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The luminescence signal of luxAB-encoded bacterial luciferase strongly depends on the metabolic state of the
host cell, which restricts the use of this reporter system to metabolically active bacteria. Here we show that in
stationary-phase cells of Lactococcus lactis, detection of luciferase is significantly improved by the addition of
riboflavin or flavin mononucleotide to whole-cell assay systems.

The luxAB-encoded luciferase of Vibrio harveyi is frequently
used as a reporter in a variety of microorganisms (10). Simple
detection and high sensitivity underlie the increasing popular-
ity of this system (11). Luciferase catalyzes the reaction of
molecular oxygen, reduced flavin mononucleotide (FMNH2),
and a long-chain aldehyde, yielding the corresponding carbox-
ylic acid, flavin mononucleotide (FMN), water, and light (490
nm). Besides its use as a promoter probe, luciferase is also used
for analysis of the metabolic activity of cells (13). The latter is
based on the dependency of the luminescence signal on the
intracellular FMNH2 concentration, which is directly corre-
lated with the metabolic activity of a cell (6). This dependency
is well documented for gram-positive (7, 8, 17, 19) and gram-
negative (9, 13) bacteria and is illustrated by a rapid decline in
luminescence upon entry into the stationary growth phase.
Here we describe an improved method for the detection of
luciferase activity in stationary-phase cells of Lactococcus
lactis.

In our studies, we used the plasmid-encoded luciferase
(luxAB) of V. harveyi in the lactic acid bacterium L. lactis
MG5267 (16). The reporter construct was generated by digesting
plasmid pJIM2374 (5) with HindIII and PstI. The luxAB fragment
was isolated, made blunt, and cloned into pCRblunt (Invitrogen,
Breda, The Netherlands), yielding pNZ5512. Subsequently, the
luxAB fragment was isolated from pNZ5512 as an EcoRV-
HindIII fragment, made blunt, and ligated into PmlI-digested
pNZ7125 (2), resulting in pNZ5518. The usp45 promoter (15)
was amplified from genomic DNA of L. lactis MG1363 with the
oligonucleotides usp45REV1 (5�GAACGATCATGCCTGCAG
AGTACTTGTTC) and usp45FW2 (5�CTATTACTCGAGACA
CTTTTGCTC). The amplified fragment was restricted with
Sau3AI and ligated into BglII-digested pNZ5518, resulting in
pNZ5519, in which the luxAB genes are under the control of the
usp45 promoter. Furthermore, the oligonucleotides AdaptVI-1
(5�CATGGAATATCCTCCTGAATTGGGGATCCCTCGAG
TTAGTTAGTGCCCGGGCTAA) and AdaptVI-2 (5�GATCTT
AGCCCGGGCACTAACTAACTCGAGGGATCCCCAATTC
AGGAGGATATTC) were annealed and ligated into BglII- and
NcoI-digested plasmid pNZ5518, which resulted in the introduc-

tion of a SmaI restriction site (plasmid pNZ5520). Genomic DNA
from L. lactis MG1363 was partially digested with AluI, and 0.5-
to 2-kb fragments were isolated and ligated into SmaI-digested
pNZ5520.

L. lactis was grown in microplates (780271 or 655180;
Greiner, Alphen a/d Rijn, The Netherlands) at 30°C in rich
medium M17 (12) supplemented with 0.5% lactose, 5 �g/ml
chloramphenicol, and (when indicated) 10 mg/liter riboflavin
(R4500; Sigma, Zwijndrecht, The Netherlands). Measure-
ments of luminescence and optical density at 595 nm (OD595)
were performed by mixing 50 �l of cell suspension with 150 �l
of 1.9% (wt/vol) glycerol-2-phosphate disodium salt (G6376;
Sigma, Zwijndrecht, The Netherlands) in a white microplate
with a transparent bottom (655095; Greiner, Alphen a/d Rijn,
The Netherlands). If indicated, 10 mg/liter riboflavin or 10
mg/liter FMN (F2253; Sigma, Zwijndrecht, The Netherlands)
was added to the buffer. Two minutes after the cells were
mixed with the buffer, 10 �l of 0.1% nonanal (W278203;
Sigma, Zwijndrecht, The Netherlands) in 40% ethanol was
added to each well. Luminescence was determined at 2-min
intervals over a period of 15 min after nonanal addition in a
Genios microplate reader (Tecan, Zurich, Switzerland). The
peak value measured for each sample was used for data analysis.

When cultivated in M17, L. lactis MG5267 transformed with
the luxAB expression plasmid pNZ5519 displayed a rapid de-
cline in the luminescence signal upon entry of the cells into the
stationary phase of growth (Fig. 1). We hypothesized that
FMN could represent the limiting factor in the luminescence
reaction and that addition of the FMN precursor riboflavin
could complement this limitation. Indeed, addition of ribofla-
vin to either the culture medium M17 or the assay buffer leads
to an up-to-100-fold increase in luminescence, enabling detec-
tion of luminescence in cells that have entered the stationary
phase of growth (Fig. 1 and 2). Moreover, introduction of the
luxAB expression plasmid pNZ5519 into riboflavin-overpro-
ducing L. lactis strain CB010 (3) also allowed stable lumines-
cence signal detection in cells entering the stationary phase of
growth (Fig. 1). The addition of FMN to the assay buffer had
an effect similar to that of the addition of riboflavin (Fig. 2). To
exclude the possibility that these observations resulted from
regulatory effects on the usp45 promoter, five alternative pro-
moter-luxAB fusion constructs were analyzed under the same
conditions. These clones were selected from a pNZ5520-based
promoter screening library constructed in MG5267 (data not
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shown). They contain random fragments of genomic L. lactis
DNA cloned upstream of the promoterless luxAB gene cas-
sette. There was a 100-fold difference in luminescence levels
between the clones with the highest and lowest activity levels.
For all of the constructs, luminescence in the stationary phase
could be increased significantly by the addition of either ribo-
flavin or FMN (Fig. 2). The negative control with a promoter-
less luxAB construct, pNZ5518, shows a luminescence signal
comparable to background measurements, irrespective of the
addition of riboflavin or FMN (Fig. 2). These results confirm
that riboflavin/FMN availability is a limiting factor for the
luminescence signal in L. lactis cells that are in the station-
ary phase of growth. Furthermore, they indicate that NADH
for the (re)generation of the luminescence reaction cofac-
tor, FMNH2, is available in these cells.

In a different experimental setup, we supplied nonanal in a
volatile form to the cultures by placing 2% nonanal diluted in
mineral oil in the spaces between the wells of a covered mi-
croplate. Luminescence was measured throughout the growth
curve in the wells where the cells were cultured. We ensured
that neither nonanal nor oxygen was limiting the luminescence
reaction in those cultures and found that despite the addition
of extra riboflavin to the medium, luminescence signals in
stationary phase were variable (data no shown). This finding
suggests that a continuous luminescence reaction might have
an effect on the metabolism of stationary-phase L. lactis cells.

The data presented here show that the detection of bacterial
luciferase in stationary-phase L. lactis can be significantly im-
proved by the addition of riboflavin or FMN. Riboflavin is
known to serve as an FMNH2 analogue for the luminescence
reaction, but only in its reduced form (14). This excludes that
the described effect is caused by transported riboflavin itself
and is confirmed by our finding that luminescence in the luxAB
negative controls was not influenced by the addition of either
riboflavin or FMN. Blouin et al. reported that addition of FMN
to E. coli cultures shortly before luminescence measurements
could increase the signal, but these authors did not relate this

observation to luminescence detection in stationary-phase cells
(1). The phylogeny of the L. lactis riboflavin transporter RibU
(4) suggests that our finding might also be applicable to a
number of other members of the division Firmicutes. However,
a reliable assessment of the applicability to other species re-
quires additional experimentation. In conclusion, the detection
of luxAB-encoded luminescence for L. lactis is significantly
improved by the addition of riboflavin or FMN to either the
culture medium or the buffer used during the luminescence
assay. Furthermore, it is important to realize that a continuous
luminescence reaction in L. lactis might influence the meta-
bolic state of the stationary host cell.
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