
 1

   
  

Econometric-Process Models of Semi-Subsistence Agricultural Systems: 
An Application of the Nutrient Monitoring Data for Machakos, Kenya 

 
 

John M. Antle,a Gerdien W. Meijerink,b Andre de Jager,b 
Jetse J. Stoorvogel,c and Alejandra M. Vallejoc 

 
 

aDepartment of Agricultural Economics and Economics, Montana State University, USA 
 

bAgricultural Economics Research Institute (LEI), Wageningen University, The Netherlands 
 

cSoil Science Centre/Lab of Soil Science and Geology, Wageningen University, The Netherlands 
 

June 2005 
 

 
In Tradeoff Analysis: An Operational and Accepted Tool for Policy Analysis, a 
report prepared for the Ecoregional Fund for Methodological Initiatives. 
 
Copyright 2005 by John M. Antle, Gerdien W. Meijerink, Andre de Jager, Jetse J. 
Stoorvogel, and Alejandra M. Vallejo. All rights reserved. Readers may make 
verbatim copies of this document for non-commercial purposes by any means, 
provided that this copyright notice appears on all such copies. 

 

   
   

  
http://www.tradeoffs.montana.edu/pdf/EP-Models.pdf 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Wageningen University & Research Publications

https://core.ac.uk/display/29259328?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2

 
 

Econometric-Process Models of Semi-Subsistence Agricultural Systems: 
An Application of the Nutrient Monitoring Data for Machakos, Kenya 

 
 

John M. Antle 
Gerdien W. Meijerink 

Andre de Jager 
Jetse J. Stoorvogel 

Alejandra M. Vallejo 
 
 

June 2005 
 
 



 3

 Semi-subsistence agriculture remains the dominant type of agriculture in the 

poorest and most environmentally vulnerable regions of the world. .  Therefore, for 

quantitative analysis of poverty and sustainability, it is important to be able to 

characterize these systems in both bio-physical and economic terms.  Doing so presents a 

challenge in terms of both data and modeling methodology.  Significant advances have 

been made in developing computer-based systems for data collection.  The Nutrient 

Monitoring system provides a systematic and comprehensive approach to characterize 

and collect data for both inputs into and outputs from agricultural systems.  Once detailed 

data are available to characterize agricultural systems quantitatively, research 

administrators and policy analysts need modeling tools capable of assessing the behavior 

of these systems over time.  Semi-subsistence agricultural systems exhibit a number of 

characteristics that make modeling them more difficult than systems typical of more 

commercially-oriented agriculture.  Among these features are: 

• a low degree of specialization and a high degree of diversification, with mixed 

crop-livestock systems common and a large number of different types of annual 

and perennial crops; 

• inter-cropping (planting two or more species within an individual parcel of land); 

• high rates of crop failure; 

• extremely small field size and seasonal reconfiguration of sub-parcels within 

fields; 

• limited use of purchased inputs, with positive amounts applied to some crops by 

some farmers (typically, marketed crops) and zero amounts applied to many 

subsistence (non-marketed) crops; 
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• high transportation and other transaction costs for purchased inputs and marketed 

outputs, and a lack of formal markets for some inputs and outputs; 

• production credit available only through informal sources or unavailable. 

 The early applications of the econometric-process simulation modeling approach 

were to relatively simple systems, such as the potato-pasture system in Ecuador 

(Crissman, Antle and Capalbo, 1998) and the dryland grain production system in the US 

Great Plains (Antle and Capalbo, 2001).  These models were formulated at the field scale 

to investigate agriculture-environment interactions such as pesticide leaching, soil 

erosion, and carbon sequestration.  However, analysis of sustainability of semi-

subsistence systems calls for a whole-farm approach, both to capture essential 

interactions between crops and livestock, and to assess measures of human welfare such 

as poverty and food security.  Accordingly, the goal of this paper is to present an 

econometric-process simulation model for the semi-subsistence agricultural system found 

in the Machakos district of Kenya, using the Nutrient Monitoring data available for that 

system.  The agricultural system in Machakos exhibits all of the characteristics listed 

above that are typical of semi-subsistence systems.  We use the Machakos case to 

illustrate methods that can be used to construct a model that incorporates these 

characteristics, and also discuss limitations of these methods. 

 This paper begins with a brief review of the econometric-process simulation 

modeling approach (Antle and Capalbo, 2001), and its linkage to spatially-referenced 

data and biophysical process models using the Tradeoff Analysis software (Stoorvogel et 

al., 2004).  The third section of the paper describes the Machakos production system 

using the Nutrient Monitoring data.  The fourth section describes the development of the 
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econometric-process model for Machakos.  The fifth section uses this model to assess the 

potential for technology and policy interventions to impact poverty and sustainability of 

the system.  The final section summarizes the paper, and discusses the strengths and 

limitations of the proposed modeling methods. 

Econometric-Process Simulation Models and Tradeoff Analysis 

 As described in Stoorvogel et al. (2004), the basic concept underlying the 

econometric-process model approach is to estimate behavioral equations from 

conventional econometric production models for each activity in the system, and to then 

incorporate these behavioral equations into a simulation model that represents the 

structure of the farmer’s decision making process on the extensive and intensive margins.  

The behavioral equations in the economic models are functions of conventional economic 

variables (output and input prices) and also estimates of inherent productivity derived 

from biophysical crop and livestock models.  In this way, the economic models are linked 

to underlying biophysical conditions (soils, climate) that affect farmers’ productivity and 

behavior.  The extensive margin decisions of the farmer are represented as discrete land 

use decisions for each land unit.  Once the farmer makes the decision about what to do on 

a land unit for a production cycle, the corresponding intensive margin (input-use) 

decisions are simulated.  Given a sequence of land use and management decisions at a 

site (i.e., a farmer’s field), any relevant environmental processes associated with those 

land use and management decisions are simulated.  By simulating the land use and 

management decisions for a statistically representative sample of land units and decision 

makers, the results of this simulation exercise can be used to characterize the joint spatial 

distribution of these decision in a geographic region.  These decisions can then be linked 
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to environmental process models, such as the Nutrient Monitoring model, to construct a 

spatial distribution of the environmental consequences of these decisions.  The resulting 

spatial distributions of both economic and environmental outcomes can then be 

statistically represented in maps and aggregated to derive tradeoff curves that provide 

information to support informed policy decision making. 

 Figure 1 shows the structure of the econometric-process simulation model for the 

crop-livestock system of Machakos.  In this model, the variables that define a farm are 

location, farm size, family size, and number of livestock units.  Spatial distributions for 

these variables are estimated, and these distributions are sampled to define the farms in a 

simulation.  The parameters of these distributions, along with the parameters of the crop 

simulation models and the economic models, are the parameters that are used to define 

policy and technology scenarios with the econometric-process simulation model. 

Characterizing Heterogeneity 

 A key feature of econometric-process simulation models is the heterogeneity of 

the populations being represented.  Several aspects of heterogeneity enter an 

econometric-process model: the bio-physical heterogeneity of the land; the characteristics 

of the decision maker; and the economic heterogeneity associated with the location of the 

site.  This heterogeneity is illustrated in Table 1 for Machakos.  These data show the high 

degree of heterogeneity in terms of input use and crop use at the parcel level, and in terms 

of farm characteristics. 

Bio-Physical Heterogeneity   

 Agricultural economists have devised a number of methods to capture the effects 

of soils, climate and genetic characteristics of crops in empirical economic models.  



 7

Many econometric models have been estimated with farm-specific or region-specific 

spatial dummy variables to capture spatial differences in productivity.  Also many 

economists have included measurements of soil quality and climate in econometric 

production models.  While these techniques may well capture effects of bio-physical 

characteristics on behavior, they fail to incorporate the systematic knowledge of the 

agricultural sciences about the relationships between the physical environment, genetic 

properties of crops, and crop productivity.  Much of this knowledge has been embedded 

in modern crop growth models such as the DSSAT models (International Consortium for 

Agricultural Systems Analysis, 2004).  

We have developed a procedure to systematically link bio-physical crop and 

livestock simulation models to econometric-process simulation models.  The basic idea is 

that farmers base management decisions, in part, on their site-specific knowledge of 

production potential.  We interpret the production predictions of bio-physical crop and 

livestock simulation models, specified with site-specific soils and climate data and 

average or representative management inputs, as a proxy for the farmer’s knowledge 

about the spatial variation in productivity across sites.  Thus, we use the bio-physical 

models’ yield predictions as an index of productivity potential, not as a prediction of 

actual yield.  To differentiate this variable from yield, we refer to it as a measure of a 

site’s inherent productivity.  We use inherent productivity variables as exogenous 

predictors of behavior in the estimation of econometric production models.  When these 

econometric production models are then incorporated into the econometric-process 

simulation model, the underlying data and parameters that drive the bio-physical 

production models are also embedded in the economic model.  The bio-physical models 
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can be used to simulate out-of-sample behavior (e.g., behavioral response to 

environmental change, changes in genetic properties of crops) in ways that are consistent 

with the processes embedded in those models.  This is not possible with statistical models 

alone.  To implement this procedure, the Tradeoff Analysis software allows the user to 

run the DSSAT crop models and link them to econometric model estimation and 

simulation (Stoorvogel et al., 2004).1 

To formalize this idea, let a production function be written in the general form q = 

f(x, z, e) where x is a vector of variable inputs, z is a vector of fixed inputs, and e is a 

vector of bio-physical factors.  Theoretically, soil and climate conditions define the 

potential productivity of a location that, combined with a plant type, management 

practices, and weather conditions, leads to a realized output.  Crop growth simulation 

models can be represented in stylized form as q = g(x, e, γ), for management x, 

environmental variables e, and genetic coefficients γ. Defining average or expected input 

use in the population as x*, we can use the crop growth simulation to calculate the 

inherent productivity q* for a specific location on the basis of soil and weather data as q* 

= g(x*, e, γ).  As an alternative to the general model q = f(x, z, e), we can specify the 

production function q = h(x, z, q*).  Substituting for q* we obtain q = h(x, z, g(x*, e, γ)), 

showing that this procedure yields a special case of the general production function in 

which the variables e and γ are weakly separable from the variable and fixed inputs x and 

z.  This separability assumption is a testable hypothesis, given suitable data. 

                                                 
1 We do not advocate using crop growth simulation models to predict the yields that are used to calculate 
economic returns in an economic model.  There are a number of reasons why crop models may not provide 
realistic predictions of yield.  For example, most crop growth models do not incorporate effects of pests.  
We use the crop growth models to integrate soils and climate data into a yield variable that we interpret as 
an index of productivity potential at a site, not as a realistic prediction of yield.  In the econometric-process 
modeling approach, these simulated crop yields (or inherent productivities) are used along with prices and 
management decisions to predict observed output. 
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Our experience with this procedure shows that inherent productivity variables do 

provide a statistically useful way to systematically incorporate soils, climate, and genetic 

information into economic production models.  There are two key elements to the 

successful implementation of this approach.  First, the research team must have site-

specific soils and climate data and crop genetic coefficients.  Most secondary soils and 

climate data are not collected with sufficient spatial resolution to capture field-specific 

variation, so if that level of spatial resolution is needed, the research team will have to 

collect that information along with behavioral (i.e., farm survey) data.  Alternatively, 

inherent productivity variables can be estimated that approximate conditions in a locale 

(e.g., a village or an agro-ecozone).  Obviously, this approach loses some of the spatial 

variation in field-level data.  Our experience suggests that when the available data span a 

sufficiently heterogeneous region this approach can still provide valuable information to 

support estimation of econometric production models.  However, in some cases this 

approach fails because there is simply not enough variation in the soils and climate data 

to produce variation in the inherent productivity variable that is correlated with observed 

behavior.  In such cases, it may be necessary to specify a priori the parameter linking 

inherent productivity to observed yield and then subject this parameter to sensitivity 

analysis (e.g., Gray, 2005). 

While we have found this procedure to be a useful way to link bio-physical 

simulation models to econometric-process models, a number of unanswered questions 

remain about this approach.  First, observe that the logic of inherent productivity 

presented above is based on the assumption that a single crop is grown with well-defined 

genetic properties.  This assumption is appropriate for mono-cropped systems typical of 



 10

agriculture in industrialized countries.  But in many cases, notably the case of semi-

subsistence farming in developing countries, farmers grow multiple crop varieties 

adapted to site-specific soil and climate conditions.  We encountered this problem in our 

studies of the potato-based production system in the Peruvian Andes (see publications 

and related information at www.tradeoffs.montana.edu) as well as in the Machakos case.  

In the Peruvian system, farmers grow a number of traditional potato varieties and related 

tubers, primarily for home consumption, as well as improved varieties that are sold 

primarily for consumption in urban markets.  A major production constraint at high 

altitude in the Andes is frost.  The traditional varieties are more frost resistant than the 

improved varieties, yet many farmers still grow improved varieties at high altitudes 

because their market price is higher.  In Machakos, farmers grow maize as a cash and 

subsistence crop, and also grow a complex mix of other crops, often in a single land 

parcel.  Below we discuss some of the procedures we have employed to deal with this 

problem in the Machkos case.   

Second, the discussion of inherent productivity thus far has been in a simple one-

period model.  In many situations, present management decisions influence future 

production, notably through effects on soil productivity.  This raises the issue of system 

dynamics discussed in Antle and Stoorvogel (2005). 

Decision Maker Heterogeneity 

 There is a large empirical literature showing that socio-economic characteristics 

of farm decision makers and farm households influence production decision making.  

One strand of the literature uses various measures of human capital (experience, years of 

schooling) as explanatory variables, beginning with the early work of Griliches and 
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others in the 1960s (Huffman, 2001).  A second strand of literature introduced farmers’ 

risk attitudes as a factor influencing decision making, and researchers have hypothesized 

that attitudes toward risk and other attitudes that affect decision making vary across 

farmers, perhaps systematically with wealth, education, experience and other personal 

characteristics (Sunding and Zilberman, 2001).  Another strand of literature is based on 

the household production model, wherein production decisions are modeled as non-

separable from other household decisions (Strauss and Thomas, 1995).  According to this 

approach, in principle any feature of the farm household (e.g., family size and 

composition, demographic characteristics, financial characteristics, etc.) could impact 

farm production decisions.   

 In principle, all of these features could be incorporated into an econometric-

process simulation model, but in practice the ability to do so is limited by data 

availability, time and other resource constraints of the research team.  Moreover, the 

point made earlier about modeling risk attitudes applies to most other farmer-specific or 

farm-household-specific characteristics.  In many cases we can embed the parameters of 

the distributions of these characteristics into the reduced form parameters of the 

production model, and the model can be analyzed conditional on the underlying 

distribution of those characteristics in the population.  Thus, in the Machakos model 

presented in Figure 1, the model uses location, farm size, family size, and livestock as 

characteristics of the farm household.  We simulate each farm household’s production 

system by sampling from the observed distributions of these characteristics in the 

population.  Additionally, any other observable feature of the farm household that is a 

statistically significant predictor of behavior (e.g., gender of the farm decision maker, 
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family composition, etc.) could be used to model the underlying spatial distribution of 

behavior in the population.  In simulating the system, the parameters of the distributions 

of these exogenous variables (e.g., the means or variances) could then be manipulated to 

assess their impacts on the behavior of the system.  

Economic Heterogeneity 

 The conceptual production model presented above is referenced by location.  

Clearly, prices faced by farmers vary spatially, so to construct a spatially-explicit 

economic simulation model we need to characterize the spatial distributions of prices.  To 

implement the simulation model, each decision period we sample from these price 

distributions to represent the idea that each period farmers face randomly varying prices 

with systematic spatial components.  

 Price distributions can be modeled a number of ways, and it is beyond the scope 

of this paper to go into a methodological discussion.  In our modeling work to date, we 

have used relatively simply recursive regression models to construct spatial distributions 

that reflect spatial correlations among farm-level prices in the models.  In the literature on 

modeling spatial price distributions, the main focus of work is on hypothesis testing 

rather than developing models for simulation.  Additional research is needed to 

investigate how best to model spatial price distributions so that they can be incorporated 

into simulation models.   

Dynamics 

 Agricultural production takes place over time, with different time steps governing 

different interacting components.  Agricultural systems are complex in the sense that they 

involve a number of interacting sub-systems.  We have found it useful to categorize 
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dynamics in terms of the way farmers make decisions. Intra-seasonal dynamics involve 

the sequence of decisions within a growing season.  Intra-seasonal dynamics are most 

important in intensively managed systems, as exemplified by pest management decisions 

in systems such as the potato-pasture system of Ecuador in which large numbers of 

sequential pesticide applications are made (Crissman, Antle and Capalbo, 1998).  

However, in less-intensively managed systems (for example, the dryland small grain 

systems in the Great Plains of the United States, or semi-subsistence systems such as the 

one in Machakos), the inter-seasonal dynamics of crop rotations, the use of fallow, and 

interactions between crop and livestock systems are most important.   

 The interactions of crop and livestock systems with the environment are also 

inherently dynamic.  The inter-seasonal dynamics of crop rotations are caused by 

dynamic interactions between management decisions and soil productivity.  Thus, over 

time, the inherent productivity of the soil may change.  A good example of this type of 

process is where farmers use the process of erosion to create slow-formation terraces and 

thus increase productivity of the system, as in Antle et al. (2005).  More generally, the 

production of environmental services will be affected in the present period, and these 

environmental services may in turn affect future crop productivity or future 

environmental services.  However, in the simplest characterization of the system, which 

we call loose coupling, each disciplinary component of the system may be dynamic but 

those dynamic properties are not integrated dynamically.  The logic of the model is linear 

in the sense that inherent productivity is determined by exogenous bio-physical 

conditions, and economic decisions (e.g., land use or management) do not feed back to 

affect inherent productivity.  Economic decisions may in turn affect environmental 
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outcomes, but changes in environmental conditions do not feed back to inherent 

productivity or to economic decisions.  In close coupling, the bio-physical and economic 

components of the model interact dynamically.  This is clearly the case when 

management decisions impact soil productivity, and soil productivity in turn affects 

management decisions.  Clearly, a major challenge facing the modeling of agricultural 

systems is to better capture the productivity dynamics (Antle and Stoorvogel, 2005).  

 In the Machakos model, the crop and livestock components of the model interact 

dynamically, thus capturing the effects of nutrients being cycled through the system.  

Crop residues are harvested and used as livestock feed, and manure and other organic 

amendments are accumulated and used on crops in subsequent seasons.  However, the 

model is loosely coupled to the bio-physical crop models, in the sense that there are no 

feedbacks from the economic models to the crop models.  Thus, the crop models provide 

the basis for predicting the spatial patterns of productivity implied by the baseline soils 

and climate data, but the model is not able to track changes in soil fertility.  Likewise, the 

analysis of nutrient balances provided by the NUTMON model is a static accounting of 

nutrient flows and is not able to predict the dynamic changes in soil nutrients in response 

to changes in land use and management.  To achieve this more dynamic analysis, better 

models of nutrient dynamics are needed, and once available these models need to be 

dynamically linked to economic decision models.   

Modeling Diversified Crop Systems 

 A high degree of specialization is typical of high-productivity agriculture in the 

industrialized countries.  In contrast, most low-productivity, semi-subsistence agricultural 

systems are highly diversified because farmers are partly meeting their household 
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consumption needs as well as producing some crops for the cash market.  This situation 

presents a challenge for modeling in several dimensions.  First, even with a large sample 

of farms, survey data are unbalanced in the sense that in each growing season, farmers 

grow different combinations of crops, and often there are too few degrees of freedom for 

statistical modeling of minor crops.  Second, prices are often not reported for products 

produced for home consumption.  Third, many farmers practice inter-cropping of two or 

more crops.  In some cases, inter-cropping involves a fairly standard practice across 

farms (as is the case with the maize-bean intercrop in Machakos), but in other cases 

farmers may combine a wide array of different crops on one land parcel.  For example, in 

Machakos, farmers often mix a variety of grain, legume, vegetable and tree crops 

together on a single parcel.   

 From a theoretical point of view, inter-cropping is an example of a joint 

production process (one input vector produces more than one output).  In cases where 

adequate data are available, and where a sufficient large number of observations are 

available for the same crop combination, it may be possible to use conventional multiple-

output models (e.g., a multi-output profit or cost function).  However, in many cases 

there is likely to be inadequate degrees of freedom, and farmers may be using different 

combinations of outputs.  In this situation, it will be necessary to aggregate outputs and 

inputs in some form.  The approach utilized in the Machakos model is to estimate a 

supply function specified as v = f(p, w, z), where v is the value of all of the outputs, p is a 

quantity-weighted index of output prices, w is a vector of input prices, and z is a vector of 

other exogenous variables.  Note that in the single-product case, this model could be 

written as pq = f(p, w, z), where f(.) is the conventional, single-product supply function.  
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Therefore, in this type of model, the quantity (∂f/∂p)(p/v) can be interpreted as one plus 

the elasticity of supply.  

The Problem of Small Field Size 

 A problem related to the highly diversified pattern of production is the frequency 

of extremely small field sizes.  For example, in the Machakos data, the data show that 

individual parcels of land range from 0.01 hectare to over 5 hectares, with over 20 

percent of the parcels less than 0.05 hectare (Figure 2).  These extremely small parcel 

sizes are likely to make it difficult for enumerators to obtain accurate measurements of 

inputs and outputs and to inflate the effects of measurement errors when variables are 

calculated on a per-hectare basis.  For example, when yields are calculated (output per 

hectare), extremely large and often implausible values are obtained.  Therefore, 

researchers must, as always, carefully scrutinize the data to avoid having biases 

introduced.  Ideally, these measurement errors will be corrected through quality control in 

the data collection process.  In cases where obvious errors cannot be corrected after the 

data are collected, observations with extreme outliers should be be deleted from the 

analysis, or truncated to plausible values.  

Models with Zero Values for Inputs and Outputs 

 Conventional production models assume firms produce a single output, or 

produce positive quantities of a fixed set of outputs, and they assume positive quantities 

of inputs are used.  Many agricultural production systems violate these assumptions.  

Land use decisions at the level of the individual decision unit (the farmer’s field) 

necessarily involves the choice among a set of discrete alternatives.  Many inputs in 

agricultural systems are non-essential, i.e., zero quantities may be used.  Most production 
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systems involve multiple outputs, with different farms producing different combinations 

of outputs.  Many of these features of production data have not been addressed in the 

economics literature on production modeling because aggregated data are used.  Wen we 

do attempt to model production with data for individual firms or farms, these problems 

arise frequently, just as they do in the micro-econometrics literature on labor supply 

where many of the estimation techniques for discrete choice and truncated and censored 

data were developed.  The lack of attention to these issues may be partly explained by 

agricultural economists’ use of optimization models in which some of these issues do not 

pose significant methodological challenges.  Nevertheless, it is surprising that there has 

not been more discussion of these issues in the agricultural economics literature where 

many micro-econometric models of production have been estimated statistically.  It 

would appear that these problems have often been ignored or assumed away by 

researchers.  We cannot ignore them when we are modeling agricultural environment 

interactions, because it is essential to model site-specific decisions, and because these 

decisions interact in important ways with environmental processes.   

 The econometrics literature contains a variety of methods for dealing with these 

problems, but typically from the perspective of efficient estimation and hypothesis 

testing, not simulation.  The goal here, however, is to obtain practical methods that 

provide a reasonable way to represent farmer decision making so that it can be both 

estimated and simulated.  Pursuit of this goal has led us to develop methods that often 

depart from conventional econometric practice, because conventional econometric 

methods are often impractical or inappropriate from a simulation perspective. 
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Discrete Land Use Decisions 

 The earlier discussion of the econometric-process modeling approach alluded to 

the idea that farmers make discrete choices among alternative land uses.  Therefore, the 

relevant question is how to model discrete land use decisions so that they can then be 

simulated.  The econometric-process modeling approach is based on estimation of each 

production system independently, typically using the number of observations available 

for each type of output.  These models are then used to simulate the variables that enter 

the farmer’s objective function (e.g., expected returns), and the discrete land use decision 

is simulated by choosing the outcome with the highest value of the objective.   

 From an estimation efficiency perspective, the procedure described above is 

clearly statistically inefficient.  Why not jointly estimate all the production systems 

accounting for across-equation correlations?  One answer is that typically, farms produce 

different combinations of outputs, therefore, estimation of a system of supply and input 

demand equations with data from a cross section (or panel) of field-level data would 

involve estimating an unbalanced model.  Moreover, simulation of a model with a 

complex error structure can be very difficult.  Alternatively, why not estimate a 

multinomial discrete choice model?  Here we can say first that available multinomial 

discrete choice models impose restrictive distributional assumptions, but more 

importantly, simulating discrete choice models involves very difficult computational 

problems.   

Zeros in Input Data 

 As noted above, many agricultural inputs are non-essential, meaning that output 

can be produced with zero values of those inputs.  One can find various discussions of 
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this problem in the literature discussing how to estimate production functions with zero 

inputs (e.g., Johnson and Rausser, 1971; Battese, 1997).   

 We see this problem typically in pest management, where farmers may choose to 

treat for a pest if it is observed to be severe enough to cause economic damage, and may 

not treat otherwise.  Moreover, in the case of pesticide applications, farmers are typically 

making a series of applications over time (an example of what we called intra-seasonal 

dynamics above).  It is surprising that in most econometric studies of pesticide 

productivity, pesticides are aggregated over the growing season into a single quantity, 

thus tending to eliminate the zero input problem but also ignoring the sequential aspect of 

the problem and the implied input endogeneity.  There are also significant issues with 

pesticide measurement, due to differences in input quality, which are often ignored as 

well.  One solution we have developed to this problem is to model both the quantity and 

timing of individual pesticide applications in a system of dynamics factor demand 

equations.  This approach finesses the zero-input problem, and avoids aggregating across 

time, but requires highly detailed data that are often lacking (Antle, Capalbo and 

Crissman, 1994). 

 In semi-subsistence agriculture in developing countries, we often see farmers 

applying low and even zero rates of mineral fertilizers as well as pesticides.  For 

example, in the Machakos data, almost 80 percent of the parcels of maize have zero 

mineral fertilizer applied (Figure 3).  Other inputs such as hired labor and animal labor 

are also non-essential.  In this case, input use may be constrained by input availability 

and the farmer’s financial situation.  For example, in studies we have conducted in Peru, 

Senegal and Kenya, we have found that semi-subsistence farmers only applied purchased 
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inputs to cash crops, and even then often 50 percent or more of the farmers may not use 

mineral fertilizers.  This situation suggests that a discrete-continuous model is appropriate 

for factor demand equations, wherein the decision to use is made first, then positive 

quantities are determined in those cases where the input is used.  The Heckman and 

related discrete-continuous choice models may be appropriate ways to estimate input 

demand equations, and can be simulated using univariate normal probability distributions 

if the discrete-choice component is modeled with a probit model.  However, observe that 

application of this procedure raises very complex estimation and simulation problems if a 

system of factor demand equations is jointly estimated.  Therefore, in our applications we 

have utilized single-equation estimation.  

 The presence of zero input quantities also creates problems for estimation of 

production functions or supply functions, because most convenient functional forms do 

not allow non-essential inputs (note the quadratic model does allow non-essential inputs, 

but imposes other restrictions and is not parsimonious in parameters).  One simple 

approach we have developed and used with some success is based on the observation that 

in many data sets where zero input use is prevalent, quantities of inputs are not measured 

accurately making production function estimation difficult, and input prices are also 

measured inaccurately and lack sufficient variation to estimate supply functions (e.g., 

Gray, 2005).  However, these data sets typically do accurately indicate whether or not an 

input is used.  Therefore, a production function or supply function can be estimated using 

dummy variables indicating input use and non-use (alternatively, the dummy variable 

may be defined as indicating input use above or below a positive threshold value).  The 

dummy variable parameter (say, in a Cobb-Douglas model) can then be interpreted as 



 21

indicating the average productivity of the input in the user group.  When this model is 

simulated, we approximate the production response for that input by assuming a 

montonic-increasing output response from zero up to the mean of the positive input-using 

group, and a lower (or zero) output response beyond that point.2   

Zeros in Output Data 

 In highly commercialized agriculture dominated by extreme specialization, many 

farmers produce the same output or the same mix of outputs (e.g., the corn-soybean 

farmer in the Midwestern U.S., or the small-grain farmer in the Great Plains of North 

America).  Many of these farmers actually produce a mix of crops, including oilseeds, 

hay, and other minor feedgrains.  In semi-subsistence agricultures, often a larger number 

of different crops and livestock will be grown, both for subsistence of the farm 

household, for cash sale, and for production of important by-products such as organic 

fertilizer (as in the Machkos system illustrated in Figure 1).  In these various systems, a 

complete data set on farm outputs will often have zero values for two reasons.  First, 

farmers produce different crop mixes, over both space and time, as part of crop rotations, 

to manage risk, and for other reasons.  Second, crop failures occur, and are particularly 

important in some systems.  For example, in the Machakos system, the principal food and 

cash crop, maize, has a crop failure rate that averges 26 percent for the sample and is over 

50 percent in some villages (Figure 4). 

 Considering the prevalence of this phenomenon, the problem of modeling 

multiple output systems with unbalanced data has received surprisingly little attention in 

the literature.  One exception is the paper by Huffman (1988) in which he proposed using 

                                                 
2 This procedure may also help reduce input endogeneity problems, since the use decision is made ex ante 
whereas application rate decisions are often made during the production process.  
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a mixed discrete-continuous model for estimation.  Weininger (2003) reviews the 

literature and proposes a way to adapt the translog cost function to this situation.  

However, the complexity of these models would make simulation problematic (note that 

translog models are not globally well-behaved, so they are not attractive for simulation 

outside the range of observed behavior).  The solution we have developed, as we noted 

above, is to simply estimate each production system (i.e., each crop or livestock system) 

independently, and then combine them to simulate the farmer’s discrete land use 

decisions as the maximization of a well-defined objective function.  To account for crop 

failure in the Machkos system, we have utilized a probit model to predict crop success or 

failure, and then used the probability of crop success to compute the expected value of 

the returns in the simulated land use decision.  For the case of maize, this model shows 

that crop failure is strongly (negatively) related to crop inherent productivity and 

purchased input use, as would be expected. 

Modeling Policy and Technology Scenarios: Primal vs Dual and Model Coupling 

 A major goal of agricultural system modeling is to simulate the effects of changes 

in policies and changes in production technologies.  We have encountered several issues 

in doing these simulations that have implications for the type of economic modeling 

approach that is used. 

 A first observation is that either primal or dual systems could be used.  Pros and 

cons of primal versus dual have been discussed at various places in the literature.  From 

the perspective of modeling policy scenarios, where the main focus is how changes in 

prices and other exogenous factors (e.g., land use restrictions) impact farmer decision 

making, a dual approach is useful because it represents the response to price changes.  
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However, the dual approach is problematic when the goal is to represent technology 

changes, because supply functions and input demand functions are reduced form 

equations that embed the technology parameters without identifying them.  Thus, a case 

can be made for the primal approach for modeling technology changes.  

 A related problem arises in linking bio-physical simulation models with economic 

models for the analysis of technology changes.  A change in crop variety can be 

simulated with a crop growth model through the genetic parameters of the model.  

However, it is less clear how that change in variety translates into changes in economic 

model parameters.  One might argue that our approach discussed above of incorporating 

inherent productivities into the estimation of economic models would solve this problem, 

but that is only true under the separability implied by that model.  If separability is not 

valid, then it may be necessary to more closely couple the bio-physical and economic 

models.  Ultimately, researchers have to trade off model complexity and data availability 

versus model validity in deciding how best to proceed.  

Minimum Data Modeling 

 I argued in the first section that researchers need to pay more attention to 

developing models that provide a good enough answer for policy analysis using the 

minimum data possible.  We have pursued this objective in modeling the supply of 

environmental services by noting that, as shown in Figure 1, the key information needed 

to model the adoption of alternative practices is the spatial distribution of opportunity 

cost.  As a first-order approximation, for given prices and technology, this spatial 

distribution can be approximated with means and variances of the returns to each activity 

and the covariance of returns.  Existing secondary data can be used to estimate these 
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statistical parameters, and then the supply curve for environmental services can be 

derived by simply sampling repeatedly from these empirical distributions and allocating 

land units to each use according to maximization of expected returns.  In recent 

unpublished work, we tested this approach using data from a case study of carbon 

sequestration in agricultural soils. The analysis showed that the carbon supply curve 

derived from a more detailed econometric-process simulation model was bounded by 

supply curves from a minimum-data model based simply on means, variances, and 

covariances of returns.  This finding encourages us to believe that the minimum data 

approach could be a useful tool for producing timely analysis to support policy decision 

making.  

 Again, there is a tradeoff between the amount of information that the model can 

produce and the amount of information needed to estimate it.  This minimum-data 

strategy takes the spatial distributions of returns for the competing activities as givens, so 

it is not possible to simulate scenarios in which, say, the price of an input changes, thus 

shifting the distributions.  To infer these shifts, a more detailed model with output supply 

and input demand functions would be needed.  But in cases where the policy decision 

makers only need to know the supply of the environmental service, taking prices as 

given, then the minimum data approach could provide that answer with much lower data 

demands that would be needed to estimate a system of supply and demand equations for 

each activity.  
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Figure 1.  Structure of the Econometric-Process Simulation Model of the Crop-
Livestock System in Machakos 
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Table 1. Parcel Means of Input Variables, System Frequencies 
and Farm Characteristicsin NUTMON Data for Machakos, by Village 

 
V1 V2 V3 V4 V5 V6

Inputs
Parcel Size (ha) 0.35 0.23 0.56 0.98 0.10 0.55
Manure (kg/ha) 3996 231 582 347 828 185

Hired Labor (md/sea) 33 5 9 6 2 65
Mineral Fertilizer (kg/ha) 39 3 24 0 19 20

Seed (kg/ha) 57 54 54 21 57 15
Pesticides (kg/ha) 1.69 0.01 0.27 0.12 6.47 2.70

Systems
Mixed Intercrop 0.48 0.18 0.23 0.16 0.38 0.53

Maize 0.36 0.09 0.16 0.20 0.22 0.08
Vegetables 0.28 0.00 0.05 0.00 0.16 0.26

Grass 0.43 0.17 0.16 0.10 0.03 0.09
Maize-Bean 0.38 0.55 0.41 0.54 0.21 0.04

Farm Characteristics
Size (ha) 2.68 2.26 2.77 7.04 1.50 3.48

Livestock Units 1.30 1.94 1.65 2.22 2.15 1.08
Familly Labor (md/sea) 175 75 113 154 169 152

Literacy  (%) 100 77 84 61 93 88
Famer Occupation (%) 46 50 52 64 82 76

Family Size 8.77 8.27 6.84 7.24 8.50 7.35
Off-Farm Income (ks/yr) 5255 2770 15078 7873 2405 8814  
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Figure 2.  Parcel Size Distribution in Machakos 
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Figure 3. Frequency Distribution of Mineral Fertilizer Use in Maize, Machakos 
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Figure 4.  Maize Yield Distribution for Machakos 


