trends. Moreover, sampling variability obscured the
inter-annual dependency (and thus the serial correla-
tion) of biomass, which was expected because in this
long-lived population biomass changes are buffered by

the many year classes present. We did find the ex-
pected serial correlation in our simulation results and
concluded that good survey data of long-lived fish
populations should show low sampling variability and
considerable inter-annual serial correlation. Since serial
correlation decreases the power for detecting trends,
this means that even when sampling variability would
be greatly reduced, the number of sampling years to
detect a change of 15%·year−1 in bream populations
(corresponding to a halving or doubling in a six-year
period) would in most cases be more than six. This
would imply that the six-year reporting periods that are
required by the Water Framework Directive of the
European Union are too short for the existing fish
monitoring schemes.

Keywords Bream (Abramis brama) . EUWater
Framework Directive . Fish monitoring . Netherlands .

Sampling variability . Serial correlation . Statistical
power . System variability . Trend analysis

1 Introduction

The EU Water Framework Directive (WFD) aims at
protecting surface waters and groundwater by inte-
gration of water management throughout the member
states of the European Union (European Union,
2000). The Directive requires the member states to
comply with far-reaching obligations regarding: (1)
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classification of rivers, lakes, transitional waters, and
coastal waters; (2) identification of high, good,
moderate, poor, and bad ecological status in these
waters; and (3) frequency and intensity of monitoring
the quality of these water bodies. The Directive aims
at reaching at least ‘good’ or ‘potentially good’
quality of all surface waters in the EU by 2016. One
of the biological quality elements by which the
ecological status of most water bodies (except coastal
waters) must be assessed is the fish fauna. The
structure of the fish community is a most integrative
indicator of differences in ecological status between
water bodies (classification; e.g. Karr, 1981) and of
changes in this status within water bodies through
time (monitoring). Its inclusion in the WFD as an
indicator of ecological quality is therefore logical.

In order to monitor the development of fish com-
munities in each river catchment, the basic manage-
ment unit of the WFD, sampling schemes have to be
developed that are sensitive enough to detect any
change within the fish community, which causes it to
shift from one quality class to another (based on a cate-
gorisation into five quality classes). Every six years the
managementofeachcatchmenthas to report its results to
the European Commission.

In this study we explore the possibilities of some
existing fish monitoring schemes in The Netherlands
to meet the requirements of the EU-WFD for
detecting changes in fish populations.

1.1 Statistical power for trend detection

The monitoring schemes that the WFD requires
should be sensitive to the perception of trends in fish
community variables. This translates into: ‘What is
the probability that we can perceive a true trend with
this monitoring scheme?’ In other words: ‘What is the
statistical power for perceiving true trends of a
particular size (the slope) with this monitoring
survey?’

Statistical power is quantified as 1−β, where β is
the probability of making a type II error, which is the
probability of not detecting a difference that in fact
does exist. The other type of error that can be made is
detecting a trend that actually does not exist. The
probability of making such a type I error is indicated
by α (Peterman, 1990). Traditionally, researchers
have focused on type I errors, usually setting α at
0.05, but, depending on practical implications, or on
the statistical outcome, a low probability of making a
type II error (i.e. a small β) can be equally, or even
more important (Sheppard, 1999). Especially in
environmental issues the failure to detect a harmful,
truly existing trend (because of applying a low α)
might have more serious consequences than errone-
ously signalling a non-existing trend (because of
applying a higher α).

Which variables enhance the statistical power
for detecting trends? First, the number of
samples (n) has a positive effect on the statistical
power (Table 1). In case of annual samples this
means that the probability of detecting a true trend
increases with the number of years that a moni-
toring programme is already carried out. The size
of the trend (the slope) also has a positive effect
on the statistical power: the stronger a true trend is
for a given inter-annual variability, the higher the
probability that it will be detected. The same holds
for the variance in the data. The smaller the vari-
ance around a trend of a particular size, the easier
it is to detect such a trend. However, the reduction
in variance will be less effective in enhancing stat-
istical power when annual samples are not inde-
pendent from each other (Neter et al., 1996),
because of the dependency of the state of the fish
population from the state of the population in the
preceding year. Hence, annual observations do not
vary in a random manner around a possible long-
term trend, but are interdependent, which is
apparent from serial correlation (correlation be-
tween observations of adjacent years) between the

Factor influencing statistical power (1−β) Positive/negative effect

Number of samples +
Effect size +
Variance (σ2) –
α +

Table 1 Factors influenc-
ing the statistical power, and
the effect they have

248 Environ Monit Assess (2007) 125:247–256



residuals around a trend (persistence). In order to
correct for this dependency, the variance in the
residuals can be expressed as:

s2
corr ¼

s2

1� r2

(Neter et al., 1996), where s2
corr =variance in the re-

siduals, corrected for the serial correlation (ρ2).
Finally, with a higher probability level accepted for

making a type I error (α), also the statistical power
increases. This means that a larger sensitivity for
detecting a true trend inevitably involves a higher risk
of signalling a non-existing trend.

In this paper we focus on the effects of inter-annual
variability and serial correlation in the estimates of
fish biomass on the statistical power for trend
detection, in order to explore the ability of the
monitoring to meet the requirements of the EU-
WFD. Our example species is common bream
(Abramis brama L., Cyprinidae), a fish species which
is highly abundant and often dominant in the
eutrophic inland waters of north-western Europe.
Moreover, the biomass of bream is considered to be
an important indicator of the ecological quality of the
water body and assessing bream abundance is
therefore essential for categorising the water body
according to WFD quality classes (STOWA, 2003).

1.2 Variability and serial correlation in the monitoring
of fish populations

There are two major sources in annual sampling
series: (1) variability due to actual fluctuations in the
population (system variability), in which we are in
fact interested and (2) variability due to sampling
errors (sampling variability), which we try to avoid as
much as possible. We consider sampling data to be of
good quality if sampling variability is small compared
to system variability.

The monitoring of fish populations is especially
vulnerable to sampling variability, since fish popula-
tions are usually not monitored by direct observation,
but by catching them first, thereby introducing the
extra source of sampling variability. Large sampling
variability increases the overall variability around a
possible trend which thus decreases the probability of
detecting a true trend, i.e. decreases the statistical
power to detect system changes.

In addition, this increased variability is expected to
mask the expected interdependency of subsequent
annual samples, reflected in the serial correlations of
the residuals around a trend. We expect the presence
of serial correlation in most annual series for fish
biomass, because of the multi-age structure of many
fish populations. This serial correlation will be
especially marked in populations that belong to
long-lived species that have a low, fairly constant
annual mortality and slow growth and reproductive
rates, resulting in more gradual inter-annual changes
in biomass. Large sampling variability increases the
total inter-annual variability in the monitoring data,
thereby obscuring the underlying, biologically rele-
vant, serial correlation in these series. Hence we
expect that with increasing quality of monitoring data
(i.e. low sampling variability compared to system
variability) random variance decreases and the under-
lying serial correlation becomes apparent (curved
arrow in Fig. 1). In conclusion, high quality data
would therefore result in higher power for detecting
true trends in fish biomass. However, the power
increase would be smaller than expected on the basis
of the reduction of variability as such, because of the
increased serial correlation in the data series, which,
in its turn, decreases the power for trend detection
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Fig. 1 Theoretical relationship of inter-annual variability and
serial correlation of the residuals around a trend with the
statistical power to detect the trend. If the quality of the data
improves (i.e. if sampling variability decreases), overall inter-
annual variability decreases, but serial correlation will increase
(curved arrow). The decrease of variability will improve
statistical power, but to a decreased extent if serial correlation
is high
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(Fig. 1). This is why we explored the expected inverse
relationship between variance and serial correlation
and its effects on the statistical power for detecting
trends. We did this by comparing field data that
encompass both system and sampling variability with
simulated data with only system variability. For the
simulation we used a size- and age-structured dynam-
ic pool model (Buijse, 1992; Mous, 2000; Pet et al.,
1996).

2 Materials and Methods

2.1 Study area

Lake Veluwemeer is an artificial, shallow (1.3 m
average depth), 4,000 ha lake in The Netherlands. It
originated in 1956 as a result of land reclamation
works in the former marine Zuiderzee. Initially the
lake was clear and dominated by macrophytes, but in
the period 1971–1987 the water was highly eutrophic
(mean summer concentrations of total phosphorus
ranged from 0.09 to 0.6 mg·l−1) and turbid (mean
summer transparency of 0.2–0.5 m), mainly caused
by algal blooms (Van Vierssen et al., 1994). The fish
community in this period was dominated by cyprinid
fish, especially bream, A. brama (De Nie & Backx,
1994; Nagelkerke & van Densen, 2001), and was not
subject to commercial fisheries. Lake Veluwemeer is
largely isolated for the immigration or emigration of
fish, which subsequently have no influence on our
results.

2.2 Field observations

Lake Veluwemeer was monitored at least once a year
by the Department of Fisheries of the Ministry of
Agriculture and Fisheries, using a bottom trawl with a
3 m beam and a cod-end stretched mesh size of 10–
12 mm. The trawl was towed by boats at a speed of
ca. 1 m·s−1 (hauls of on average 10 min). All fish
caught were counted and the length was measured

(from snout tip to fork of the tail: fork length). We
only used data from surveys at the end of summer
(August–September), when the spatial distribution of
bream is more homogeneous (J. Backx, personal
communication).

From 1971 to 1976 an average of five trawl hauls
were made per survey; from 1977 to 1987 this was
exactly five hauls per survey. Hauls were made at
evenly spaced sampling stations at fixed positions.
The trawl data were kindly made available by the
Institute for Inland Water Management and Waste
Water Treatment (RIZA).

2.3 Simulating system variability

The conceptual model of the age- and length-based
simulation model was adapted from Mous (2000) and
shown in Fig. 2. We used recursive numerical
integration of state variables over a specified time
step, according to model-specific expressions for rates
of change (De Wit & Goudriaan, 1978). The
elementary state variable in the model was the
number of bream of a certain age class contained in
a certain length class. The number of fish in that
length class increased due to recruitment and growth
of smaller fish into the length class. The number of
fish in that length class decreased through mortality
and also through growth when fish shifted to the next
length class. To simulate dispersion in length growth
with age the fractional boxcar train method was used
(Buijse, 1992; Mous, 2000; Pet et al., 1996).

The bream population in Lake Veluwemeer is
characterised by a relatively low natural mortality,
the absence of fishing mortality, and by slow
individual growth (Backx, 1989; Lourens, 1996).
Recruitment, however, was highly variable – the
numerical density of zero-group bream in autumn as
based on the trawl surveys, fluctuated up to a factor
1,000 (Backx, 1989), with a coefficient of variation of
2.1 – and was expected to have the largest influence
on changes in population numbers. A sensitivity
analysis of the model showed that also the model is

Fish in a length class

Recruitment (R): stochastic

Growth (G): K=constant

Mortality (F+M): constant

Growth (G): fractional boxcar train method

Fig. 2 Conceptual model of the simulation model (adapted from Mous, 2000). F Fishing mortality; M natural mortality
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most sensitive to changes in recruitment, and less to
deviations in mortality or growth parameters.

The population dynamics parameters that were
used in the model were estimated from Backx (1989)
(Table 2). Natural mortality was modelled as a 2nd
order polynomial function of age. Growth was
modelled using a seasonalised Von Bertalanffy
growth equation (Sparre & Venema, 1998). Since no
positive relationship was found between the numbers
of age-0 bream and their presence as older age classes
in the years thereafter, recruitment was modelled on
the basis of age-1 bream, which did show significant
correlations with their numerical presence at higher
age. Modelling was done in Turbo-Pascal.

We performed 1,000 model runs of 17 years
(equalling the number of sampling years). The model
was validated by checking whether the estimates of
the mean biomass over the years per length class from
the model were similar to the estimates from the field
data.

2.4 Data processing

Field observations were converted into numbers per
hectre by correcting for the swept area during the haul.
These numbers were again converted into a biomass
measure (kg·ha−1), using a standard length–weight
relationship (W=9.80·10−6· L3.159, where W=body
mass in kilograms, and L is fork length in centi-
meters). The output of the model also consisted of
numbers of bream per year, age, and length class,
which were converted in biomass (kg·ha−1) in the
same way as the field observations.

The biomass of bream in the length classes 10–20,
20–30, 30–40 and >40 cm, as well as the total
biomass of all groups of bream assessed were log10-
transformed and used to calculate inter-annual vari-

ability and serial correlations of the residuals around
the trend.

Basic statistic analysis and regression analysis were
performed in SAS 6.12. Power analysis of trends was
partly performed in SAS 6.12 and partly iteratively in
a worksheet environment (Microsoft Excel).

3 Results

3.1 Validation of the simulation model

The simulation model was validated by comparing the
mean biomass of bream from the field observations

Table 2 Population dynamics parameters in the simulation models

Parameters

Recruitment Random recruitment with: mean loge(number of 1+ fish ha−1)=5.71; standard deviation=1.21; seed=74;
length at recruitment=15.5 cm

Mortality M=−2.225+0.601 A−0.047 A2

where: M = mortality (day−1); A = age (year)
Growth Von Bertalanffy daily growth with: k=0.00048 day−1; L1 ¼ 55 cm
Length–weight
relationship

W=9.80×10−6 L3.159

where: W=weight (kg); L=fork length (cm)
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with the mean output biomass from 1,000 simulation
runs. Total biomass of all groups assessed (i.e. all
bream >10 cm), as well as biomass per separate
length class were evaluated (Fig. 3). In all cases the
mean values from the field observations were well
between the 5th and 95th percentile values of the
distribution of the means of the simulations. The
estimated mean total biomass of all groups of bream
was less than 1% higher in the simulation than in the
field observations. Differences between estimates of
the biomass from the simulation and field observa-
tions were less than 5% for the 10–20 and 20–30 cm
length classes. The biomass of 30–40 cm bream was
estimated to be on average 28% lower in the
simulation runs than in the field observations, while

the biomass of bream >40 cm was on average 41%
higher in the simulation runs than in the field
observations. However, since the values from the
field observations were always between the 5th and
95th percentile values of the distribution of the
simulation results, the overall fit of the model
appeared sufficient and we decided that the model
was valid for the questions addressed.

3.2 Variability vs. serial correlations

The modelled biomass of bream, which represents
system behaviour, showed a much smoother change
between years than the field observations (see the
individual simulation runs in Fig. 4). Consequently,
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Fig. 4 Time series of the
biomass of bream (Abramis
brama) >10 cm in Veluwe-
meer in 1971–1987. Field
observations are indicated
by triangles. Mean values
from 1,000 simulation runs
are shown by circles. Thick
solid lines show the 5th and
95th percentile values of the
simulated time series. Thin
solid lines show five, ran-
domly chosen examples of
separate simulation runs

Table 3 Standard deviation in the log10-transformed residuals (σ), serial correlation (ρ2), number of sampling years needed to detect a
trend of 15% year−1 (n), and the number of sampling years needed, when corrected for the serial correlation (ncorr)

Length class Field observations Simulation output

σ ρ2 n σ ρ2 n ncorr

All bream assessed 0.45 0.04 10 0.07 (0.03–0.14) 0.66 (0.28–0.96) 4 (3–6) 5 (3–14)
10–20 1.51 0.14 22 0.41 (0.30–0.54) 0.06 (0.02–0.22) 10 (8–12) 10 (8–12)
20–30 1.19 0.22 19 0.27 (0.17–0.40) 0.31 (0.07–0.63) 8 (6–10) 9 (6–13)
30–40 0.62 0.18 13 0.18 (0.09–0.29) 0.63 (0.36–0.84) 6 (5–8) 8 (5–14)
>40 0.84 0.16 15 0.10 (0.04–0.19) 0.70 (0.41–0.92) 5 (4–6) 7 (4–14)

Data are listed for the biomass of all assessed bream, as well as for separate length classes, both for field observations and for the
simulation scenarios. Values in parentheses represent 5th and 95th percentile values from the simulation (for σ and ρ2 ), or the most
and least favourable cases (for n and ncorr).

252 Environ Monit Assess (2007) 125:247–256



inter-annual variability, expressed as the standard
deviation in the log10-transformed residuals, was
smaller for the simulation output than for the field
observations for the biomass of all bream, as well as
for each separate length class (Table 3; Fig. 5, top).
Also, serial correlations in the residuals were larger
for the simulation output than for the field observa-
tions in case of the total biomass of all bream assessed

(Table 3; Fig. 5, bottom), as well as for the larger
length classes (30–40 cm and >40 cm), which suffer
lower mortality rates and are more buffered against
the effect of recruitment variability than the smaller
length classes. These findings all corroborate with our
expectations about the relationship between inter-
annual variability and serial correlation (Fig. 1).

3.3 Data quality and the statistical power
of annual surveys

The simulated data showed the expected higher serial
correlation in the residuals than the field observations
did. This means that the annual survey data were not
independent of each other, which resulted in a lower
power for detecting trends (see Fig. 1).

The effects on the statistical power for detecting a
trend in survey data were exemplified by taking the
inter-annual variability of the residuals around the
trend in the field data and calculating what number of
sampling years (n) would be needed to detect a 15%
increase or decrease per year in the total biomass of
all bream assessed, with a generally accepted level for
required statistical power (1−β) of 0.9 (Gerrodette,
1987, 1993; van Densen, 2001). This 15% change
roughly equals a doubling or halving of the bream
biomass in a six year period. Based on the variability
of the field data (σ=0.45: Table 3) this would require
10 sampling years. If the field data would have the
same variability as the simulation (mean σ=0.07),
then only four years would be needed, if we do not
account for serial correlation. However, the simula-
tion resulted in a mean serial correlation of ρ2=0.66.
Hence, σcorr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:07ð Þ2
.

1� 0:66ð Þ
r

¼ 0:12, and the need
for five survey years (ncorr, the corrected number of
survey years in Table 3). These five survey years were
based on the mean variability and serial correlation
from 1,000 simulation runs. When we took the 5th and
95th percentile values of inter-annual variability and
serial correlation and calculated the number of survey
years required, this ranged from 3 (the most favour-
able situation, i.e. the lowest variability combined with
the lowest serial correlation) to 14 (the least favour-
able situation, i.e. the highest variability combined
with the highest serial correlation).

In case of separate length classes of bream, the
number of sampling years required ranged from 13 to
22 based on the field data, not taking the serial
correlation into account. This means that the six year

Fig. 5 The relationship between the inter-annual variability
(expressed as the standard deviation, σ, of the residuals around
the trend through log10-transformed biomass) in the field data
and the data from the simulation (top), and the relationship
between the serial correlation (expressed as the correlation, ρ2,
between adjacent residuals around the trend through log10-
transformed biomass) in the field data and the data from the
simulation (bottom). Error bars indicate the 5th and 95th
percentile values from the simulation. Lines represent equal
variability or equal serial correlation
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reporting periods required by the EU-WFD are
always too short to detect a halving or doubling with
a statistical power of 0.9 with the existing surveys.
Based on the simulation, on average 5–10 years
would be required if we do not account for serial
correlation (4–12 for the most and least favourable
situations, based on the 5th and 95th percentile values
of inter-annual variability) and 7–10 years if serial
correlation is taken into account (4–14 for the most
and least favourable situations, based on the 5th and
95th percentile values of inter-annual variability and
serial correlation). We therefore concluded that the
numbers of required sampling years from the simula-
tion output were, on average, much lower than when
calculated from the field data (only about half),
because of the smaller inter-annual variability, but to
a lesser extent when serial correlation was taken into
account. If serial correlation was very high (e.g. ρ2=
0.96, the 95th percentile value in case of all bream
assessed: Table 3) this increased the number of
required sampling years to 14. Therefore, even when
inter-annual variability would be greatly reduced by
completely eliminating sampling variability (as is the
case in the simulation), the number of years required
to detect such a trend would in most cases (85% of

the cases we calculated) still be larger than the six
year reporting periods required by the EU-WFD.

These results suggest that increasing the precision
of monitoring surveys, i.e. decreasing inter-annual
sampling variability, would lead to an increase of
statistical power for the detection of trends. However,
this increase will be smaller than expected on the
basis of decreased variability alone, because of the
serial correlation which underlies the true time
series. This serial correlation was obscured in the
field data, because of additional sampling variability
(Fig. 6).

4 Discussion

The European Water Framework Directive prescribes
that the progress of water quality developments is
reported at six-year intervals (European Union, 2000).
In this paper we show that for bream in Veluwemeer
six sampling years is too short to report with a
statistical power of 1−β=0.9, even a halving or
doubling in the total biomass of bream. The main
cause for this limited statistical power appears to be
the large inter-annual variance due to population and
sampling effects (which in themselves are difficult to
estimate: Carey & Keough, 2002). We have shown by
simulating time series for numbers and biomass of
bream in Lake Veluwemeer that the true inter-annual
variability of the bream population is probably much
lower than the variability we assessed in the field
data. This means that fewer sampling years would be
needed to detect the trend if inter-annual variability
could be reduced. However, even in case of the
lowest variabilities (biomass of all bream assessed:
σ=0.03–0.14: Table 3) the number of required
sampling years was five on average, with a range of
3 to 14 years. In case of the highest variabilities
(biomass of bream of 10–20 cm length: σ=0.30–0.54:
Table 3) the number of required sampling years was at
least eight, that is in the most favourable circum-
stances, without any additional sampling variability).
In addition, we expected and found that the lower the
inter-annual variability was, the higher the serial
correlation would be (Figs. 1 and 6), resulting in
lower statistical power for these time series, and in a
higher number of required sampling years (Table 3).
This means that in populations of fish species such as
bream that are buffered against large variability in

Fig. 6 The relationship between inter-annual variability and
serial correlation for field and simulated data. Data-points
represent field observations (filled symbols), or simulation
output (open symbols) per length class, or for all assessed
bream (see Table 3). Error bars indicate the 5th and 95th
percentile values from the simulation for inter-annual variability
(horizontal) and serial correlation (vertical). The curve was fit
by eye
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annual recruitment (because of their longevity and
containing many year classes in their populations), we
have to observe the biologically inherent serial
correlation to meet minimum requirements for data
quality. The absence of serial correlation indicates
large sampling variability, i.e. data of poorer quality.

It would be useful to decrease sampling variability
in order to increase the statistical power of the bream
monitoring surveys. Sampling variability is relatively
high in the field observations (Figs. 5 and 6) and will
be mainly caused by spatial differences between
replicate hauls, heterogeneity of the lake, or by
schooling behaviour of the bream, resulting in a
clustered occurrence in the lake environment. An
additional source of variability could be the trawl nets
that were used. It is known that the catchability of
large fish is smaller for these trawl nets (STOWA,
2003). This could be a reason for the inter-annual
variability to be higher in the largest length class of
bream (σ=0.84, Table 3) than in the smaller length
class of 30–40 cm (σ=0.62), whereas the simulation
suggests that system variability decreases with size.
However, even if we would manage to decrease
sampling variability considerably, this study suggests
that it would be unrealistic to expect the detection of
significant trends in bream populations in a six-year
period, unless these trends are very large. Similarly,
Verhallen et al. (2001) found that in order to have
sufficient statistical power to detect trends in total
phosphorus concentrations in Dutch–German river
catchments concentrations should be at least 1.4 times
higher or lower between reporting periods. Both this
study and the study on phosphorus concentrations
show that the use of existing monitoring schemes for
water quality and ecological variables might be
problematic in view of the WFD reporting periods.

5 Conclusions

In this study we have shown that: (1) good field
observations of long-lived fish populations show low
sampling variability and thus high inter-annual serial
correlation; (2) serial correlation in time series neces-
sitates an additional number of surveys to acquire a
certain statistical power; and (3) it appears to be
impossible to catch up with the six-year reporting
periods of the EU Water Framework Directive.
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