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Expression profiles of genes regulating dairy cow fertility:
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Subfertility has negative effects for dairy farm profitability, animal welfare and sustainability of animal production. Increasing
herd sizes and economic pressures restrict the amount of time that farmers can spend on counteractive management. Genetic
improvement will become increasingly important to restore reproductive performance. Complementary to traditional breeding
value estimation procedures, genomic selection based on genome-wide information will become more widely applied. Functional
genomics, including transcriptomics (gene expression profiling), produces the information to understand the consequences of
selection as it helps to unravel physiological mechanisms underlying female fertility traits. Insight into the latter is needed to
develop new effective management strategies to combat subfertility. Here, the importance of functional genomics for dairy cow
reproduction so far and in the near future is evaluated. Recent gene profiling studies in the field of dairy cow fertility are reviewed
and new data are presented on genes that are expressed in the brains of dairy cows and that are involved in dairy cow oestrus
(behaviour). Fast-developing new research areas in the field of functional genomics, such as epigenetics, RNA interference, variable
copy numbers and nutrigenomics, are discussed including their promising future value for dairy cow fertility.
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Introduction

Dairy cattle bred primarily for production, with relatively little
attention for functional traits, are subfertile (Royal et al.,
2000; Roxstrom et al., 2001), as shown by suboptimal
ovarian cyclicity (Opsomer et al., 2002), behavioural expres-
sion of oestrus (Van Eerdenburg, 2006), success rate of
artificial insemination (Jorritsma and Jorritsma, 2000; Royal
et al., 2000) and embryo survival (Sheldon et al., 2006).
Subfertility leads to between-calving intervals that are longer
than economically optimal (Huirne et al., 2002), it increases
replacement rates (Beaudeau et al., 2000) and, thus, affects
profitability, animal welfare and sustainability of animal
production. Decreasing profit margins per kg milk pushes
farmers to reduce cost, increase herd size and, consequently,
minimize labour input and cost of getting cows pregnant.
This restricts options to repair dairy cow fertility through
additional management and so genetic improvement will

become increasingly important (Veerkamp and Beerda, 2007).
Though variation in dairy cow fertility is in part genetic (Flint,
2006), heritability for fertility traits is typically low (Pryce and
Veerkamp, 2001). This reflects the large unexplainable resi-
dual variation in statistical models predicting traits like calving
interval and pregnancy rate at the individual cow level and
does not mean genetic information is unimportant: daughters
of different sires may have differences in mean calving
interval of up to 30 days and the pregnancy rates of
daughters sired by extreme Holstein bulls are as high as 7%
(Weigel, 2006).

It is often perceived that improving fertility by genetic
selection is incompatible with the dairy industry’s aim of
achieving ever-higher milk production levels. Focussing on
increasing genetic merit primarily for yield reduces genetic
merit for fertility (Veerkamp et al., 2003), but conjoint
improvement for reproductive performance and milk yield,
say maintaining 70% to 80% of the yearly increase in yield
(Veerkamp et al., 2000), is possible (Andersen-Ranberg et al.,
2005; Jamrozik et al., 2005). In line with this, most leading
dairy cattle breeding programmes incorporate fertility, as
derived from calving dates and insemination dates, in their
selection indices (Miglior et al., 2005).
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Nowadays, detailed information on the Bovine genetic code
(i.e. , 3 billion nucleic base pairs packaged in 29 autosomes
and two sex chromosomes plus , 16 000 mitochondrial base
pairs, (Lewin, 2003)) is available. New high-throughput
technologies open up ways to effectively exploit genomic
information and accelerate genetic improvement. The aim
of the present study is to review and discuss relatively new
approaches, like genomic selection and functional geno-
mics, as applied in the field of dairy cow fertility.

Genomic selection

Information on variation between animals in nucleotide
sequence, as established by micro-satellites, restriction
fragment length polymorphisms (RFLPs) and single nucleo-
tide polymorphisms (SNPs), has been utilized in selection
via the candidate gene approach and whole genome scan
approach (Veerkamp and Beerda, 2007). Information on the
function of a gene in species other than dairy cows may be
used for a candidate gene approach: variation in the gene
is linked to phenotype, as applied for genes encoding for
gonadotropin-releasing hormone (Schneider et al., 2006),
leptin (Liefers et al., 2005) and the bovine luteinizing hor-
mone receptor (Hastings et al., 2006). In the past years,
attention has shifted from identifying variation in individual
(causal) genes towards genomic selection.

The whole genome scan approach builds on a large number
of polymorphic markers and involves the identification of QTL
that are associated with specific phenotypic traits. Of the
55 studies with dairy cattle reviewed by Khatkar et al. (2004),
45 reported on QTL for milk production traits and somatic
cell score. The few reporting on reproduction traits were
about gestation length, dystocia/stillbirth, success/failure per
insemination of daughters and (90 days) non-return rate.
In addition, dairy cow genetic markers have been linked to
ovulation rate, multiple ovulations (Kappes et al., 2000) and
twinning (Lien et al., 2000). The latter two are associated with
QTL on bovine chromosome 7 (BTA7) and may be the same as
the one validated for its effect on conception rate (Weller
et al., 2008). The confidence interval for QTL location typically
spans hundreds of genes and the identification of the causal
genes involved may require fine mapping of the QTL
(Meuwissen et al., 2002) by linkage disequilibrium (LD)
mapping and the construction of higher density marker maps.
Several QTL are suspected to be used by breeding companies,
although generally these are not published.

Part of phenotypic variation is linked to SNPs, causally or
indirectly by LD, and individual animals can be genotyped
on the basis of many tens of thousands of SNPs. Once
correlations between SNPs and phenotypes have been
established, such information allows detailed genotyping in
the absence of further phenotypic records, and genomic
selection (Meuwissen et al., 2001) has the ability to reduce
the cost and increase the effectiveness of breeding pro-
grammes. The Dutch breeding company, CRV, announced
the implementation of genomic selection in dairy cattle
(using 3000 SNPs) in 2006.

Functional genomics: transcriptomics

Functional genomics builds on information on static aspects
of the genome (nucleotide sequence) as produced by gen-
ome sequencing projects, but focuses on dynamic aspects
such as gene transcription (of DNA into mRNA) and
translation. Gene expression divergence may result from
variation in the sequence of regulatory regions, control of
transcriptional initiation, RNA processing and translation
(an estimated 60% of genes in humans use alternative
splicing), chromatine structure and DNA methylation
(Kehrer-Sawatzki and Cooper, 2007).

With the application of high-throughput technologies,
such as oligo or cDNA microarray-based transcriptome
analysis, gene functions are studied in a genome-wide
fashion, bridging the gap between sequence and biological
function. Fan et al. (2006) reviewed how microarray plat-
forms for parallel genomic analysis were first developed
about 15 years ago (Southern et al., 1992), resulting some
years later in gene expression profiling assays for measur-
ing mRNA abundance (Schena et al., 1995). mRNA levels
are assumed to serve as a proxy for phenotypic variation,
although mRNA levels need not always reflect the level of
functional proteins associated with the gene (Preuss et al.,
2004). Microarray techniques allow quantitative analyses,
which is of great relevance as the effects of gene expres-
sion levels may be subtle. Niwa et al. (2000) showed that
transcriptional regulators do not function as an on–off
control system and the precise level of expression of the
POU transcription factor Oct-3/4 determines the fate of
embryonic stem cells. Differential expression of 50% above
or below normal expression levels in undifferentiated stem
cells triggers differentiation to endoderm/mesoderm or
trophectoderm, respectively.

Gene expression profiling can be combined with QTL
mapping (genetical genomics) and the usefulness of the
approach has been demonstrated in mice (Schadt et al., 2003).

Micorarray-based high-throughput technology has great
potential in improving dairy cow fertility (Dawson, 2006;
Wolf et al., 2006) and facilitates progress in a number of
fast-developing research areas such as epigenetics and
genomic structural variation (see further on).

Recent transcriptomic studies on dairy cow fertility

Microarray-based gene expression profiling in dairy cattle
has been discussed recently (Beerda and Veerkamp,
2006) for studies on oocyte maturation (Dalbiès-Tran and
Mermillod, 2003; Vallee et al., 2005), non-regressed and
regressed corpus luteum tissue (Casey et al., 2005), oviduct
epithelial cell function (Bauersachs et al., 2003 and 2004),
the endometrium during the oestrous cycle (Bauersachs
et al., 2005), pre-implantation embryonic development
(El-Halawany et al., 2004; Ushizawa et al., 2004; Sirard et al.,
2005) and embryo-induced transcriptome changes of the
endometrium in the pre- and peri-attachment period (Ishiwata
et al., 2003; Klein et al., 2006). Briefly, the findings indicate
that at the ovarian level, processes are typically controlled
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by genes involved in steroid biosynthesis, oxygen radical
metabolism, apoptosis, regulation of cell cycles (including
DNA replication and repair), cell structure and tissue
remodelling. In the oviducts, variation (e.g. during the
oestrus cycle) involves the expression of genes encoding for
signal transduction pathways, cell-surface proteins, cell–cell
interaction proteins, immune-related proteins and those
that promote proliferation. Changes in the endometrium are
associated with expression divergence in genes involved in
immune function, regulation of cell cycles, apoptosis, tissue
remodelling, intercellular communication, cell–cell inter-
action, cell adhesion molecules, cell motility, intracellular
metabolism, protein secretion and modification, and reg-
ulation of gene expression.

Hashizume et al. (2007) reviewed bovine gene expression
profiles during pregnancy, which involves a cascade of differ-
ent processes like pre-implantation embryogenesis, maternal
recognition of pregnancy, implantation embryogenesis, pla-
centation and foetogenesis. Embryonic mortality is a major
contributor to reproductive failure and in about 80% of the
cases is caused by suboptimal placentation (Cross et al.,
1994). Reciprocal signalling and molecular exchange between
the mother and the embryo/foetus, at discrete sites that
together make up the placentome, is likely to play a critical
role. During bovine placentation there is a continuing migra-
tion of foetal trophoblast-derived binucleate cells (BNC) and
subsequent fusing with maternal uterine epithelial cells into
feto-maternal syncytial plaques (Wooding and Flint, 1994).
BNC produce an array of compounds, like steroids, prosta-
noids, bovine placental lactogens (bPLs), pregnancy-associated
glycoproteins (PAGs), bovine prolactin-related protein (bPRP)-1,
and the gene expression profiles for BNC-specific bPLs, bPRPs
and PAGs vary during pregnancy with apparent strategic
effects on implantation, placentogenesis, fetogenesis and
overall progression of pregnancy (Hashizume et al., 2007).

Bovine embryos grown in vivo are of superior quality
compared to those grown in vitro. A subset of expression
profiling studies targeting events in early development from
oocyte to embryo has been performed in the context of
optimizing embryo production and transfer. Mamo et al.
(2006) investigated gene expression profiles in in vitro-
produced bovine matured oocytes and blastocysts using an
82 target gene cDNA microarray and quantitative real-time
polymerase chain reaction (qPCR). Out of the 82 genes, 25
were confirmed as potential candidates for characterizing
developmental competence. Clearly, gene expression studies
are not restricted to microarray-based approaches and mRNA
abundances in bovine oocytes and blastcystes have been
determined for a limited number of selected genes using
(semi) quantitative PCR (Knijn et al., 2005; Lingenfelter et al.,
2007; Warzych et al., 2007). Wrenzycki et al. (2004) reviewed
PCR technology-based gene expression patterns in pre-
implantation bovine embyos produced in vitro (IVP), including
those derived from somatic nuclear transfer (NT), compared to
in vivo-grown embryos. The study evaluated the expression
patterns of approximately 100 genes, which constitutes a
limited sample as 15 000 to 16 000 genes may be expressed

throughout pre-implantation development in mice (Stanton
et al., 2003), and likely other mammals. Gene expression
profiles in IVP and especially NT-derived embryos deviate
from in vivo-grown embryos and the differences supposedly
underlie the abnormalities of which a high birth weight is
the predominant feature (large offspring syndrome or LOS).
The genes that show expression divergence were suggested
as genetic markers for embryo quality and viability.

Whereas IVP-produced embryos may lead to lasting
pregnancy in 50% of the cases, for NT this may be 15% or
less. Using a 2640 cDNA chip, Pfister-Genskow et al. (2005)
found 18 genes that were expressed differently in bovine
pre-implantation embryos produced by NT or IVP. NT
embryos under-expressed three genes that encode for
intermediate-filament proteins, possibly foreboding abnor-
mal differentiation and placenta formation, and heat
shock protein 27, which may be linked to abnormally
high apoptosis (Pfister-Genskow et al., 2005). Up-regulated
genes in NT embryos were suggested to compromise
membrane formation (nidogen 2) and increase maternal
immune responses to over-expressed MHC-I genes.

Corcoran et al. (2006) identified differences in gene
expression profiles between bovine blastocysts derived
from in vivo v. in vitro. Of the 384 genes and expressed
sequence tags that were differentially expressed, 85% were
down-regulated in the latter. The inferior quality of in vitro-
derived embryos was associated with a decreased level of
gene expression and, possibly, caused by a deficiency of the
machinery associated with transcription and translation
(Corcoran et al., 2006). Gene expression profiles can be
used to define normal and deviant embryos and from here
optimize embryo production protocols. Interestingly, NT- and
IVP-derived embryos with widespread dysregulation of
genes frequently survive the postnatal period, indicating
that mammalian development can tolerate a substantial
degree of epigenetic abnormality (Wrenzycki et al., 2004).

The research summarized typically is descriptive. The
description of changed expressions of (many) genes is often
indefinite and non-exclusive, which reflects the biological
reality but complicates a clear interpretation of the findings.
Computational tools are needed to translate gene expres-
sion patterns into metabolic pathways and meaningful
biological functions and bioinformatics are increasingly
needed for understanding processes underlying reproduc-
tion. Noteworthy is the absence of research into gene
expression patterns in the brain of dairy cows in relation to
fertility. A project has been started to fill this gap and the
first findings are reported here. The work is part of colla-
borate research on the genomics of female fertility, tar-
geting segregating QTL affecting conception rate in dairy
cows (Agricultural Research Organization, Israel) and gene
expression patterns associated with folliculogenesis (INRA,
France), embryonic developmental competence (University
of Bonn, Germany and MTT Agrifood Research, Finland)
and oestrus/oestrus behaviour (Animal Sciences Group of
Wageningen UR, The Netherlands). These and other animal
breeding research groups and businesses (33 in total) have
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joined forces in the EU integrated project SABRE (http://
www.sabre-eu.eu/): Cutting Edge Genomics for Sustainable
Animal Breeding (6th Framework Programme, Priority 5:
Food Quality and Safety).

Genomic regulation of oestrus (behaviour) from
the brain

Oestrus behaviour and central mechanisms underlying
female sexual behaviour
Oestrus behaviour marks the time of ovulation when cows
can be inseminated successfully and oestrus detection is a
key factor in the management of fertility: the timing of
insemination to the time of ovulation, which ideally is 7 to
18 h before ovulation (Hall et al., 1959), is critical for the
tuning of sperm and oocyte ageing (Hunter and Greve,
1997). Roughly about 30 h prior to ovulation, cows start
expressing oestrus behaviour (Roelofs et al., 2005). By
definition, the standing reflex that cows show when
mounted by others identifies heat, but only about 50% or
less of the cows may display this (Roelofs et al., 2005).
Relatively little is known about the regulation of oestrus
behaviour in farm animals and an experiment was per-
formed to identify genes expressed in the brain of dairy
cows that are involved in oestrus and the expression of
oestrus behaviour. Different brain areas that are known to
play a role in female sexual behaviour have been collected
and here findings are presented for a part of the brain
containing the ventral tegmental area (VTA).

Studies in rodents show that female reproductive beha-
viour in mammals hinges on oestrogen actions in the
hypothalamus (Pfaff, 2005), with a central role for the
ventromedial hypothalamus (VMH) and involvement of
the arcuate nucleus, pre-optic area, paraventricular nucleus
and suprachiasmic area. Extra-hypothalamic sites that mod-
ulate reproductive behaviour include the limbic system, i.e.
amygdala, hippocampus, septum and cingulate gyrus, the stria
terminalis and the VTA. Oestrogen primed female rodents,
through actions in the VMH, exhibit both appetitive (soliciting)
and consummatory (lordosis) behaviour following progestin
actions in the VTA. Progesterone from peripheral origin or
central biosynthesis is metabolized to dihydroprogesterone
(DHP) by 5a-reductase and, subsequently, into 5a-pregnan-
3a-ol-20-one (3a,5a-THP) by 3a-hydroxysteroid oxido-
reductase (3aHSOR) (Rupprecht, 2003). 3a,5a-THP facilitates
female sexual behaviour via a mechanism involving the
receptors dopamine type 1 (D1, stimulatory), dopamine type
2 (D2, inhibitory) (Frye et al., 2004) and g-aminobutyric acid
(GABAA)/benzodiazepine receptor complex (GBR, stimulatory)
(Petralia and Frye, 2005). A key role is assumed for the
mitochondrial benzodiazepine receptor (MBR)-mediated
increase in neurosteroidogenesis, including that of 3a,5a-
THP (Petralia and Frye, 2005).

Experimental approach
For the identification of genes that are expressed in the
brain of dairy cows and that are involved in oestrus

(behaviour), a comparison was made between gene
expression patterns in brain samples of Holstein Friesian
heifers that were euthanized on estimated day 0 (hereafter
indicated by 0) of their oestrus cycle with those of heifers
slaughtered on estimated day 12 (12), i.e. during the luteal
phase when progesterone levels are maximal and before
the onset of luteolyse on day 15. This first comparison
identifies genes that are involved in regulating oestrus,
including the expression of oestrus behaviour. A second
comparison was made to narrow down the number of
candidate genes that underlie the variability in oestrus
expression and identify genes that may be targeted for
improving oestrus behaviour. Cows that in general showed
a low expression of oestrus behaviour (L) during lactation
were compared to those that showed a high expression of
such behaviour (H). A total of four comparisons were made.
The comparison of group H0 to H12 and L0 to L12 identifies
genes that are differentially expressed around oestrus and
the luteal phase, and assesses whether this differs between
cows that tend to show oestrus behaviour clearly and those
that typically do not. The comparison of group H0 to L0 and
H12 to L12 indicates whether the H group differs from the
L group due to differential gene expression during day 0 or
during d12 or for that matter if differences occur regardless
of the phase of the oestrus cycle.

Methods
Holstein Friesian heifers (n 5 28) were purchased before
first calving and group housed in a freestall (research farm
the Waiboerhoeve, Lelystad, The Netherlands). During lac-
tation, cows were monitored for oestrus behaviour (con-
tinuous observations of half an hour in the morning and
afternoon). Behaviours were recorded and scored according
to the protocol by Van Eerdenburg (2006): mucous vaginal
discharge (3 points), cajoling/flehmen (3), restlessness (5),
being mounted but not standing (10), sniffing the vulva of
another cow (10), resting with chin on the back of another
cow (15), mounting other cows, or attempting to (35),
mounting head side of other cows (45), standing heat
(100). Points are summed over a rolling 24-h interval and it
is assumed that the total score identifies oestrus when
accumulating to 50 or more. Milk progesterone concentra-
tions were assessed twice a week and repeated transrectal
ultrasonography was performed in the period prior to pre-
dicted oestrus. The integrated information was used to
determine the moment of euthanasia (by injection of T61),
which was done between 77 and 131 days in milk, and
calculate mean individual behavioural oestrus expression
scores. The latter ranged between 0 and 920 with averages
of 375, 414, 87 and 64 for groups H0, H12, L0 and L12,
respectively. Efforts were made to euthanize the animals in
a stress-free, quick and standardized way, i.e. on the
research farm and near the cows’ home section. Brain
samples were collected within the hour from euthanasia,
immediately stored in liquid nitrogen and maintained at
2708C for long-term storage. Different brain areas were
sampled, including a 1-cm-thick slice in a coronal plane
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taken directly rostral from the colliculus superior in a rostral
direction. From the left half of the brain a strip was isolated
by cutting from mid-saggital in the lateral direction (1 cm)
and from the most inferior in a posterior direction up to the
cerebral aquaduct. This means that a relatively large brain
sample was taken that included more than only VTA cells
(e.g. cells of the substantia nigra and the interpeduncular
nucleus). For each experimental group, RNA of seven cows
was pooled.

RNA extraction and 20k microarray (Bovine Oligo
Microarray Consortium, Jerry Taylor, University of Missouri –
Columbia) procedures were performed as described by
Niewold et al. (2007) with only minor modifications. RNA
was isolated without sodium citrate/NaCl precipitation and
5 mg RNA was used per labelling. Following hybridization,
and before removal of the coverslip, a 5-min delay at room
temperature was followed by three subsequent washings
of 15 min each in: 2 3 SSC 1 0.2% SDS (at 428C), 2 3 SSC
(room temperature) and 0.2 3 SSC (room temperature),
after which the procedures conformed to the Micromax TSA
protocol (Niewold et al., 2007). Differences in gene
expression levels of factors >3 were considered significant.

The study ran from September 2006 to April 2007 and
was approved by the Animal Care and Ethics Committee of
the ASG-WUR (Lelystad).

Preliminary findings and discussion
Group H0, as compared to H12, showed up-regulation of
multiple immunoglobulin superfamily proteins. Immuno-
globulins provide the ideal structure for protein–protein
interactions and, thus, cell–cell interactions (Rougon and
Hobert, 2003). Not surprisingly, they play important roles in
brain developmental processes, such as axon pathfinding
neuronal migration and synapse formation, and the func-
tioning of neuronal networks in adults. Pfaff (2005)
describes how oestrogens promote female sexual receptive
behaviour via increased gene transcription in VMH neurons,
causing expansion of dendrites and synapses. Such remodel-
ling of synaptic networks requires signalling by cell–cell
interactions, which may be facilitated by the up-regulation
of immunoglobulin superfamily proteins that mediate this.
Interestingly, the assumed mobilization of immunoglobulin
superfamily proteins during oestrus was observed for the
H0 group relative to H12, but not for the L0 group relative
to L12, suggesting that the mechanism could play a role in
the degree of oestrus behaviour expression. Against this
interpretation is the fact that the difference between the H0
group and the H12 group reflects low gene expression in
the H12 group, not high gene expression in the H0 group.
This was because genes encoding for immunoglobulin
superfamily proteins were down-regulated in the H12 group
as compared to the L12 group.

A gene up-regulated in group H0 as compared to H12 was
that encoding for protein phosphatase 1 beta (PP1 beta).
Protein phosphatases (PP), including PP1 beta, are widely
expressed in the mammalian brain. One of the known PP1
functions is activating Wnt/beta-catenin signalling, a critical

event in both cellular proliferation and organismal develop-
ment (Luo et al., 2007). Compared to the H12 group, the H0
group showed down-regulation of the gene encoding tyrosine
hydroxylase, which converts tyrosine into dopa and mediates
the rate-limiting step in the catecholamine biosynthesis.
Central catecholamine signalling strongly affects behaviour,
including female sexual behaviour (Pfaff, 2005).

Comparing the L0 and L12 groups revealed no differ-
ences in gene expression levels.

Relative to the L12 group, the H12 group showed the
aforementioned down-regulation of genes encoding immuno-
globulin superfamily proteins together with the gene encod-
ing the prohormone, promelanin-concentrating hormone
(PMCH). PMHC is proteolytically processed into the orexigenic
hormone melanin-concentrating hormone (MCH), as well as
into neuropeptide EI (NEI) and neuropeptide GE (NGE). The
PMHC gene is involved in the regulation of energy homo-
eostasis as PMCH-deficient mice have high metabolic rate,
are hypophagic and lean whereas mice that over-express the
gene are hyperphagic and mildly obese (Marsh et al., 2002).
The relative high level of PMHC gene expression in cows that
tend to poorly express oestrus behaviour may be explained,
for example, as a defence mechanism against energy deficit
or as a route to establish different energy allocation strate-
gies. The H12 group, relative to the L12 group, showed up-
regulation of SCO-spondin. The glycoprotein SCO-spondin,
which is an extracellular matrix-like protein and a member of
the thrombospondin type 1 repeat (TSR) superfamily (Meiniel
and Meiniel, 2007), is expressed early in the CNS and is
involved in developmental processes such as commissural
axon pathfinding (Lehmann and Naumann, 2005). The sub-
commissural organ (SCO) is an ependymal gland located in
the roof of the third ventricle that secretes glycoproteins (e.g.
SCO-spondin) into the cerebrospinal fluid (CSF), leading to a
structure known as Reissner’s fibre (RF). The SCO–RF complex
may participate in the clearance of CSF monoamines like
catecholamines (Richter et al., 2004).

The comparison of the H0 group to the L0 group showed
down-regulation of gamma 2 actin (g-actin, ACTG2) and
desmin (DES). Actins are involved in different cell functions
such as cell motility, adhesion and shape (Kaksonen et al.,
2006). g-actin influences cell growth and plays a role in the
readout of genetic information (Fojo, 2006). Miles et al.
(2006) reported on plasminogen-binding proteins identi-
fied as rat b/g-actin on cell surfaces that, upon binding,
increased prohormone processing, leading to inhibition of
catecholamine release. Desmin plays a role in the structural
as well as functional interaction of mitochondria and the
cytoskeleton (Capetanaki, 2002) and is typically associated
with mitochondrial function in muscle cells (Fountoulakis
et al., 2005).

Several genes that were differentially expressed between
the groups encode for proteins that are involved in general
functions like intra-cellular signalling, cell shape, motility
and proliferation (g-actin, DES, PP1 beta). Other findings
point to divergences in cell–cell interactions (immuno-
globulin superfamily proteins) and catecholamine signalling
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(tyrosine hydroxylase, SCO-spondin, g-actin) and energy
homeostasis (PMCH). There is no easy way to understand
the consistent pattern in gene expression that unambigu-
ously relates to the experimental factors oestrus cycle phase
and the cows’ trait to (minimally) express oestrus beha-
viour, although a more detailed evaluation of the genes and
possible functions within the specific brain area is yet to be
done and interesting candidate mechanisms are identified.
This seems rather unsatisfying, but relates to one of the
strong points of gene expression profiling in that it identi-
fies novel directions to explore. The fact that PMCH has
been described in more detail than DES does not mean that
the former has more biological relevance for oestrus
(behaviour) than the latter, but simply that it was more easy
to integrate in known concepts. Clearly, the interpretation
of the data will be much supported by an increasing level of
specificity of the measurements. For example, in terms of
homogeneous animals, precise predefined moment of oes-
trus cycle, exact cell group and standardization of sample
collection procedures. Also, data will be more powerful
when gene expression profiles are determined at an indi-
vidual level as these can be statistically linked to detailed
phenotypic measurement and, subsequently, tested for
multiple factors. With the rapidly decreasing costs of
microarray platforms, this has become realistic and is what
we will do for tissues from the anterior pituitary, hypotha-
lamus, hippocampus and amygdala.

Developing new genomic research areas

Epigenetics
Epigenetics is about alterations in phenotype due to
changes in cellular properties that can be inherited, but do
not represent alterations in genotype or, in short, alterations
in DNA function without alterations in DNA sequence
(Jones and Takai, 2001). Epigenetic modulations of DNA
and histones determine the pattern of gene expression and
silencing (Jaenisch and Bird, 2003). Histone modifications,
like de-acetylation of histones by histone deactylases and
site-specific methylation of histone H3, may trigger methyla-
tion of cytosine residues by methyltransferases (DNMT3a and
DNMT3b), which results in gene silencing that is maintained
over cell generations by DMNT1 (Li, 2002; Jaenisch and
Bird, 2003). The epigenetic regulation of gene expression
seems inevitable for multicellular organisms as it underlies the
development of cell lineage-specific gene expression and
phenotypes from one genotype (Jablonka and Lamb, 1998).
Also, DNA methylation allows the silencing of virus-derived
and potentially destabilizing repeat sequences that make up
large proportions of the mammalian genome (International
Human Genome Sequencing Consortium, 2001). Epigenetics
determines the formation and specification of germlines,
the erasure and re-establishment of methylation patterns
in embryonic primordial germ cells and, subsequently, re-
establishment of sex-specific patterns during gametogenesis
and results in different modifications of the paternal and
maternal genome after fertilization (Allegrucci et al., 2005).

The differential expression of paternal and maternal alleles
based on epigenetic differences stemming from the germlines
is known as genomic imprinting. The resulting monoallelic
expression of imprinted genes is tissue specific, seems
restricted to the prenatal period (Moore, 2001) and functions
to limit the production of transcripts (Allegrucci et al.,
2005). Imprinted genes may account for only a fraction of
the genome (e.g. , 0.3% (Miozzo and Simoni, 2002)), but
these affect early development strongly and may have a
major impact on fertility (Fowden et al., 2006). In 2006,
Gebert et al. (2006) compared bovine oocyte to sperm DNA
and reported on a differentially methylated region in the
imprinted insulin-like growth factor 2 gene and this allows
further work on gene-specific methylation patterns during
pre-implantation development. This phenomenon has been
hypothesized to cause subfertility in offspring from parents
under malnutrition.

RNA interference
Validating gene function through knock-out studies in farm
animals using conventional methods is possible (Denning
and Priddle, 2003; Hofmann et al., 2004), though typically it
will be costly and complicated (Wolf et al., 2000). The
application of RNA interference (silencing) may, in part,
circumvent practical problems. Long double-stranded RNAs
and micro-RNA precursors are processed into short ( , 22
nucleotides) double-stranded RNAs, i.e. micro-RNAs and
short interfering RNAs (Meister and Tuschl, 2004). The latter
two are processed into micro-RNA containing ribonucleo-
protein particles, which repress the translation of target
mRNA, and RNA-induced silencing complex, which increa-
ses the degradation of target mRNA. Hiendleder et al.
(2005) discuss how RNA interference can be applied
without transgenic approaches. Small organisms and cells
are treated effectively by soaking them in double-stranded
RNA solutions, but in mice short interfering RNAs have
been injected effectively in target tissues. The resulting
decrease in gene expression may be in the range of 30%
to 60% for over a week, and the approach mediated
significant effects on plasma metabolite concentrations
(Soutschek et al., 2004). Possible future applications of RNA
interference tools are discussed by Lew et al. (2005).

Variable copy numbers
Higher-order architectural features of the genome, as
compared to primary sequence information, are linked to
genomic instability and susceptibility to genomic rearran-
gements like deletions, duplications, inversions or trans-
location of genomic segments, marker chromosomes and
isochromosomes. The human genome has been estimated
to be composed of , 5% duplicated sequences that occur
both within and between chromosomes (Sharp et al., 2006).
Such DNA segments of 1 kb or larger that are present as
variable copy numbers (CNVs) are known to alter gene
dosage, interfere with coding sequences and have gene-
regulating effects. For example, three instead of two copies
of the normal PMP22 gene causes serious neurological
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disease (Lee and Lupski, 2006). For a population of humans,
Redon et al. (2006) found that 12% of the genome con-
sisted of copy number variable regions, and since this
encompasses more nucleotide content than SNPs, the
contribution of CNVs to phenotypic variation may be sub-
stantial. Stranger et al. (2007) linked gene expressions
(14 072 genes) in human lymphoblastoid cell lines to SNPs
and CNVs, with the former being investigated at a relatively
high resolution as compared to the latter (meaning that the
effect of CNV will have been underestimated). There was
little overlap between SNPs and CNVs and each captured
83.6% and 17.7% of the genetic variation in gene
expression, respectively. Contemporary CNV maps are far
from complete (Redon et al., 2006) and increasing power
for the detection of the smaller CNVs will likely increase the
importance of CNVs in phenotypic variation. DNA micro-
arrays have proved to be a powerful tool in detecting CNVs
of 40 to 50 kb and larger.

Nutrigenomics
Nutrients can be seen as dietary signals that influence gene
expression and, subsequently, protein and metabolite pro-
duction (Muller and Kersten, 2003). Nutritional genomics or
nutrigenomics deals with the genome-wide influences
of nutrition and studies the effects of dietary components
on gene expression patterns (transcriptome), chromatin
organization (epigenome), protein expression patterns
(proteome) and metabolite profiles (metabolome) (Afman
and Muller, 2006). Macronutrients (fats, carbohydrates and
proteins), micronutrients (vitamins and minerals) and food
components like flavonoids all participate in the binding of
nuclear receptors to response elements in gene promoter
regions (Muller and Kersten, 2003) and, through the
resulting co-repressor dissociation and co-activator recruit-
ment, facilitate transcriptional activation. Nutrient-mediated
activation of nuclear receptors may affect many cell func-
tions as, for example, fatty acid-sensitive nuclear receptor
peroxisome proliferator activator receptor-a (PPAR a) tar-
gets 3000 to 4000 (hepatic) genes involved in processes
such as acute-phase protein responses, cell proliferation,
fatty acid oxidation, gluconeogenesis and amino acid
metabolism (Mandard et al., 2004). Early work and pro-
spects for nutritional genomics in cattle are discussed by
Dawson (2006), including the effects of endophyte-infected
forages and poor-quality feed. The author argues on the
basis of dietary-induced changes in gene expression how
selenium, through triiodothyronine, modulators of oxidative
stress and the thioredoxin carrier system, could affect
fertility in cattle. Future nutrigenomic work will result in
detailed insight in cows’ nutritional and (reproductive)
physiological status and help tailor feeding strategies to
improve fertility. For example, as it may no longer be
necessary to apply diets in a relatively extreme form over a
prolonged period of time in order to assess its effects
(Dawson, 2006). Before nutrigenomics results in the
tailoring of rations to the needs of groups of individuals
(genotypes), some hurdles must be overcome. Mammals

handle high concentrations of different nutrients and asso-
ciated metabolites, with different substances binding multi-
ple targets with different affinities. This complexity obstructs
the interpretation of findings from nutrigenomic studies
and would require extreme standardization and control of
experimental conditions. In general, individual-specific var-
iation in the degree of gene expression may be considerable
(Radich et al., 2004) and variation in environmental factors
for the different experimental animals may cause false
positives. Realistically, in the near future complex problems
within the field of nutrigenomics may need to be down-
sized to small feasible projects that, for example, make use
of model systems (Afman and Muller, 2006).

Summarizing conclusions

Increases in genetic merit for female fertility can be com-
bined with high milk yield and nowadays dairy cattle
breeding programmes incorporate fertility in their selection
indices. Traditional breeding value estimation procedures
are combined with gene-assisted selection and, more
recently, genomic selection based on genome-wide infor-
mation. Functional genomics builds on information on static
aspects of the genome and is about the implementation of
high-throughput technologies like gene expression profiling
by microarray platforms. Recent gene expression profiling
studies have produced a wealth of data regarding possible
genes and physiological processes underlying phenotypic
fertility traits. Typically, processes under study involve a
large number of genes, which by their transcripts effectuate
multiple functions depending on tissue, developmental
stage etc. Extracting clear-cut interpretations from the data
that reflect the biological reality are complex. Currently,
gene expression profiling is already a powerful tool for
identifying candidate genes/mechanisms underlying fertility
traits, as demonstrated for centrally expressed genes
involved in oestrus (behaviour). When aided by advanced
computational tools and bioinformatics, it may produce
gene expression data that become increasingly self-expla-
natory. A practical application is the use of gene expression
patterns for defining normal and deviant embryos and to
optimize embryo production protocols. Studies on altera-
tions in DNA function without alterations in DNA sequence
(epigenetics) provide new insights and angles to investigate
physiological problems. For example, imprinted genes
strongly affect early development and likely have a major
impact on fertility. Research into gene-specific methylation
patterns during pre-implantation development is underway.
RNA interference, as applied without transgenic approa-
ches, may develop into a useful tool to manipulate gene
expression and thus validate hypothesized gene functions
and physiological mechanisms in farm animals. Nutrige-
nomics deals with the effects of dietary components on
gene expression patterns and such information can help
to tailor feeding strategies in order to improve dairy cow
fertility. It is recognized that genome-wide influences of
nutrition are complex and tackling practical problems by
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this route may take considerable effort. Recent findings
indicate that CNVs may contribute significantly to pheno-
typic variation. Microarrays allow high-throughput CNV
detection and new insights in the genomic regulation of
phenotypic fertility traits are to be expected. In the years to
come, large amounts of genomic information will become
available to be used for the unravelling of genomic and
physiological mechanisms underlying fertility traits and
fine-tuning of effective selection strategies. Dealing with
the information stress may prove challenging. There is great
need for bioinformatic solutions to integrate different types
of information on, for example, gene expression, DNA
methylation, QTL and SNPs, and aid the processing of such
data into biologically meaningful interpretations. The inte-
gration of large amounts of new genomic information with
that on physiological mechanisms is expected to open novel
ways to combat issues like subfertility in dairy cattle.
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