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In turbulent rotating convection a typical flow structuring in columnar vortices is observed. In the
internal structure of these vortices several symmetries are approximately satisfied. A model for these
columnar vortices is derived by prescribing these symmetries. The symmetry constraints are applied
to the Navier–Stokes equations with rotation in the Boussinesq approximation. It is found that the
application of the symmetries results in a set of linearized equations. An investigation of the
linearized equations leads to a model for the columnar vortices and a prediction for the heat flux
�Nusselt number� that is very appropriate compared to the results from direct numerical simulations
of the full governing equations. © 2008 American Institute of Physics. �DOI: 10.1063/1.2936313�

I. INTRODUCTION

Buoyant convection and the Coriolis force caused by the
rotation of our Earth are important forces in the flows in the
atmosphere and the oceans. A convenient model for such
flows, although not fully compatible, is the rotating
Rayleigh–Bénard setting: A horizontally infinite layer of
fluid is vertically confined by solid walls rotating around a
vertical axis, the bottom wall being at a higher temperature
than the top wall. Although the lack of a top wall in the
geophysical flows makes the model not directly applicable,
the general behavior of the model flow shows considerable
similarities to real flow in the atmosphere. Furthermore, in
the atmosphere the tropopause can be regarded as a “top
wall” to a certain extent.

Especially for the large-scale flows in the atmosphere,
the effect of the rotation is dominant. The Rossby number,
the ratio between inertial and Coriolis forces, is rather small
�O�0.1��. A well-known theorem valid in rotation-dominated
flows was formulated by Proudman1 and experimentally
proven by Taylor;2 it is known as the Taylor–Proudman theo-
rem, which states that for inviscid flow in the limit of small
Rossby number �the geostrophic flow regime�, the vertical
component of the velocity gradient is zero, i.e., the flow is
vertically uniform. If the influence of buoyancy is also incor-
porated, it is found that the situation is expanded to the so-
called thermal-wind equilibrium,3 which, under the same
conditions, essentially states that vertical gradients of the
horizontal velocity components are only allowed when hori-
zontal temperature gradients exist. Still, the condition of a
uniform vertical velocity component remains. In view of
these statements a columnar flow structuring is expected,
with active �Ekman� boundary layers connecting the columns
to the solid walls. The Ekman layers connect the horizontal

motions in the bulk flow to the no-slip wall, thereby inducing
vertical motion that is again independent of the vertical co-
ordinate �as far as the bulk flow outside of the boundary
layers is concerned�.

Rotating Rayleigh–Bénard convection in the limit of
small Rossby number has been the topic of many experimen-
tal, numerical, and theoretical studies. Chandrasekhar4 stud-
ied the onset of convective motion and the flow patterning at
onset with linear perturbation theory. Asymptotic expansions
in a small parameter are also used in, e.g., Refs. 5 and 6.
Experiments with visualizations7–11 showed indeed a flow
structuring consisting of many columnar vortices. In numeri-
cal studies12,13 these columnar vortices were also observed.

The prime inspiration for the current investigation stems
from another numerical study, the results of which have been
partly reported in Ref. 14, where the internal structure of the
vortex columns was found to nearly obey certain symme-
tries. Vertical cross sections of such vortex columns showed
that the vertical velocity is nearly symmetric in the midplane,
while the vertical vorticity component is antisymmetric in
the midplane. For a confined radial extent it seemed also
reasonable to consider the vortex column to be independent
of the azimuthal orientation. Thus the question arose whether
demanding a compliance with these symmetries and condi-
tions would perhaps give solutions to the governing equa-
tions, as these solutions would be very helpful for modeling
the vortical-convection state and its heat transfer properties.
The current work contains the results of this assignment.

Another application area is in deep convection, with re-
lated long-lasting vortical chimneys that have been observed
in the Greenland Sea.15–17 Also, parts of this work might be
of interest for problems in spherical-shell convection, rel-
evant for celestial bodies.18

In Sec. II the governing equations and the problem set-
ting are introduced, along with the dimensionless numbers
needed to specify the flow. Some results of a direct numeri-
cal simulation �DNS� of these equations are shown in Sec.
III. The symmetry considerations and, subsequently, the so-
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lution procedure are given in Sec. IV. We present the results
of this model with comparison to the DNS results in Sec. V.
Section VI contains concluding remarks.

II. PROBLEM SETTING, GOVERNING EQUATIONS,
AND DIMENSIONLESS PARAMETERS

Consider a horizontally infinite fluid layer, confined ver-
tically by solid walls a distance H apart. The bottom wall is
situated at z=−H /2 and is at a temperature T0+�T, while the
top wall at z=H /2 is at a temperature T0. The governing
equations for the fluid motion are the Navier–Stokes and heat
equations in a rotating reference frame with incompressibil-
ity and in the Boussinesq approximation,4 where the tildes
indicate variables with dimension,

�t̃ũ + ũ · �̃ũ + 2�ẑ � ũ = − �̃p̃ + g��̃ẑ + ��̃2ũ , �1a�

�t̃�̃ + ũ · �̃�̃ −
w̃�T

H
= ��̃2�̃ , �1b�

�̃ · ũ = 0, �1c�

with u= �u ,v ,w� the velocity vector, ẑ the vertical unit vector
�the rotation axis and the gravitational acceleration are also
aligned vertically�, � the rotation rate, p the reduced pres-
sure, g the gravitational acceleration, � the temperature de-
viation from the conductive profile T�z�=T0+ � 1

2 −z /H��T,
and �, �, and � the thermal expansion coefficient, kinematic
viscosity, and thermal diffusivity of the fluid, respectively.
The equations can be made dimensionless with the length
scale H �the separation of the plates�, the temperature scale
�T, and the time scale �=H /U=�H / �g��T� based on the
so-called free-fall velocity U=�g��TH. The resulting equa-
tions are

�tu + u · �u +�	Ta

Ra
ẑ � u = − �p + �ẑ +� 	

Ra
�2u ,

�2a�

�t� + u · �� − w =
1

�	Ra
�2� , �2b�

� · u = 0, �2c�

where all symbols now denote dimensionless variables. The
following dimensionless parameters have been introduced:
The Rayleigh number Ra�g��TH3 / ����, the Taylor num-
ber Ta��2�H2 /��2, and the Prandtl number 	�� /�. An-
other important parameter in the following denotes the im-
portance of the buoyancy force relative to the Coriolis force:
The Rossby number Ro�U / �2�H�=�Ra / �	Ta�.

The boundary conditions on the plates are prescribed as
follows:

u = 0, z = 

1
2 , � = 0, z = 


1
2 . �3�

III. DNS OF THE EQUATIONS

The Equations �2a�–�2c� can be used for DNS. Such a
study was undertaken before; the results have been partly
reported in Ref. 14. The equations were solved on an
Lx�Ly �Lz=2�2�1 domain with a fourth-order accurate
finite-difference scheme. Boundary conditions were as in Eq.
�3�. The horizontal directions were periodic to emulate a
horizontally unbounded layer of fluid. For further details on
the numerical procedure, we refer to Ref. 14.

Here we provide a typical image from a simulation using
Ra=2.5�106, 	=1, and Ta=108. In this case Ro=0.158,
thus a strong rotational constraint is expected. An isosurface
plot of the vertical velocity component in Fig. 1 shows the
columnar flow structuring typical of rotation-dominated tur-
bulent convection. The red �light gray� surfaces are for w
= +0.07, so for columns with upward motion, while the blue
�dark gray� surfaces at w=−0.07 are for columns with down-
ward motion. The number of columns with upward and
downward motions is roughly equal. Also the sizes are simi-
lar. This is expected given the inherent symmetries of the
Boussinesq equations. The columnar structuring due to rota-
tion was found in all simulations for which Ro�0.5. This
can be taken as the border of the range of validity for the
current work.

From these simulations it was found that the vortex col-
umns show approximate symmetry in the midplane. As a
first-order approximation the vertical vorticity component �z

inside the column is antisymmetric in z=0, while uz is
roughly symmetric in z=0, The temperature, after subtrac-
tion of the conductive profile �=T− � 1

2 −z�, shows more de-
viations from symmetry, but we still assume symmetry in
z=0 as a first approximation. �The ensemble-averaged pro-
files of 40 columns with upward motion are shown later, in
Fig. 6�a�. These symmetries were found to be also valid for
the “downward” columns.� The observation of the approxi-
mate symmetries was the principal motivation for the current
work.

IV. A HEURISTIC MODEL

It is profitable to proceed with cylindrical coordinates
�r ,
 ,z� and the associated velocity vector �ur ,u
 ,uz�. Our
objective is thus to search for �i� axisymmetric, �ii� steady
�viz., time independent�, and �iii� vertically symmetric solu-
tions according to

FIG. 1. �Color online� Isosurfaces of w= 
0.07. The red �light gray� sur-
faces indicate upward motion; blue �dark gray� is for downward motion.

066602-2 Portegies et al. Phys. Fluids 20, 066602 �2008�

Downloaded 28 Feb 2012 to 137.224.252.10. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



ur�r,z� = − ur�r,− z� , �4a�

u
�r,z� = − u
�r,− z� , �4b�

uz�r,z� = uz�r,− z� , �4c�

��r,z� = ��r,− z� . �4d�

Under the assumption of axial symmetry all 
 derivatives are
zero, and the steadiness of the solution implies vanishing of
the time derivatives. In view of the prescribed symmetries,
Eqs. �2a�–�2c� split up in even and odd parts that vanish
separately. This results in

−�	Ta

Ra
u
 = − �rp +� 	

Ra
��2 −

1

r2�ur, �5a�

�	Ta

Ra
ur =� 	

Ra
��2 −

1

r2�u
, �5b�

0 = − �zp + � +� 	

Ra
�2uz, �5c�

− uz =
1

�	Ra
�2� , �5d�

�rur +
ur

r
+ �zuz = 0, �5e�

and the conditions that all nonlinear parts be zero. Thus the
symmetries lead to the linearized versions of the governing
equations. Note that a solution of Eqs. �5a�–�5e� probably
does not satisfy the full equations including the nonlinear
terms. Still, as a heuristic model we continue with the linear-
ized equations. The linear set of equations is often used in
studies concerning the onset of convection, e.g., Refs. 4, 19,
and 20 In this case, however, an alternative solution proce-
dure is applied in view of the axial symmetry, leading to a
new solution.

Because of Eq. �5e� it is possible to introduce a stream-
function ��r ,z� according to

ur = −
1

r
�z�, uz =

1

r
�r� . �6�

In view of Eqs. �4a� and �4c� � is even in z. The boundary
conditions for � are �z�=�r�=0 at z= 


1
2 .

We can now eliminate p by cross differentiation of Eqs.
�5a� and �5c�. Three equations remain,

�	Ta

Ra
�zu
 = �r� +

1

r
� 	

Ra
��2 −

2

r
�r�2

� , �7a�

−�	Ta

Ra
�z� = r� 	

Ra
��2 −

1

r2�u
, �7b�

− �r� =
r

�	Ra
�2� . �7c�

Next, we try to separate variables and write the solution as
the product of a function depending on z and a function
depending on r. For the latter, radial part we take either
J0�kr� �even symmetry� or J1�kr� �odd symmetry�. Here J0

and J1 are Bessel functions of orders of 0 and 1, respectively,
and k is a constant to be determined later on. In particular,
we use the following ansatz:

� = krJ1�kr���z� , �8a�

u
 = J1�kr���z� , �8b�

� = J0�kr���z� . �8c�

The boundary conditions translate to

� = � = � = �� = 0, z = 

1
2 . �9�

We insert these trial functions into the set �7�. By use of the
well-known properties

�x�xmJm�x�� = xmJm−1�x�

and

J−m�x� = �− 1�mJm�x� ,

valid for integer values of m, we find that the dependence on
the radial coordinate r drops out. What remains are three
linear ordinary differential equations in terms of the vertical
coordinate z,

�	Ta

Ra
�� = − k� + k� 	

Ra
��zz − k2�2� , �10a�

− k�Ta�� = ��zz − k2�� , �10b�

− k2�	Ra� = ��zz − k2�� . �10c�

By differentiating Eq. �10b� once, applying the operator
��zz−k2� to Eq. �10a�, and substituting, we arrive at a single
sixth-order differential equation concerning just �,

��zz − k2�3� + Ta�� + k2Ra� = 0. �11�

Equation �11� can be solved by substituting
�=exp��z� and finding the roots of the characteristic
equation,
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�6 − 3k2�4 + �3k4 + Ta��2 + k2Ra − k6 = 0. �12�

The roots of the cubic equation in x��2 are

x1 = k2 −
21/3Ta

�
+

�

3�21/3�
, �13a�

x2 = k2 +
�1 + i�3�Ta

22/3�
−

�1 − i�3��
6�21/3�

, �13b�

x3 = x2
*, �13c�

where � denotes complex conjugation and the symbol � is
used to represent the real, positive constant,

� � ��108Ta3 + 272k4�Ra + Ta�2 − 27k2�Ra + Ta��1/3.

Since only the real parts of these solutions are relevant for
the current problem the roots are written in a slightly differ-
ent way. We introduce the constants f , g, and h as

f � 1
2
�2�	x2	 + R�x2� ,

g � 1
2
�2�	x2	 − R�x2� ,

h � �− x1.

The minus sign in the definition of h is put there since posi-
tive values of x1 give unphysical solutions, so that relevant
values of h are now real. Concerning f and g, it holds that

x2 = �
�f + ig��2,

x3 = �
�f − ig��2.

The general solution reads as

� = a1 cos�hz� + a2 sinh�fz�sin�gz� + a3 cosh�fz�cos�gz�

+ a4 sinh�fz�cos�gz� + a5 cosh�fz�sin�gz�

+ a6 sin�hz� , �14�

where the coefficients a1,2,3 are for the even parts, while
a4,5,6 are for the odd parts. The odd parts can be taken out
since � must be even, which implies that a4=a5=a6=0.
From Eq. �10b� a similar notation is now obtained for �,
with the even parts already left out as � is odd,

� = b1 sinh�kz� + b2 sin�hz� + b3 sinh�fz�cos�gz�

+ b4 cosh�fz�sin�gz� . �15�

Coefficients b2,3,4 are found in terms of a1,2,3 from Eq. �10b�,

b2 = − a1
�Ta

hk

h2 + k2 ,

b3 = k�Ta
�a2g − a3f��f2 + g2� + �a2g + a3f�k2

�f2 − g2 − k2�2 + 4f2g2 ,

b4 = − k�Ta
�a2f + a3g��f2 + g2� − �a2f − a3g�k2

�f2 − g2 − k2�2 + 4f2g2 .

The coefficient b1 is not determined by a1,2,3 and needs to be
solved along with these coefficients. Similarly, � is written
as

� = c1 cos�hz� + c2 sinh�fz�sin�gz� + c3 cosh�fz�cos�gz�

+ c4 cosh�kz� . �16�

With Eqs. �10a� and �10c� c1−c4 can be fully expressed in
terms of the previous unknowns,

c1 = k2
�	Ra

h2 + k2a1,

c2 = − k2�	Ra
2a3fg + a2�f2 − g2 − k2�
�f2 − g2 − k2�2 + 4f2g2 ,

c3 = − k2�	Ra
a3�f2 − g2 − k2� − 2a2fg

�f2 − g2 − k2�2 + 4f2g2 ,

c4 = −�	Ta

Ra
b1.

Now the boundary conditions are applied. Note that, because
of symmetry, only the boundary conditions at z= 1

2 are evalu-
ated; the conditions at z=− 1

2 are then automatically satisfied.
We introduce a matrix M such that the boundary conditions
are

M ·

a1

a2

a3

b1

� = 0. �17�

M has the rather unwieldy shape

M =

cos�h

2
� sinh� f

2
�sin�g

2
� cosh� f

2
�cos�g

2
� 0

− h sin�h

2
� f cosh� f

2
�sin�g

2
� + g sinh� f

2
�cos�g

2
� f sinh� f

2
�cos�g

2
� − g cosh� f

2
�sin�g

2
� 0

k2�	Ra

cos�h

2
�

h2 + k2 k2�	Ra

2fg cosh� f

2
�cos�g

2
� − �f2 − g2 − k2�sinh� f

2
�sin�g

2
�

�f2 − g2 − k2�2 + 4f2g2 − k2�	Ra

2fg sinh� f

2
�sin�g

2
� + �f2 − g2 − k2�cosh� f

2
�cos�g

2
�

�f2 − g2 − k2�2 + 4f2g2

−�	Ta

Ra
cosh� k

2
�

− k�Ta

h sin�h

2
�

h2 + k2 k�Ta

g�f2 + g2 + k2�sinh� f

2
�cos�g

2
� − f�f2 + g2 − k2�cosh� f

2
�sin�g

2
�

�f2 − g2 − k2�2 + 4f2g2 − k�Ta

f�f2 + g2 − k2�sinh� f

2
�cos�g

2
� + g�f2 + g2 + k2�cosh� f

2
�sin�g

2
�

�f2 − g2 − k2�2 + 4f2g2

sinh� k

2
� � . �18�
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With given Ra, Ta, and 	, the determinant of M vanishes for
values of k that form nontrivial solutions. These roots can be
found with iterative numerical methods. Finally, to obtain a
solution we must determine the constants a1,2,3 and b1. Three
of these can be expressed in terms of the fourth; here we
write a2,3 and b1 in terms of a1, where Mij denote the indi-
vidual matrix elements of M,

a2 =
M13M21 − M11M23

M12M23 − M13M22
a1,

a3 =
M12M21 − M11M22

M13M22 − M12M23
a1,

b1 =
a1

M12M23M34 − M13M22M34
�M13M22M31

− M12M23M31 − M13M21M32 + M11M23M32

+ M12M21M33 − M11M22M33� .

The last unknown constant a1 is a free parameter. An upper
bound for a1 can be given on physical grounds by demanding
that the temperature �+ 1

2 −z remains between 0 and 1 for all
z. This will be used later on to give an upper bound for the
heat transfer through the vortical plume.

V. RESULTS OF THE MODEL

In this section we first show the general shape of the
model solution. A comparison to the DNS is carried out, with
variation of the governing parameters. Finally, an upper
bound for the heat flux through an array of vortices is
derived.

The first case we consider is for fixed values Ra=2.5
�106, 	=1. This is equal to the parameters used in Ref. 14.
Figure 2 shows the values of k as a function of Ta. There are
two limits to the parameters that are applied here. The first
gives an upper limit for Ta as a function of Ra; it is the
Chandrasekhar stability criterion for onset of convection
Rac�8.7Tac

2/3.4 For given Ta, Ra must be larger than Rac for
convection to set in. It is found that the highest allowable Ta
value that allows a solution in the model �Ta=2.08�108 at
k=28.1� matches rather well with the Chandrasekhar limit

value Tac=1.54�108. We choose a lower limit of Ta by
demanding that the flow is rotation dominated, i.e., Ro�1
and thus Ra�	Ta.

Another observation considers the growing number of
possible solutions as Ta decreases. Then, two branches are
formed: One at k�39, the “narrow vortex,” and another with
a stronger dependence on Ta, the “wide vortex.” Of the two,
the narrow-vortex solution is of interest here because it is
most comparable to the DNS results. Indeed, for the wide
vortex its radius r0
1 /k grows very large, even at moderate
Ta. This is not what is captured in the DNS, where far nar-
rower plumes are found at all relevant Ta values. Further-
more, velocity values for the wide vortex are very small,
while the motions in the DNS vortices are considerably more
vigorous. Therefore, the focus will be on the narrow vortex,
while the wide vortex is also a physically allowable solution.
For Ta�1.5�107 another pair of k values is found. These
correspond to solutions that are less relevant in this context
since the resulting structures are composed of more than a
single cell in the vertical direction, i.e., the vertical velocity
is not of one sign throughout the vertical extent. The growing
number of allowed k values is possibly an indication of the
growing instability of the vortex solutions, as more and more
three-dimensional structuring is allowed at lower dimension-
less rotation rates Ta.

Variation of Ra is covered in Fig. 3. For this plot fixed
values Ta=1�108 and 	=1 are chosen. Again the applica-
bility of the current model is bounded by the Chandrasekhar
limit Rac and the condition of rotation-dominated flow
Ro�1, both indicated with dashed lines. A similar picture
arises, with two branches of allowable k values, deviating as
Ra increases. At higher Ra�8�106 additional solutions are
found; these are again solutions with more complicated ver-
tical structuring and thus are not relevant here.

The allowed k values are independent of 	. The 	 de-
pendence is present only in a single row of M, and hence can
be factored out of det�M�=0.

As an example case for the spatial structure of the vortex
solution we choose Ta=108, with Ra=2.5�106 and 	=1 as
before. The relevant k value comes from the upper branch of
solutions in Fig. 2; for the current parameters k=36.8. With
the k value the model solution is fully determined but for the
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FIG. 2. Values of k as a function of Ta for Ra=2.5�106, 	=1. Also in-
cluded �dashed lines� are the Chandrasekhar stability value Tac=1.54
�108 and the position where Ro=1.
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FIG. 3. Values of k as a function of Ra for Ta=1�108, 	=1. Also included
�dashed lines� are the Chandrasekhar stability value Rac=1.87�106 and the
position where Ro=1.

066602-5 A model for vortical plumes in rotating convection Phys. Fluids 20, 066602 �2008�

Downloaded 28 Feb 2012 to 137.224.252.10. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



constant a1. We wish to restrict the results to just the “warm”
vortices that are responsible for upward transport of fluid and
heat and are of higher-than-average temperature. The corre-
sponding “cold” vortex solution follows straightforwardly
from symmetry. For the warm vortex, by demanding that
temperature T remains below the boundary value T=1 for all
z, we can derive an upper bound for a1: For the current
parameter set we arrive at a1=1.28�10−4.

To give a visual impression of the solution, contour plots
of ur, u
, uz, and � are presented as a function of r and z in
Fig. 4. Another important result for the vortex solution is the
vertical component of vorticity �z, easily calculated from u


as �z= �1 /r��r�ru
� given the symmetry. It is presented in
Fig. 5. The solutions have vertically dominant sine-or cosine-

like behavior in the bulk with boundary layers to connect to
the walls. In the radial direction the Bessel function profiles
are readily recognized.

We can compare the model solution at Ra=2.5�106,
Ta=1�108, and 	=1, as introduced in Figs. 4 and 5, to
actual vortices found in the DNS. An ensemble average of 40
warm vortices, found in the DNS, has been carried out. Ver-
tical profiles taken at the horizontal position of the center of
the vortices of vertical velocity uz, vertical vorticity �z, and
temperature T are shown in Fig. 6�a�. In Fig. 6�b� the corre-
sponding profiles from the model are given. Similarly, in Fig.
7�a� a horizontal profile of the average DNS vortex at height
z�−0.25 is presented, with the corresponding model profiles
displayed in Fig. 7�b�. The horizontal profiles also include
azimuthal velocity u
. Note that the model vortex is an “up-
per limit” in terms of the constant a1, so that the DNS vortex
will generally have lower temperature, velocity, and vortic-
ity.

The qualitative comparison is quite favorable, but there
are several differences to be found. The vertical symmetry is
not exactly followed in DNS. However, as a first-order ap-
proximation it is definitely applicable. Also, the radius of the
vortex in DNS is somewhat wider than in the model. The
first zero crossings in the horizontal profiles of uz or �z are
found at r�0.066 in the model and at r�0.090 in the DNS
vortex. The vertical velocity is about a factor of 2 larger in
the model than in DNS, while the maximal azimuthal veloc-
ity is almost equal for the two cases. The vertical-vorticity
profiles match well, apart from an asymmetric offset in the
vertical profile in the DNS vortex. An oppositely signed
shield is found for larger r�0.090 in the DNS vortex. At the
outer edge of this shield the velocities and vorticity tend to
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FIG. 4. Radial-vertical cross-sectional
plots of the vortex solution at
Ra=2.5�106, Ta=108, and 	=1. The
solid contours indicate positive values,
while dashed contours are for negative
values. The dotted lines are the zero
contours. �a� Azimuthal velocity u
,
with contour increment of 0.005. �b�
Vertical velocity uz, contour increment
of 0.02. �c� Radial velocity ur, contour
increment of 0.002. �d� Temperature
deviation � from the conductive pro-
file, with contour increment of 0.02.
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FIG. 5. Plot of vertical vorticity �z of the vortex solution. Ra=2.5�106,
Ta=108, and 	=1. Lines as in Fig. 4, but now with contour increment of
0.4.

066602-6 Portegies et al. Phys. Fluids 20, 066602 �2008�

Downloaded 28 Feb 2012 to 137.224.252.10. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



zero. The shield may be represented in the model by extend-
ing the radial extent to r0� j0,2 /k �the notation j0,2 is used to
indicate the second zero of J0: j0,2�5.52�, as is done in Fig.
7�b� with r0�0.15. The sharp edge is unphysical, but again it
should be regarded a first-order approximation to the DNS
vortex.

The heat flux of convective systems is usually expressed
by the Nusselt number Nu, the total heat flux normalized by
the conductive heat flux that is present in a quiescent fluid. In
the current units Nu is defined as

Nu �� �T

�z
� + �	Ra�uzT� ,

where the angular brackets indicate averaging over a hori-
zontal cross section of the fluid layer. The intersection is
taken at z=0, the central plane. What remains of Nu is then

Nu = 1 + �	Ra�uz�� . �19�

To calculate Nu for the model, the following assumptions are
made.

�1� As before, the value of a1 is taken the maximal value
that still complies with the condition T�1. This gives
an upper bound on a1, and thus also on Nu.

�2� There are equally many warm as cold vortices. This has
been verified from the DNS.

�3� Each vortex is radially terminated at r0. This is done to
create a shield. We remark here that taking higher zeroes

of J0 would lead to radial profiles uncompatible with the
DNS results, as there is just one shield to be found.

�4� The entire cross-sectional area is filled with a closest-
packed hexagonal grid of circular vortices. Again, this
situation provides an upper bound as real snapshots from
DNS show a sparser vortex distribution. By the model
symmetry, contributions from warm and cold vortices
are identical. Hence, this assumption allows the averag-
ing to be constrained to just a single model vortex, with
the area of consideration being one hexagon of inner
radius r0 and area 2�3r0

2. Another implication of this
assumption that will be discussed later is that the vortex
number density N scales as N
r0

−2.

We arrive at

Nu = 1 +
�	Ra

2�3r0
2�

0

r0

��0�J0�kr�� · ��0�
�r�kr�J1�kr���

r�

�2�r�dr�,

which finally reduces to

Nu = 1 +
��	Ra

2�3
��0���0�k2J1�j0,2�2. �20�

A calculation of the upper bound on Nu for various Ta at
Ra=2.5�106, 	=1 has been carried out. The results are in-
dicated with the thick solid line in Fig. 8. Also included are
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FIG. 6. �a� Vertical profiles of vertical
velocity uz �dashed line; multiplied by
5�, vertical vorticity �z �thick solid
line; divided by 5�, and temperature T
�thin solid line�, from the ensemble-
averaged DNS vortex column. �b�
Corresponding profiles from the cur-
rent vortex model.
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FIG. 7. �a� Horizontal profiles of ver-
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Corresponding profiles from the cur-
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results from the DNS �Ref. 14� �crosses and circles�, results
from an experiment in water at 	�7 �Ref. 21� �thin solid
line�, and an upper bound at 	→� obtained with a varia-
tional method �Ref. 22� �dash-dotted line�. It is found that the
current model overestimates the heat flux by about a factor
of 2. Given the unknown constant a1 and the assumptions of
the radial cutoff and tightly packed coverage of the fluid
layer with vortices this is indeed a satisfying result. It is
comparable to the result of Ref. 22 except for the small
growth of Nu at moderate Ta. At the larger Ta values the
steep decrease of Nu is well represented.

We now compare the effects of variation of Ta between
the current theory and the DNS. As can be seen in Fig. 2, the
relevant value of k �the upper branch of solutions� remains
almost constant when Ta changes, so that vortices are ex-
pected to be of similar size for all Ta considered. A compari-
son of DNS snapshots at Ta=1�107 and 1�108 revealed
that indeed in both cases on average roughly the same num-
ber of vortices can be identified �by visual inspection�. How-
ever, at Ta=1�107 the rotational constraint is less stringent
and more vertical variation is found in the velocity, tempera-
ture, and vorticity profiles. Also, at this lower rotation rate
the velocities inside the vortices are higher, as is the tempera-
ture contrast with the surroundings, such that the heat trans-
fer �Nu� is considerably higher.

Variation of Ra is also straightforward in the model, see
Fig. 9. The solid line indicates the model result at Ta=1
�108, 	=1, while the circles are the corresponding values
from DNS. The rapid drop in the model curve near Rac is an
indication of the model reaching the Rayleigh number where
no vortex solution is allowed, see also Fig. 3 where for

Ra�1.5�106 no suitable k value can be found. At higher Ra
it is found that the upper bound on Nu obtained from the
model has a somewhat larger separation from the DNS re-
sult, but is still very much applicable. Extension to even
higher Ra is unfeasible, as then the constraint Ro�1 is
crossed.

An additional effect of the variation of Ra can be appre-
ciated from Fig. 3. With increasing Ra the relevant k value
also increases. This means that the typical vortex size must
decrease. In other words, the vortex density increases with
increasing Ra. If we define a typical vortex density as
N=r0

−2= �j0,2 /k�2 and compare these for Ra=2.5�106 and
2.5�107, then in the model the higher-Ra case has 3.67
times as many vortices as the lower-Ra case. Visual inspec-
tion of DNS snapshots indeed showed that the vortices are
smaller at higher Ra, but the factor of 3.67 was not recov-
ered. Instead, the higher-Ra case had on average slightly
more than two times as many vortices as at the lower Ra.
This may explain the larger model overprediction of Nu at
higher Ra compared to the DNS result.

Another approach is to investigate variation of Ra with
an additional constraint that the ratio of buoyancy and rota-
tion, i.e., the Rossby number Ro, remains the same. At a
constant Prandtl number, Ra and Ta are varied such that
Ro
�Ra /Ta remains constant. This approach was followed
before in literature, e.g., Refs. 12 and 23. In Fig. 10 the
dependence of Nu on Ra �and thus, implicitly, Ta� is shown,
while keeping Ro constant. This is plotted for three separate
values of Ro. Also included are our DNS results at
Ro=0.75 �circles and crosses�. The three curves at different
Ro are roughly parallel; a power-law fit of the slopes results
in Nu
Ra0.57 at Ro=0.1, Nu
Ra0.48 at Ro=0.2, and
Nu
Ra0.47 at Ro=0.75. In the Ro=0.1 curve the sudden
decrease to Nu=1 at Ra�3.5�106 occurs because no solu-
tion of the model is found anymore, cf. Figs. 3 and 9. When
comparing these slopes to results from the DNS of Ref. 12 or
the experiments of Ref. 23 �in both studies Nu
Ra0.27 is
found� it is found that the model progressively overestimates
the heat flux at larger Ra for constants Ro and 	; or the
bound becomes less and less stringent.
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FIG. 8. Dependence of Nu on Ta for Ra=2.5�106, 	=1. The thick solid
line indicates the current result. The crosses and circles are taken from Ref.
14 �values of Nu calculated from the average temperature derivative at the
walls�. The thin solid line is the experimental result of Ref. 21 in water
�	�7�. The dash-dotted line is an upper bound for 	→� obtained with a
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A final consideration is the variation of 	 and its effect
on Nu. This is depicted in Fig. 11, at constant Ra=2.5
�106 and constant Ro=0.5. On the lower-	 side again a
critical value for convection is found from the model �where
Nu becomes larger than 1�, close to the Chandrasekhar
stability limit �in this case a critical Prandtl number
	c=0.0649�. The higher-	 side has a power-law behavior as
Nu
	−0.38. The inset shows Nu�	�, now at constant
Ra=2.5�106 and constant Ta=1�108. A fit is Nu
	−0.42.
In both cases Nu is a decreasing function of 	 �except for the
region around the stability limit�. Yet, in other studies a dif-
ferent correlation is found. In the experiments of Rossby21

rotating heat transfer at two different 	 is considered:
	=0.025 and 6.8. Nu was found to be larger at the higher
	=6.8. This trend was also reported from simulations of
nonrotating convection.24,25 The model does not reproduce
this dependence of Nu on 	. Given that for 	�1 viscosity is
larger than thermal diffusivity, it is plausible that the vortical
state is less prominent, and the current model is thus not
relevant at higher 	.

VI. CONCLUDING REMARKS

Starting from the Navier–Stokes equations and some
symmetry considerations, it was possible to derive a model
for the vortical columnar plumes of rotation-dominated con-
vection. The radial and vertical structures of the vortex as
predicted by the model matched the features found in the
DNS rather well. A calculation of the heat flux provided an
upper bound that was found to be appropriate for the regime
under study.

Still, the model has some shortcomings. There is an un-
known constant in the model, for which only an upper bound
is known. The termination of the radial extent of the vortex is
unphysical. Also, the heat flux is dependent on the vertical
coordinate and cannot match with the often-used definition
of the averaged wall-normal temperature gradient �see, e.g.,
Ref. 14�. This follows directly from the symmetry constraint
on the temperature deviation from the conductive profile.

A comparison of the model results with DNS showed
that the average vortex size was captured well. The depen-
dence of the heat transfer on Ta was very satisfactorily rep-
resented in the model. When Ra is increased the upper bound
for heat transfer in the model has a larger margin over the
DNS results, but for the parameter range considered, it still
gives a reasonable result. The relation with 	 could not be
checked directly to DNS results. A comparison to experi-
ments and simulations in different geometries revealed that
the Prandtl number dependence in the model is not well re-
covered. The range of validity of the model solution appears
to be restricted to lower Prandtl numbers.

This study shows that the linearized Navier–Stokes
equations not only provide information about the onset of
instabilities but also possess interesting and relevant classes
of solutions that fulfill certain symmetry requirements.
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