
Measurement network design including traveltime

determinations to minimize model prediction uncertainty

Gijs M. C. M. Janssen,1,2 Johan R. Valstar,2 and Sjoerd E. A. T. M. van der Zee3

Received 24 August 2006; revised 18 July 2007; accepted 24 September 2007; published 5 February 2008.

[1] Traveltime determinations have found increasing application in the characterization of
groundwater systems. No algorithms are available, however, to optimally design sampling
strategies including this information type. We propose a first-order methodology to
include groundwater age or tracer arrival time determinations in measurement network
design and apply the methodology in an illustrative example in which the network design
is directed at contaminant breakthrough uncertainty minimization. We calculate
linearized covariances between potential measurements and the goal variables of which we
want to reduce the uncertainty: the groundwater age at the control plane and the
breakthrough locations of the contaminant. We assume the traveltime to be lognormally
distributed and therefore logtransform the age determinations in compliance with the
adopted Bayesian framework. Accordingly, we derive expressions for the linearized
covariances between the transformed age determinations and the parameters and states. In
our synthetic numerical example, the derived expressions are shown to provide good first-
order predictions of the variance of the natural logarithm of groundwater age if the
variance of the natural logarithm of the conductivity is less than 3.0. The calculated
covariances can be used to predict the posterior breakthrough variance belonging to a
candidate network before samples are taken. A Genetic Algorithm is used to efficiently
search, among all candidate networks, for a near-optimal one. We show that, in our
numerical example, an age estimation network outperforms (in terms of breakthrough
uncertainty reduction) equally sized head measurement networks and conductivity
measurement networks even if the age estimations are highly uncertain.
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1. Introduction

[2] Measurement network design or data worth analysis,
whether done manually or using more or less sophisticated
mathematical guidelines, is an inherent part of any soil and
groundwater investigation, as it naturally evolves from the
measurement campaign’s purpose: obtaining the necessary
information given the limited resources. Accordingly, this
field of research receives constant attention in the literature.
Nowadays, the literature offers a wide range of design
strategies for a large number of applications, which roughly
can be divided into five categories: 1) maximizing the
likelihood of plume detection [Massman and Freeze,
1987a, 1987b; Meyer and Brill, 1988; Meyer et al., 1994;
Storck et al., 1997]; 2) minimizing the uncertainty in
groundwater quality [Loaiciga, 1989; Herrera et al.,
2000; Nunes et al., 2004; Wu et al., 2005]; 3) model
calibration for minimizing the uncertainty in model predic-

tions [McKinney and Loucks, 1992;Wagner, 1995; Tiedeman
et al., 2003, 2004]; 4) optimizing groundwater and remedi-
ation management [James and Gorelick, 1994; Wagner,
1999; Feyen and Gorelick, 2005]; 5) model calibration for
minimizing model parameter uncertainty [Hughes and
Lettenmaier, 1981; Bogardi et al., 1985; Knopman and
Voss, 1989; Knopman et al., 1991; Sumner et al., 1997;
Pardo-Iguzquiza, 1998; Chang et al., 2005]. The last
application hardly ever is a purpose on its own but is
usually conducted in order to improve model prediction
reliability, which in its own turn can potentially lead to the
design of groundwater and remediation management strat-
egies that are more cost-effective [James and Gorelick,
1994; Wagner, 1999; Feyen and Gorelick, 2005].
[3] The design strategies reported in the literature gener-

ally seek the optimal placement and/or sampling times for
measurements of heads, concentrations, parameters, or a
combination of these three. In the past two decades,
however, traveltime determinations have found increasing
application as another type of information with which flow
models can be constrained. By traveltime determinations we
mean both groundwater age estimations and tracer arrival
time measurements. Groundwater ages can be derived from
concentrations of environmental tracers, such as 3H/3He
[e.g., Smethie et al., 1992], 85Kr [e.g., Solomon et al., 1992],
chlorofluorocarbons [e.g., Dunkle et al., 1993], or a com-
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bination of them [e.g., Ekwurzel et al., 1994; Reilly et al.,
1994; Szabo et al., 1996]. By tracer arrival times we mean
the advective (mean) arrival times that are obtained in field
experiments using conservative tracers [e.g., Anderman and
Hill, 2001]. When accurate, traveltime determinations can
be more informative than head and conductivity measure-
ments, as the sensitivity of heads to parameters is usually
limited and the spatial correlation range between traveltime
and conductivity is often larger than the correlation range of
the conductivity itself [Harvey and Gorelick, 1995; Sheets
et al., 1998; Stute and Schlosser, 2000].
[4] Manual calibration of flow models using tracer de-

rived groundwater ages has been performed by, for exam-
ple, Reilly et al. [1994], Sheets et al. [1998] and Izbicki et al.
[2004]. Systematic, mathematical approaches to parameter
inference from age data or data on tracer arrival time are
given by Harvey and Gorelick [1995], Portniaguine and
Solomon [1998], Woodbury and Rubin [2000], Cirpka and
Kitanidis [2001], and Feyen et al. [2003]. However, trav-
eltime determinations have never been incorporated in the
design of optimal measurement strategies. The purpose of
the present study is therefore to propose an algorithm that
optimally configures measurement networks including age
or tracer arrival time determinations.
[5] We will focus our network design on minimizing

contaminant breakthrough prediction uncertainty, thus mak-
ing a contribution to the 3rd network design application
category mentioned earlier. Aiming a measurement cam-
paign at reducing prediction uncertainty makes sense, as ‘‘it
is rarely feasible to improve the representation of all aspects
of a simulated system. Thus it is of interest to identify the
particular attributes of a flow system that are most important
to the relevant predictions, and to focus field characteriza-
tion on these attributes’’ [Tiedeman et al., 2003]. Yet, this
category has received little attention in the literature. If we
narrow down our search to those studies that take correla-
tions between measurements into account, then the most
important contributions are given by Wagner [1995] and
Tiedeman et al. [2003, 2004]. These authors all used the
first-order linear statistical inference method [Dettinger and
Wilson, 1981] to infer the prediction covariance matrix from
sensitivity matrices and the posterior parameter covariance
matrix. They recalculated the posterior parameter covari-
ance matrix in every network evaluation that is performed,
which in their approaches requires repeated inversion of a
squared estimation Jacobian, i.e., the matrix of state mea-
surement sensitivities. This can become computationally
demanding if the number of unknown parameters is large,
for example in case of a highly discretized hydraulic
conductivity field. Here, we will adopt an adjusted version
of the representer-based inverse method [Valstar, 2001;
Valstar et al., 2004], a Bayesian algorithm which can
efficiently calculate the linearized covariances between
measurements and predictions, and between the measure-
ments themselves. On the basis of these covariances, the
posterior covariances of the states and predictions can be
calculated for every possible measurement set, without
having to recalculate the posterior parameter covariance
matrix.
[6] The purpose of the proposed method is to provide

insight in where in the flow field traveltime information

would be most valuable for the reduction of prediction
uncertainty. A presupposition of the proposed method is that
the traveltimes can be derived with a reasonable and
quantifiable reliability from field measurements. As will
be discussed in section 5, for groundwater age this is a very
challenging issue in itself, but how to do that is out of the
scope of this paper.
[7] In the next section, we will discuss the concepts and

the mathematical development of our first-order design
method. The method will be illustrated with a numerical,
synthetic example, the details and results of which are given
in section 3 and 4, respectively. Conclusions and a dis-
cussion on some aspects of the method follow in section 5.

2. Theory

[8] As we feel that the method is better explained by
focusing it directly on a tangible illustrative example, first a
hypothetical problem statement is introduced. Subsequently,
an outline of the first-order design method is given, fol-
lowed by a presentation on how we arrive at the necessary
prior and posterior covariances in the applied Bayesian
framework.

2.1. Problem Statement

[9] The illustrative example with which the design method
will be explained is schematized in Figure 1. It represents a
two-dimensional cross-section of a confining layer (y2–y3)
that protects Aquifer 2 (y3–y4) from a conservative con-
taminant released out of a source zone (x7–x8) at the top of
Aquifer 1 (y1–y2). The control plane at which breakthrough
is evaluated is located at y3 along the bottom of the area of
interest (x6–x9, y2–y3).
[10] All parameters and dimensions in the example prob-

lem are assumed constant and known, except for the
hydraulic conductivity (K) in the shaded center part (x5–
x10, y2–y3) of the confining layer, which is assumed to be
Gaussian distributed with known mean and variogram
functions. A full description of the system’s quantitative
properties will follow in section 3 where the system
visualized in Figure 1 is used in the example calculations.
[11] A steady state head distribution is obtained by

assigning recharge on top of Aquifer 1 and by imposing
constant head boundaries in Aquifer 2. Except for the upper
boundary and the left and right boundaries of Aquifer 2, all
boundaries are closed. For illustration, Figure 1 also shows
the contaminant plume that spreads from the contaminant
source zone when the confining layer is modeled as a
homogeneous medium with K set to its geometric mean
(see section 3) and the boundary conditions are imposed as
in the computational examples (section 3).
[12] The question underlying the theoretical development

given in the remainder of section 2 is how to optimally
choose between age, head and conductivity measurements
and how to optimally distribute them over the potential
sampling locations, indicated by the stars in Figure 1.

2.2. Outline of the First-Order Design Method

[13] If the control plane over which the breakthrough is
predicted receives a significant inflow that does not origi-
nate from the contaminant source zone, as is the case in
Figure 1, the contaminant breakthrough time probability
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distribution p(tBT) is a function of the traveltime probability
of the entire inflow and the contaminant breakthrough
location probability:

p tBTð Þ ¼ p t0 þ tð Þ ¼
ZxCP¼B

xCP¼A

p t; xCP
� �

p xCP 2 c
� �

dxCP ð1Þ

or in discretized form:

p tBTð Þ �
XxCP¼B

xCP¼A

1

2
p t; xCP
� �

p xCP 2 c
� ��

þ p t; xCP þDxCP
� �

p xCP þDxCP 2 c
� ��

DxCP ð2Þ

[14] In equations (1)–(2), tBT is the contaminant break-
through time evaluated at the control plane, t0 is the starting
time of the contamination, t is arrival time (or groundwater
age at the control plane), p(t; xCP) is the marginal arrival
time probability evaluated at xCP, xCP is a location at the
control plane, p(xCP 2 c) is the probability that xCP belongs
to the contaminant breakthrough zone c (c is the collection
of all breakthrough locations c), and A and B are the spatial
x limits of the control plane (x6 and x9 in Figure 1). DxCP is
the discretization interval along the control plane.
[15] Assuming that t and c are Gaussian distributed, we

have

p t; xCP
� �

� N t;s2
t xCPð Þ;mt xCPð Þ

� �
ð3Þ

p xCP 2 c
� �

�
XxSZ¼D

xSZ¼C

1

2
N xCP;s2

c xszð Þ;mc xszð Þ

� �h

þ N xCP;s2
c xszþDxszð Þ;mc xszþDxszð Þ

� �i
DxSZ ; ð4Þ

where N(p1; p2, p3) represents the probability density of p1
according to the norma ribution, parameterized with

variance p2 and mean p3, t(x
CP) is the arrival time of a

particle arriving at the control plane at location xCP, st(xCP)
2 is

the arrival time (or age) variance at xCP, and mt(xCP) is the
mean arrival time (or age) at xCP. c(xSZ) is the breakthrough
location of a particle that originated from xSZ, where xSZ is a
location in the contaminant source zone. sc(xsz)

2 and mc(xsz)
are the breakthrough location variance and mean (along the
x axis) of a particle originating from xSZ, respectively, DxSZ

is the discretization interval along the contaminant source
zone, and C and D are the spatial x limits of the contaminant
source zone (x7 and x8 in Figure 1).
[16] Finally, the variance of the breakthrough time stBT

2

can be calculated as:

s2
tBT

¼

Z1
tBT¼0

tBT � E tBTð Þð Þ2p tBTð Þdt

Z1
tBT¼0

p tBTð Þdt

with E tBTð Þ ¼

Z1
tBT¼0

tBTp tBTð Þdt

Z1
tBT¼0

p tBTð Þdt

; ð5Þ

where E(tBT) is the expected contaminant breakthrough
time. Equation (5) is the objective function that is to be
minimized in the search for an optimal network design.
[17] From equations (1)–(5) it follows that to evaluate the

performance of different measurement network designs, the
influences of the observable variables at their potential
sampling locations on the prediction of the breakthrough
time t(xCP) and the breakthrough locations c(xSZ) have to
be known. This makes t(xCP) and c(xSZ) our goal variables
and they will be called as such throughout the remainder of
this paper.

Figure 1. Schematic overview of the numerical grid used in the calculations, showing the prior
contaminant flow (in dark grey). RCH = recharge. CHB = constant head boundary. x0 = 0 m, x1 = 2.0 m,
x2 = 2502.0 m, x3 = 2752.0 m, x4 = 2777.0 m, x5 = 2779.5 m, x6 = 2879.5 m, x7 = 3009.5 m, x8 = 3109.5 m,
x9 = 3159.5 m, x10 = 3259.5 m, x11 = 3262.0 m, x12 = 3287.0 m, x13 = 3537.0 m, x14 = 6037.0 m, x15 =
6039.0 m. y1 = 0 m, y2 = �2.0 m, y3 = �22.0 m, y4 = �32.0 m. Bold lines indicate no flow boundaries.
Potential measurement locations labeled UR, UL, LR, LL and CNTR are the locations where the head
variances are evaluated in Figure 4. Arrows indicate flow directions.
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[18] The recently proposed representer-based inverse
method [Valstar et al., 2004] provides an efficient way to
calculate these influences. The representers calculated in
this method are equivalent to the linearized covariances
between the observable variable at the potential sampling
location and the variables for which the representers are
defined. As such, they provide a first-order estimation of the
prior covariances of the observable variables and the goal
variables t(xCP) and c(xSZ). These covariances can subse-
quently be used to approximate the posterior covariances of
the goal variables, and therefore the posterior breakthrough
time uncertainty, before the measurements are actually
taken.
[19] Thus the presented algorithm can efficiently calcu-

late, at first order, the expected posterior breakthrough time
variance stBT

2 (equation (5)) of the contaminant for every
candidate measurement network design. A Genetic Algo-
rithm was used to efficiently search for a near-optimal
design that minimizes stBT

2 . For clarification, a flowchart
of the design method is given in Figure 2.

2.3. Bayesian Framework: Derivation of
Ln(Breakthrough Time) and Breakthrough
Location Representers

[20] The covariances between the breakthrough location
c(xSZ) and any observation are given at first order by
breakthrough location representers. These breakthrough
representers have been derived before (N. P. A. J. van de
Wiel, manuscript in preparation), though more generally as
particle location representers.
[21] The covariances between the breakthrough times

t(xCP) and any observation, as well as the covariance
between groundwater ages and any other measurement,
are given at first order by traveltime representers, which
also have been derived before (N. P. A. J. van de Wiel,
manuscript in preparation). In that work, the derivation is

carried out for Gaussian distributed traveltimes. However,
unless the traveltime is evaluated in the large displacement
regime (i.e., after many correlation distances), where by
virtue of the Central Limit Theorem [e.g., Zhang, 2002,
p. 61] the Gaussian assumption might be valid, the trav-
eltime probability density function will, in general, show a
significant skewness. In the literature, therefore, skewed
distributions are often adopted for the traveltime, such as the
lognormal [e.g., Simmons, 1982; Cvetkovic et al., 1992;
Kovar et al., 2005] or the inverse-Gaussian [e.g., Cirpka
and Kitanidis, 2000] distribution. Here, because of the
analytical simplicity of logarithmic transformations, we will
treat the traveltime as a lognormally distributed variable,
transform traveltime estimations to the Gaussian distribu-
tion by taking their natural logarithm to make them comply
with the Bayesian framework of the representer-based
inverse algorithm, and derive Ln(traveltime) representers
accordingly.
[22] Consider the flow, the particle traveltime, and the

particle location equations:

f1 ¼ Afg að Þhg � qf ¼ 0 ð6Þ

fs
2i
¼ 0 ¼ tsi � ts�1

i �Dtsi a; h; xsi ; x
s�1
i ; ysi ; y

s�1
i

� �
ð7Þ

fs
3i
¼ 0 ¼ xsi � xs�1

i �Dxsi a; h; ysi ; y
s�1
i

� �
for xsi 6¼ xcell boundary

xsi � xcell boundary for xsi ¼ xcell boundary

�
ð8Þ

fs
4i
¼ 0 ¼ ysi � ys�1

i �Dysi a; h; xsi ; x
s�1
i

� �
for ysi 6¼ ycell boundary

ysi � ycell boundary for ysi ¼ ycell boundary

�
ð9Þ

In these and following equations, subscripted indices show
vector and matrix dimensions and how, where applicable,
matrix-vector multiplications should be performed. Products
of terms containing the same index twice should be summed
over that index. The ranges of all indices used are given in
Table 1. Furthermore, in equations (6)–(9), h is the vector
of nodal heads, q is the vector of driving forces, and A(a) is
the system matrix depending on the unknown parameters a
(=Ln(K)), ti is the traveltime of particle i, Dti

s is the duration
of travel step s, xi and yi are the locations along respectively
the x- and y-axis of particle i, and Dxi

s and Dyi
s are the

distances traveled along respectively the x- and y-axis by
particle i during travel step s. For this study we applied a
numerical particle tracking scheme in which travel step
sizes are limited by reaching cell boundaries rather than by
reaching set time step sizes. In this case, Dti

s and Dyi
s

depend on xi
s and xi

s�1 if travel step s is limited by reaching
an x-boundary of a cell. Furthermore, Dti

s and Dxi
s depend

on yi
s and yi

s�1 if travel step s is limited by reaching a
y-boundary of a cell.
[23] The representer-based inverse method searches for

the maximum a posteriori estimates of the parameters,
given the measurements. In this paper, the measurements
that are taken into account are head (h), conductivity
(K), groundwater age (t), and particle breakthrough

Figure 2. Flowchart of the proposed network design
algorithm. The numbers in the black boxes refer to the
equations using which the actions described in the text
boxes attached to them are performed.
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location (c) measurements. As will be explained in
section 2.4, c measurements will be incorporated in
the algorithm as pseudo observations only, to enable
the calculation of cross covariances between the goal
variable c(xSZ) and the other measurement types.
[24] For a steady state system, if all parameters a and

measurement errors v are assumed to be multivariate Gauss-
ian distributed with known covariances and they are not
cross-correlated, the maximum a posteriori estimates of the
parameters can be found by minimizing the following
objective function:

J ¼ a� �a½ �T P�1
a

� �
a� �a½ � þ z�M h;a;Ln tð Þ;cð Þ½ �T

� P�1
v

� �
z�M h;a;Ln tð Þ;cð Þ½ �; ð10Þ

where J is the objective function value, z is the vector of
measurement values, M( ) is a linear function that
interpolates the vector of model predictions at the nodal
points to the locations of the measurements, a is the prior
mean of the parameters, Pv is the covariance matrix of the
measurement errors n, and Pa is the prior covariance matrix
of the parameters. By the Lagrange Method, we expand the
objective function as:

J* ¼ J þ 2lh f1 � qf
� �

þ
XNi

i

XNsi

s

2ls
ti

fs
2i

� �h i

þ
XNi

i

XNsi

s

2ls
xi

fs
3i

� �h i
þ
XNi

i

XNsi

s

2ls
yi

fs
4i

� �h i
; ð11Þ

where Ni is the number of tracked particles, Nsi
is the total

number of steps traveled by particle i, lh is the head adjoint
vector, lt is the traveltime adjoint vector, and lx and ly are
the x and y location adjoint vector, respectively. In the
minimum of objective function J*, the variation of J* is
zero for any variation of a, h, x, y, t, lh, lx, ly and lt.
Forcing this condition on equation (11) yields a system of
9 coupled Euler-Lagrange equations (see Appendix A). The
solution of the system of Euler-Lagrange equations gives
the set of parameters at which the derivatives of the
extended objective function (equation (11)) with respect to
the parameters are zero. Assuming that equation (11) has
only 1 global minimum and no local minima, this is the set
of parameters that optimally obeys the observations given
the prior information.
[25] The nonlinear system of Euler-Lagrange equations is

solved by first linearizing its individual equations. Then, the
unknowns are expanded into a finite number of representer
terms, each of which represents the influence of one
particular measurement unknown, see Appendix B.

Subsequently, the representer expressions and the unknowns
are updated iteratively. The representer expansions enable
the decoupling of the Euler-Lagrange equations into a set of
expressions for the representers and their coefficients that
can be sequentially solved (see Appendix C). In our first-
order network design approach, the inverse algorithm is
terminated in the first iteration after the Ln(t) representers
and the breakthrough location representers are obtained.
Updating the unknowns in preparation for the second
iteration and further requires measurement information,
which is assumed to be unavailable at this stage of the
network design.
[26] From Appendices C9 and C7 it follows that after the

first iteration the Ln(t) representer (Q*) for a particle i is
given by:

Q*Nsi

i ¼ 1

tNsi
i

X1
s¼Nsi

@Dtsi
@al

Yl þ
X1
s¼Nsi

@Dtsi
@hg

Xg þ
X1
s¼Nsi

@Dtsi
@xsi

Xs
i

2
4

þ
X1
s¼Nsi

@Dtsi

@xsþ1
i

Xsþ1
i þ

X1
s¼Nsi

@Dtsi
@ysi

Ys
i þ

X1
s¼Nsi

@Dtsi

@ysþ1
i

Ysþ1
i

3
5;
ð12Þ

with terminal conditions Xi
Ns+1 = 0 and Yi

Ns+1 = 0, and the
breakthrough location representer is given by:

X
Nsi

i ¼
XNsi

s¼1

@Dxsi
@al

Yl þ
XNsi

s¼1

@Dxsi
@hg

Xg þ
XNsi

s¼1

@Dxsi
@ysi

Ys
i

þ
XNsi

s¼1

@Dxsi
@ys�1

i

Ys�1
i ; ð13Þ

with boundary conditions Yi
0 = 0. In equations (12) and (13),

Y is the parameter representer (see Appendices B and C5),
X is the head representer (see Appendix B and C6), and ti

Nsi is
the breakthrough time of particle i. Equation (12) is in
backward notation, because particles defined to calculate
breakthrough time representers are tracked backward from
the locations at the control plane where breakthrough time
uncertainty information is desired.

2.4. Computation of Posterior Breakthrough Time
Probability

[27] The first-order posterior variances of the goal vari-
ables can now be calculated as:

P
posterior

Ln tið Þ ¼ P
prior

Ln tið Þ �Q*Nsi

ip M X;Y;Q*;Xð Þ þ Pvð Þ�1
� �

pq
Q*Nsi

qi

ð14Þ

Pposterior
ci

¼ Pprior
ci

� X
Nsi

ip M X;Y;Q*;Xð Þ þ Pvð Þ�1
� �

pq
X

Nsi

qi ; ð15Þ

where M(X, Y, Q*, X)pq is a p 
 q representer matrix that
contains the prior cross covariances between all observa-
tions, PLn(ti)

prior is calculated by defining a pseudo measure-
ment of ti and calculating the Ln(t) representer for this
measurement, and Pci

prior is calculated by defining a pseudo
measurement for ci and calculating the breakthrough
location representer for this measurement.

Table 1. Ranges of Indicators and Indices

Index Ranges From 1 to the Number of:

i Tracked particles, which equals the number of potential age
determinations plus the number of pseudo breakthrough
time and pseudo breakthrough location measurements

f, g head state variables
k, l uncertain parameters
n, p, q measurements

W02405 JANSSEN ET AL.: MEASUREMENT NETWORK DESIGN
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[28] PLn(ti)
posterior and Pci

posterior can subsequently be filled in
for st(xCP)

2 and sc(xsz)
2 in equations (3) and (4), respectively

(note that t in equations (1)–(3) is replaced by its natural
logarithm). mt(xCP) and mc(xSZ) in equations (3) and (4) are
approximated by their first guess estimates, Ln(tF(x

CP)) and
cF(x

SZ) (see also Appendix B), obtained by running a
simulation with a = a. Now all necessary information is
available to compute p(tBT) according to equation (2) and
subsequently the variance of the breakthrough time stBT

2

according to equation (5).
[29] Note that although many network evaluations are

performed in the Genetic Algorithm, this repeated evalua-
tion requires calculating the representer matrix M(X, Y, Q*,
X) (for all potential measurements and pseudo measure-
ments) only once. With M(X, Y, Q*, X) known, PLn(ti)

posterior

and Pci

posterior can be calculated for every candidate network
by selecting the relevant variances and covariances from
this matrix and performing the necessary operations with
them according to equations (14)–(15).

3. Numerical Application to a Synthetic Test Case

[30] We will now demonstrate the design methodology by
numerically filling in the problem that was introduced in
section 2.1 and Figure 1 and performing example calcula-
tions with the thus created test case.
[31] Additional to the discretization of the flow model as

shown in Figure 1, the area between x5 and x10 is dis-
cretized into 240 equally sized (Dx = 2.0 m) columns, and
additionally the confining layer (y2–y3) is discretized into
40 equally sized rows (Dy = 0.5 m). The purpose of all
areas outside the area of interest is solely to reduce the
impact of boundary conditions on the flow in the area of
interest.
[32] The porosity is 0.4 everywhere, and Aquifer 1 and

Aquifer 2 have a hydraulic conductivity (K) of 3.0 and
0.6 m/d, respectively. The Gaussian distribution of Ln(K)
(= Y) in the center part of the confining layer (9,600 cells)
has a geometric mean Ln(KG) of�3.0 Ln(m/d), a variance sY

2

of 2.0 unless stated otherwise, and an exponential variogram
model with horizontal and vertical correlation ranges of 75 m
and 25m, respectively. Outside the shaded center part (x0–x5
and x10–x13) the confining layer is modeled as a homoge-
neous deposit with K equal to the KG assigned to the center
part. A steady state head distribution is obtained by assigning
recharge (250mm/a) to the top of all cells of Aquifer 1 and by
imposing a constant head of 0.0 m and 15.0 m in the utmost
left and utmost right cell of Aquifer 2, respectively. This
results in a flow divide between x13 and x14, as indicated by
the arrows in Figure 1.
[33] The stars in the area of interest indicate 42 potential

measurement locations. All measurements suffer from mea-
surement errors, which are assumed to be Gaussian distrib-
uted. The measurement error variances are taken to be
0.0001 m2 and 0.001 (m/d)2 for h and K measurements,
respectively. For t determinations, the estimation error
standard deviation is taken as a percentage of the expected
(untransformed) age (tF) at the sampled location in the prior
realization of the confining layer, in which all stochastic
parameters are set at their prior means (a = Ln(K) = a =
�3.0 Ln(m/d)). This percentage varies between different
examples.

[34] At the control plane, in every column one pseudo age
determination was defined to enable the calculation of the
covariances between the goal variable Ln(t(xCP)) and the
measurements in a design. The sensitivity terms in equation
(12) (the Ln(t) representer equation) were computed by
backward tracking of particles traveling from the pseudo
measurement locations at the control plane to the inflow
zone (y = y1) and calculating the time step sensitivities of
every travel step using the ADV2 package of MODFLOW
2000 [Anderman and Hill, 2001].
[35] Likewise, in the contaminant source zone, one pseu-

do location measurement was defined in every column, to
enable the calculation of the covariances between the goal
variable c(xSZ) and the measurements in a design. The terms
in the breakthrough location (c) representer equation (13)
were computed by forward tracking of particles traveling
from the pseudo measurement location in the contaminant
source zone to the control plane and evaluating the dis-
placement sensitivities of every travel step, again using the
ADV2 package of MODFLOW 2000.
[36] In the example calculations, the desired number of

measurements in the resulting designs was always fixed,
although during the optimization it was allowed to vary.
This was achieved by adding an extra term to the objective
function (equation (5)) in the Genetic Algorithm. This term
consisted of a multiplication of the absolute value of the
squared difference between the required number of meas-
urements and the actual number of measurements in the
design under consideration, and a multiplication coefficient.
This multiplication coefficient was chosen differently in
every design optimization, as it affects the convergence of
the Genetic Algorithm.

4. Results

[37] In this section, we will first investigate the validity of
the first-order Bayesian methodology by checking the
normality of Ln(t), and by comparing linearized variance
predictions as given by the representer method with Monte
Carlo results for increasing parameter variability. The Monte
Carlo simulations were performed using MODFLOW
[McDonald and Harbaugh, 1984] in combination with the
particle-tracking software MODPATH [Pollock, 1994]. The
number ofMonte Carlo runs was 10000 for every calculation.
[38] Subsequently, we will take a look at the correlations

between the observable variables and the goal variables.
Knowing and understanding these correlations is useful to
explain the observation networks as designed by the first-
order method. The details of the procedure followed for the
calculation of the correlations will be given in section 4.2.
In section 4.3, three examples of near-optimal network
designs will be given and explained on the basis of the
calculated correlations.
[39] Finally, in section 4.4, we will compare the perfor-

mance of networks consisting solely of age determinations
with the performance of networks consisting solely of head
and solely of conductivity measurements.

4.1. Validity of the First-Order Design Method

[40] As our inverse method is defined in a Bayesian
framework, it is important that all unknown parameters
and dependent variables are (at least approximately) Gauss-
ian distributed. It is well known that if Y is Gaussian
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distributed, at first order so are the hydraulic head and the
particle displacement [Dagan, 1989]. Particle traveltimes,
however, can be significantly skewed if the traveled number
of correlation scales is limited (see section 2.3). Fortunately,
the natural logarithm of arrival time is approximately
Gaussian if sY

2 is not too large. This is shown in Figure 3,
which gives the histogram of breakthrough times for a
particle starting from the middle of the contaminant source
zone. Also indicated in this figure is the Gaussian proba-
bility density function (pdf) parameterized with the mean
and variance of breakthrough times calculated from the
Monte Carlo results. The good correspondence of the Monte
Carlo-derived Ln(t) histogram with the Gaussian distribu-
tion will deteriorate as sY

2 gets larger and the untransformed
traveltimes become more skewed. However, for the range of
sY
2 values for which the linear theory applied here can be

assumed valid (see below) the natural logarithm of the

traveltime can be considered as a sufficiently Gaussian
distributed variable.
[41] Figure 4 addresses the question regarding the appli-

cability of the linear theory for larger sY
2. Figure 4 compares

the variances of the state variables as calculated by the
representer approach with the variances of these variables
computed with a Monte Carlo approach. Figure 4a shows
the results for Ln(t) of a particle originating from the center
of the contaminant source zone. It should be noted here that
the observed underestimation of the variances by the first-
order method is caused by two distinct factors: increasing
non-linearity of the flow equation and increasing non-
normality of Ln(t) as sY

2 increases. Still, up to sY
2 = 3.0

the difference between linearization and Monte Carlo results
is less than 10%.
[42] Figure 4b compares Monte Carlo variances with

linearized variances of the particle breakthrough location c.

Figure 3. Histograms of the distribution of breakthrough locations (a) and breakthrough times (b) for
the Monte Carlo simulation of a particle starting from the center of the contaminant source zone,
compared with the theoretical normal probability density function using the Monte Carlo derived means
and variances (black lines). sY

2 = 2.0.

Figure 4. Linearized Ln(t) (a), c (b) and h (c and d) variance predictions as given by the representer
approach compared with variances obtained from a Monte Carlo series, as function of sY

2. In Figures 4c
and 4d, the labels UL, LL, UR, LR and CNTR correspond with the labels in Figure 1 and identify the
locations in the in at which the variances were evaluated.
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The correspondence is excellent for the entire range investi-
gated. The same holds for the head variance in the upper part
of the domain (Figure 4c). Only for the head variance in the
lower part, the correspondence between the first-order results
and the Monte Carlo results deteriorates rather quickly as sY

2

increases. It is conceivable that the larger influence of the
constant head boundaries in this part of the domain increases
the nonlinearity of the flow equation. Nevertheless, consid-
ering the small absolute value of the underestimation of the
head variance (note the factor 10 difference between the y-
axes of Figures 4c and 4d), the error made is not expected to
greatly influence contaminant breakthrough time uncertainty
predictions.
[43] Based on the result given in Figure 4, for our

synthetic example the outcome of our first-order design
strategy as outlined in section 2 is considered reliable up to
a variance of Y of 3.0.

4.2. Correlations Between Observed Variables and
Goal Variables

[44] Figure 5 shows plots of the spatial distribution of the
correlations between the observable variables (h, Ln(K) and
Ln(t)) and respectively the natural logarithm of the ground-
water age at Q (Ln(tQ), see Figures 5a–5c, in which Q is the
center of the a priori expected contaminant breakthrough
zone) and the breakthrough location cQ of the particle a
priori expected to break through at Q (Figures 5d–5f). The
particle that a priori is expected to break through at Q enters
the confining layer at Z (see Figures 5d–5f).
[45] Figure 5a gives the correlation between the conduc-

tivity everywhere in the domain and the groundwater age at
Q. These correlations were computed by defining a pseudo
age determination at Q calculating the parameter

representer of this measurement throughout the domain.
The representer values were subsequently divided by the
square root of the product of the prior parameter variance
and the age variance at Q, to yield the correlations. The age
variance at Q was calculated by computing the value of the
Ln(t) representer at location Q.
[46] Figures 5b, 5d and 5e were produced in a similar

manner. For Figures 5b and 5e, however, the prior sh
2 field,

which in contrast to the parameter variance is not known
beforehand, was inter- and extrapolated from prior head
variances calculated at the potential measurement locations.
Inter- and extrapolation of these values is justified, as the
head variance field is likely to be smooth.
[47] Figure 5c was constructed by defining in every grid

cell a pseudo traveltime measurement and calculating their
Ln(t) representers for Ln(t) at the location of the pseudo
measurement itself (yielding the prior sLn(t)

2 field) and for
Ln(tQ) (yielding the cross covariances). Figure 5f was
produced in a similar manner, with the distinction that
now for every pseudo traveltime measurement the location
representer was calculated for the particle that a priori is
expected to break through in Q.
[48] From Figure 5 it appears that Ln(tQ) is particularly

strongly correlated (correlation coefficient r > 0.6), in a
narrow zone above Q, with Ln(K) and Ln(t). Whereas the
Ln(t) � Ln(tQ) correlation (Figure 5c) obviously is the
strongest at Q (here r = 1), the Ln(K) � Ln(tQ) (Figure 5a)
correlation is strongest around the center of the domain.
This is because here Ln(K) maximally affects (via its
covariance function) the conductivity of the area in which
the particle moving toward Q is expected to travel, and
therefore maximally affects Ln(tQ). A similar correlation

Figure 5. The correlation between the groundwater age at or the traveltime to Q and the log
conductivity (a), the head (b) and the groundwater age (c) in every grid block of the center area. The
correlation between the breakthrough location of the particle a priori expected to break through at Q (this
particle enters the confining layer at Z) and the natural logarithm of the conductivity (d), the head (e) and
the groundwater age (f) in every grid block of the center area.
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pattern was found by Harvey and Gorelick [1995] (their
Figure 6b).
[49] Figure 5b shows that the head is only very weakly

correlated with Ln(t). This is due to the small sensitivity of
heads to the parameters.
[50] The curvature of the positive Ln(t) � Ln(tQ) corre-

lation zone in Figure 5c is caused by the fact that the particle
arriving in Q has traveled a certain horizontal distance
downgradient in Aquifer 1 before entering the confining
layer (see also Figure 1). Traveltimes in the upper right part
of the domain are correlated with the residence times of the
corresponding particles in Aquifer 1, which are on their turn
correlated with the residence time in Aquifer 1 of the
particle arriving in Q.
[51] Whereas Ln(tQ) particularly shows strong correla-

tions with Ln(K) and Ln(t), cQ is especially strongly
correlated with h and Ln(t) (Figures 5e and 5f, respectively).
The large h � cQ correlations found in the upper part of the
domain (Figure 5e) are related to the particle transport
through Aquifer 1: because of the relatively large expected
horizontal distance traveled in Aquifer 1 (see also Figure 1),
cQ is determined for an important part by the hydraulic
gradient in Aquifer 1, which on its own turn is correlated
with the heads in the upper part of the confining layer.

[52] cQ � Ln(K) correlations (Figure 5d) are relatively
weak, due to the limited vertical correlation of Ln(K)
values. Figure 5f reveals that cQ shows strong correlations
with Ln(t), particularly around Z. This makes sense, again
because the horizontal distance traveled within the confin-
ing layer is expected to be very small and cQ is determined
strongly by the distance travelled in Aquifer 1, which in turn
is correlated with the vertical flow velocity in Aquifer 1.
This vertical flow velocity is strongly correlated with the
groundwater age near Z.

4.3. Examples of Network Designs

[53] Figures 6 shows examples of near-optimal 10-mea-
surement network designs, in the search of which the
Genetic Algorithm was allowed to choose among h, K
and t measurements. The age estimation error standard
deviation was set at 10% of the untransformed a priori
expected value.
[54] In Figure 6a, the purpose of the observation network

design was to minimize the groundwater age uncertainty at
the control plane. The optimal design solely consists of age
determinations, which is not surprising as they are strongly
correlated with the groundwater age at the control plane.
The horizontal correlation of traveltime is not strong enough
for all determinations to be placed next to each other at the
control plane, which would be a logical configuration as
then they directly sample the goal variables. Instead, the
upper right part of the domain is also sampled, for reasons
explained in the discussion of Figure 5c.
[55] For the design shown Figure 6b, the sampling

objective was to minimize the contaminant arrival location
variance. K, h and t measurements are located in those areas
where, based on Figures 5d–5f, strong correlations with the
breakthrough location collection c are expected.
[56] For Figure 6c, the objective was to minimize stBT

2

which is a combination of the objectives used in Figures 6a
and 6b (see equation 1). The head measurement in the upper
left-hand part of the confining layer primarily serves to
constrain arrival location (see Figures 5e and 5b). The fact
that the age determinations are placed at the control plane
(as in Figure 6a), rather than in the upper part of the
confining layer (as in Figure 6b), indicates that they are
primarily important to obtain information on t(xCP), rather
than on c(xSZ). Apart from one head measurement, no
measurements are chosen that are specifically aimed at
reducing p(xCP 2 c). The age determinations sample a
narrower area than in Figure 6a, because their placement
is now focused at obtaining information on the traveltime
toward the expected contaminant breakthrough zone, rather
than toward the entire control plane. The focus of the design
in Figure 6c on the reduction of arrival time uncertainty is
probably due to the relatively wide contaminant source
zone, which limits the reduction of the contaminant break-
through location variance that can be achieved.

4.4. Performance of Age Estimation Networks
Compared With K and h Networks

[57] Figure 7 shows the posterior breakthrough variance
of (near-)optimal designs as a function of network size, for
observation networks containing only one measurement
type. The figure shows that, if the traveltime estimations
are of a reasonable reliability, the uncertainty reduction that
can be realized using traveltime determinations is larger

Figure 6. Near-optimal designs for minimizing the
groundwater age uncertainty at the control plane (a), for
minimizing the contaminant arrival location uncertainty (b),
and for minimizing the contaminant breakthrough time
uncertainty (c). The domains shown in this figure represent
the confining unit in the area of interest (see Figure 1). The
black bold line in Figure 6c represents a projection of
the contaminant source zone on the top of the confining
layer. Grey bold lines delineate the (a priori) expected
contaminant flow through the confining layer. D = t
measurement, * = h measurement, 6 = K measurement.

W02405 JANSSEN ET AL.: MEASUREMENT NETWORK DESIGN

9 of 17

W02405



than can be achieved with the other measurement types
(with reasonable network sizes). After having studied
Figure 5 this is not surprising anymore: heads are only very
weakly correlated with traveltime, and conductivity is
weakly correlated with arrival location. Groundwater age
is the only variable that is strongly correlated with both
arrival time and arrival location. Furthermore, groundwater
age is more strongly correlated with arrival time than K is,
and also more strongly correlated with arrival location than
the head is. According to Figure 7, in our synthetic example
an age determination network outperforms a K and an
h network if the age estimation error standard deviation is
less than 50% of the expected age, even though the error
variances of the K and h measurements were chosen
unrealistically small. So, if traveltime estimations of a
reasonable accuracy are available, more information can
be obtained with fewer measurements than with the other
two measurement types.

5. Conclusions and Discussion

[58] A methodology was proposed that incorporates trav-
eltime determinations into measurement network design.
The methodology was focused on minimizing model pre-
diction uncertainty (specifically, contaminant breakthrough
time uncertainty) and is one of very few that take correla-
tions between observations into account when doing so.
Moreover, by directly calculating the covariances between
observations and predictions, instead of evaluating the
influence of the observations on the predictions via the
posterior parameter covariance matrix, a major computa-
tional advantage is accomplished compared to previously
reported network design algorithms aimed at prediction
uncertainty minimization.
[59] As the Gaussian assumption often is not valid for

traveltimes, they were transformed to comply with the
Bayesian framework applied here. The natural logarithm
of traveltime was shown to be approximately Gaussian
distributed for systems of low to medium heterogeneity.
[60] Based on this result, we derived expressions for the

linearized covariances between the measurable variables
and the natural logarithm of traveltime (equation (C24))

and breakthrough time (equation (12)). The latter, together
with the cross covariances between the observable variables
and particle breakthrough locations, given by equation (13),
are necessary for the calculation of posterior breakthrough
time uncertainty given a certain set of measurements. In
a synthetic example of contaminant breakthrough in a
confining layer, the discrepancy between the linearized
approximation of the prior variance of the natural logarithm
of traveltime and Monte Carlo results was less then 10%
for variances of the natural logarithm of the conductivity up
to 3.0.
[61] Age estimations, if of a reasonable quality, were

shown to be more valuable for the reduction of break-
through time uncertainty than head and conductivity meas-
urements. In our numerical example, even if the age
estimation error standard deviation was taken as large as
50% of the expected value and head and conductivity
measurement error variances were assumed to be very
small, (near-)optimal age estimation networks still outper-
formed equally sized (near-)optimal networks of head or
conductivity measurements.
[62] For sake of conciseness, we chose not to involve

other considerations, like for example cost minimization,
into the network design, other than restricting the designs to
a certain number of measurements. However, such consid-
erations can be accommodated in the Genetic Algorithm by
expanding the objective function with additional terms. An
example of a Genetic Algorithm application involving both
prediction uncertainty minimization and budget constraints
is given by Wagner [1995].
[63] In our calculations we assumed Gaussian distributed

measurement errors for the log-transformed groundwater
age estimations. It should be noted, however, that there are
many factors contributing in different ways to the uncer-
tainties involved in the translation of tracer concentrations
to groundwater age, and the resultant of these factors might
not always warrant the use of a Gaussian or even symmetric
uncertainty structure. The most important sources of uncer-
tainty are (note that not all uncertainty sources apply to all
age dating techniques): pore-scale dispersion and macro-
dispersion resulting in mixed-age samples [Maloszewski
and Zuber, 1982; Bethke and Johnson, 2002; Weissmann
et al., 2002; Castro and Goblet, 2005; Manning et al.,
2005], analytical error [Solomon et al., 1992; Ekwurzel et
al., 1994], influence of uncertain recharge temperature
affecting tracer concentrations at time of recharge [Dunkle
et al., 1993], nonconservative behavior of the tracer [Dunkle
et al., 1993], contamination [Dunkle et al., 1993], water
table fluctuations, and incomplete confinement of reactive
decay products (e.g., 3He [Solomon et al., 1992]). It is yet
unclear how reliable uncertainty estimates for age determi-
nations can be obtained and whether corrections and trans-
formations to the determinations can be formulated that can
effectively make the uncertainty structure Gaussian. For
arrival times in a conservative tracer test, on the other hand,
these issues are far less problematic, considering the fact
that the injection and detection times are relatively easy to
determine and that the structure of the uncertainties in-
volved in extracting the advective arrival time is likely to be
either near-Gaussian or transformable to near-Gaussian.
[64] In the present study, reactive-dispersive behavior of

the tracers, and the influence of instationarity on this

Figure 7. First-order estimation of the posterior break-
through time uncertainty for networks consisting of only one
observation type (h = pressure head, K = conductivity, t =
groundwater age), as a function of network size. The given
percentages refer to different levels of the age estimation
error standard deviation. The prior breakthrough time
uncertainty (no measurements) for this example was
4.85*107 d2.
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behavior, are accounted for only indirectly by treating them
as sources of uncertainty to the traveltime estimations that
are themselves used in a strictly advective, conservative and
stationary inverse computational framework. As such, the
approach is suitable for situations in which reaction, dis-
persion and instationarity are thought to be of secondary
importance for the tracer. The assumption of stationarity
will often be reasonable, as traveltimes determined for site
characterization usually represent a long-term averaging
over velocity fluctuations and are therefore likely to be
relatively stationary.
[65] To keep the presentation simple, transport of the

contaminant in the numerical example was assumed to be
strictly advective and conservative as well. Although we
recognize that reactive-dispersive behavior of the contami-
nant might be even a bigger source of uncertainty than the
residence time of the groundwater within the transport
volume, the considered measurement types, as treated in
this paper, can only provide information on the latter factor.
Therefore reactive-dispersive behavior of the contaminant is
beyond the scope of the presented methodology.
[66] The method is applicable to real world cases as long

as using the Bayesian framework and the linear theory is
warranted, which respectively places demands on data
availability (e.g., parameter statistics and uncertainties,
measurement values and uncertainties, etc.) and puts restric-
tions on parameter variability. With regard to the computa-
tional demand of the method we can mention that the
computation of the prior covariance matrix M(X, Y, Q*,
X) constitutes most of the computational burden. For the
examples presented in section 4.3, this took about 45 min on
a Dell personal computer with a Pentium 4 2.6 GHz
processor and 2.5 GB RAM. This computer time increases
with the number of potential and pseudo measurements: for
every potential or pseudo head measurement a groundwater
model run is performed twice and a particle tracking run is
performed, for every potential and pseudo conductivity
measurement a groundwater model and a particle tracking
run are performed once, and for every potential and pseudo
traveltime and location measurement two groundwater
model runs and two particle-tracking runs are performed.
Finally, for every potential and pseudo measurement a
convolution with the parameter covariance matrix is re-
quired, so the number of unknown parameters (9,600 in this
paper) also greatly influences computation times.

Appendix A: Derivation of the Euler-Lagrange
Equations

[67] Forcing the conditions for a minimum in equation
(11) yields a system of 9 coupled Euler-Lagrange equations.
Besides the flow equation (6), the particle traveltime
equation (7) and the particle location equations (8) and (9),
this system consists of a traveltime adjoint equation, two
particle location adjoint equations, a head adjoint equation,
and a parameter equation, all of which are derived below.

A1. X Location Adjoint Equation

[68] The conditions for a minimum in the extended
objective function (equation (11)) prescribe the variation

of (11) with respect to the x location of tracked particles to
be zero. This yields:
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The derivatives in the third, fourth and the fifth term should
only be taken for those travel steps s where xs is really
variable (i.e., not fixed by reaching an x-boundary of a cell
in that travel step). Taking this into account, filling in
equations (6)–(9) into (A1), working out the derivatives and
dividing by 2 yields:
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Note that the second and the fifth term of equation (A2) are
always zero because Dti

s and Dyi
s only depend on the x

coordinates of travel step s if the step size is limited by
reaching the x-boundary of a cell, in which case equation
(A3) applies. Taking this into account and rearranging
yields the x location adjoint equation:
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with boundary condition lxi
Nsi+1 = 0.

A2. Y Location Adjoint Equation

[69] Following the same reasoning as in the derivation of
the x location adjoint equation, the y location adjoint
equation is given by:
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with boundary condition lti
Nsi+1 = 0.

A3. Traveltime Adjoint Equation

[70] The conditions for a minimum in the extended
objective function (equation (11)) prescribe the variation
of (11) with respect to the traveltime to be zero. This yields:
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[71] The second, fourth and fifth term of equation (A8)
are zero. Working out the other terms and dividing by 2
directly yields the traveltime adjoint equation:
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with boundary condition lti
Nsi+1 = 0.

A4. Head Adjoint Equation

[72] The conditions for a minimum in the extended
objective function (equation (11)) prescribe the variation
of (11) with respect to the heads to be zero. This yields:
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Working out equation (A10), dividing by 2 and rearranging
yields the head adjoint equation:

Agf að Þlhf ¼
@Mp h;a;Ln tð Þ;cð Þ

@hg
P�1
v

� �
pn

� zn �Mn h;a;Ln tð Þ;cð Þ½ �

þ
XNi

i

XNsi

s

ls
ti

@Dtsi a; h; xsi ; x
s�1
i ; ysi ; y

s�1
i

� �
@hg

þ
XNi

i

XNsi

s

ls
xi

@Dxsi a; h; ysi ; y
s�1
i

� �
@hg

þ
XNi

i

XNsi

s

ls
yi

@Dysi a; h; xsi ; x
s�1
i

� �
@hg

ðA11Þ

A5. Parameter Equation

[73] The conditions for a minimum in the extended
objective function (equation (11)) prescribe the variation
of (11) with respect to the parameters to be zero. This
yields:

@J

@a
þ 2lhA að Þh

@a
þ
@
XNi

i

XNsi

s

2ls
ti

fs
2i

� �
@a

þ
@
XNi

i

XNsi

s

2ls
xi

fs
3i

� �
@a

þ
@
XNi

i

XNsi

s

2ls
yi

fs
4i

� �
@a

¼ 0 ðA12Þ

[74] Working out equation (A12), dividing by 2 and
rearranging yields the parameter equation:

al ¼ al � Pa hg
@A að Þ
@ak

lhf

�

�
XNi

i

XNsi

s

ls
ti

@Dtsi a; h; xsi ; x
s�1
i ; ysi ; y

s�1
i

� �
@ak

�
XNi

i

XNsi

s

ls
xi

@Dxsi a; h; ysi ; y
s�1
i

� �
@ak

�
XNi

i

XNsi

s

ls
yi

@Dysi a; h; xsi ; x
s�1
i

� �
@ak

#
ðA13Þ
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Appendix B: Representer Expansions

[75] In the representer-based inverse algorithm [Valstar et
al., 2004], the unknowns in the nonlinear system of Euler-
Lagrange equations are expanded in finite series, allowing
the equations in the system to be decoupled and iteratively
solved. Every measurement adds a term to this finite series,
consisting of (1) a basis function or representer, quantifying
the influence of the measurement on the estimate of the
variable for which the representer is defined, and (2) its
coefficient, quantifying the weight given to the representer,
which depends on the misfit between measurement value
and measurement prediction. The definitions of the repre-
senter functions are:

lti ¼
XNp

p¼1

Lipbp ðB1Þ

lxi ¼
XNp

p¼1

Pipbp ðB2Þ

lyi ¼
XNp

p¼1

Hipbp ðB3Þ

lhf ¼
XNp

p¼1

Gfpbp ðB4Þ

al ¼ al þ
XNp

p¼1

Ylpbp ðB5Þ

hg ¼ hFg
þ hcorrg þ

XNp

p¼1

Xgpbp ðB6Þ

xi ¼ xFi
þ xcorri þ

XNp

p¼1

Xipbp ðB7Þ

yi ¼ yFi
þ ycorri þ

XNp

p¼1

Yipbp ðB8Þ

t
h
i ¼ tFi

þ tcorri þ
XNp

p¼1

ti
h�1Q*

ipbp ðB9Þ

where b is the vector of representer coefficients, Np is the
number of measurements, Lip is the traveltime adjoint
representer of measurement p, calculated for particle i, Pip

is the x location adjoint representer of measurement p,
calculated for particle i, Hip is the y location adjoint

representer of measurement p, calculated for particle i, Gfp is
the head adjoint representer of measurement p, calculated
for the head state variable f, Ylp is the parameter representer
of measurement p, calculated for parameter l, Xgp is the
head representer of measurement p, calculated for head state
variable g, Xip and Yip are respectively the x and y location
representer of measurement p, calculated for particle i, h is
the iteration number and Q*ip is the Ln(t) representer of
measurement p, calculated for particle i. In order to be able
to expand the untransformed traveltime ti, Q*pi is multiplied
by the derivative dti/dlnti = ti, which is estimated using its
value in the previous iteration (ti

h�1). hF, xF, yF, and tF are
the solutions obtained by solving equations (6)–(9) with
a = a. hcorr, xcorr, ycorr, and tcorr are correction terms. In
our first-order design method, the algorithm is terminated
after the first iteration, the unknown variables are not
actually updated (this would require actual sampling) and
therefore the representer coefficients b and the correction
terms hcorr, xcorr, ycorr, and tcorr do not have to be calculated.
The algorithm is initiated using a = a, h = hF, ti = tiF, xi = xiF,
yi = yiF, and lh = lti = lxi = lyi = 0.

Appendix C: Representer Derivations

[76] For the sake of readability, the explicit statement of
the dependencies of A, Dt, Dx and Dy are omitted from
now on.

C1. X Location Adjoint Representers

[77] Inserting the representer expansions (B1)–(B9) into
the x location adjoint equations (A4)–(A5) yields:

Ps
ipbp ¼ Psþ1

ip bp þ
@Mp h;a;Ln tð Þ;cð Þ

@xsi
P�1
v

� �
pn

zn�ð Mnð ÞÞ

þ Lsþ1
ip bp

@Dtsþ1
i

@xsi
þ Hsþ1

ip bp
@Dysþ1

i

@xsi
for xsi 6¼ xcell boundary

ðC1Þ

Ps
ipbp ¼

@Mp h;a;Ln tð Þ;cð Þ
@xsi

P�1
v

� �
pn

zn�ð Mnð ÞÞ

for xsi ¼ xcell boundary ðC2Þ

where Mn( ) = Mn(hF + hcorr + Xb, al + Yb, Ln(tF + tcorr + tF
Q*b), xF + xcorr + Xb). The coefficients b for all p
measurements are now chosen as:

bp ¼ P�1
v

� �
pn

zn�ð Mnð ÞÞ ðC3Þ

Equations (C1)–(C2) can only be fulfilled for nonzero b if:

Ps
ip ¼ Psþ1

ip þ @Mp h;a;Ln tð Þ;cð Þ
@xsi

þ Lsþ1
ip

@Dtsþ1
i

@xsi
þ Hsþ1

ip

@Dysþ1
i

@xsi
for xsi 6¼ xcell boundary

ðC4Þ

Ps
ip ¼

@Mp h;a;Ln tð Þ;cð Þ
@xsi

¼ 0 for xsi ¼ xcell boundary ðC5Þ
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with boundary condition Pip
Nsi+1 = 0. The second term on the

right hand side of (C4) and the term on the right hand side
of (C5) are nonzero only in case of (pseudo) measurements

of ci (by definition at s = Nsi
). In that case

@Mp cið Þ
@x

Nsi
i

= 1.

C2. Y Location Adjoint Representers

[78] Following the same reasoning as above, it follows
for the y location adjoint representers:

Hs
ip ¼ Hsþ1

ip þ @Mp h;a;Ln tð Þ;cð Þ
@ysi

þ Lsþ1
ip

@Dtsþ1
i

@ysi
þPsþ1

ip

@Dxsþ1
i

@ysi
for ysi 6¼ ycell boundary

ðC6Þ

Hs
ip ¼

@Mp h;a;Ln tð Þ;cð Þ
@ysi

¼ 0 for ysi ¼ ycell boundary ðC7Þ

with boundary condition Hip
Nsi+1 = 0. The second term on the

right hand side of (C6) and the term on the right hand side
of (C7) are always zero. Therefore (C6)–(C7) can be
simplified into:

Hs
ip ¼ Hsþ1

ip � Lsþ1
ip

@Dtsþ1
i

@ysi
�Psþ1

ip

@Dxsþ1
i

@ysi
for ysi 6¼ ycell boundary

ðC8Þ

Hs
ip ¼ 0 for ysi ¼ ycell boundary ðC9Þ

with boundary condition Hip
Nsi+1 = 0.

C3. Traveltime Adjoint Representers

[79] Inserting the representer expansions (B1)–(B9) into
the traveltime adjoint equation (A9) yields:

Ls
ipbp ¼ Lsþ1

ip bp þ
@Mp h;a;Ln tð Þ;cð Þ

@tsi
P�1
v

� �
pn

zn �Mnð Þð Þ

ðC10Þ

After inserting (C3) into (C10), the resulting equation can
only be fulfilled for non-zero b if:

Ls
ip ¼ Lsþ1

ip þ @Mp h;a;Ln tð Þ;cð Þ
@tsi

ðC11Þ

with boundary condition Lip
Ns+1 = 0. The second term of

equation (C11) is nonzero only in case of measurements of

Ln(ti). In that case
@Mp Ln tið Þð Þ

@tsi
=
1

tsi
, with ti

s approximated

by its most recent estimate.

C4. Head Adjoint Representers

[80] Inserting the representer definitions (B1)–(B9) into
the head adjoint equation (A11) yields:

Agf Gfpbp ¼
@Mp h;a;Ln tð Þ;cð Þ

@hg
P�1
v

� �
pn

znð �Mnð ÞÞ

þ
XNi

i

XNsi

s

Ls
ipbp

@Dtsi
@hg

þ
XNi

i

XNsi

s

Ps
ipbp

@Dxsi
@hg

þ
XNi

i

XNsi

s

Hs
ipbp

@Dysi
@hg

ðC12Þ

[81] Equation (C12) can only be fulfilled for nonzero b if

Agf Gfp ¼
@Mp h;a;Ln tð Þ;cð Þ

@hg
þ
XNi

i

XNsi

s

Ls
ip

@Dtsi
@hg

þ
XNi

i

XNsi

s

Ps
ip

@Dxsi
@hg

þ
XNi

i

XNsi

s

Hs
ip

@Dysi
@hg

ðC13Þ

C5. Parameter Representers

[82] Inserting the representer definitions into the param-
eter equation (A13) yields:

�al þ Ylpbp ¼ �al � Palk
hg

@Agf

@ak

Gfpbp

�
�
XNi

i

XNsi

s

Lipbp
@Dtsi
@ak

�
XNi

i

XNsi

s

Pipbp
@Dxsi
@ak

�
XNi

i

XNsi

s

Hipbp
@Dysi
@ak

#
ðC14Þ

Equation (C14) can only be fulfilled for nonzero b if:

Ylp ¼ �Palk
hg

@Agf

@ak

Gfp �
XNi

i

XNsi

s

Lip

@Dtsi
@ak

"

�
XNi

i

XNsi

s

Pip

@Dxsi
@ak

�
XNi

i

XNsi

s

Hip

@Dysi
@ak

#
ðC15Þ

C6. Head Representers

[83] The head representers should be the exact lineariza-
tions of the heads around the head estimates of the previous
iteration. For a derivation see Valstar [2001] and Valstar et
al. [2004]. The result is:

AfgXgp ¼ � @Afg

@ak

Ykphg ðC16Þ

C7. X Location Representers

[84] For the calculation of the x location representer, an
exact linearization of the x location equation (8) is per-
formed around the most recent estimate of xi. Since the
variation in the parameters induced by the measurements p
is given by Ylp@bp (B5), the variation of the heads by
Xgp@bp (B6), the variation of the y location of particle i by
Yip@bp (B8), and the variation of the traveltime of particle i
by tiQ*ip@bp (B9), a linear relationship between the x
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location of particle i on one hand and the parameters, heads,
y location of particle i and traveltime of particle i on the
other implies that the variation in x locations of particles,
given by Xip@bp (see equation (B7)), is

Xs
ip@bp ¼

Xs

s0¼1

@Dxs
0

i

@al

Ylp@bp þ
Xs

s0¼1

@Dxs
0

i

@hg
Xgp@bp þ

Xs

s0¼1

@Dxs
0

i

@ys
0
i

Ys0

ip@bp

þ
Xs

s0¼1

@Dxs
0

i

@ys
0�1
i

Ys0�1
ip @bp; for xsi 6¼ xcell boundary ðC17Þ

Xs
ip@bp ¼

Xs�1

s0¼1

@Dxs
0

i

@al

Ylp@bp þ
Xs�1

s0¼1

@Dxs
0

i

@hg
Xgp@bp

þ
Xs�1

s0¼1

@Dxs
0

i

@ys
0
i

Ys0

ip@bp þ
Xs�1

s0¼1

@Dxs
0

i

@ys
0�1
i

Ys0�1
ip @bp;

for xsi ¼ xcell boundary ðC18Þ

with boundary condition Yip
0 = 0. The function of s0 is the

same as that of s. Dividing (C17)–(C18) by @bp and putting
it in sequential notation yields the x location representer:

Xs
ip ¼ Xs�1

ip þ @Dxsi
@al

Ylp þ
@Dxsi
@hg

Xgp

þ @Dxsi
@ysi

Ys
ip þ

@Dxsi
@ys�1

i

Ys�1
ip ; for xsi 6¼ xcell boundary ðC19Þ

Xs
ip ¼ Xs�1

ip for xsi ¼ xcell boundary ðC20Þ

with boundary conditions Xip
0 = Yip

0 = 0.

C8. Y Location Representers

[85] The same reasoning holds for the y location repre-
senters:

Ys
ip ¼ Ys�1

ip þ @Dxsi
@al

Ylp þ
@Dysi
@hg

Xgp

þ @Dysi
@xsi

Xs
ip þ

@Dysi
@xs�1

i

Xs�1
ip ; for ysi 6¼ ycell boundary ðC21Þ

Ys
ip ¼ Ys�1

ip for ysi ¼ ycell boundary ðC22Þ

with boundary conditions Yip
0 = Xip

0 = 0.

C9. Ln(Traveltime) Representers

[86] For the calculation of the Ln(t) representer, an exact
linearization of the traveltime equation (7) is performed
around the most recent estimate of the traveltime. Following

similar considerations as above, the variation in Ln(ti),
given by tiQ*ip@bp (see equation (B9)), is

tsiQ
*s
ip @bp ¼

Xs

s0¼1

@Dts
0

i

@al

Ylp@bp þ
Xs

s0¼1

@Dts
0

i

@hg
Xgp@bp

þ
Xs

s0¼1

@Dts
0

i

@xs
0
i

Xs0

ip@bp þ
Xs

s0¼1

@Dts
0

i

@xs
0�1
i

Xs0�1
ip @bp

þ
Xs

s0¼1

@Dts
0

i

@ys
0
i

Ys0

ip@bp þ
Xs

s0¼1

@Dts
0

i

@ys
0�1
i

Ys0�1
ip @bp ðC23Þ

[87] Dividing (C23) by @bp, rearranging, and putting it in
sequential notation yields the Ln(t) representer:

Q*s
ip ¼ 1

tsi
Q*s�1

ip þ @Dtsi
@al

Ylp þ
@Dtsi
@hg

Xgp þ
@Dtsi
@xsi

Xs
ip

�

þ @Dtsi
@xs�1

i

Xs�1
ip þ @Dtsi

@ysi
Ys

ip þ
@Dtsi
@ys�1

i

Ys�1
ip

�
ðC24Þ

with boundary conditions Qip
*0 = Xip

0 = Yip
0 = 0.

C10. Correction Terms

[88] The correction terms hcorr, tcorr, xcorr, and ycorr are
chosen in such a way that the forward flow (6), the particle
traveltime (7), the particle x-location (8), and the particle
y-location equation (9) equation are fulfilled, respectively.
For hcorr, first the unknown variables in (6) are replaced
with the representer expansions (B1)–(B9), and subse-
quently the head representer equation (C16), multiplied by
bp and summed over all measurements, is inserted. This
yields [Valstar, 2001; Valstar et al., 2004]:

Afghcorrg ¼ qf þ
@Afg

@ak

a� �að Þhg � AfghFg
ðC25Þ

[89] For tcorr, first the unknown variables in (7) are
replaced with the representer expansions (B1)–(B9), and
subsequently the Ln(traveltime) representer equation (C24),
multiplied by bp and summed over all measurements, is
inserted. This yields:

tscorri ¼ ts�1
i þDtsi � tsFi

�Q*s�1
ip bp �

@Dtsi
@al

Ylpbp

� @Dtsi
@hg

Xgpbp �
@Dtsi
@xsi

Xs
ipbp ðC26Þ

[90] Since ti
s�1�Qip

*s�1bp= tcorri
s�1 + tFi

s�1 (see equation (B9)),
we have:

tscorri ¼ ts�1
corri

þ ts�1
Fi

� tsFi
þDtsi �

@Dtsi
@al

Ylpbp

� @Dtsi
@hg

Xgpbp �
@Dtsi
@xsi

Xs
ipbp

� @Dtsi
@xs�1

i

Xs�1
ip � @Dtsi

@ysi
Ys

ip �
@Dtsi
@ys�1

i

Ys�1
ip ðC27Þ
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[91] Following similar reasoning, we have for xcorr:

xscorri ¼ xs�1
corri

þ xs�1
Fi

� xsFi
þDxsi �

@Dxsi
@al

Ylpbp

� @Dxsi
@hg

Xgpbp �
@Dxsi
@ysi

Ys
ipbp �

@Dxsi
@ys�1

i

Ys�1
ip bp

for xsi 6¼ xcell boundary ðC28Þ

xscorri ¼ �xsFi
þ xcell boundary for xsi 6¼ xcell boundary ðC29Þ

And for ycorr:

yscorri ¼ ys�1
corri

þ ys�1
Fi

� ysFi
þDysi �

@Dysi
@al

Ylpbp

� @Dysi
@hg

Xgpbp �
@Dysi
@xsi

Xs
ipbp �

@Dysi
@xs�1

i

Xs�1
ip bp

for ysi 6¼ ycell boundary ðC30Þ

yscorri ¼ �ysFi
þ ycell boundary for ysi 6¼ ycell boundary ðC31Þ

[92] During iteration h, Ylpbp, Xgpbp, Xip
s bp, Xip

s�1bp, Yip
s bp

and Yip
s�1bp in equations (C27)–(C31) are not known and

replaced by the estimations from the previous iteration:

(al
h�1 � al), (hg

h�1 � hFg

h�1 � hcorrg
h�1), (xi

sh�1 � xFi

sh�1 � xcorri
sh�1

),

(xi
s�1h�1 � xFi

s�1h�1 � xcorri
s�1h�1), (yi

sh�1 � yFi

sh�1 � ycorri
sh�1

), and

(yi
s�1h�1 � yFi

s�1h�1 � ycorri
s�1h�1), respectively.
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