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Abstract

This paper presents a method to assess the digiritmf values of time, and values of statistical
life, over participants to a stated choice expeninthat does not require the researcher to make
an a priori assumption on the type of distributias s required for example for mixed logit
models. The method requires a few assumptionsltbthee, namely that the valuations to be
determined are constant for each individual, aadl tbspondents make choices according to their
preferences. These assumptions allow the derivafitower and upper bounds on the
(cumulative) distribution of the values of intereser respondents, by deriving for each choice
set the value(s) for which the respondent woulthdéferent between the alternatives offered,
and next deriving from the choice actually maderdspondent’s implied minimum or maximum
value(s). We also provide an extension of the nethat incorporates the possibility that errors
are made. The method is illustrated using data frarexperiment investigating the value of time
and the value of statistical life. We discuss thegibility to improve the information content of
stated choice experiments by optimizing the attebevels shown to respondents, which is
especially relevant because it would help in selgdhe appropriate distribution for mixed logit
estimates for the same data.






1 Introduction

Discrete choice analysis, of both stated and redepteference data, is an important tool
of transportation research. The mixed logit moae hecently become an important tool for this
type of analysis (see e.g. Hensher et al., 2005jnadn advantage of this model, over more
conventional alternatives such as the multinomial mested logit models, is that it can deal with
variations in preferences over respondents by aligvestimated parameters to follow certain
distributions. The multinomial logit model can adurse explicitly incorporate taste variation by
relating it to observed characteristics of the oesjent, but there is often substantial remaining
heterogeneity within classes defined by observedateristics. It is therefore not too surprising
that treating the taste parameters as random \@siads in the mixed logit model, is important in
many cases. Moreover, the mixed logit model do¢sufber from some other limitations that are
inherent to the specification of standard and nkekstgit model (see McFadden and Train, 2000).

The specification of a mixed logit model requirée tchoice of a particular type of
distribution function for the random parametersedity usually offers little guidance for this
choice, which is therefore often guided by conveog a priori plausibility, or even by
something as pragmatic as the convergence of nesfiehations. Because central estimates of
parameters of interest often vary over specificetjothis is somewhat problematic. Because
alternative model formulations are often non-nestbeé selection of the best model is not
straightforward. One could apply a flexible formuda that is able to approximate any arbitrary
distribution of the random coefficients. This isnéan the latent class approach, which is popular
especially in marketing (see Kamakura and Rus889). However, in many applications a mass
point distribution is not intuitive, and the choioé the appropriate number of groups is often
somewhat arbitrary (see Wedel et al. 1999 for eudision of these and related issues).

It therefore seems desirable to have a methodubald enable a researcher to investigate
the distribution of parameters of interest, like tralue of a statistical lifev@sl) or the value of
time (vot), without having to make priori assumptions about the functional form of the
distribution of the random parameters. This papssppses a method for exploring the
distribution over individuals of theoslandvot, or similar variables, under some mininagbriori
assumptions. These assumptions are, first, thaeth®rginal valuations are individual-specific
constants, at least over the ranges considered;sandnd, that the choices made by the

respondents reveal their true preferences.



These two assumptions allow one to consider eagporse to a dichotomous choice
situation as a revelation of a lower or upper boandhe valuation of interest. For example, if a
respondent prefers a trip that takes 10 minutegelohut costs 1 Euro less over an alternative trip
that is, besides price and travel time otherwisentidal, one could conclude that this
respondent’s value of time is not above 6 Euroshperr. If she chooses the alternative, it is not
below 6 Euro’s per hour. If the alternatives arérgel by more than two attributes, as in our
empirical case, every observed choice still prodiwareinequality characterizing the individual’s
preferences, and therefore defines a bound on dhsibie set of combinations of marginal
valuations that are consistent with the individs@hoices (maintaining the assumptions that one
of the attributes is monetary, and that the mafgusduations are constants). For the data
analyzed here, the half-spaces can be picturedra®ipa two-dimensional diagram with thet
and thevoslon its axes. Geometrically, every choice situatiwms divides the space of relevant
marginal valuations into two “half-spaces”, and rogking a choice the respondent reveals to
which of these two half-spaces his marginal vatuetibelong (which is why we will refer to this
method as the ‘half-space method’). A sequencehoices will then, with each successive
choice, typically further narrow down the possitdage in which the marginal valuation(s) can
lie, and will thus eventually define a lower andwgper bound for every valuation. Provided the
individual's choices are mutually consistent (undBe assumption of constant marginal
valuations), the former is below the latter. Conmugnthese bounds across individuals, one can
obtain aggregate distributions for the lower andargounds for the valuation of interest, and for
example compare these with the distributions obtiifor various specifications of mixed logit
models.

These bounds are, of course, more informative efdistribution of point estimates of
marginal valuations when these bounds are clodee. closeness of bounds will be shown to
depend on the statistical design of the statedcehekperiment. The half-space method can
therefore also be useful in the design of statemlcehexperiments, by suggesting how to focus
the choice experiment on the relevant ranges gbpdnameter(s) of interest.

We discuss the method using data that were cotleetgh the prime objective to
investigate the value of statistical lifeo§) in road traffic for Dutch citizenSproducing value of

time (vof) estimates as an intended by-product. Voeand vosl distributions derived show a

! See Ashenfelter (2006) for a recent literaturéhavosl



substantial amount of variation. The upper and fol@unds that follow from the half-space
method are informative: some points of this disttikn function are indicated exactly, and for a
range of values the upper and lower bounds ares dloseach other. Earlier analyses of these
same data contributed to the determination wbsl that is currently used in Dutch traffic safety
policy (see Wesemanet al, 2005). Mixed logit models were estimated withrmal and
lognormal distributions for the taste parametersntdérest, namely the toll to be paid and the
number of fatalities per million trips. The normdistributions have the disadvantages of
postulating that part of the population have a tiegavost and, because theosl is the ratio
between normal distributed coefficients, that iistributions can be peculiar (see Meijer and
Rouwendal, 2006). Lognormal distributions for bpdrameters have a relatively ‘fat tail’, which
results inevitably in a fat tail of the estimatastdbution of thevosl This raises the concern that
this is an artifact of the chosen specification.

These problems are illustrative for applicationshaf mixed logit model and underline the
need for a method to investigate the distributibérine parameters of interest without making
stronga priori assumptions. To elaborate the point, Sonnier,|&and Otter (2003) and Train
and Weeks (2004) have recently compared mixed kggcifications estimated in preference
space (where the willingness to pay is computethasratio of two random parameters) with
specifications estimated in willingness to pay speehere the distribution of the willingness to
pay is specified directly). Their tentative conatusis that “... models in preference space fit the
[...] data better than [...] models in wtp space, buavile unreasonably large variances in wtp”
(Train and Weeks, 2004). For the data we use heeeestimate mixed logit models in both
spaces, and we obtain results that are qualitgtigeghilar to those of these papers. The
distributions of thevoslimplied by the two specifications are both betw#en upper and lower
bounds from the half-space method, so that the adethnnot be used to choose between them.

The half-space method also provides a check fomih&ual consistency of the answer
choices made by the respondents: if an individuakger bound is above the upper bound, the
choices can be characterized as inconsistent (utidemaintained assumption of constant
marginal valuations). Probably such inconsisten@es caused (partly or completely) by
erroneous choices, which suggests that the chafgeeviding a completely consistent sequence
of choices decreases with the number of choicashdsto be made. In our data, 10 choices had

to be made by all respondents, and we find thatceqypately 35% of the choice sequences are



inconsistent. Introduction of a simple error getiagamechanism into the model allows us to
also incorporate these inconsistent choices inéoahalysis. The estimated probability that a
respondent’s choices are in accordance with hieopreferences lies between 90 and 95%. The
upper and lower bounds for the distribution funetad thevoslimplied by this model are close to
those computed for the consistent respondents batythey are in general somewhat higher.
The paper is organized as follows. The next seqiiovides a brief discussion of the data
we use. Section 3 introduces the non-parametrié-spalce method for investigating the
distribution of the parameters of interest. Secomvestigates the implied upper and lower
bounds for the distribution of theosl Section 5 deals with the incorporation of incetesit
choices. In section 6 we compare the implied distrons of mixed logit estimates in preference
space and willingness to pay space with the bouledised earlier. Section 7 briefly discusses

the results of a similar analysis with respechi@viot on the same data. Section 8 concludes.

2 The data
The data we will use were gathered as part ofgetanternet survey carried out by a specialized
Dutch bureau (Intomart). The information used hefers to a number of stated-choice questions
that were formulated in order to investigate thspomdent’s valuation of changes in traffic
fatality probability. Each respondent was askenitagine that (s)he has to make a trip from A to
B by car, while there are no other persons in @ire Two roads can be used for the trip, which
may differ in three attributes: toll, the probatyiliof a fatal accident, and travel time. It was
stressed that the two roads differ only in theseedhattributes. The main interest of the survey
was to investigate the marginal valuation of taffitality probabilities (expressed as thes)),
and travel time was included primarily to facildea comparison of the results with earlier travel
time valuation studies. This was considered delgrsince no priovosl studies had been carried
out earlier in the Netherlands, and the plausibihit estimates from this study might partly be
based on whether tlvet outcomes are within reasonable ranges (as thagdusut to be).

A simple orthogonal main-effects only design wadugor this study, where each
respondent made 9 choices (one choice was repastad.fl choice, to check consistency), and
the full design was split into 5 blocksAttribute levels within each block were genericepv

respondents: there was pivoting of a respondemsgmal trip. Strictly dominant choices were

2 Some attribute levels were changed in order tadagominated alternatives, see e.g. Rizzi and @rt(2003).
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not included in the design: the differences intthileand the number of fatalities were always of
the opposite sign. The travel time attribute did alavays differ between the two roads, but if it

did the difference always had the same sign asbibtateen the number of fatalities. This means
that the choice situations posed to the respondaimiays implied that they had to pay for

additional safety, possibly in combination withvigatime savings.

The three attributes were specified as follows. Tdleis the price per trip in Dutch
guilders (Dfl)? and varies between Dfl 2.50 and Dfl 12.50. Thedrdime varies between 50
minutes and 1 hour. Road safety is indicated byatimial number of fatalities on the road, which
varies between 12 and 36. The respondents wergariatbthat the total annual number of trips
made on the road is 18 million, which means thatdhvest number of fatalities (12) corresponds
to the average safety level on Dutch roads. vVids¢figures provided in this paper are the ratio of
the marginal utility of this objective “generic” @dent probability and the marginal utility of
money (toll). It may be that respondents believeytare at lower or higher risk than the average
road user. If so (this was not investigated), tbeect interpretation of ourosl figures involves
the willingness to pay to improve average, notvidiial safety. The English translation of the

exact stated choice question is provided in theefypx A.

Table 1 Basic information about the data

Group Number of Different
respondents choices in 2

and 10
1 207 33
2 220 36
3 211 20
4 215 41
5 202 29
Total 1055 159

Note. The number of choice situations for whichré¢his no difference in travel time between the diternatives for

groups 1-5is 3,3,1,3 and 3, respectively.

There were 1055 respondents. There are no missaiiagsthce respondents had to provide
an answer in order to be able to proceed to theoériie questionnaire, and consequently to

receive their payment. The necessity to give amesp may have had a deteriorating effect on the

% 1 Dutch guilder was .45 euro.



quality of the responses and this makes it degrbhave a reliability check. For this reason, the
second and the tenth choice situations were mahgioal for all respondents.

The numbers of respondents in each of the five ksloceferred to as ‘groups’ (of
respondents) in the sequel, are given in Tablehe fhble also provides information on the
number of respondents who made different choicsgtuiations 2 and 10. Approximately 15% of

the respondents did $o.

3 The half-space method

The basic hypothesis behind stated choice anabysist the choices made by respondents reflect
their preference ordering over all alternativeseSénpreferences are usually described by means
of a utility functionu, which has the attributesof the alternatives as its arguments, and possibly
also the respondent’s (observed and unobservedatbasticsz.

u=u(x2 (2)

The preferences of the respondents with respeitietooads between which they have to choose
in our experiment depend on three road charaataighe toll to be paid, the travel time, and the
fatality probability on the road. The marginal ratfesubstitution between travel time and toll is
the value of time\ot), and that between the fatality probability antll iothe value of statistical
life (vos). The former is expressed in money per unit oktiand the latter in money per ‘unit of
probability’. Because a ‘unit of probability’ cosponds to the extreme difference between a
completely certain non-occurrence and a completeltain occurrence of an incident, it is
important to emphasize that thesl is the marginal willingness to pay, referring t@nginal
changes in fatality probabilities. What is value@ @nfinitesimally small changes in fatality
probabilities; it is the units in which these areasured that may make to willingness to pagm

to refer to the avoidance of a certain death — Wwiticertainly does not, because the difference

between probabilities of 0 and 1 is of course defiy not ‘marginal’®

* Loomes et al. (2002, p. 103) indicate that anood@0 to 30 per cent for inconsistencies of #iigl is typical in
the literature.

® Instead, theoslaims to reflects the individual’s marginal valaatiof (infinitesimally small) changes in risk -ist
the rather arbitrary choice of probability “unitgtith units chosen such that the probability magyJsetween 0 and
1) that express this valuation in a unit that reprgs a certain fatality. Just as there is no reasompose an income
constraint on an individual’s marginal willingnesspay for apples when the units of measuremenigdgsfrom
single apples to the yearly global apple productibere is no reason to impose an income conswaittievosl
when it is used to evaluate the benefits of snfahges in fatality probabilities.



The marginal rates of substitution, in turn, dre tatios between the marginal utilities of
time and toll forvot, or of fatality probability and toll fovosl The simplest illustration is for an
indirect utility function that is linear in the #e attributes:

u= ﬁtoll r+ :Bprob [P+ :Btime [ (2)
where 1 is toll, P is fatality probability, andr is travel time. Thevosl andvot implied by this

utility function are:

ﬂ prob

vosl= ;. vot= Pine : (3)

/Btoll ﬂtoll

Conventional discrete choice models usually esemparametersS for a utility function

resembling (2) but with a random term added, and determine th&ot or voslaccording to (3).
Depending on the model formulation chosen, thereggd parametei8in (2), and the implied
marginal valuationyot or voslin (3), may or may not be allowed to vary overmpslents in
accordance with observed or unobserved heterogeneit

For the half-space method explored in this paperimmediately allow for th&ot and
vosl to vary over individuals, but do assume that tlaeg constant across choices for each
respondent individually. This allows us to pool titeservations for each individual to determine
a lower and upper bound on that individual’s maagvaluationsvot andvosl In reality, the
individual's vot and vosl of course need not be constant across choicepaiiicular if the
marginal valuationsf) vary with attribute levels. Keeping the marginaluations constant has
the great advantages of producing a singleand a singlevosl for each individual, so that we
can determine straightforward unidimensional disitions ofvot andvosl over individuals. A
main disadvantage is that we introduce a secondceonf seemingly inconsistent responses,
besides the sheer possibility of ticking the wrdnugton on a computer screen, possibly because
of reduced attention or hasty reading. A combimatbchoices that would be inconsistent with a
constantvot andvoslfor an individual, may be perfectly consistenthwialuations that vary with
attribute levels. Nevertheless, a linear approaithtren still give a lower and upper bound that
is representative for the individual for the partar range of attribute levels covered by the
choice sets.

Now consider a choice set with two alternativemndj presented to an individual, and

denote the differences between attribute levelsat@ernativei minus alternative, with A. With



constant marginal valuationst andvos| the individual will be indifferent between the dw

alternatives if:

At +VOSI[AP +Vot[AT =0 - vosI=—£—vot£ (4)
AP AP

Equation (4) defines an affine equation in Yw-vosl space, which connects valuesvot and
voslfor which the individual would be indifferent besen the two alternatives. The actual choice
made by the individual therefore reveals on whicle ©f this line her combination eft and
voslis to be found. A numerical example may help: abgrsan individual who prefers a trip that
has a toll exceeding the other toll by 10, while tlavel time is 1 hour less and the accident risk
is 1:1 million smaller. The individual may then fexample have @ot of 0 and avosl of at least
10 million. She may also havevasl of 0 and avot of at least 10. There are of course countless
possible combinations @bt andvoslthat would be consistent with the observed chdicg, we
do know that thevot is at least 10 vosl/ 1 million. Her true combination ofot andvosl is
therefore not to the south-west of this line whéitpd invoskvot space — and this is the ‘line of
indifference’ defined by equation (4) for this pamtar numerical example. Of course, if the
individual chooses the cheaper but slower anddafesalternative, we know that her combination
of vot andvoslis not to the north-east of this same line. Weefwe know, from the observed
choice, in which of the half-spaces defined bylthe of indifference (4) the respondentsst
vot combination lies.
When the respondent makes a number of choices,acddbkm defines such a half-space.
The respondent’s combination wdt andvosl must then lie somewhere in the intersection of all
these half-spaces; at least if, as we asswos andvot are individual specific constants. These
intersections, in turn, imply lower and upper bosimh the respondentgbt andvosl which in
turn can be combined across respondents to finditgltaneous distribution of these variables.
Figure 1 provides a graphical example for an irdiial who has made three choices, with
the implications for th&oskvot combination represented by the arrows attacheth ‘line of
indifference’. The three choices together implytttie true combination ofot andvosl must be
in triangle A, the intersection of the three half-spaces, sb ftirathis example we can identify

finite minima and maxima for botéot andvosl



Figure 1. The half-space method illustrated with tinee ‘lines of indifference’
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It will be clear that this procedure works only whthe respondent’s choices are mutually
consistent. It is not hard to imagine a fourth lind=igure 1, to the north-east of triangleand
with arrows pointing to the north-east, that wolddve the intersection of half-spaces implied by
this individual’s choices is empty. One possibifity such an inconsistency to arise in our dataset
is when different answers are provided to the idahfjuestions 2 and 10 — although this could
still be taken as a sign that the respondent’s tmmbination ofvot and vosl happens to be
exactlyon the line of indifference implied by the choice.detonsistencies may of course also
arise for respondents who do provide the same arnswgiestions 2 and 10, and Table 2 shows
that the total number of respondents with incoesisthoices is approximately twice as large as
the number that made different choices for thesé deestions. Approximately 30% of the
respondents made choices that are mutually indensisn the sense described above (the
intersection of half-spaces is empty) if we mamtéhat vot and vosl are constant for each
individual. In the remainder of this section andhe next one we ignore these respondents, but

we will return to them in section 5.



Table 2 Consistent choices

Group n Consistent Inconsistent
1 207 117 90

2 220 140 80

3 211 118 93

4 215 136 89

5 202 136 76
Total 1055 664 391

Figure 2 shows the lines of indifference, and tinglied possible intersections of half-
spaces in which a respondent with consistent ceaiaa end up, for one of the five groups in our
experiment. We only show results for group 4; corapke diagrams for the other groups are
available upon request. The diagram shows that smnttgese intersections are relatively small,
defining relatively small intervals forot or vosl while in other cases these intervals are wide
and, unavoidably, in a number of cases unbounded.

The vertical lines of indifference refer to chadeetween alternatives with equal
travel times. Such choices imply a unique critiecalue of thevosl and are therefore especially
informative for the present purposes. We can fangde see that among the 136 respondents
present in Figure 2, 27 (19+2+2+1+3) haveoal below Dfl 1.875 min — the value implied by
the first vertical line of indifference. The criéic value of thevosl defined by other choices
depends on theot, which diminishes their informational contents fioevosl but of course raises
it for thevot
Figure 2 thus summarizes all information that theice experiment provides about the values of
time and the values of a statistical life for rasgpents in group 4, under the two — arguably
minimal — assumptions that choices reveal truegpeeices and thabt andvosl are individual-

specific constants.
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Figure 2. Lines of indifference and occupation of &lf-spaces for consistent sets of choices,

group 4 (vot in Dfl, vosl in min. Dfl)
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4 Upper and lower bounds on the VOSL

Figure 2 strongly suggests that the values of tend of a statistical life differ over the
respondents. There is not a single value of thesahles that is (approximately) applicable to
everyone, but instead there seems to be a rangeuss.

Since every consistent respondent can be allogatedh particular area defined by the lines of
indifference in Figure 2, the interval to which adividual’s vosl belongs is defined by the
lowest and highest values of tlesl (the latter possibly being infinite) that belormgthat area;
compare also Figure 1 (the same holds for a miniraochmaximunvot). These upper and lower
bounds of thevosl of the individual respondents can next be usedotapute upper and lower
bounds on the cumulative distribution of taslin the group of respondents. The results of this

exercise are shown in Figure 3, as the upper amndrlbounds on the cumulative distribution of
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voslimplied by the consistent choic®#gain, we only show the relevant diagram for greup

the other four diagrams are available upon request.

Figure 3. Upper and lower bounds on the cumulativelistribution of the vosl, group 4 (vosl
in min. Dfl)
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The real distribution of thevosl is unknown, since the ten choices made by the
respondents reveal only an interval in which #osl must be (under the assumptions made).
There are three points in the diagram, for thrdaesof thevosl| for which the lower and upper
bounds coincide. These points correspond with thtical lines in Figure 2. The questions
associated with these vertical lines ask a respunibeindicate whether higosl is higher or
lower than a particular value. This provides exafiirmation about the associated point on the
cumulative distribution function of theosl

5 Extension towards a statistical model

The analysis of the previous section was basedmonassumptions: (1) theosl and vot are
individual-specific constants and (2) each choitea sespondent reveals her true preferences.
The second assumption is violated by respondentsméde a sequence of choices that are not

® The upper and lower bounds referring to an estthatodel will be discussed in the next section.
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mutually consistent. This means that more thantbing of the respondents had to be left out of
consideration, which is clearly unsatisfactorywtiuld be preferable to have an extension of the
half-space method that enables us to explain theroence of consistent and inconsistent choice
sequences, and exploit the information providedhdtyr. We will now provide such an extension
by introducing an error generating mechanism irite hypothetical choice process. More
specifically, we now assume that in every choicereghis a fixed probabilityg, that the
respondent’s choice is in accordance with his peefges. The probability Irthat the choice
differs from the preferences results from erroasised for instance by pressing the wrong button.
The situation considered in the previous two sectimrresponds to the special, deterministic case
in whichg=1.

The use of a fixed probability has the disadvanthge it assigns the same probability of
‘erring’ for a choice between alternatives that asarly equivalent in term of utility for the
respondent, as for a choice between alternativesentn is clearly preferable to the respondent.
Conventional discrete choice models, in contrasply a smaller probability of choosing the
alternative with the lower systematic indirect ititil when the difference in systematic utility
between alternatives becomes bigger. The essexiaintage of doing it this way, is that we can
still avoid makinga priori assumptions on the type of statistical distritngithat apply.

To illustrate the extended model, we add the astomghat all respondents haveras|
and avot that are both nonnegative. This implies that edjpondents can be located somewhere
in the nonnegative orthant of theskvot space. Their tru&osl-vot combination lies in that
particular intersection that is defined by consistehoices that correspond with this combination.

Let m(k) be an index that denotes the particular intersedif half spaces to which tivesl-vot

combination of a respondent of grokpbelongs; hence, in Figure 2 far4, each area gets a
specific value oim(k). (Because the lines of indifference vary betwgesups, we use group-
specific indicesn(k)).

If all respondents would only give answers thatiaraccordance with their trusmsland
vot, the numbers indicated in the Figure 2 would imply fractions of the respondents witbs|-
vot combinations as implied by the boundaries of theersection. However, when the
respondents make errors, this is no longer the &geve can then still estimate these fractions,

on the basis of our assumption about the error+géing mechanism (the fixed probabildy.
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To do this, we assume that there is a joint derdityoslandvotin the population from
which our respondents originate. We regard theahetusl-votcombination of a respondent as a
random draw from this density and denote the pritibathat a respondent in group k has a true

combination ofvosl and vot that belongs to a particular area(k) aspmk We should have
Prmao >0 for all m(k)and zm Pmao =1 for all groupsk. We know each respondent’s grokip

but not the area to which his or her particulasl-vot combination belongs. Since there is a
unique set of choices associated with each arethe area to which a respondent belongs is
revealed by his choices if no mistakes are made. prbhbabilitiespky, can then be estimated as
the relative frequencies of respondents endinghugream. This is the approach followed in the
previous section. When respondents make errorsetipeobabilities can still be estimated,
although the procedure is somewhat more complicated

To see this, observe that the probability thatspoedent makes a sequence of choices
that is completely consistent with hieslandvotis, with 10 choicesg'® The probability that he
makes exactly one choice that is inconsistent Wishirue preferences equafs-q) [6°.” More
generally, the probability that a particular sequeenf choices — say - is made by respondent
in groupk whose truesosl-votcombination belongs tm(k) equalsq"™ (1- q)(lo'”""k), wherenimk
is the number of choices ynthat are consistent withv@sl-votcombination in arem. This is the
probability thaty, will be observed, conditional on the responden&sl-vot combination

belonging tom(k). The unconditional probability that will be observed can be found by
multiplying the conditional probability byp,(, and summing over alm(k)s. The resulting
expression can be interpreted as the likelihooabsErvingy; for a respondenin groupk:
(i k) =2, Py ™ L= ) 0™ 5)

If no mistakes are made&1), equation(5) says that the likelihood of observing a

particular sequence of choices is equal to the ghitiby pxm that the respondent'sosl-vot

combination belongs to the unique ammathat associated with this choice sequence. When

[ may be noted that such a mistake may result Beguence of choices that is consistent with the
preferences of a respondent whose combinatiomosf and vot belongs to another area tham It is therefore
possible that an observed sequence of choicesemally consistent, but nevertheless not in aczioed with the

preferences of the actor.
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mistakes can be madg<l) any aream(k) can lead to any particular combination of choices,
although of course not all combinations have timesprobability.

We have estimated the probabilitigg,, and g by maximizing the product of the
likelihoods I(yi k) over all individuals in the same grolp Doing this for all groups gives us
estimates for allp,,s and four (potentially different) estimates foe tprobability gthat a

respondent’s choice agrees with his actsl-votcombination.

Table 3 shows the five estimates for the proltédsilq of making a choice in accordance
with one’s true preferences. The low standard srsbow that these probabilities are estimated
precisely. For all three groups these probabilgiesbetween 90 and 95%, which seems
reasonable. Note, that the probability of realizingequence of 10 correct choices is 35% when
0=.90 and 60% wheg=.95. This suggests that a non-negligible shatbetonsistent choices
may in fact be inconsistent with the true prefeesnaf the respondent. Note also that the five
point estimates of thgs are very close to each other, which suggeststibdtve groups are
equal in their propensity to make errors, as omellshexpect on the basis of the random

assignment of respondents to groups.

Table 3 Estimated probabilities that a choice agredth the respondent’s preferences

Group q standard error Loglik

1 0.930 0.0066 -882.64
2 0.943 0.0054 -870.60
3 0.932 0.0060 -899.20
4 0.936 0.0063 -954.93
5 0.944 0.0055 -801.69

Note. The probabilitiepy have been estimated jointly with the

Using the estimation results fqi, (not reported, but available on request), we can
compute alternative upper and lower bounds of ik&ilbution function of thevoslin the same
way as we did this in the previous section for tespondents with consistent choices. The
estimation results imply somewhat different boufmrsthe cumulative distribution of theosl
These are pictured in Figure 3 as the ‘thin’ lin€ke bounds that are based on the statistical

model have a tendency to lie above those basedmsistent respondents only. This was the case
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not only for group 4, but for each of the five gosuHowever, the bounds are in general close to
each othef.

An advantage of the model-based bounds is that tddey into account the information
contained in choices from respondents with incdesises, whereas the other bounds are based
only on the consistent respondents. This advantagees at the ‘cost’ of having to make
assumptions about the way respondents make érrors.

Figure 3 shows that the stated choice experimemenwnterpreted with the two or three
(if one wants to incorporate the inconsistent cegjaninimal assumptions used here is certainly
informative. It contains valuable information abaiie distribution of thevosl among the
respondents, and — provided these respondentssaleaively chosen — in the population. Our
assumptions are, however, insufficient to exaallgntify this distribution, even though some
points of the cumulative distribution are reveakdctly, when the lower and upper bounds

touch, as happens three times in Figure 3.

Table 4 Upper and lower bounds for the median vosl.

Consistent choices Estimated model
Group lower Upper Lower Upper
1 15 5.5 15 5.5
2 2.7 6.6 2.7 6.6
3 0.0 4.4 0.0 8.3
4 5.5 6.6 1.7 5.5
5 3.6 55 3.6 55
All 2.7 6.6 2.7 5.5

Millions of Dutch guilders.

To get a better idea of the sharpness of our iestiible 4 lists the implied upper and lower

bounds for the mediavoslin the five groups of responderifsit is apparent from this Table that

8 It may be noted that these bounds are based astimated values of thi, and are therefore subject to
estimation error.

° We already observed that choices that are intgroahsistent do not necessarily reveal true pesfees, since
errors do not necessarily result in an inconsistbnice sequence. It is therefore possible tha@msistent choice
sequence contains as much information about tleepireferences of a respondent as a consistentrsagjue

9 Figure 3 gives the corresponding diagram.
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the relevant intervals are typically very wide. ™rallest one is 1.1 million Dutch guilders, the
widest 8.3, and the average width is 3.85. Theor&sr this result is clear: given the questions
posed to the respondents, and given our unwillisgrie make further assumptions, it is simply
impossible to reach more precise results with resjpethe relevant intervals.

This suggests two possibilities two improve thesult. One is to introduce more
assumptions. This will be discussed in the nextiaecThe other, relevant only in the design
stage of a stated choice experiment, is to chamgehoice cards shown to the respondents. The
exposition above has made clear that choice siiati which the two alternatives differ only in
the number of fatalities and the toll reveal onenpof the cumulative distribution function
exactly (assuming consistent choices). More in ganéhe cumulative probability distributions
will be closer when the minimum and maximwosls consistent with each area become closer.
Looking at Figures 1 and 2, and realizing that plsitions of the lines of indifference follow
from the differences in attribute levels between #étternatives in a choice set, it is clear that th
closeness of upper and lower bounds, and hencepdtential usefulness of the half-space
method, can be affected through the underlyinggtlesi the experiment. If the interest of the
survey is especially in the determination of thediaevos| the choice sets could be constructed
in such a way that the lines of indifference alatreely close and relatively vertical in that part
of thevostvot space where the median is expected to be.

Finally, it may be noted that more precise infatimaabout the cumulative distribution of
the vosl can be collected by posing more questions to éepandents, but that it is at the same
time likely that then also the frequency of incatsint choice sequences will increase. Indeed, the
analysis of the present section shows that eveln middest probabilities of making an error, a
substantial share of the choice sequences is tehally consistent and could therefore not be
used in a deterministic model. Hence, the relevaftie statistical model increases with the size

of the choice sequences.

6 Comparison with mixed logit models
The foregoing discussion implies that the half-gpanethod cannot pin down a single
distribution function of thevos| but produces lower and upper bounds instead. Exeemedian

value of thevoslis not precisely indicated by the results of ttadesl choice experiment.
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Figure 4 Upper and lower bounds on the vosl distribtion using all respondents’ choices

(vosl in min Dfl).
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Figure 4 summarizes the information aboutwbslin our complete sample, for all groups

jointly (Figure 3 referred to group 4 alone). Figutr was obtained in the same way as Figure 3,

but it uses the information of respondents fronmfiaét groups (the five blocks from the design).

The diagram also pictures the points of thesl distribution of the various groups that were

exactly revealed by their choices (that is, thenfgowhere the upper and lower bounds coincide

in the diagrams such as Figure 3). It is clear ftbemdiagrams that those points are inconsistent

across groups: for some values of ¥os|, different values of the cumulative distributiam€tion

were exactly revealed. Nevertheless, these difte®im choice behavior between the five groups

are limited. For instance, if we estimate a stathdiegit model and allow the parameters to differ

between groups, we find that the differences beatvestimated parameters are numerically small



and most of them are insignificalftA striking feature of Figure 4 is that forvasl equal to 44.9
million Dutch guilders, there is an exactly reveafint in the distribution function of group 1
that is close to the lower bound, suggesting thattue distribution ofoslmay have a relatively
fat tail.

Conventional discrete choice models produce a endjstribution of thevosl by making
other assumptions. This section compares the sesfilsuch models with the results from the
half-space method, summarized in Figure 4. We louitattention to discrete choice models with
a linear utility function; which is, for the data hand, specified as in equation (2). The

multinomial logit model assumes that the coeffitsef are constants or deterministic functions

of observed characteristics of the respondentsmitked logit models, these parameters are
allowed to be random variables, but their distidmthas to be specifie@ priori. Both
approaches are more restrictive than the one usedeawhich treats ratios between them as
individual specific constants without assuming amg about their distribution.

Furthermore, logit models add a random te&m to the utility function for each choice
alternative. These terms can be interpreted inouariways. Important possibilities are
unobserved heterogeneity of the choice alternatbresespondents, specification errors, and a
random element in choice behavior due to errorounstudy, respondents were instructed to
imagine that the two roads among which they hachtmse were identical in all respects, except
for the three attributes toll, safety and traveidi Unobserved heterogeneity of the alternatives
should therefore be no source of randomness, oinarrissue at most. Sources of randomness
could then be differences between individuals, $igation errors, and erratic responses.

The latter interpretation brings us close to thedehlf the previous section. It must,
however, be pointed out that the error mechanised ubere is different from the one that
corresponds to this interpretation of the logit mlodh the previous section we assumed a given
probability that the choice indicated by the respart is not in agreement with his actual
preferences. This means that the probability ofeamor is independent of the respondent’s
evaluation of the two alternatives. If we interptbe random term in the logit model as an
evaluation error, the probability that a respon@eahoice is not in accordance with his or her

preferences depends on the evaluation of the chalteenatives. If the utilities of the two

M 1f groupl is used as the reference group, alldr2ameters that measure differences with other grawp small
and 9 of them insignificant (asymptotic t-valuesléisan 1.96).
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alternatives differ widely, the probability that amror will be made is then much smaller than
when they are close. To see this, recall that trabability P; that a respondent chooses
alternative 1 from a choice set consisting of twteraatives is:

Uit

PpP=— 6
= ®)

wherevu; is the evaluation of alternativeby the linear utility function. Ifu, > u,, the choice for
alternative 1 is in accordance with the respondgmteferences. This probability exceeds 0.5, and

increases iru, —u,. The probability of an erroneous choice is, acewlg, at most equal to 0.5
and it decreases in, —u,. This difference in the specification of the erraechanism is an

important difference between the logit models amel &pproach to stated choice data of the
previous sections of the present paper.

Since the two error generating mechanisms arerdifit, we will in what follows compare
the results of estimating logit models with respgecthe distribution of th&osl with the bounds
computed on the basis of the consistent choiceesegs computed earlier in this paffer.

We have estimated a number of mixed logit modeds differed in the specification of the
distribution of the random coefficientsWe compared the implied distribution of thesl with
the bounds implied by the approach of this paparceSthe logit models are estimated on all
respondents, we compare the implied distributiothefvosl with the bounds of the distribution
of thevoslfor all respondents as shown in Figure 4. Ousitation concentrates on mixed logit
models in which the three coefficients are assutoeble lognormal distributed. We estimated
these models in preference space as well as imgnkss-to-pay space. In the former case we

specify the utility of alternativeas:
ui = IBtoII B-| +18prob EFI) +ﬁime DlT) +£i (7)
where the S parameters are assumed to be negative and logipmirsributed, and the error

term &, extreme value type | distributed. Each individiegpondent evaluates all alternatives on

12 Since the bounds we derived on the basis of theisnt choice sequences are very close to treraeed on the
basis of the model with the error mechanism, thisat of much practical interest.

13 Since Figures 2 and 4 strongly suggest the preseficeterogeneity in theosl no comparison with multinomial
logit has been made.
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Table 5 Estimation results for mixed logit models.

a) Estimation in preference space

No correlation

Free correlation

Coeff. St.e. Coeft. St.e
Toll B, m -0.44 0.044 -0.39 0.059
opr 094 0.040 1.09 0.072
# Fatalities B, M -1.92 0.058 -1.78 0.068
or 1.30 0.058 1.37 0.081
Travel time B, m -2.01 0.070 -2.15 0.112
opr 0.85 0.076 1.07 0.069
N12 -0.05 0.10
N13 0.83 0.13
N23 -0.07 0.11
Loglikelihood -4512.87 -4485.58

b) Estimation in wtp space

No correlation

Free correlation

Coeff. St.e. Coeff. St.e
Scale factor B' m1  -0.15 0.061 -0.34 0.059
o1 1.10 0.078 1.08 0.073
VOSL B, m  -1.54 0.045 -1.42 0.066
o1 1.80 0.064 1.48 0.079
VOT B, m -1.87 0.068 -1.75 0.10
o1 1.05 0.047 1.00 0.073
n12 -0.97 0.092
N13 -0.28 0.10
n23 -0.069 0.11
Loglikelihood -4531.91 -4483.13
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the basis of the same realization of the coeffisiBn The error terms of all alternatives are

assumed to be independent of each other.
Our second specification estimates the model ifingihess-to-paywtp) space. In that

case the utility of alternativies specified as:
ui I::Bt:)ll I:EI] +:Bp'»rob |:I:i)-i_:Bti'me DI:]-I_‘E] ) (8)
The 3' parameters are again assumed to be lognormatiybdid, 5, negative ands,,, and

B POsitive, and the error ter@ extreme value type | distributed. Note that &/jdientical to

(8) if we have By =B Byos = Bpon! Bt 8N Bine = Bime 1B It Is referred to as a

prob —

specification in willingness-to-pay space becay8g, and 4. are thevosl and thevot,

respectively. Thesetp variables are therefore immediate results of theehestimation if (8) is

used, whereas they have to be computed on the tlassimates of the estimatesls if (7) is

used. With either model, the distribution of thesl and thevot is lognormal, and one would
expect that the two specifications give similautts

However, using different data, Sonnier, Ainslie aer (2005) and Train and Weeks
(2005) have reported the somewhat surprising fopdiat a better within-sample fit was obtained
for the model estimated in preference space, butrénreasonabletp distributions for the
model estimated irwtp space™® It appears, therefore, that very small differengesmodel
specification may give rise to substantial diffeves in results, and the authors suggest that one
method should be preferred to the other as beinge madiable. Our approach allows a specific
check on the plausibility of thetp distributions, by comparing the outcomes of botidels with
the distributions generated by the half-space ntetho

To do so we estimated the mixed logit models diesdrabove in preference space as well
as in willingness-to-pay space. For both specices, two variants were estimated: one in which
the three coefficients were treated as independgnbrmal variables, and another in which they
were assumed to be simultaneously distributed wititestricted correlation parameters.
Estimation results are given in Table 5. They atistctory for both specifications. When no

correlation between thgss is allowed, the model estimated in preferenceesgeas a larger

14 See Train and Weeks (2005) page 16. Train and $vedér to an earlier version of Sonnier et al0g0Unlike
what was the case in these studies, we have notfgieneasure for what would be a reasonable @rasunable
willingness to pay.
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loglikelihood value at convergence, as was foundhim two papers discussed above, but this

difference disappears in the more general model.

Figure 5 The vosl distribution implied by the mixedlogit models with lognormal coefficients

(preference space vs. willingness to pay space).
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Figure 5 shows the distributions of theslimplied by these four mixed logit models, and
compares them with the bounds implied by the cteisischoice sequences. The picture shows
that, except for low values of thesl the curves resulting from estimation in prefeeespace
are closer to the lower bound than those from ediom in willingness to pay space. This
replicates the results obtained by Sonnier eal0%) and Train and Weeks (2005). However, the
bounds derived earlier in this paper show thatitfi@mation content of our sample does not
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allow us to regard one of the two specificationety@s giving more reasonable results than the
other. It appears that the specification in prefeeespace implies\asldistribution that is closer

to the lower bound derived with the half-space mdthEven though one could, far priori
reasons, regard the tail of thiesl distribution implied by the preference space dpmEttion as
unreasonably fat, it should be noted that the Idveemd derived earlier in this paper is consistent
with an even ‘fatter’ tail. Moreover, the singleipioof the distribution function for higher values
of thevoslthat was exactly revealed by group 1, shown imifegl at avoslof 44.9, suggests that
the lower bound we computed might be closer totthe distribution function than the upper

bound.

Figure 6 The vosl distribution implied by the mixedlogit models with uniform and

triangular coefficients.
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This observation also suggests that it may be wedys be a good strategy to impose
probability distributions on the random coefficienthat are bounded on both sides. Such
bounded distributions of partworths have been dised, for instance, in Train and Sonnier
(2003). To investigate this issue, we estimatedumber of logit models with uniform and
triangular distributions. In both cases we founak th substantial part of the probability mass was
assigned to positive values of the coefficientac8ithere is nothing in our data that suggests that
some of our respondents attach positive valuell®, insafety or travel time, we also estimated
versions of the models in which the random coedfits were restricted to be nonnegative.

Figure 6 shows the implied distributions of thes&ad logit models and compares them
to the bounds we computed with the half-space nuefbothe consistent choicésThe diagram
shows that the distributions from these mixed logaidels are indeed close to the upper bounds
form the half-space method, as was expected. Mere@ll estimated distributions cross the
upper bound for values of thvesljust above the median. This is not only the casdhfe upper
bound that refers to consistent choices, but asale bounds computed on the basis of the
model we estimated in section 5 (not shown in Feda), which is just a little bit higher than the
one referring to consistent choices (compare Figlwr&loreover, all these curves are above most
of the points of the distribution functions of theslthat were revealed exactly by the choices of
the various groups. This suggests that the useoohded partworths may underestimate the
variation in the parameters of interest that isene in the data.

7 Results for the value of time
We carried out a similar analysis for the valuetiofe (vof) on the same data. The results are
summarized in Figures 7 and 8, which can be condpar&igures 5 and 6. The lower and upper
bounds computed for thet differ more (in a relative sense) than those caegbéor thevosl

Figure 7 shows the distributions of tlvet implied by the mixed logit models with
lognormal coefficients that have been discussethénprevious paragraph. It shows the same
pattern as Figure 5: the models estimatedtmspace imply a distribution of thet that is much

closer to the upper bound than those based estinrafgreference space.

15 Full estimation results are available on request.

25



Figure 7 The vot distribution implied by the mixedlogit models with lognormal coefficients

(preference space vs. willingness to pay space).
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Figure 8 shows the estimated distributions for tbewhen the uniform and triangular

distributions are used. Also in this case, resigcthe random coefficients to be positive implies

that the whole distribution shifts upward. Even ugb none of the models now implies a

distribution that crosses the upper bound, thepeapto be no reason to be prefer the models

with bounded partworths to the lognormal modelssAin this respect the results for thet

confirm those reached in the previous sectionshievosl
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Figure 8 The vot distribution implied by the mixed logit models with uniform and

triangular coefficients (vot in Dfl).
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8 Potential for and limitations of the half-space mthod

The foregoing sections illustrated how the halfegpanethod can be used to determine
objectively upper and lower bounds on the (cumudgtdistributions ofwtp's (vosl andvot in
this application) from SP experiments. It is cltfaat there is an advantage in deriving these
bounds directly from the actual responses, instéadakinga priori assumptions on the type of
distribution. It has also become clear that thehoetwill become more effective when more
choices are included that imply an equality of kbver and upper bounds of the distributions,
thus narrowing the distance between the boundsseTlage choices between alternatives for
which only the price attribute and the attributéo#valued differ. Evidently, other considerations
in the design phase of an SP experiment may lead design in which such choices arat
included, so the ultimate design would in part aepen the question of how important a direct

determination of the type of distribution is coresied to be.
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The method is not restricted to studies with binahoices. For example, a choice
between three alternatives can be treated as tmarybichoices, namely between the winning
alternative and either of the two unchosen alteraat

Our application has also illustrated a number itifcdlties with this half-space method.
One difficulty is the inconsistency of responderdausing a “true” combination aftp's that
explains all their choices to be non-existent. Ahea rigorous approach of considering
“consistent” respondents only was found to stitbgurce usable distributions, but is of course
unattractive due to the loss of valuable data 4oas that will become bigger, relatively, when
the number of choices per respondent increasespMfsosed a somewhat naia] hocbut
intuitive error-generating mechanism that allowedta keep the “inconsistent” respondents. It
seems that this mechanism is still amenable toorgment, for example by somehow making
the probability of erring larger for a choice tlsgems to deviate more from the respondent’s
other choices. But we admit that inconsistencieghe$ type limit the attractiveness of the
proposed method, and ways to deal with it will @oly always remain somewhat unattracti¥e.

A second possible limitation is related to the elrsionality of the design. Our application
considered two attributes besides price, allowmrgaf two-dimensional graphical representation.
If threewtp's or more are at stake, the essence of the methlbdot change, but the relations
between thewntp's will become more complicated than what is shawrequation (4) and the
interpretation of the sub-spaces becomes morediffiThe method, therefore, seems to be best
suited for one- or two-dimensionatp studies.

Third, when different “blocks” are used, as in @tudy, it is not sufficient to have for
each group choices that imply an equality of theeloand upper bounds of the distribution to
achieve also an “exact” point for the entire popala Figure 4 gives an example. To circumvent
this problem, it would suffice to use identical aes of this type across groups. One such
guestion near the expected median presumably wuaNeé reduced the gap between the lower
and upper bounds shown in Figure 4 considerablpti#er one, near the end of the range, would
have given valuable information on the likely “fags” of the tail.

16 A reviewer remarked that the alternative possibif allowing for non-linearities in the utilityuhction is also not
entirely satisfactory. For example: which non-lingas and interactions should be included? Andutththese be
included also for “consistent” respondents?
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9 Conclusion

In this paper we developed the half-space methodnfgestigating the results of stated choice
experiments under minimum assumptions on statisdis&ributions. The method provides upper
and lower bounds for the distribution of willingse®-pay variables that are often the focus of
interest of such experiments, under the assumghah an individual's willingness to pay is
constant in the range investigated. As a by-prqodbet method provides a check for the overall
consistency of the sequences of choices made lrgspendents.

The half-space method also sheds light on questbout the appropriate specification of
the distribution of the random coefficients in mdxegit models. We showed that, for the data at
hand, the method implies a relatively broad rangeveen the upper and lower bounds of the
distribution function of thevosl Many parametric distributions of tivesl are within this range.
Our comparison of models estimated in prefereneeespnd in willingness-to-pay space showed
that details in the specification can lead to eated distributions of theoslthat are either close
to the upper or to the lower bound implied by ooalgsis. Since the data do not allow us to make
a choice, our analysis suggests that it might kefulisn the design phase of a stated choice
experiment to consider inclusion of sufficient ates that imply an equality of the lower and
upper bounds of thertp distributions determined by the half-space metfthds narrowing the
distance between the bounds). These are choiceed&talternatives for which only the price
attribute and the attribute to be valued differ.

Incorporation of such choice cards in an SP desmeferably near the expected median
and in the tail of the distribution to allow a ckemn “fatness”, seem particularly relevant when it
is expected that thetp's to be investigated may vary strongly over resjgmts, so that mixed
logit models become a likely option for the anaysind direct information on the distribution
over respondents becomes more valuable. Due trafispatfalls of the half-space method, it
will probably be impossible to develop it into dlfalternative for conventional discrete choice
models, but the method does provide a nice wayetting direct information, under minimal
assumptions, on the distribution wip's implied by the responses to an SP questionnahies
seems to make it a very useful complement to milogit models, that require priori

assumptions on these distributions.
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Appendix A Stated choice question

Suppose that you would like to travel from city/dity Z for personal reasons. Assume that you
will be traveling alone by car. You can choose lestwvtwo roads. Both roads are used equally
intensive with 55000 trips per day, which meansuadb18 million trips a year. So in one year,
every Dutch citizen could have used this road.

Both roads are toll roads, and you have to paytéleyourself. You have to make a choice
between the roads based on 3 criteria; safetygltrame and toll. The roads are otherwise
identical: they are equally beautiful, calm, instheg, etc. So the only possible differences
between the roads are the tolls, the travel tinmeistaffic safety. All the other characteristice ar
equal and should not play a role in your decisi@kimyg.

If the choice were between road A and B, which nevadld you choose?

Choice Road A Road B Choice
Toll f 5,- f 10,- o Road A
Number of fatal accidents a year 10 5 o RoadB
Travel time 1 hour 50 min
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