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Abstract

[1] We evaluate the capability of an ensemblesbatata assimilation approach, referred to as
Maximum Likelihood Ensemble Filter (MLEF), to estite biases in the G@hotosynthesis and
respiration fluxes. We employ an off-line LagrangRarticle Dispersion Model (LPDM), which is
driven by the carbon fluxes, obtained from the Serigiosphere - Regional Atmospheric Modeling
System (SiB-RAMS). The SiB-RAMS carbon fluxes asswaned to have errors in the form of
multiplicative biases. Our goal is to estimate esmilice these biases and also to assign reliable
posterior uncertainties to the estimated biasegefixents of this study are performed using
simulated CQobservations, which resemble real &©ncentrations from the Ring of Towers in
northern Wisconsin. We evaluate the MLEF resulth wespect to the “truth” and the Kalman Filter
(KF) solution. The KF solution is considered theimadly optimal for the problem of this study,

which is a linear data assimilation problem involyiGaussian errors. We also evaluate the impact of
forecast error covariance localization based oeva ‘ldistance” defined in the space of information
measures. Experimental results are encouragingaitig that the MLEF can successfully estimate
carbon flux biases and their uncertainties. As etquk the estimated biases are closer to the “true”
biases in the experiments with more ensemble mesvaret more observations. The data assimilation
algorithm has a stable performance and convergestsily to the KF solution when the ensemble
size approaches the size of the model state v@atqrthe control variable of the data assimilatio
problem).
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1. Introduction

[2] The pioneering work dEvensen [1994] defined the theoretical background for Ensemble
Kalman filter (EnKF) methods and opened new avehoresesearch and applications in the
geosciences. Since then, EnKF methods have be¢nwously advancing and had many successful
applications to the problems of atmospheric, oagdmnjidrological, chemical and carbon transport
sciences [e.gHoutekamer and Mitchell, 1998 Lermusiaux and Robinson, 1999 Hamill and Shyder,
200Q Keppenne, 200Q Mitchell and Houtekamer, 200Q Anderson, 200% Bishop et al., 200 van
Leeuwen, 200% Reichleet al., 2002 Whitaker and Hamill, 2002 Tippett et al., 2003 Zhang et al.,

2004 Ott et al., 2004 Szunyogh et al., 2005 Zupanski, 2005 Peters et al., 2005 Dunne and

Entekhabi, 2003.

[3] One of the newer applications of the EnKF moels is in the area of carbon flux inversion
problems [e.g.Peterset al., 2003. Peters et al. [2005] developed a fixed-lag ensemble Kalman
smoother algorithm for estimation of surface flueéatmospheric trace gases. They applied this
algorithm to estimate global surface fluxes of &Ging pseudo-observations of C&dncentrations,
located at the real observing sites. In earliedist) similar problems have been addressed emgjoyin
more traditional Bayesian [also referred to as firahversion”, e.g.Rayner et al., 1999 Gurney et

al., 2003, geostatistical [e.gMichalak et al., 2004 and Kalman Filter [KF, e.gBruhwiler et al.,

2003 inversions. As indicated biyeters et al. [2005], ensemble-based data assimilation methods are
an especially promising alternative to the tradisilbmethods due to their applicability to largetsca
non-linear problems, while they still maintain thenefits of updating forecast error covariancenas i
the traditional methods (e.g., KF). Additionalljpsemble-based algorithms do not require adjoint
model development, which is an important advantage variational methods, which are also novel
methods capable of addressing large-scale nonrleaghon inversion problems [e.@hevallier et

al., 2005 Engelen and McNally, 2005

and references therein]. However, carbon inversiadies that compare different data assimilation
methods under the same conditions are still lagisogadvantages/disadvantages of different
approaches still remain to be evaluated.

[4] There are also outstanding problems in thb@ainversion that need further attention,
independently of the data assimilation approachrialdne of these problems is that the current data
assimilation approaches often assume that the gemath forecast models (including carbon
transport models) are perfect. This assumptiomigustified, since geophysical forecast models
have errors, which could often be in the form ofiéasystematic errors (biases). Estimation and
correction of model biases by employing informatigom observations has become an active area of
data assimilation research, ever since the piomgevorks ofSasaki [1970]andDerber [1989]
appeared. Since then, the problem of model biama&isbn was further investigated under various
data assimilation methods, including Kalman fileariational, geostatistical and ensemble-based
methods [e.gBennett et al., 1993 Dee, 1995 Reichle et al., 2002 Nichols, 2003 Michalak et al .,

2004 Tsyrulnikov, 2005 Zupanski and Zupanski, 2006. Nevertheless, more research in this area is
still needed, especially on assigning appropriatettainties to the estimated biases.

[5] In this paper, we estimate the model biasigdncertainty for a carbon flux inversion prahle
employing an ensemble-based data assimilation apprdhe paper is organized as follows. In
section 2we explain the motivation for this study.daction 3we define the carbon flux bias
estimation problem. Isection 4the approach to the problem taken in this stedshortly described.
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Experimental results are presented and discussggttion 5 Finally, insection 6 the conclusions
are drawn and future research directions and aijuits are discussed.

2. Motivation

[6] This study is motivated by the need to adsitbe model error estimation problem in general,
and also by the need to compare different datandasion approaches for carbon inversion
problems. We have chosen to address a data asgmigoblem involving a linear carbon transport
model and Gaussian probability density functiori3K®) for which the theoretically optimal solution
is known. The optimal solution could be obtainedusing the classical KF approach [eJgzwinski,
1970, or any other approach that becomes identiciedF approach for this particular problem.

[7] We will evaluate an ensemble-based data alsgion approach [Maximum Likelihood
Ensemble Filter, MLEF Zupanski, 2005 Zupanski and Zupanski, 2006 Zupanski et al., 2009 by
comparing it to the KF approach. As explainedZbjpanski [2005, Appendix Athe MLEF solution

is identical to the KF solution when the ensemide & equal to the size of the control variablee T
control variable is the variable we alter in ortefind the “optimal” solution (defined in this @aas
the maximum likelihood solution) to the data asktion problem of interest. We will refer to the
MLEF solution using ensemble size equal to the gizbe control variable as the full-rank MLEF
solution (since the full-rank forecast and analgsi®r covariances are used), or simply the KF
solution. The equivalence between the KF and thieduk MLEF was practically confirmed when
independent computational algorithms are used ngpene the KF and the MLEF results (Uliasz
2006, personal communication). Conversely, we refiér to the MLEF solution using ensemble size
smaller than the size of the control variable asréduced-rank MLEF solution. The reduced-rank
MLEF solution is related to the reduced-rank KFusioh, but the two solutions are not necessarily
identical, since the reduced-rank KF is typicakgfided in the subspace of orthogonal vectors, which
is not necessarily the case for the reduced-rankEML

[8] The focus of this study is two-fold: (i) t&x@mine if a reduced-rank MLEF, with an ensemble
size considerably smaller than the size of therobmairiable, could still produce useful bias
estimation results, and (ii) to examine if the restltrank MLEF smoothly converges to the optimal
KF solution when the ensemble size approacheszbe&the control variable. The former issue is
relevant for applications to problems involvinggarsize control variables, since it is only feasiiol
employ a relatively small ensemble size (i.e., oedurank approaches). The latter issue is also
important to address, since, in order to be abthtmse any ensemble size that is practical for the
available computing resources, a smooth converg@scte ensemble size increases) to the
theoretically optimal full-rank solution is desitabThese two issues were not addressed in the
previous studies, at least not for the carbon iz estimation problem.

3. The Problem

[9] We define the bias estimation problem in temwhestimation of multiplicative bias correction
terms applied to the carbon fluxes, which are @sefbrcing to the carbon transport model. The
carbon transport model is an off-line LagrangiartiBla Dispersion Model [LPDMUliasz and
Pielke, 1991andUliasz et al., 1994, which is driven by the carbon fluxes obtaineghfra coupled
model, the Simple Biosphere - Regional Atmosphilideling System [SiB-RAMS, e.gQenning

et al., 2003 and references there in]. Even though we asdiensianulated observations, real
observations (e.g., meteorology, soil and vegetatimracteristics) are used to initialize and force
SiB-RAMS. This ensures that the SiB-RAMS fluxes ialistic, but not error free.

[10] To estimate fluxes from atmospheric mixiagos, we assume that the SiB-RAMS fluxes have
errors defined in the form of spatially varying tipiicative correction terms (biases) to the
component fluxes. We account for high-frequencyetirariations of respiration and photosynthesis
(or Gross Primary Production, GPP) by assumingttiegt are obtained by well-understood and
relatively easily modeled processes (radiation penature, and soil moisture) from SiB-RAMS, then
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solve for unknown multiplicative bias@ges andfcpe in €ach component flux. Being multiplicative
factors to the component fluxeges andfcep

are defined in non-dimensional units. The net estesy exchange (NEE) is composed of these two
component fluxes:

N {:F, @f,f]l = ﬁHE.f-'P I{,ﬂ’:,y‘]l S[*ﬂ:: y:ﬁ}_ﬁGF‘P [‘ﬂ:!@"}G [ﬂ?,'y', ﬁ]':

(1)

whereN, S, andG denote NEE, respiration and GPP, respectivendy represent grid coordinates
andt represents timézquation (1)

allows for reducing the complex problem of estimatof space and time varying fluxesgndG) to
the estimation of only space varying bias compa@hrts andBcee).

[11] The rationale for definitiofi)

is as follows. A persistent bias in photosynthesight result from underestimation of leaf area,
available nitrogen, or soil moisture, whereas &igtent bias in respiration might result from
overestimation of soil carbon or coarse woody del&iso, the total soil respiration and the fractio
of autotrophic respiration, which are not fully kma can contribute to the persistent (or slow
varying) bias. Thus in order to avoid possible ellation of the two types of errors, it seems
reasonable to account for biases in the two flurmanents, rather than trying to correct the NEE
flux via a single bias component. Sub-hourly vaoias in the simulated component flux¢andG

are primarily controlled by the weather (especiatiynges in radiation due to clouds and the diurnal
cycle of solar forcing), whereas seasonal changedexived from phenological calculations
parameterized from satellite imagery. Fine-scal@tians in space are driven by variations in
vegetation cover, soil texture, soil moisture, aoid temperature. In any case, it is reasonable tha
biasegrese andfcpp Vary much more slowly than the fluxes themselves.

[12] Next, we define the discrete form of thetjgaderivative of the observed mixing ras™

with respect to the NEE, referred to as the suriiaib@ence functiorCy; \* = aﬁ_rffi (where indexk

defines observation location in time and spacexmdlefines a grid cell, and indexdefines a time
step). By convolvind®y; »* with respiration and GPP fluxé%, andG;, obtained from SiB-RAMS
and by integrating the backward-in-time partichgdctories from LPDM we obtain the surface
influence functions for component flux€gespki* and Copp* @s

SEESER‘,! = ﬂfﬂdﬁﬂ@l‘ Z S!'In C:I!-In', {Ea]
Chppes = Mlzhy > Gin Caine (2b)

where the length scal@x andAy are the sizes of the grid cells in the zonal aeddional direction,
andAt is the time step over which the fluxes are applied, Ax, Ay andAt define spatial and
temporal resolution of LPDM). The summation is agblover a time interval, which will be used as
a data assimilation interval in the data assingtagxperiments, explained later.

[13] Finally, we can use the influence functiaegined in(2a), (2b) and represent the mixing ratio
at the observation location§) as

N
— * %
Ov= 3 PresriCrrspp: T Farpilhrpp: + Corany

i=1
(3)
where the summation is performed over all gridscellthe LPDM domainNgg).

[14] The termCgkepk in (3) represents the “background” €@ixing ratio, which includes the
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contribution from the initial carbon flux (i.e.,ghnitial conditions), and contribution from therloan
flux through the boundaries of the LPDM domain.(imundary conditions). For simplicity, the
“background” carbon flux contribution is assumedf@etly known in the experiments of this paper.
Note, however, that in the experiments with reaestations the uncertainty of the background flux
(especially the boundary conditions part of iyysing a regional domain) could easily become larger
then the uncertainties of the flux compone®ndG. In such case, neglecting the background flux
uncertainty may not be justified.

[15] We seek the maximum likelihood solution e bias estimation problem, which is in this case
equivalent to the KF solution. The method usedrtd the solution is described in the next section.

4. The Method: MLEF

4.1. Maximum Likelihood Solution and its Uncertainty

[16] To find the maximum likelihood solution ftite bias parametefizese andpScpp, We employ an
ensemble-based data assimilation approach, MLEE bakic theoretical background of the MLEF is
defined inZupanski [2005]

and generalization of it to include model bias pathmeter estimation is given4npanski and
Zupanski [2006]. Here we will only explain the specifics of the HE as they apply to the particular
bias estimation problem. The problem of finding dpéimal bias parametefses andfspp reduces

to the minimization of the following cost functidn

J(8) = ;18- BT P LA Auk; Ly~ HBIT R [y— HB),
(4)

where we represented the bias parameters as ekofentectof; = (Bresp, ferp), Which size iNgate

= 2 XNq, and we used the vector equatldor H(f) instead o{3). Note that théNgps X Ngate
observation operator (denotkld is in general a non-linear operator, but in tkeegiments of this
study we use a linear observation operator. Vegtof dimension equal to the number of
observation®\,s, defines simulated observations of the,@@xing ratio, collected over a predefined
time interval (referred to as data assimilatioeal). Subscripb denotes a background (i.e., prior)
estimate of3, and superscripk denotes a transpose. Tgs X Noy,s matrixR is a prescribed
observation error covariance, and it includes imsrntal and representativeness errors [Ean,
1997. In the experiments of this study, we use a dmajoconstant in time observation error
covariance matrix. The matrB of dimension Ngae X Ngate) iS the forecast error covariance matrix,
which defines the prior uncertainty @&fNote that in ensemble data assimilation in génaral also

in this study, the use of the large mat?x

1 1 1
is usually avoided by employing a rank-reduced sgwwaot formulatiorP; = P# (P#)", whereF7 is
anNgae X Nens Square-root matrix defined in ensemble subspldggl{eing the ensemble size).

[17] To close the equations for the bias estiomagiroblem, we also have to define a dynamical

modelM

for the bias to transport the bias and its uncetgdrom the current data assimilation cycle to the

next data assimilation cycle. Assuming that the Imaslowly varying with time, it is appropriate to
use the identity operator as a dynamical modetherbias [e.g.Dee, 1995 Zupanski, 1997 Dee and

da Slva, 1998 Nichols, 2003 Zupanski and Zupanski, 2004. Thus assuminil =1, we have

.ﬁm+1:M{ﬁm}:ﬁm:ﬁ: {5}
wheremis a time index and denotes a data assimilatictecy
[18] We minimize(4)

via an iterative conjugate-gradient algorithm, vhiie this case converges in a single iteratioméo t
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KF solution Zupanski, 2005, Appendix A
B =P+ PyHT (HPTH + R) ™ [y— H(,)]. (6)

The prior and the posterior uncertainties of thatgmn (6) are defined in ensemble subspace as
1

. 1 . . T
square roots of the forecast error covariepzeand the analysis error covariarPs':

Pi=[p g .. g =PI+ A, ()

4= 77 . 2'= RTiH(p+ p))—R"H(p) = R"iHp;,
(8)

Pi=[p gt .. gl p}=M(ﬂ+£§)—M(ﬂ}=P§-

where matrixA of dimensiorNegs X Nens IS the so-called information matrix in ensemblbspace
[Zupanski et al., 2007, and it is defined using ensemble vectors in pla@nal spacezl). Matrix A
will be used in the experiments of this study taleate Degrees of Freedom (DOF) for signal of
assimilated observations [e.Bgodgers, 200Q Engelen and Stephens, 2004 Zupanski et al., 2007.
The square root i) is calculated via eigenvalue decompositioloft is defined as a symmetric
positive semi-definite square ro@jpanski, 2009. Vectorsp andp, are forecast and analysis
perturbations off in ensemble subspace. Note that, accordirf§)tdor M =1, the forecast error
covariance in data assimilation cyahe

+ 1 is equal to the analysis error covariance endata assimilation cycle:

1 1
Pi 1= Pin (10)

Equation (10)

does not implicate that the forecast error covagaiemains constant at all times, because the
analysis error covariance changes in time duegantipact of assimilated observations involved in
the information matriA (according teequation (7).

[19] In addition to the minimization problem dabed above, a special care has to be taken to
define adequate covariance localization to avoghtiee impact of spurious long distance
correlations in the forecast error covariance rrawhen ensemble size is small. Also, covariance

inflation might be helpful to increase insufficiardgriance Ier% due to insufficient ensemble size

[e.g.,Houtekamer and Mitchell, 1998 Hamill et al., 2001 Whitaker and Hamill, 2003. These
problems are addressed in the next sub-section.

4.2. Dynamic Covariance L ocalization

[20] Covariance localization is often used ineanble-data assimilation applications to better
constrain the data assimilation problems with eithsufficient observations or insufficient ensembl
size [e.g.Houtekamer and Mitchell, 1998 Hamill et al., 2001 Whitaker and Hamill, 2002 Zupanski
et al., 2007. We are seeking a solution for covariance loedion that is sensitive to dynamical
changes in the analysis and forecast uncertaifiteedefine a “distance” for covariance localization
we employ the ratio
between the forecast and the analysis uncertaonty [other words, the ratio between the priy) (
and the posteriofe) uncertainty] defined as= 6¢/e, where the prior uncertainty is definedsas

1 1

[diag(Py)]* and the posterior uncertainty @s [diag(P.)]>. According to the information theory [e.g.,
Rodgers, 2004, and alsaquation (7)
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of this paper, the ratio between the prior andoib&terior error covariance matrices measures the
information content of the assimilated observatidisis one can interpret the ratias a distance
defined in the space of the information measurese fhat this distance is different from the
conventionally used geodesic distance in most ¢avee localization approaches in the current
literature.

Figurel. “Distance’r, defined as the ratio between the priy) @nd the
posterior ¢) standard deviation € 6¢/6). Values are shown fgizesp,
obtained in the first data assimilation cycle ia #xperiments with (a) 40,
(b) 60, (c) 100, and (d) 1800 ensemble membersll8irdes with X's
indicate sampling sites (indicating all tall towémsm the Ring of Towers).
--..| Observations from the WLEF tower only, locatedha tenter of the domain,
are used in the experiments shown in this figure.

[21] The ratior calculated for the bias componghats is shown inFigure 1 The entire LPDM
domain, covering 30 x 30 grid points, is shown. @ated observations form WLEF tall tower of
northern Wisconsin are used in the experiments showigure 1 Small circles with X's indicate
locations of the towers from the Ring of Towerse@# the experiments presented later). A circle
located in the center of the model domain indictesWLEF tower. Results iRigure 1 are shown

for different ensemble sizes (40, 60, 100, and L8d@ure lindicates that the ratiois positive (and
also>1) in all grid points. It has largest values in #reas close to the observations, and it decreases
in the areas further from the observations. Thigyests that ratio may be appropriate for measuring

a distance from the observations.

[22] Results using ensemble sizes of 100 and {Bigres 1c and J)dndicate an area of higher
values ofr

around the tower, where the influence of obserwatis strongest and the uncertainty reduction is
largest, which is clearly separated from the afesar@ller values of, where the influence of
observations is weak, or non-existent. Similarrgjrmfluence of the observations around the tower
can also be seen in the results using smaller drlsesizes (40 and 60), where the isolines aife

quite similar to the ones obtained with larger emsle sizes (100 and 1800), however, the distinction
between the areas of strong and weak data influeriess clear, indicating problems due to
insufficient ensemble size. Therefore covariancaliaation, which would limit the data influence
only within the areas of strongest information ewrtf might be beneficial. Assuming that the KF
experiment produced an optimal solution, we cao atgice that the ratiois too large in the
experiments with smaller ensemble sizes (red/piak around the tower is larger), meaning that the
posterior error covariance is smaller, thus indngatinderestimation of the posterior error covarean
due to small ensemble size. This is an indicatia tovariance inflation would be beneficial in

order to account, at least in an approximate waythfe deficient variance when the ensemble size is
small.

——— Figure 2. Empirically determined cut-off parameteused in the
A4 ==L ]| experiments of this study. It is defined as a monigially decaying function
Pt of the ensemble size.

[23] Based on the properties of the ratiwe conclude that it is appropriate to localizeitifeience
of the observations within the domain wheies larger than a cut-off ratio:

:l"':_? & Voin = Tcuf—off: [1[:"}
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where scalarsyn andr .o represent the minimum and the cut-off values efrdtior, anda is a
cut-off parameter, which i1 and it is empirically determined. We also usedineoff ratior .. to
define covariance inflation, which ensures thatrttagnitude of the posterior error covariance is
equal to the magnitude of the prior error covargimcthe areas far from the observations (cyc.of).
The cut-off parametet

used in the experiments of this study is plotted amction of the ensemble sizeFigure 2 Note
thata

decreases with the increasing ensemble size, grdaghes the value equal to 1 (no localization) for
larger ensemble sizes. Note also that we use eift€smaller) cut-off parameters in the first tvadad
assimilation cycles, compared to the cut-off pat&nsein all other cycles. This is because of the
negative influence of the initially prescribed iegdate forecast error covariance matrix.

[24] Since the covariance localization describbdve is based on the distamatefined by the
dynamically changing information content of datawge the term “dynamic covariance localization”
for this particular type of covariance localizatidinhas to be noted that this localization does no
strictly localize the forecast error covariancelitsit localizes the data influence, which is dfeet
equivalent to localizing the forecast error covace The above-described approach for dynamic
localization and covariance inflation is evaluaitethis study.

5. Experimental Design

[25] The experiments of this study are perforrf@d single tall tower (WLEF) and for the Ring of
Towers, over a 70-day period starting on 1 Junel2@ih a data assimilation interval of 10 days (7
data assimilation cycles). We use the LPDM inflleefunctions on a 20-km grid over a 600 x 600
km area centered on the WLEF tall tower. The infeeefunctions were generated by running the
LPDM backward in time for 2-h mean “samples” fromx surface layer towers in the Ring of
Towers, plus five levels on the WLEF tower (all e 11 m level).

[26] To generate synthetic observations we emfifoye” fres» andfcee in (3) and also add
Gaussian noise to the “true” observations, withemmof zero and a variance that depends on the
1

tower height and time of day. The error assignettiécobservations is a diagonal mafkwith
magnitudes ranging from 1 ppm above 200 m durirygimhe to 45 ppm below 50 m at night. We use
Nobs

=1200 (i.e., 1200 observations per data assimilatycle) in the experiments with WLEF tower, and
Nobs = 2640 in the experiments with the Ring of Towditse size of the control variableNgge =

1800. As will be shown later, the number of indegeart pieces of observed information is much
smaller tharNgae, Which makes the bias estimation problem sevanetier-constrained by the
available observations.

Figure 3. True biases: (gcpp and (b)fres.

[27] The truep's are defined to have the following characterssti@n the eastern half of the domain,
the mean values of boff's are equal to 1.1 non-dimensional units, anchemwtestern half they are
equal to 0.5. To make the problem more difficulg, aso include random deviations in egathosen
from a Gaussian distribution with a mean of zerd arstandard deviation of 0.1. Additionally, we
apply a smoothing to bopis using a compactly supported second-order coiorlgunction of

Gaspari and Cohn [1999], with decorrelation length scales of 80 km in sbethern and 160 km in
the northern halves of the domain. The rer andfcpp are shown irFigure 3

[28] As a background value for the model figswe use a uniform field ¢f, = 0.75 in every grid

19-3-2009 9:0



Carbon flux bias estimation employing Maximum Likelod Ensembl... http://www.agu.org/journals/jd/jd0/2D006JD008371/body.sht

cell. We use this value in the first data assinalatycle only, since in each subsequent data
assimilation cycle the optimal value pfrom the previous cycle is used@gequation (5). To

define ensemble perturbations (ipj;?

) in the first data assimilation cycle we imposa@adom noise t@, with a mean of zero and standard
deviation ofog

= 0.2, in all grid cells. Note that the assumeadsad deviation is on average 45% smaller the true
standard deviation ¢,. We also smooth the initial random perturbatiosisgiGaspari and Cohn's
[1999]

correlation function with the spatial decorrelatlength-scale of 120 km (recall that this is diéfet
from the “true” decorrelation length scales of 80 i the southern part and 160 km in the northern
part). The smoothing is appropriately normalize@reserver,. In subsequent data assimilation

cyclesp}? is updated usinffL0), with application of an inflation factor in someperiments, and no
additional smoothing is applied.

[29] The experimental design described abovéasen for the following reasons. The reason for
splitting the domain into two parts, with distinctifferent magnitudes in the eastern and western
parts, is to be able to examine the method's chiyati describe discontinuous transition between
the fluxes of different magnitudes. Sharp changeke fluxes often occur in nature, either due to
sharp differences between different ecoregions laret, or due to sharp differences between the
ocean and the land. Also, sharp changes occueimgteorological fields (e.g., associated with the
passages of the frontal systems), which are difftothandle even by the most advanced data
assimilation systems available in geosciences today

[30] The rationale for choosir@aspari and Cohn’s [1999] correlation function for smoothing was
its generality: it can be easily manipulated (bifedlent choices of parameters) in order to define
different covariance structures and decorrelatmgths for the fields of interest. The same
correlation function (with different parameterspften used in geosciences. We define larger
decorrelation length scales in northern half ofdbenain, than in the southern half, for the purpose
of evaluating the method's capability to recovéfedent scales, which is an additional difficulty o
the data assimilation problem.

[31] In the following subsections we present amdluate the reduced-rank MLEF results
employing varying ensemble size with the conditioait Nens <2 Ngate- We also present the full-rank
MLEF results Nens = Ngate

=1800) and use them to evaluate the reduced-emiltts. The experiments of this study are
summarized imable 1

6. Results

6.1. Impact of Dynamic L ocalization

71 Figure4. Estimate@resp, Obtained in the first, third, and seventh data
assimilation cycle in the experiments with 40 enslermembers. Results
without localization are shown in panels (a), éd (c), and with
localization in panels (d), (e) and (f).

=1 Figure 5. As inFigure 4 but for ensemble size of 100.
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———==—=-—1 Figure6. Estimate@res, Obtained in the first, third, and seventh data
0% L 1| assimilation cycle in the experiments with 500 4880 ensemble members.
7 Fé 2ol Results from the experiment with 500 ensemble mesnde shown in
FELL B R panels (a), (b), and (c), and from the experimétit #8800 ensemble
— members (KF) are shown in panels (d), (e), and (f).

[32] The impact of covariance localization on sadution for one of the two biaseésp) is shown

in Figures 45, and6

as a function of ensemble size and data assimilagoles. Experimental results using 40 ensemble
members are given figure 4 using 100 ensemble memberdg-igure 5 and using 500 ensemble
members irFigure 6 Reference KF solution is also giverFigure 6 By comparing the results with
and without localization ifrigure 4 where the smallest ensemble size is used (40rdass), we can
notice large differences between the two solutiartbe areas far from the observations (recall that
simulated observation from the WLEF tower, locatethe center of the domain are used in the
experiments of this subsection). Comparing theltesuith the truth, given ifrigure 3h and also

with the KF solution given ifrigures 6d—gfindicates that the experiment with localizatipariels d,
e, and f) is in better agreement with the truth aittd the KF solution, thus indicating a positive
impact of covariance localization. The improvemerts mostly confined to the areas far from the
observations, which is an expected impact of cav&e localization, since it does not change the
solution in the vicinity of the observations. Oran@lso notice localized impact of data in the firs
data assimilation cycle irF{gure 44, where the estimatgtkes is equal to the background value (of
0.75) in the large portion of the model domainlalter cycles Figures 4e—4f the data influence
gradually spreads out, which results in furthernomements of the solution. Note that the solutibn o
the experiment without localization also improvathwime, however, remains worse than the
solution with localization.

[33] One should be aware, however, that evemgtienal KF solution departs considerably from

the truth in the areas far from the observatiomgeslittle information about the truth is giventtee
system in these areas. These results could besfuntiproved by employing additional data
(additional towers, as shown later). The solut®also weakly constrained over the Great Lakes, but
it is not clear if additional observations wouldprave the results over the Great Lakes because both
GPP and respiration are zero there.

[34] Experimental results with 100 ensemble mensifagure 9 still indicate larger differences
between the experiments with and without local@ain the less observed areas, however these
differences are smaller than in the experimentb Wit ensemble members. This is because
covariance localization is less critical when theamble size is larger.

[35] Finally, comparing the experimental resuiséng 500 ensemble members with the KF results in
Figure § one can notice a striking similarity betweenfttlie solutions, thus indicating that, when
larger ensemble sizes are used, covariance lottahzaight not be needed, or it might be helpful
only in the initial data assimilation cycles. Nobat dynamic localization is applied only in thesfi

two data assimilation cycles in the experiment \Bid ensemble members (see dlable ).

[36] Figures 45, and6

also indicate that the MLEF is capable in descgldiscontinuous transition in the fluxes from east
to west portion of the model domain. This discomtinis better described in the well-observed area,
where the data information content is larger (rai®larger, as shown ifigure 1. The increasing
ensemble size also improves the MLEF capabilityetmver this discontinuity, however, it is not

well recovered in the non-observed or weakly obsgiareas (where ratras small). The MLEF
capability to realistically describe different seslis not obvious in this experimental set up, ¢fou
there are hints of smaller scales in the southertigm and larger scales in the northern portiotha
experiments with larger ensemble size.
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Figure 7. Analysis (posterior) uncertaingges Of the estimatefres,
e . obtained in the first, third, and seventh datamagaiion cycle in the
ﬂ E “;i% experiments with 40 ensemble members. Results utiflboalization are
=8 == shown in panels (a), (b), and (c), and with locdlan in panels (d), (e), and
(f). The values o&res are multiplied by 100.

Figure 8. As inFigure 7 but for ensemble size of 100.

Figure 9. Analysis uncertaintgres Of the estimatefires, Obtained in the
first, third, and seventh data assimilation cyaléhie experiments with 500
and 1800 ensemble members. Results from the expetrivith 500
ensemble members are shown in panels (a), (b)canand from the
experiment with 1800 ensemble members (KF) are showanels (d), (e),
and (f). The values afrese are multiplied by 100.

[37] Let us now examine the impact of dynamiclaation on the posterior uncertainty of the
estimated solution. IRigures 78, and9 posterior uncertaintyres is shown as a function of
ensemble size and data assimilation cycles. Rassiltg 40 ensembles are giverFigure 7 100
members irFigure 8 and 500 and 1800 membergHigure 9 Assuming, as before, that the results
using KF are optimal, one can immediately noticd #hes is severely underestimated in the
experiment with 40 ensemble membdfg(ires 7a—7c This is significantly improved when
applying dynamic localizatiorF{gures 7d—7f since these results, even though not perfeetyarch
closer to the optimal results, givenkigures 9d—9fThe positive impact of dynamic localization on
oresp IS Still present in the experiment with 100 ensknmbembersKigure 8, but it is less
pronounced. Finally, when the ensemble size is k&ge (500 ensembles), the estimatggp is
almost indistinguishable from the optinwts, obtained using the KR-{gure 9.

= Figure 10. Total RMS errors of the estimated biaggsg andfresp)

2= | calculated with respect to the truth, shown astfons of data assimilation

—| cycles. Results from the experiments with varyingeable size (from 40 to

| 1800), with and without dynamic localization, ah®wn (experiments listed
in Table J.

[38] To end this subsection, we summarize thelteby plotting the total Root Mean Square
(RMS) errors of the estimatg@drp andprese as functions of data assimilation cycles-igure 10

The total RMS errors are calculated with respethéctruth, in all model points, and for all
experiments listed imable 1 Figure 10

indicates clear positive impact of dynamic locai@ain reducing RMS errors in all data
assimilation cycles when the ensemble size is s@@land 60 ensembles). For ensemble size of 100,
the impact of covariance localization is slightggative, since the RMS errors are slightly smatier
the experiment without localization, indicating tf@ ensemble sizes of around 100 or larger
covariance localization might not be needed (adtlaat in all cycles). Finally, the RMS errors bét
experiment with 500 ensemble members, which isoperéd using localization only in the first two
cycles, are comparable to the RMS errors of theAdglitionally, posterior error covariance is in
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good agreement with the KF resuligure 9, thus indicating superior performance of the
experiment with 500 ensembles in both aspectsrasdts of this subsection are quite encouraging
indicating not only positive impact of dynamic Itization when the ensemble size is small, but also
smooth convergence of the reduced-rank MLEF salutiahe KF solution. We will further examine
the convergence of the MLEF solution toward thedékition in the experiments with the Ring of
Towers, presented in the next subsection.

6.2. Impact of More Data

== Figure 11. Total RMS errors of the estimated biagks# andfresr)
& _ =% | calculated with respect to the truth, shown astfons of the ensemble size.
(“b—___ | Results from the experiments with WLEF tower ordgr{oted by prefix
---- WLEF) and the experiments with the Ring of TowevH prefix Ring) are

shown for third and seventh data assimilation cycle

[39] To further examine the convergence of theE¥Lsolution to the KF solution, let us examine
total RMS errors of the estimated biasg&se§ andfres), plotted inFigure 11as functions of

ensemble size. Results from third and seventhatsianilation cycle, using observations from a
single tower (WLEF) and the Ring of Towers, arevemoAs the figure indicates, all experiments
converge to the KF solution. The convergence isdpdo the ensemble size of 100 (the lines are
steep), and after that, it dramatically slows dowmus in the range of ensemble sizes 100-1800 only
small improvements could be expected when incrgabi® ensemble size. Thus from the cost-benefit
point of view, one can decide that ensemble siZH06fis the best choice for the data assimilation
problem of this study.

[40] Examining the impact of more dataHigure 11 we can notice that more data from the Ring
helps reducing the RMS errors for all ensemblessizdooth 3rd and 7th data assimilation cycle. The
improvements are larger in the 3rd cycle (afted@@s) than in the 7th cycle (after 70 days), which
leads to the results of the Ring after 30 daysdefrsimilar quality as the results of the WLEFeaft

70 days. These results indicate that more obsenatwould be helpful when estimating biases that
have shorter timescales.

[41] Let us now examine if the more observatifsom the Ring brings more independent pieces of
information. This can be accomplished by evaluad@f- for signal @), defined as [e.gRodgers,
200Q Zupanski et al., 2007:

)
dszgm: (11]

wherel;? are eigenvalues of the information mattixgiven in(6) and(7). DOF for signal i(11)
measures the number of independent pieces of iafitwmof assimilated observations that are above
the noise ° > 1). Since dimensions of the matfxare small Kles X Neng) it is easy to calculate its
eigenvalues, even when the model state vectorgs kg.e.,Ngae iS large). Note thads cannot exceed
the ensemble size, thus, it can be underestimatdekiexperiments using insufficient ensemble sizes
Nevertheless, as demonstratedupanski et al. [2007], it is still valid to comparés values within

the same ensemble size.
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e Figure12. DOF for signal obtained in the experiments wite WLEF

=5 | tower and with the Ring of Towers, shown as a fiamcdf data assimilation
~———| cycles. Results using 100 ensemble members (WLHFrand
—. | Ring_2100ens) and 1800 members (WLEF_KF and Ring a&&shown.

[42] InFigure 12we showds, obtained in the experiments with the WLEF towead avith the Ring

of Towers, as a function of data assimilation cycResults using ensemble size of 100 and 1800
members are shown as examples. As the figure iredicassimilation of more observations brings
more independent information to the system. Thermétion content of data is the highest in the firs
couple of data assimilation cycles, since the sy'stknowledge about the truth is poor (similar
results are also obtained using a different dynalmmdel inZupanski et al., 2007). The information
content also changes from one data assimilatiole ¢ganother due to dynamical changes in the
flow patterns and other variables that drive th®MPinfluence functions. We can also notice a
slight underestimation of the true information @atitin the experiments with 100 ensembles (lines
are slightly below the lines obtained using the ;kiewever, the essential characteristics of the
information content are well captured with 100 eniskes.

Figure 13. Estimate@Bgpp andpfresp, Obtained in the seventh data
assimilation cycle in the experiments with 100 emsie members. Results
with observations from the WLEF tower are showpamels (a) and (b) and
with the observations from the Ring of towers imgla (c) and (d).

Figure 14. Analysis uncertaintieéspp anderesp, Obtained in the seventh
data assimilation cycle in the experiments with #88emble members.

: Results with observations from the WLEF tower dreven in panels (a) and
g “i}r (b) and with the observations from the Ring of tosvi@ panels (c) and (d).
SHL FETH | The values obgpp anderes are multiplied by 100.

Figure15. As inFigure 13 but using KF.
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Figure 16. As inFigure 14 but using KF.

[43] We illustrate the impact of more data on sbhé&utions fofgpp andpres and their posterior
uncertainties ifFigures 1314, 15, and16. Results obtained after 7th data assimilationecgce
shown.Figures 13and14 show estimateficpr andfres> and their uncertainties, obtained using 100
ensemble members (experiment MLEF_100ens_ldabfe 1 which includes dynamic localization).
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Figures 15and16

show the same results, but using the KF approdueh fifjures indicate that more observations bring
further improvements to the estimated biases agid timcertainties, for both the MLEF with 100
ensemble members and the KF. The east-west disadgtline is slightly better defined, there is
more distinctions between small scales in the santhlarge scales in the north, and the minimum
values of the posterior uncertainties match thatloos of the towers. These are all theoretically
expected, and thus quite encouraging results,atidgg good performance of the data assimilation
system, and benefits of having more towers. Funtbeg, the locations of the towers in the Ring
seem to be appropriately chosen, since this chiemdts in a rather uniform wide area around the
towers of strong error reduction. This, howeves tmabe confirmed in the experiments with real
observations, which will be done in the next stage.

[44] Finally, by comparing the uncertainties abéal using 100 ensemble members and 1800
membersigures 14and16), one can notice a slight underestimation of tiners in the experiment
with 100 ensembles. This underestimation did ngelen obvious detrimental impact on the
solution, since the MLEF remained stable when riapgalata assimilation cycles (it did not show
any signs of divergence). Considering the companaticost, which is directly proportional to the
ensemble size, slight deficiencies in the redueed-solution are still a small price to pay for the
wealth of valuable information offered by this d@dn, as demonstrated in the experimental resfilts o
this study.

7. Conclusions

[45] In this study we have evaluated the pot¢nfi@nsemble based data assimilation approaches,
using the MLEF approach as an example, to estimatgplicative bias correction terms, applied to
photosynthesis and respiration £ilixes. The CQfluxes, obtained by running a complex
atmosphere-biosphere model (SiB-RAMS), are usddrasg to a relatively simpler (and
computationally less expensive) carbon transpodeh.PDM), which produced CO

concentrations at available observation locations.

[46] The experimental results, using simulated, C@hcentrations from a single tall tower (WLEF)
and the Ring of Towers of northern Wisconsin, iatkc that the MLEF could successfully estimate
carbon flux biases and their uncertainties. Tha dasimilation algorithm had a stable performance
over a wide range of ensemble sizes, and convemedthly to the KF solution as the ensemble size
approached the size of the control variable. Tiesarable results indicated that assimilation of,CO
concentrations using an ensemble-based approatthasuthe MLEF, could reduce model bias errors
in CO,

fluxes, at least when using similar process modegls our study and when observations are
available.

[47] One can also ask a question if the estimbiaskes could be applied to improve {Dxes in

the future (i.e., the forecasted €O

fluxes), when observations are not available. Weeekthat the biases estimated at the current time
should be applicable for correcting the £O

fluxes in the future, as long as the biases ham 8ime variability. However, the question regaglin
how long in the future the estimated bias correcteyms could remain constant is still open, since
we would need to perform data assimilation expemi@vith real observations to learn about time
variability of the “real” biases. In this study \wwmesumed that the “true” biases remained constat ov
a long period of time (70 days), but in reality thases could change on a shorter timescale, which
would make the bias estimation problem more difficu

[48] We also examined the impact of covarian@aliaation, formulated using a new “distance”
function defined in the information space. Thidaige, being sensitive to the flow patterns, is
different from the classical geographical defimtiaf distance. The impact of covariance localizatio
was positive for small ensemble sizes (40—-60).I&ger ensemble sizes we have found that the
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localization was not essential, at least not afteouple of the initial data assimilation cyclebe$e
are expected results of a covariance localizatpgpraach.

[49] Verifications with respect to the “truth”dicated that, even when using the best data
assimilation approach (KF), there is room for farthmprovements of the results, which can be
achieved by including more observations (e.g., nioners). Adding more observations from the
Ring of Towers further improves the data assinolatiesults in terms of both the estimated biases
and their uncertainties. The experiments with ntoveers also indicated that the “true” bias could be
recovered after a shorter time period (e=ggure 13, which is important for estimating biases with
shorter timescales (then 70 days).

[50] The results of this study, even though emagung, will have to be confirmed in the
experiments using real observations. This is pldriaethe future research.
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