brought to you by CORE

Animal Sciences Group

Divisie Veehouderij, kennispartner voor de toekomst

Report 77

process for progress

Greenhouse gas fluxes from arable land in the Netherlands

BSIK-KvR programme ME-1

November 2007

WAGENINGENUR

Colophon

Publisher

Animal Sciences Group P.O. Box 65, 8200 AB Lelystad Telephone +31 320 - 238238 Fax +31 320 - 238050 E-mail Info.veehouderij.ASG@wur.nl Internet http://www.asg.wur.nl

Editor

Communication Services

Liability

Animal Sciences Group does not accept any liability for damages, if any, arising from the use of the results of this study or the application of the recommendations.

De certificering volgens ISO 9001 door DNV onderstreept ons kwaliteitsniveau. Op al onze onderzoeksopdrachten zijn de Algemene Voorwaarden van de Animal Sciences Group van toepassing. Deze zijn gedeponeerd bij de Arrondissementsrechtbank Zwolle.

Abstract

This report shows the results of a monitoring study performed to quantify the emissions of N₂O and CH₄ from two different agricultural (arable) soils in the Netherlands. Both sites were net sources for N_2O_1 . with values ranging from -3.8 to 179.5 g N₂O-N ha¹ d^{-1} . CH₄ fluxes ranged from -6.3 to 5.9 g CH₄-C ha⁻¹ d¹ at the field location Langeweg, and from –103 to 1590 g CH₄-C ha⁻¹ d⁻¹ at the field location Vredepeel. Soil water content did not significantly influence the fluxes of N₂O and CH₄. However, an increase in soil water content after the application of manure into the field resulted in higher N₂O emissions at both sites. Fertilisation (both with organic manure and mineral fertiliser) resulted in higher N₂O emissions, whereas its effect on CH₄ ranged from no significant effect (Langeweg) to higher emissions (Vredepeel).

Keywords: greenhouse gases, methane, nitrous oxide, arable land, fluxes, BSIK

ISSN 1570 - 8616

Author(s): J. Mosquera, J.M.G. Hol, J.W.H. Huis in 't Veld

Title: TGreenhouse gas fluxes from arable land Tin the NetherlandsT Report 77

Report 77

Greenhouse gas fluxes from arable land in the Netherlands

J. Mosquera J.M.G. Hol J.W.H. Huis in 't Veld

November 2007

Preface

This project was executed within the framework of the BSIK-KvR (Climate changes Spatial Planning) programme, and was partially financed by the Dutch Ministry of Agriculture, Nature and Food Quality (LNV).

Samenvatting

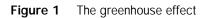
Koolstofdioxide (CO₂), methaan (CH₄) en lachgas (N₂O) zijn de belangrijkste broeikasgassen, die verantwoordelijk zijn voor de opwarming van de aarde (klimaatverandering). Het is van belang om broeikasgasemissies uit verschillende bronnen te kunnen kwantificeren. In dit rapport worden de resultaten gepresenteerd van N₂O en CH₄ emissiemetingen bij twee akkerbouw locaties in Nederland. Deze emissiemetingen werden uitgevoerd in het kader van het BSIK Klimaat voor Ruimte programma als onderdeel van het project ME-1 (Integrated observations and modelling of greenhouse gas budgets at the ecosystem level in the Netherlands). Beide locaties waren N₂O bronnen, met emissiewaarden die varieerden tussen -3,8 en 179,5 g N₂O-N ha⁻¹ dag⁻¹. CH₄ fluxen varieerden tussen -6,3 en 5,9 g CH₄-C ha⁻¹ dag⁻¹ bij de locatie Langeweg (zware zavel / lichte klei), en tussen –103 en 1590 g CH₄-C ha⁻¹ dag⁻¹ bij de locaties hogere N₂O emissies gemeten. Bemesting van organische mest resulteerde in hogere CH₄ emissies (locatie Vredepeel). Bemesting met kunstmest had op beide locaties geen effect op de emissies van CH₄.

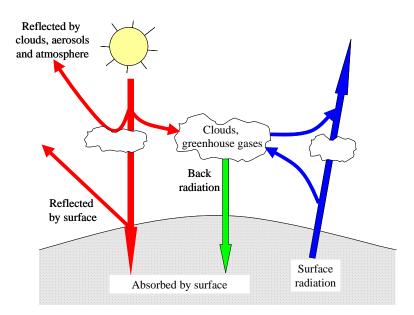
Summary

Carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O) are the most important greenhouse gases in the atmosphere. Greenhouse gases are considered to be responsible for the increased global warming, associated with climate change. It is therefore important to quantify greenhouse gas emissions from different sources. This report shows the results of a monitoring study performed to quantify the emissions of N₂O and CH₄ from two different agricultural (arable) soils in the Netherlands. These measurements were performed within the framework of the BSIK "Climate changes Spatial Planning" programme, as part of the project ME-1 (Integrated observations and modelling of greenhouse gas budgets at the ecosystem level in the Netherlands). Both sites were net sources for N₂O, with values ranging from -3.8 to 179.5 g N₂O-N ha⁻¹ d⁻¹. CH₄ fluxes ranged from -6.3 to 5.9 g CH₄-C ha⁻¹ d⁻¹ at the field location Langeweg (loam to sandy loam), and from -103 to 1590 g CH₄-C ha⁻¹ d⁻¹ at the field location Langeweg and mineral fertiliser) resulted in higher N₂O emissions, whereas its effect on CH₄ ranged from no significant effect for mineral fertiliser (both locations) to higher emissions for organic manure (Vredepeel).

Contents

Preface


Samenvatting


Summary

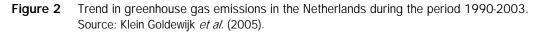
1	Introduction	1
2	Materials and methods	5
	2.1 Field locations: site characteristics and field management	5
	2.2 Measurement methods	7
	2.2.1 Topsoil structure: volumetric soil water content	7
	2.2.2 Soil gas flux rate determinations	8
3	Results and discussion	10
	3.1 Nitrous oxide (N2O) emissions	10
	3.2 Methane (CH4) emissions	11
4	Conclusions	13
Liter	rature	14

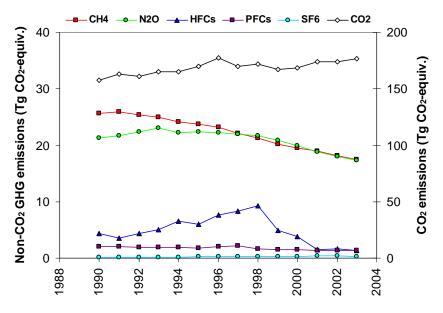
1 Introduction

Greenhouse gases are present in the atmosphere as trace gases. They are transparent for incoming short-wave radiation from the sun, but do absorb and re-emit the outgoing infrared radiation from the Earth's surface, thereby warming the atmosphere (figure 1). This warming is referred to as "natural greenhouse effect", and is highly beneficial: without it, the average temperature on Earth would be about 33°C colder, making life in its present form impossible.

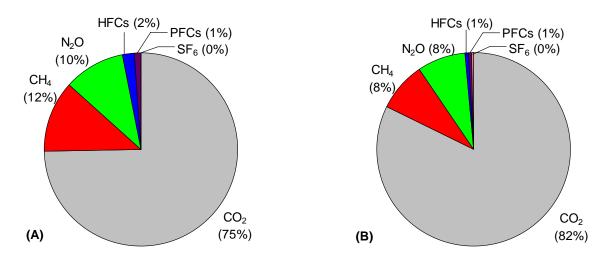
Greenhouse gases differ in their ability to absorb heat in the atmosphere. In order to be able to compare the emissions of all different greenhouse gases, the concept of Global Warming Potential (GWP) was introduced. The GWP expresses the emission of a gas in terms of carbon dioxide (CO_2) emissions (CO_2 equivalents). Since greenhouse gases have different lifetimes (IPCC, 2001; table 1), the GWP is always coupled to a particular time interval (time horizon). For example, on a molecular basis and over a 100-year time horizon, the GWP of methane (CH_4) is 23 times that of CO_2 , and nitrous oxide (N_2O) has a GWP 296 times greater than carbon dioxide (IPCC, 2001; table 1). The emissions of CO_2 , CH_4 and N_2O account for respectively 50, 18 and 6% of the total overall global warming effect arising from human activities.

Table 1 Some characteristics of the main greenhouse gases (IPCC, 2				
Greenhouse gases	Pre-industrial	Concentration	Atmospheric	Global warming potential
	concentration	in 1998	Lifetime [years]	(100 year time horizon)
Carbon dioxide (CO ₂)	280 ppm	365 ppm	5-200	1
Methane (CH ₄)	700 ppb	1745 ppb	12	23
Nitrous oxide (N ₂ O)	270 ppb	314 ppb	114	296

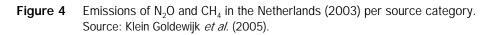

The concentration of greenhouse gases remained relatively constant for about a thousand years before the industrial revolution. Since then, the concentration of various greenhouse gases has drastically increased. As an example, atmospheric concentrations of carbon dioxide have increased nearly 30%, CH₄ concentrations have more than doubled, and N₂O concentrations have risen by about 15% (IPCC, 2001; table 1). This has resulted in a positive radiative forcing, which tends to warm the surface ("enhanced greenhouse effect"). In the last decades, early signs of enhanced global warming have already been observed (IPCC, 2001): the Earth's surface temperature has risen by about 0.6 °C over the 20th century, with accelerated warming during the past two decades; the sea level has risen during the 20th century by 10 to 20 cm; snow cover in the Northern Hemisphere and floating ice in the Arctic Ocean has decreased; annual land precipitation over land has increased in mid- and high latitudes of the Northern Hemisphere and over most Southern Hemisphere land areas, but over the tropical and the Northern Hemisphere subtropical land areas conditions have become dryer. In his Third Assessment


Report, IPCC (2001) predicted a further temperature rise of 1.4 to 5.8 °C over the next 100 years, with higher maximum and minimum temperatures, more intense precipitation events, and intensified droughts and floods. Concern about the enhanced greenhouse effect has prompted international action to reduce emissions. A first agreement, intended to stabilise emissions at 1990 levels by 2000, was signed in 1992 at the Earth Summit in Rio de Janeiro. A more binding agreement was reached at Kyoto, Japan, in 1997. Under the Kyoto Protocol (entry into force 16 February 2005), thirty industrialised countries are legally bound to reduce their combined emission of six major greenhouse gases during the five-year period 2008-2012 to below 1990 levels. The European Union, for example, should reduce by 8% its combined emissions. For the Netherlands, a reduction target of 6% has been assigned. In order to achieve this emission reduction, it is important to quantify greenhouse gas emissions from different sources.

The UNFCCC and the Kyoto protocol specify six main greenhouse gases whose emissions should be reported:


- Carbon dioxide (CO₂)
- Methane (CH₄)
- Nitrous oxide (N₂O)
- Hydrofluorocarbons (HFCs)
- Perfluorocarbons (PFCs)
- Sulphur hexafluoride (SF₆)

Emissions of CO₂ increased in 2003 by about 12% relative to 1990 (figure 2), which is considered to be the reference year for the emissions of CO₂, CH₄ and N₂O. In contrast, the emissions of CH₄ and N₂O decreased (in the same period) by about 32% and 19%, respectively. The total emission of the fluorinated gases (HFCs, PFCs, SF₆) decreased by 60% in 2003 relative to 1995, the reference year for these gases. In particular, emissions of HFCs and PFCs decreased by about 75% and 25%, respectively, while SF₆ emissions increased by 11%.



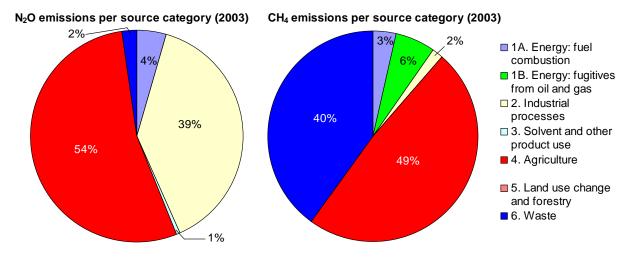

The contribution of CO_2 emissions to the total greenhouse gas emission in the Netherlands increased from approximately 75% in 1990, to 82% in 2003 (figure 3). CH_4 and N_2O are the most important non- CO_2 greenhouse gases in the Netherlands. Together they were responsible for about 16% of total greenhouse gas emissions in the Netherlands in 2003. Compared to CO_2 , their contribution to the total emissions has been reduced by 6% since 1990.

Figure 3 Shares of greenhouse gases in total emissions in the Netherlands in (A) the reference year (1990 for CO₂, CH₄ and N₂O; 1995 for F-gases), and in (B) the year 2003. Source: Klein Goldewijk *et al.* (2005).

Agriculture is the most important source of N_2O and CH_4 in the Netherlands (figure 4), and contributes about 8% to the total national greenhouse gas emissions in 2003 (10% in 1990). N_2O emissions are responsible for about 53% of total greenhouse gas emissions from agriculture, whereas CH_4 is responsible for the rest (47%). Emissions of N_2O from agriculture, mainly from agricultural soils (1: direct emissions through application of animal wastes/fertilizer to soils; 2: indirect emissions from nitrogen leaching and run-off), accounted for 54% of national total N_2O emissions. CH_4 emissions from agriculture accounted for 49% of the national total CH_4 emissions in 2003, and were related to enteric fermentation (75% of total agricultural CH_4 emissions) and animal waste management systems (25% of total CH_4 emissions from agriculture).

Within the framework of the BSIK "Climate changes Spatial Planning" programme, a project (ME-1: Integrated observations and modelling of greenhouse gas budgets at the ecosystem level in the Netherlands) was started in 2004 with the following objectives:

- To measure the fluxes of CO_2 , CH_4 and N_2O at different arable and grassland sites in the Netherlands, and relate these emissions to land use
- To validate existing emission models and to develop new parameterisations to better understand the emission processes
- To study the effect of land use change of changes in land management on the emissions of these greenhouse gases
- To assign emission factors for different land use systems, and to monitor these emissions

This report summarizes the results of greenhouse gas flux measurements performed at two different cropland sites in the Netherlands. First of all, the measurement locations used in this study are described according to soil type, management and cultivation. In addition, the experimental set-up and the measurement methods used to determine soil gas flux rates of CH_4 and N_2O are explained. Section 3 describes the main results of this research. Finally, some conclusions are presented.

2 Materials and methods

From the total land surface in the Netherlands (~3.7 million ha), approximately 52% (~1.9 million ha) is used for grassland-based and arable farming (table 2). Of this surface, approximately 42% is under arable crops. Cereals and silage maize were the most important arable crops in the Netherlands in 2003 according to the total area used for cultivation, followed by potatoes and sugar beet (table 3). When looking at the crop yield, potatoes and sugar beet have the largest share (table 3).

 Table 2
 Area under grassland-based and arable farming (2003).

 Source: CBS (Central Bureau voor de Statistiek, http://statline.cbs.nl)

Source. CBS (Centraal bureau voor de Statistiek, http://statinie.cbs.hij.						
Farmland	Area [x 1000 ha]					
Arable	814					
Horticulture	116					
Grassland (permanent)	791					
Grassland (temporal)	195					
Fallow Fields	4					
Other	4					
TOTAL	1923					

Table 3Area under arable crops and crop yield (2003).

Source: CBS (Centraal Bureau voor de Statistiek, http://statline.cbs.nl).	ç	Source:	CBS	Centraal	Bureau	voor d	de Statistiek,	http:/	//statline.cbs.nl)	
---	---	---------	-----	----------	--------	--------	----------------	--------	--------------------	--

Farmland	Area	Crop yield
	[x 1000 ha]	[x10 ⁶ kg]
Cereals	195.3	1533
Potatoes		
 seed potatoes 	39.3	4647
 eating potatoes 	70.6	3240
 starch potatoes 	48.8	1822
Sugar beet	102.8	6210
Onions	23.2	1572
Silage maize	217.0	10
Legumes	11.8	23
Other	105.2	305

Due to their high cultivation area and economic value, potatoes (2005) and sugar beet (2006) were selected for this study.

2.1 Field locations: site characteristics and field management

The experimental sites were situated in the south of the Netherlands (figure 5). In 2005, measurements were performed at a potato field, whereas in 2006 a field cultivated with sugar beets was selected. Tables 4 and 5 summarize some available general information describing the management treatments at both locations.

Table 4	Langeweg.	site description	
	Langeweg.		

Soil classification	International classification (E	Driessen <i>et al.</i> , 2001):	Calcaric epigleyic Fluvisol
	Dutch classification (Bakker	en Schelling, 1989):	Poldervaaggrond
Сгор		Potatoes for consum	ption
Year		2005	-
Surface area (ha)		8.65	
Measurement period		9 May – 12 July	
Planting		24 April	
Harvesting		6-7 October	
Fertilisation			
Day of application	7 February	11 May	24 June
Fertiliser type	Mineral	Mineral	Mineral
	(Kali-60)	(26-14-0)	(kalkamonsalpeter)
Fertiliser rate	360 kg K ₂ 0 ha ⁻¹	112 kg N ha ⁻¹	108 kg N ha ⁻¹
	0	60 kg P_2O_5 ha ⁻¹	5

Table 5Vredepeel: site description

Call algoritization	International classif	fication (Driessen et al.,	2001): Anthric ent	ric Podzol		
Soil classification	Dutch classificatior	n (Bakker en Schelling, 1	989): Veldpodzo	lgrond		
Crop		Sugar beets				
Year 2006						
Surface area (ha)		10				
Measurement period	22 March- 22 November					
Planting	11 April					
Harvesting	7 November					
Fertilisation						
Day of application	2 March	6 March	22 March	15 May		
Fertiliser type	Mineral	Mineral	Organic	Mineral		
	(rock salt)	(borium)	(cattle slurry)	(kalkamonsalpeter)		
Fertiliser rate	200 kg ha ⁻¹ (50%	10 kg ha ⁻¹ (borium)	177 kg N ha ¹	41 kg N ha ⁻¹		
	Na)		76 kg P ha ^{.1}	2		
	·		236 kg K ha ^{.1}			

Field 1: Langeweg

The soil is classified as "Calcaric epigleyic Fluvisol" (international classification; Driessen *et al.*, 2001) or as "Poldervaaggrond" (Dutch classification; Bakker en Schelling, 1989), and has a loam to sandy loam texture. This location was cultivated in 2005 with potatoes for consumption, and had previously been used in the last five years to grow grass seed (2003 and 2004), parsley (2002), winter wheat (2001) and potatoes for consumption (2000). The potatoes were planted the 24th of April, and were harvested between 6-7 October. Measurements of N₂O and CH₄ fluxes were performed during the period 9 May-12 July.

Field 2: Vredepeel

The soil is classified as "Anthric entric Podzol" (international classification; Driessen *et al.*, 2001) or as "Veldpodzolgrond" (Dutch classification; Bakker en Schelling, 1989), and has a fine sand texture. This location was cultivated in 2006 with sugar beets, which were planted on April 11, and harvested on November 7. Measurements of N_2O , CH_4 and CO_2 fluxes were performed during the period 22 March - 22 November.

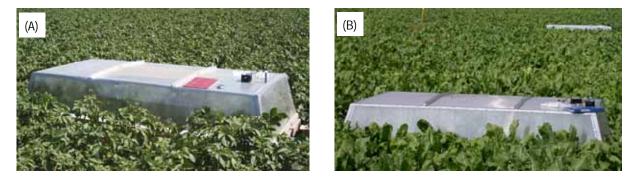
2.2 Measurement methods

2.2.1 Topsoil structure: volumetric soil water content

Soil structure during crop growth was characterised by volumetric soil water content. Soil water content was measured in the field with the ECH₂O Dielectric Aquameter Sensor (Decagon Devices, Inc.; figure 6). This sensor determines soil (volumetric) water content by measuring the dielectric constant of the soil. Since the dielectric constant of water is much higher than that of air or soil minerals, the dielectric constant of the soil is a sensitive measure of soil water content. The sensor is introduced into the soil to a depth of approximately 10 cm, in order to measure soil water content at the upper 10-cm soil layer. Topsoil structure was characterised at the beginning and at the end of every gas flux rate measurement (at every measurement day and for every flux chamber).

Figure 6 ECH₂O Dielectric Aquameter sensor

The ECH_2O probes come pre-calibrated for most soil types, although specific calibrations for a particular soil are also possible. The standard calibration for the probe, which is suitable for soils with low to moderate sand content, is:


$\theta_v = 0.0905 \cdot X - 34$

Where θ_{ν} (m³/m³; %) represents the volumetric water content and X (mV) is the response (output) of the ECH₂O probe.

2.2.2 Soil gas flux rate determinations

Gas exchange between the soil surface and the atmosphere was measured using closed flux chambers. Chamber methods can be used to measure small fluxes, they are easy to use and their construction is relatively simple and inexpensive. They have however some disadvantages:

- Disturbances by inserting the chamber into the soil may release N₂O or CH₄ trapped by the soil. In order to minimize this effect, flux chambers were not inserted into the soil, but placed on permanently installed wooden frames (inserted 5-10 cm into the soil; figure 7).
- 2. If the chamber is not completely sealed, leakage will be dependent on weather conditions (particularly wind speed) outside the chamber. In order to measure the leakage (ventilation rate) through the chamber, the rate of decay method (see description below) was applied.
- 3. Build-up of high CH_4 concentrations may affect N_2O or CH_4 fluxes from the soil. Scott *et al.* (1999) showed that the increase in concentration in the chambers was linear for a period of about 3 h, suggesting no strong effect of the chamber on the production/consumption rates. In this study, a measurement time of 40 minutes was used.
- 4. In order to get a representative sampler of the whole measured area under the chamber, good mixing inside the chamber should be provided. In order to minimize this problem, every chamber was equipped with a small axial flow fan and an external 12-V battery.
- 5. High spatial and temporal variability of N_2O and CH_4 emissions at local scales makes extrapolation to largescale landscape units very problematic. This problem was minimised by increasing the number and size of the flux chambers used. In the experiments presented here, four chambers per treatment, each covering an experimental area of 3.5 m², were used. The volume of the chambers with (without) the frame was 1.84 (1.5) m³.
- 6. Chambers are labour intensive.
- Figure 7 Flux chamber placed on permanently installed frames. (A): Potato field (Langeweg); (B): Field with sugar beets (Vredepeel)

Flux chambers use de law of conservation of mass to determine the gas exchange between the soil surface and the atmosphere:

$$V \cdot \frac{dC_i}{dt} = -\phi \cdot (C_i - C_e) + Q - f$$

Where: V

Ci = concentration of the measured gas inside the chamber

- Ce = concentration of the measured gas outside the chamber (background)
- ϕ = leakage / ventilation rate
- Q = gas emission from the measured area

volume of the flux chamber

f = adsorption and absorption losses

When the ventilation rate, the emission, and the adsorption/absorption losses remain constant during the whole measurement period, the concentration of the gas inside the flux chamber can be determined according to:

$$C_{i} = \left(\frac{\phi \cdot C_{e} + Q}{\phi + Q}\right) \cdot \left(1 - e^{-\frac{\phi + Q}{V} \cdot t}\right) + C_{0} \cdot e^{-\frac{\phi + Q}{V} \cdot t}$$

Where C_0 represents the gas concentration inside the chamber at time t=0. By injecting a known amount of a tracer gas (in our case SF₆) into the chamber and following the decay in concentration of the tracer gas with time, an estimate of the leakage over the whole measurement period can be obtained by using the tracer gas rate of decay (Mosquera *et al.*, 2002). This method also relies on the law of conservation of mass, and can be expressed as:

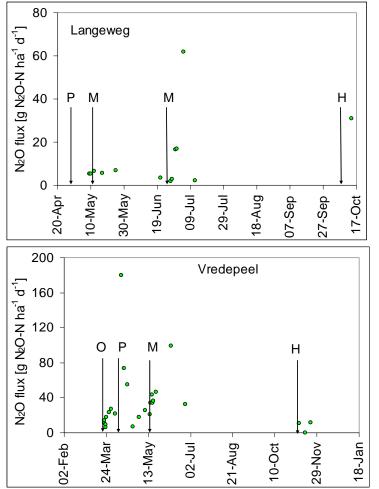
$$V \cdot \frac{dC_i}{dt} = -\phi \cdot \left(C_i - C_e\right)$$

When the ventilation rate remains constant during the whole measurement period, the concentration of the tracer gas inside the chamber at a particular time t can be calculated according to:

$$C_i = C_0 \cdot e^{-\frac{\varphi}{V} \cdot t}$$

For short measurement periods, when the leakage (ventilation rate) is considered to be negligible, the emission can be determined from the linear increase of concentration with time according to:

$$C_i = C_0 + \frac{Q}{V} \cdot t$$


After placing the flux chamber on top of the soil or on the installed frames and switching on the ventilator, a known amount of tracer gas (SF₆) was injected into the chamber. Three gas samples were collected in 30 ml syringes 0, 20 and 40 min after the start of the measurements. The gas samples were analysed the same day *in situ* by using a gas chromatograph equipped with an electron capture detector (ECD) for N₂O and SF₆, and a flame ionisation detector (FID) for CH₄.

3 Results and discussion

3.1 Nitrous oxide (N2O) emissions

Variation of the N₂O flux rates with time was large for both sites: from 1.9 ± 1.0 to 61.7 ± 11.9 g N₂O-N ha⁻¹ d⁻¹ for Langeweg; from -3.8 ± 4.8 to 179.5 ± 100.1 g N₂O-N ha⁻¹ d⁻¹ for Vredepeel (figure 8). The average coefficient of variation varied between 35 and 40%, with maximum values of up to 120% for individual measurements. The spatial variation could not be explained by differences in volumetric soil water content. However, an increase in soil water content after the application of manure into the field resulted in higher N₂O emissions at both sites. Application of manure into the field resulted in higher N₂O emissions at both sites (figure 8). This effect was observed in the first 2 weeks after fertilisation. Emissions decayed rapidly and lasted for no more than 1-2 weeks.

Figure 8 Individual N₂O flux and volumetric soil water content measurements at both measurement locations. M: application of mineral (N) fertilizer; O: application of organic manure/slurry; P: planting; H: harvesting.

The N₂O fluxes measured at Langeweg were in the same order of magnitude as those found in the literature. Smith *et al.* (1998) measured during 1 year the N₂O fluxes from the ridges and furrows of a potato field in Scotland. They found N₂O fluxes < 20 g N₂O-N ha⁻¹ d⁻¹ from the ridges, but up to 80 g N₂O-N ha⁻¹ d⁻¹ from the furrows (after fertilizer application). Ruser *et al.* (2001) measured during 1 year the N₂O fluxes from the ridges of two potato fields in Germany. They found N₂O fluxes up to 120 g N₂O-N ha⁻¹ d⁻¹ at one of the sites. At the other sites, fluxes up to 190 g N₂O-N ha⁻¹ d⁻¹ were measured. Flessa *et al.* (2002) measured during two growing seasons the N₂O fluxes from two adjacent fields planted with potatoes in Germany. N₂O flux rates from the compacted furrows ranged from 0 to 264 g N₂O-N ha⁻¹ d⁻¹. From the ridges and uncompacted furrows, N₂O fluxes up to 60 g N₂O-N ha⁻¹ d⁻¹ were found. Dobbie and Smith (2003) measured during 1 year average N₂O fluxes (from ridges and furrows in a potato field in Scotland) ranging from 0 to 30 g N₂O-N ha⁻¹ d⁻¹. Using reduced tillage in a

soil in northern Japan cultivated with potatoes, Koga et al. (2004) found during a period of 15 months low N₂O flux rates (always <5 g N₂O-N ha⁻¹ d⁻¹). Thomas *et al.* (2004) measured during the growing season the N₂O fluxes from a field in New Zealand cultivated with potatoes. They found fluxes up to 10 g N_2 O·N ha⁻¹ d⁻¹ for uncompacted furrows, up to 50 g N₂O-N ha⁻¹ d⁻¹ for the ridges, and up to 100 g N₂O-N ha⁻¹ d⁻¹ for compacted furrows.

The N₂O fluxes measured at Vredepeel were large when compared with similar studies as found in the literature. Goosens et al. (2001) found values ranging from -1.6±2.9 to 8.8±7.3 g N₂O-N ha¹ d¹ during a 1-year study on a Belgian soil cultivated with sugar beet. Kaiser et al. (1998) found N₂O flux rates up to 100 g N₂O-N ha⁻¹ d⁻¹ when measuring during 33 months the N₂O release from a German soil. Koga et al. (2004), on the other hand, found values up to 280 g N₂O-N ha⁻¹ d⁻¹ when using conventional tillage in northern Japan.

3.2 Methane (CH4) emissions

Variation of the CH₄ flux rates with time was low for the location Langeweg. Fluxes ranged from -6.3 ± 1.3 to 5.9 ± 1.4 g CH₄-C ha⁻¹ d⁻¹ (figure 9). For the location Vredepeel, on the other hand, a large variation of the CH₄ flux rates with time was observed: from -103 ± 103 to 1590 ± 474 g CH₄-C ha⁻¹ d⁻¹ (figure 9). These large CH₄ emission values were originated from the organic manure being applied into the field, and lasted for no more than 1-2 days. The variation in CH_4 flux rates when these values are not considered is then low: from -103 ± 103 to 66±9 g CH₄-C ha⁻¹ d⁻¹. At both locations, CH₄ fluxes showed a large within-site variation. The average coefficient of variation for the spatial variation usually ranged between 10 and 150%, although values as high as 500% were found for individual measurements. The spatial variation could not be explained by differences in volumetric soil water content. The effect of manure application on CH₄ fluxes was not consistent between different sites. Fertilisation did not significantly affect CH₄ emissions at the field site Langeweg.

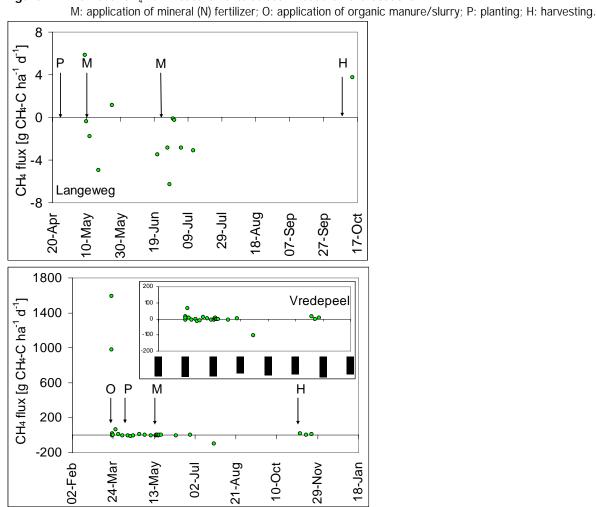


Figure 9 Individual CH₄ flux measurements at both measurement locations.

The CH₄ fluxes measured during this study were in the same order of magnitude as those found in the literature. Flessa *et al.* (2002) measured during two growing seasons the CH₄ fluxes from two adjacent fields planted with potatoes in Germany. Both sites were net sinks for atmospheric CH₄ (uptake rates up to 14 g CH₄·C ha⁻¹ d⁻¹). Koga *et al.* (2004) found during a period of 15 months CH₄ flux rates ranging from -50 to 70 g CH₄·C ha⁻¹ d⁻¹ in soils in northern Japan cultivated with either potatoes or sugar beet.

4 Conclusions

This report shows the results of a monitoring study performed to quantify the emissions of N_2O and CH_4 from two different agricultural (arable) soils in the Netherlands. The selected crops were potatoes and sugar beets, due to their high cultivation area and economic value. Both sites were net sources for N₂O, with emissions ranging from 1.9 ± 1.0 to 61.7 ± 11.9 g N₂O-N ha⁻¹ d⁻¹ at the potato field (Langeweg), and from -3.8 ± 4.8 to 179.5 ± 100.1 g N₂O-N ha⁻¹ d⁻¹ at the field planted with sugar beet (Vredepeel). High N_2O emissions were measured approximately two weeks after the application of both manure and mineral fertilizer. N₂O fluxes from the potato field were in the same order of magnitude as those found in the literature. The fluxes from the field with sugar beet were high compared to other studies found in the literature. The variation in CH₄ fluxes was low at Langeweg (fluxes ranged from -6.3 ± 1.3 to 5.9 ± 1.4 g CH₄-C ha⁻¹ d⁻¹) and high for the location Vredepeel (fluxes ranged from -103 ± 103 to 1590 ± 474 g CH₄ C ha⁻¹ d⁻¹). These high CH₄ emission values at the location Vredepeel were originated from the organic manure being applied into the field, and lasted for no more than 1-2 days. The variation in CH₄ flux rates when these values are not considered is low: from -103 ± 103 to 66 ± 9 g CH₄ C ha⁻¹ d⁻¹. These values are in the same order of magnitude as those found in the literature. At both locations, N₂O and CH₄ fluxes showed a large within-site variation. No emission factor was calculated, since the limited number of measurements performed during this study and the importance of soil and weather conditions on the fluxes of N₂O and CH₄ from soils make the calculation of such an emission factor inaccurate.

Literature

- Bakker, H. de and Schelling, J., 1989. Systeem voor bodemclassificatie in Nederland, de hogere niveau's. *Centrum voor Landbouwpublicaties en Documentaties*, Wageningen.
- Dobbie, K.E. and Smith, K.A., 2003. Nitrous oxide emission factors for agricultural soils in Great Britain: the impact of soil water-filled pore space and other controlling variables. *Global Change Biology* **9**, 204-218.
- Driessen, P., Weckens, J., Spaargaren, O. and Nachtergaele, F., 2001. Lecture notes on the major soils of the World. *World Soil Reports* **94**.
- Flessa, H., Ruser, R., Schilling, R., Loftfield, N., Munch, J.C., Kaiser, E.A. and Beese, F., 2002. N₂O and CH₄ fluxes in potato fields: automated measurement, management effects and temporal variation. *Geoderma* **105**, 307-325.
- Goossens, A., De Visscher, A., Boeckx, P. and Van Cleemput, O., 2001. Two-year field study on the emission of N₂O from coarse and middle-textured Belgian soils with different land use. *Nutrient Cycling in Agroecosystems* **60**, 23-34.
- IPCC, 2001. Technical summary. In *Climate change 2001: the scientific basis. Contribution of Working Group I of the Intergovernmental Panel on Climate Change* (eds. J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell and C.A. Johnson). Cambridge University Press, Cambridge.
- Kaiser, E.A., Kohrs, K., Kücke, M., Schnug, E., Heinemeyer, O. and Munch, J.C., 1998. Nitrous oxide release from arable soil: importance of N-fertilization, crops and temporal variation. *Soil Biology Biochemistry* 30(12), 1553-1563.
- Klein Goldewijk, K., Olivier, J.G.J., Peters, J.A.H.W., Coenen, P.W.H.G. and Vreuls, H.H.J., 2005. Greenhouse gas emissions in the Netherlands 1990-2003. National Inventory Report 2005. *RIVM Report 773201009/2005*.
- Koga, N., Tsuruta, H., Sawamoto, T., Nishimura, S. and Yagi, K., 2004. N₂O emission and CH₄ uptake in arable fields managed under conventional and reduced tillage cropping systems in northern Japan. *Global Biogeochemical Cycles* **18** (GB4025).
- Mosquera, J., Hofschreuder, P., Erisman, J.W., Mulder, E., van 't Klooster, C.E., Ogink, N., Swierstra, D. en Verdoes, N. (2002). Meetmethode gasvormige emissies uit de veehouderij. *IMAG rapport 2002-12*.
- Ruser, R., Flessa, H., Schilling, R., Beese, F. and Munch, J.C., 2001. Effect of crop-specific field management and N fertilization on N₂O emissions from a fine-loamy soil. *Nutrient Cycling in Agroecosystems* **59**, 177-191.
- Scott, A., Crichton, I.J. and Ball, B.C., 1999. Long-term monitoring of soil gas fluxes with closed chambers using automated and manual systems. *Journal of Environmental Quality* **28(5)**, 1637-1643.
- Smith, K.A., McTaggart, I.P., Dobbie, K.E. and Conen, F., 1998. Emissions of N₂0 from Scottish agricultural soils, as a function of fertilizer N. *Nutrient Cycling in Agroecosystems* **52**, 123-130.
- Thomas, S., Barlow, H., Francis, G. and Hedderley, D., 2004. Emission of nitrous oxide from fertilised potatoes. In *Supersoil 2004: 3^d Australian New Zealand Soils Conference*, 5-9 December 2004, University of Sidney, Australia.