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Abstract 

 

Janssen, G. M. C. M. 2008. Stochastic Forward and Inverse Groundwater Flow and 

Solute Transport Modeling. Doctoral Thesis, Wageningen University, Wageningen, 

The Netherlands. 194 pages. 

 

 

This thesis offers three new approaches that contribute to the ability of groundwater 

modelers to better account for heterogeneity in physically-based, fully distributed 

groundwater models. In both forward and inverse settings, this thesis tackles major 

issues with respect to handling heterogeneity and uncertainty in various situations, and 

thus extends the ability to correctly and/or effectively deal with heterogeneity to these 

particular situations. 

The first method presented in the thesis uses the recently developed advective-

dispersive streamtube approach in combination with a one-dimensional traveling wave 

solution for nonlinear bioreactive transport, to study the interplay between physical 

heterogeneity, local-scale dispersion and nonlinear biodegradation and gain insight in 

the long-term asymptotic behavior of solute fronts, in order to deduce (the validity of) 

upscaling equations. Using the method in synthetic small-scale numerical experiments, it 

is shown that asymptotic front shapes are neither Fickian nor constant, which raises 

questions about the current practice of upscaling bioreactive transport. 

The second method presented in the thesis enhances the management of heterogeneity 

by extending inverse theory (specifically, the representer-based inverse method) to 

determinations of groundwater age/travel time. A first-order methodology is proposed to 

include groundwater age or tracer arrival time determinations in measurement network 

design. Using the method, it is shown that, in the applied synthetic numerical example, 

an age estimation network outperforms equally sized head measurement networks and 

conductivity measurement networks, even if the age estimations are highly uncertain. 

The study thus suggests a high potential of travel time/groundwater age data to 

constrain groundwater models. 

Finally, the thesis extends the applicability of inverse methods to multimodal parameter 

distributions. Multimodal distributions arise when multiple statistical populations exist 



 VI 

within one parameter field, each having different means and/or variances of the 

parameter of concern. No inverse methods exist that can calibrate multimodal parameter 

distributions while preserving the geostatistical properties of the various statistical 

populations. The thesis proposes a method that resolves the difficulties existing inverse 

methods have with the multimodal distribution. The method is successfully applied to 

both synthetic and real-world cases. 
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General Introduction 

 

 

1.1. Societal Context 

The world’s groundwater resources provide drinking water for over 2 billion people, 

enable the irrigation of 40% of the world’s food production (numbers from Morris et al. 

[2003], provide base flow to rivers, deliver production and cooling water for industrial 

processes and, on top of that, sustain an enormous variety of groundwater-dependent 

ecosystems. It is therefore evident that these resources are crucial to the health and 

functioning of societies, as well as to the natural world these societies are part of, 

supported by, and depend on.  

Few groundwater systems have escaped the consequences of the ever-expanding 

human influence on the natural environment. Globally, groundwater systems are 

pressured, the most important reasons1 being overexploitation, contamination, and what 

is called here straitjacketing. 

Overexploitation simply results in the disappearance of resources: in some areas the 

decline of groundwater levels is currently at a rate that is in the order of meters a year. 

The “production” of groundwater for irrigation, industrial processes, drinking water, etc., 

is not balanced by the natural recharge of the groundwater system. Declining 

groundwater levels can result in dramatic increases of groundwater production costs, 

and, if the situation is left unchanged, they can even lead to complete exhaustion of the 

groundwater system’s productive capacity. 

The second issue, groundwater contamination, can take many forms. It can be 

accidental (e.g. a calamity at a factory processing hazardous solutions that get spilled 

and leach to the groundwater), the result of neglect (leaking oil pipelines), it can be a 

more or less (politically) accepted side effect of socially and/or economically 

indispensable human activities (e.g. agriculture), with groundwater quality at the wrong 

end of the trade-off, and it can even have a completely natural cause: think about 

saltwater intrusion, for example, or fluoride-rich groundwater in India, or the problems 

with arsenic in groundwater in Bangladesh. Groundwater contamination is also known to 

                                                 
1
 The interested reader is referred to Morris et al. [2003], Griffioen et al. [2003], and Younger [2006] for more 

comprehensive overviews of threats to groundwater systems 
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involve a wide range of scales: it can take the form of a small contaminant plume as a 

result of a spill, but one can also speak of nationwide groundwater contamination issues, 

if one takes a look at the problems caused by fertilizer or pesticide applications in 

agriculture. It is clear that contaminated groundwater poses risks and, potentially, 

damage to all its dependants. Both mitigation and remediation typically are very costly. 

The third cause for stress on groundwater systems, straitjacketing, refers to situations in 

which groundwater systems need to be adjusted to human needs and changes we made 

to the natural environment. Groundwater systems are forced into an unnatural state and 

need to be controlled continuously. Many examples of straitjacketing of groundwater can 

be found close to home in the Netherlands, where groundwater (level) control can be 

regarded as a vital part of polder and delta life. 

For tackling the three issues mentioned above (overexploitation, contamination, and the 

need for groundwater control), as well as other serious threats to groundwater resources 

(a comprehensive overview is given by Morris et al. [2003]), knowledge of the 

groundwater system and how it responds to new influences is crucial. Only by 

understanding the properties and dynamics of the system, a sensible system 

management can be imposed that can bring the system to a desired state, prevent 

(further) deterioration of the system, or help mitigate risks posed by the system’s current 

state. 

Mathematical groundwater models are essential tools to formalize and administrate the 

existing knowledge of groundwater systems and utilize this knowledge to produce 

areally distributed state descriptions and predictions according to the best available 

information. Thus, it has almost become unthinkable not to exploit the power of 

mathematical modeling in groundwater management studies. It is clear that the more 

sound the description of processes and system properties, the more accurate the model 

outcome. Improving the accuracy of groundwater models can lead to tremendous cost 

savings in multiple ways, for example via reduced risk of unsuccessful groundwater 

management (resulting in, for example, damage to infrastructure and ecosystems, crop 

loss or yield reduction, exhaustion of resources, pumping of contaminated groundwater 

etc.), and reduced need to compensate for uncertainties in the model results (e.g. 

overdimensioning of remediation strategies, overdimensioning of protection zones, etc.). 
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It is therefore no surprise that methods for the improvement of groundwater models 

receive continuous attention in the scientific literature.  

 

 

1.2. Problem Statement 

In the previous Section, the importance of system knowledge for groundwater 

management, and the need to make this knowledge operational through models were 

expressed. “Knowing” or understanding the system is, however, greatly complicated by 

one particular natural aspect, the dealing with which has been a recognized major 

challenge, as well as a research frontier, for the past three decades: heterogeneity. 

Heterogeneity refers to the spatiotemporal variation of the groundwater system’s 

properties, including initial and boundary conditions. It is the cause of the fact that the 

groundwater system can never be “known” completely: no matter how extensive the 

measurement efforts, a certain degree of uncertainty will always remain, i.e. it is intrinsic. 

Dealing with heterogeneity therefore automatically involves dealing with uncertainty: 

deterministic modeling becomes stochastic modeling. Whereas this argument is focused 

here towards groundwater systems, in fact it holds for earth systems in general. 

Heterogeneity not only complicates the physical description of the system (e.g. spatial 

variation of hydraulic properties), but also the description of processes. For example, 

heterogeneity can greatly affect the spreading of solutes through the medium, which in 

turn has implications for how the solutes interact with reactive components, both in the 

solid and the liquid phases, but also on the arrival time distributions at designated places 

(e.g. groundwater extraction well fields). These effects of heterogeneity have in some 

way to be accounted for in modeling, which is a far from trivial task. 

Thus, heterogeneity poses a great challenge for geo-professionals to still satisfy the 

abovementioned need for accuracy in groundwater models. Methods are needed to 

allow modelers to accurately, fairly and efficiently account for all relevant heterogeneity. 

As will be explained below, this thesis contributes to fulfilling this need in several ways.  
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1.3. General research objective, scope and chapter coherence 

Although the main chapters of the current thesis are quite diverse, they all share a 

common, ultimate purpose: improved flow and transport modeling in heterogeneous 

subsurface environments. Specifically, the current thesis’ general objective is to address 

approaches and develop methods that improve coping with heterogeneity in physically 

based, fully distributed numerical groundwater models. 

It is important to recognize that coping with heterogeneity consists of two distinct 

components:  

• to account for it. The heterogeneity, and the uncertainties stemming from it, 

should, to the best available knowledge, be fully and fairly accounted for in the 

model. This means that the heterogeneity needs to be characterized and 

integrated correctly into the model. Failing to acknowledge important sources of 

uncertainty in the model can lead to false certitude, wreck model calibration, and 

decrease accuracy of model results. This may seem obvious, yet in this thesis, 

the reader will find several examples of common modeling practice in which 

heterogeneity is not fully recognized. 

• to manage it. Once heterogeneity and uncertainty are acknowledged and fully 

accounted for in the model, the challenge is to minimize the increased uncertainty 

this caused. In other words, given heterogeneity, the modeler has to “make the 

best of it”. There is only one way to do this: smartly collect and integrate data. 

This will be discussed further in the next Section. 

 

Accounting for heterogeneity in fully distributed models affects both model parameters 

and model processes: the model parameters, because those exhibit the heterogeneity, 

and the model processes, because their descriptions might need adjustment to account 

for different regimes brought about by the heterogeneity. Managing heterogeneity, in the 

sense of minimizing uncertainties, is typically effectuated through the model parameters 

only, as, at the stage of a groundwater model study, there seems to be little a 

groundwater modeler can do to reduce the uncertainties stemming from the process 

descriptions. 

As coping with heterogeneity affects both the formulations of processes and the 

parameterization of the system, improving stochastic groundwater flow and solute 
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transport modeling capabilities can be targeted at both forward and inverse modeling 

approaches. Forward modeling deals with the processes: given a system’s parameters 

(conductivities, boundary conditions, dispersivities, reaction and distribution constants, 

etc.), how can the evolvement of the system’s states (heads, fluxes, concentrations, 

temperatures, age distributions etc.) be mathematically described best? Inverse 

modeling, on the other hand, deals with the parameters: in an inverse model run, the 

system’s parameters as used in the model are adjusted such that the model reproduces 

actual observations of the system’s states. Simply put: a forward model estimates states 

based on parameters, whereas an inverse model estimates parameters based on states.  

In both forward and inverse settings, this thesis tackles major issues with respect to 

handling heterogeneity and uncertainty in different situations, and thus extends the 

ability to correctly and/or effectively deal with heterogeneity to these particular situations. 

This thesis offers three stochastic methods: one that is aimed at accounting for 

heterogeneity in process formulations (forward modeling, Chapter 2), one that increases 

possibilities with respect to managing uncertainty (by means of inverse modeling, 

Chapter 3), and one that enables a better accounting for heterogeneity in model 

parameters (inverse modeling, Chapter 4 and 5).  

Figure 1 provides a schematic summary of the above. The next Section introduces the 

main chapters while explaining how they fit into the above-sketched background. 

 

 

1.4. Outline of the Thesis 

Chapter 2: accounting for heterogeneity in the model processes 

Chapter 2 is a clear example of accounting for heterogeneity in process formulations. 

Here the process formulations describe nonlinear bioreactive transport in a 

bioremediation setting. The effect of heterogeneity of the medium’s hydraulic properties 

on this process is that local-scale dispersion gets enhanced due to preferential transport 

of the contaminant plume, increasing the presence of large concentration gradients. 

Increased local-scale dispersion leads to increased mixing of reactants, which results in 

higher reaction rates. The process of local scale dispersion (and therefore its effects) 

cannot be directly incorporated in the advection-dispersion-reaction equations resolved 
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on a typically-sized2 numerical grid, as it depends on local scale concentration gradients, 

which are not known because concentrations are only calculated on the grid scale. 

Solving the advection-dispersion-reaction equation numerically while accounting for local 

scale dispersion would require very small grid cells, to obtain these local concentration 

distributions. Such grids are computationally too demanding, and therefore methods are 

needed to somehow upscale the influence of local scale processes to the scale of 

typically-sized model cells. 

This calls for efforts to study the small-scale behavior of the transport process in detail, 

in order to establish whether and how the subscale transport processes have to be 

accounted for in the grid scale equations. In Chapter 2, an efficient computational 

method is proposed that enables this small-scale study, and the method is used to 

investigate long term behavior of the transport process. This long term (asymptotic) 

behavior provides information on the transport regime at larger scale, as a basis for 

establishing upscaling principles. 

 

 

 

 

                                                 
2
 Most groundwater remediation models operate on a grid with cell dimensions in the order of meters or tens of 

meters. 

Figure 1. Scheme of the different aspects and model disciplines (forward and 

inverse) involved in coping with heterogeneity and uncertainty in 

groundwater flow and solute transport models. In the scheme it is indicated 

which Chapters in this thesis address what aspects and model disciplines. 
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Chapter 3: managing heterogeneity 

Chapter 3 is an example of management of heterogeneity by minimizing, through smart 

data collection and integration, the inevitable uncertainty in model results.  

Measurement network design deals with the question where to perform what kind of 

data acquisition, in order to maximize the information it provides when integrated in the 

model. Chapter 3 presents a method that extends current capabilities of measurement 

network design to allow for the incorporation of an emerging class of system 

observations: travel time data. In Chapter 3, “optimal” refers to the information content of 

the network design with respect to the model predictions. In other words, observation 

type and location are chosen such that uncertainty reduction is focused on those 

parameters whose uncertainty causes most uncertainty of the model predictions. 

Automated measurement network design basically requires two things: 

1) that the effect of additional observations on the uncertainties in the model or 

model predictions can be calculated, before the observations are actually taken;  

2) a search algorithm that effectively selects a winner among all candidate networks. 

The less candidate networks actually have to be evaluated before this winner is 

found, the more effective the search algorithm. 

The first requirement effectively means that covariances between observations and 

model predictions have to be calculated. At first order (i.e.: under the presumption that 

integrating the new data into the model will not lead to large parameter adjustments), 

these covariances can be assumed valid for both the prior and the posterior model, 

which enables a priori calculation of the “worth” of a measurement campaign. In Chapter 

3, an efficient way of calculating the required covariances is proposed, and the inverse 

theory that is necessary for this calculation is extended to be able to handle travel time 

data. 

 

 

Chapter 4 and 5: accounting for heterogeneity in the model parameters 

Chapter 4 extends the applicability of inverse methods to a challenging but ubiquitous 

type of parameter distributions: multimodal distributions. Multimodal distributions arise 

when within one parameter field multiple statistical populations exist, each having 

different means and/or variances of the parameter of concern. An example is a hydraulic 
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conductivity field of a sandy medium that contains clay lenses. Model cells belonging to 

the sandy background will (at least on average) have a higher conductivity assigned to 

them then the cells that belong to the clay lenses. 

Multimodal distributions cannot be handled well by existing inverse algorithms, as will be 

explained in Chapter 4. In fact, no inverse algorithms are available that can calibrate 

multimodal parameter distributions, while preserving the geostatistical properties of the 

various statistical populations. Chapter 4 proposes a method that resolves the difficulties 

the multimodal distributions pose to the existing inverse algorithms, so that they can be 

used again. A major advantage of the method is that it allows the different statistical 

populations to change their positions during the calibration. This yields a more fair 

calibration approach, as these positions are, just like the actual parameter values within 

the populations, subject to uncertainty. This new capability thus benefits accounting for 

relevant heterogeneity in model parameters. It is clear, though, that by proposing a 

method for data integration, Chapter 4 also contributes to improved management of 

heterogeneity and uncertainty.  

The method is illustrated on a synthetic case with known reference geostatistics, using 

the representer method as inverse algorithm. The emphasis is on the conservation and 

reproduction of the reference geostatistics. 

Chapter 5 applies the method for calibration of multimodal parameter distributions, 

proposed in Chapter 4, to a real-world case. Here, the emphasis is on the difference 

between calibration results obtained with the proposed multimodal calibration method, 

and a conventional approach in which the different statistical populations are not allowed 

to change position. Moreover, the calibration of the multimodal parameter field is 

combined with co-calibration of other stochastic parameter fields. 
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2.1. Introduction 

The performance of bioremediation strategies depends via complex relationships on 

both physical and chemical system parameters [e.g., Oya and Valocchi, 1997; Keijzer et 

al., 1999]. In natural systems, these parameters generally exhibit considerable spatial 

variability, thus complicating the assessment of viability for bioremediation. In general, 

the probabilistic approach provides a systematic and natural framework for dealing with 

the uncertainties in flow and transport modeling caused by parameter variability [Zhang, 

2002], and thus stochastic methods have proved their merits also in the modeling of 

bioremediation [Ginn et al., 1995; Miralles-Wilhelm et al., 1997; Oya and Valocchi, 1998; 

Xin and Zhang, 1998; Kaluarachchi et al., 2000].  

A convenient and practically relevant description of reactive transport in heterogeneous 

porous media is based on the analysis of solute arrival time, considering the statistical 

temporal moments of the contaminant mass flux through a control plane. A major 

conceptual and computational simplification is achieved by neglecting molecular 

diffusion and local dispersion. This allows conceptualizing reactive transport to occur in 

independent one-dimensional stream tubes, which are characterized by different travel 

times to the control plane. The breakthrough averaged over the entire control plane can 

then be calculated by averaging the one-dimensional transport solutions for all arrival 

times weighted by their respective arrival time probability density. This concept is 

referred to as the stochastic-convective stream tube approach, and is illustrated in 

Figure 1a. Note that the concentration gradients are very sharp, and that the largest 

fraction of the plume interface is parallel to the stream lines. Ginn et al. [1995], and later 

also Xin and Zhang [1998] and Kaluarachchi et al. [2000], used the approach in their 

stochastic analyses of nonlinear biodegradation. 

Figure 1b, when compared with Figure 1a, illustrates the effect of pore-scale dispersion 

on the concentration distribution of an invading conservative solute. In the case of 

advective-dispersive transport (Figure 1b), the sharp concentration gradients from Figure 

1a are smoothened, mainly by transverse dispersion. The double-headed arrows in 

Figure 1 highlight some locations in which plume fingers disappear due to exchange 

between stream tubes.  

From Figure 1 it is clear that local scale dispersion induces mixing between the invading 

and receding solute. This mixing is essential for the process of bioremediation: for 
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microbial growth to occur, the electron acceptor and the contaminant have to be present 

at the same location at the same time. 

Ginn [2001] extended the stochastic-convective approach to include longitudinal local 

scale dispersion. In heterogeneous media, however, transverse local scale dispersion is 

more important than the longitudinal counterpart because it leads to an exchange 

between fast and slow stream tubes, and the finger-like shape of the solute plume can 

dramatically increase the area over which transverse dispersion acts [Cirpka et al., 

1999a; Cirpka, 2002]. Dagan and Fiori [1997] and Fiori and Dagan [1999, 2000] 

reformulated the Lagrangian theory that is underlying the stream tube approaches to 

account also for transverse local-scale dispersion. Subsequently, Fiori et al. [2002] 

generalized the stochastic-convective stream tube approach accordingly, for the 

calculation of mass fluxes of conservative and linearly sorbing solutes. The strictly 

advective particle displacement and arrival time pdf’s that are used in the infinite Peclet 

number formulation of the Lagrangian framework are replaced by the joint displacement 

pdf’s and joint arrival time pdf’s for advective and dispersive movements. For 

conservative and linearly sorbing solutes this replacement works well, since their 

Figure 1. Effects of pore-scale dispersion on the concentration distribution for 

an invading solute. (A) Strictly advective transport. (B) Advective-dispersive 

transport. Single-headed arrows: direction of flow; double-headed arrows: 

regions of distinct differences. 
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concentrations only depend on travel time and are independent of the particular 

trajectory followed. However, in the case of nonlinear biodegradation, reaction rates 

depend on local concentrations (of contaminant, oxygen and microbial mass), which are 

all random. This means that the entire chemical concentration history of the trajectory 

has to be known to compute the net reaction that has occurred. Simply averaging over 

travel times is incorrect in this case. 

Alternatively, Cirpka and Kitanidis [2000a] have developed the so-called advective-

dispersive stream tube approach, in which they parameterize the effects of transverse 

dispersion as enhanced longitudinal dispersion, keeping the stream tubes independent 

of each other and directly affecting the reaction rates. The reasoning behind this 

approach is that the net effect of transverse dispersive mass transfer between stream 

tubes cannot be distinguished from that of longitudinal dispersion within the stream 

tubes. With equivalent parameters, both types of dispersion lead to the same amount of 

mixing between the invading and the receding solutions. The latter is observable in 

Figure 1b in which the smoothed concentration distribution could be obtained by either 

longitudinal or transverse local dispersion. 

In this context, the central issue in including local scale dispersion is the choice of a 

dispersion coefficient that correctly describes the actual mixing process. It has been 

recognized in various studies [Kapoor et al., 1997; Kapoor and Kitanidis, 1998; Cirpka 

and Kitanidis, 2000a] that standard macrodispersion coefficients overestimate dispersive 

mixing, since macrodispersion and dispersive mixing occur at different scales and the 

concentrations of the reactants are negatively correlated, partially as a result of the 

reaction itself. In fact, dispersive mixing should be regarded as one of two sub-

processes of standard macrodispersion, the second one being advective spreading. To 

obtain correct reaction rates, these two sub-processes have to be separated.  

In conservative transport, mixing of the invading and receding solutions leads to 

intermediate concentrations. Hence, Cirpka and Kitanidis [2000a,b] took the widths of 

local conservative breakthrough curves (observed at a single point), which they 

interpreted as if caused by longitudinal dispersion, as a measure of solute mixing, and 

applied the thus derived longitudinal dispersion coefficients to reactive transport 

simulations within non-interacting stream tubes. In a follow-up study, Cirpka [2002] 

reasoned that, in opposite time scales, effective dispersion is conceptually equivalent to 
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dispersive mixing, and therefore he proposed to use the effective dispersion coefficient 

as the longitudinal dispersion coefficient in the one-dimensional reactive transport 

calculations. The latter author showed that the overall rates of bimolecular reactions are 

well approximated by this approach. Using the stochastic-analytical derivations of the 

effective dispersion coefficient by Dentz et al. [2000] and Fiori and Dagan [2000], this 

method avoids time-consuming numerical evaluations of local breakthrough curves. 

Vanderborght and Vereecken [2002] derived the same quantity (now called equivalent 

dispersion coefficient) using a first-order Lagrangian approximation of the travel time 

statistics of local and integrated breakthrough curves, based on the work of Dagan and 

Fiori [1997] and Fiori and Dagan [1999, 2000]. 

Together with an appropriate description of the one-dimensional bioreactive transport 

process, the advective-dispersive stream tube model enables us to predict bioreactive 

transport not only in the regime controlled by chromatographic mixing, but also when 

local dispersion becomes relevant for mixing. Furthermore, it provides an excellent 

opportunity to evaluate the errors introduced by neglecting local scale dispersion in 

bioreactive transport modeling, without having to resort to time consuming, multi-

dimensional numerical simulations. Such an assessment was called for by Berglund and 

Cvetkovic [1996], Ginn [1998], Miralles-Wilhelm et al. [1998] and Kaluarachchi et al. 

[2000]. So far, however, the advective-dispersive stream tube approach has not been 

tested for kinetic bioreactive transport, and this is the main purpose of the current study. 

In fact, this study is the first to incorporate local scale dispersion and the resulting time-

dependent dispersive mixing in a stochastic-analytical description of (nonlinear and 

kinetic) bioreactive transport in heterogeneous porous media. The evaluation of the 

influence of local scale dispersion on the bioreactive transport process, and the 

implications for upscaling this process, is the second objective of this research. 

For the description of the one-dimensional, Monod kinetic bioreactive reactive transport, 

we adopt the semi-analytical traveling wave solution of Keijzer et al. [2000]. Since this 

solution has never been implemented in a stream tube approach before, its applicability 

for this purpose will be validated separately by comparing analytical stochastic-

convective calculations with numerical simulations, as a natural step towards the 

application of the solution in the more complex advective-dispersive approach. This 

validation counts as a third (intermediate) objective of the present study. 
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2.2. Mathematical Formulation of the Semi-Analytical Model 

2.2.1. Heterogeneous Aquifer 

Consider a three-dimensional aquifer with a spatially variable hydraulic conductivity field 

K(x), assumed isotropic on the local scale, in which x(x1,x2,x3) is the vector of Cartesian 

coordinates. We characterize the seemingly erratic spatial distribution K(x), as observed 

in the field, in a geostatistical framework, assuming K(x) to be a statistically stationary, 

anisotropic random space function. We adopt the common assumption that K is 

lognormally distributed [Gelhar, 1986; Dagan, 1989]. Thus, K(x) = KGexp(Y(x)), where 

KG is the geometric mean of K and Y(x) is a multi-Gaussian random space function with 

zero mean and variance 2
Yσ . We describe the spatial statistics of the log-conductivity 

fluctuation Y(x) by an axisymmetric non-separable exponential covariance function 

[Gelhar and Axness, 1983]: 

 

)(exp)( 2 rrC YY −= σ           (1) 

 

where r2 = (r2
1 +r2

2)/I
2 + r2

3/I
2
3, and I and I3 are the integral scales in the horizontal plane 

and the vertical direction, respectively. Throughout the study, we use an anisotropy ratio 

e = I3/I of 0.2. 

We consider the variability of the porosity n negligible in comparison to the variability of 

K. We assume steady-state flow resulting from boundary conditions imposing a mean 

hydraulic gradient J oriented into the x1 direction. 

The groundwater velocity v(v1,v2,v3) is related to K, n and J via Darcy’s law, and since K 

is a random space function, so is v. Since the porosity and the mean hydraulic gradient 

J are constant, the variations in v can be fully attributed to those in K. Furthermore, the 

mean velocity is given by <v> = U = (U, 0, 0) with U = <v1>. 

 

 

2.2.2. Biodegradation Model 

We aim at describing the mass flux of a biodegradable contaminant through a control 

plane, placed normal to the mean flow direction at x1 = b1. The contaminant undergoes 

instantaneous linear sorption and nonlinear degradation described by Monod kinetics. In 

the initial state, the contaminant is present everywhere in the flow domain with a 
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constant aqueous-phase concentration which is in equilibrium with the sorbed phase. 

Biodegradation is stimulated by continuous injection of water containing an electron 

acceptor through the injection plane which is placed normally to the mean flow at x1 = a1 

= 0. The injection concentration of the electron acceptor is constant. The electron 

acceptor may undergo linear sorption at equilibrium. Water passing the injection plane is 

free of contaminant. We assume that the biomass is immobile and has a uniform initial 

concentration. The biomass can only grow if the electron acceptor and the mobile 

contaminant are simultaneously present at a particular position. Sorbed contaminant is 

assumed to be not bioavailable. Finally, we neglect biomass decay. 

These assumptions lead to the following system of advection-dispersion-reaction 

equations [Keijzer et al., 2000]: 
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subject to 

 

c = 0, g = g0, m = m0 for x1 ≥ a1 at t = 0,       (5a) 

c = c0, g = 0 for t > 0 at x1 = a1,        (5b) 

0
1
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∂

∂

x

c
, 0

1

=
∂

∂

x

g
for t > 0 at x1 = b1,        (5c) 

 

in which c, g, and m are the dissolved electron acceptor, dissolved contaminant and 

biomass concentrations (mg/L), respectively, c0, g0 and m0 are the inflow electron 

acceptor concentration (mg/L) and the initial contaminant and biomass concentrations 

(mg/L) in the domain, respectively, R is the ratio of the contaminant retardation factor 

over the electron acceptor retardation factor (R > 1 to guarantee chromatographic 

mixing), mc and mg (-) are the stoichiometric coefficients describing the ratios of 
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consumed electron acceptor and organic contaminant to assimilated biomass, µm (day-1) 

is the maximum specific growth rate of biomass, kc and kg (mg/L) are the dissolved 

electron acceptor and contaminant half saturation constants, and t is time (in days). 

Equations 2-5 fulfill the conditions for the development of a traveling wave in 

homogeneous media [Dagan, 1984; van Duijn and Knabner, 1992; Bosma and van der 

Zee, 1993]. A traveling wave exhibits a joint front of all concentrations propagating 

through the domain with constant speed and constant shape. The higher spatial 

moments (variance, skewness, and kurtosis) result from the balance that establishes 

between the front-spreading effect of local-scale dispersion and the front-sharpening 

effect of nonlinear biodegradation. Keijzer et al. [1999, 2000] derived a semi-analytical 

traveling wave solution (See Appendix A) for the model described by Eqs. 2-5. With 

numerical simulations, they showed that their solution describes the oxygen and 

contaminant fronts developing in homogeneous media rather accurately, at least after 

some relaxation time.  

In the next Section, the homogeneous traveling wave solution is combined with a 

Lagrangian analysis of particle arrival time to model bioreactive transport in 

heterogeneous formations. 

 

 

2.3. Stream Tube Approaches for Biodegradation 

2.3.1.  Stochastic-Convective Stream Tube Approach 

Starting point of the stochastic-convective stream tube approach is the Lagrangian 

representation of transport by the position of a tagged solute particle of mass ∆m by X = 

X(t) [Dagan, 1984], where X = (X1,X2,X3) describes the position of the particle in 

Cartesian coordinates, and v(t) = v(X(t)) is the Lagrangian velocity. In the absence of 

molecular diffusion and pore scale dispersion, mass is conserved along the particle 

trajectory described by X(t), and transport essentially becomes one-dimensional. 

We now consider a specific particle trajectory originating from a point a(0,a2,a3) in the 

injection plane which crosses the control plane in point b(b1,b2,b3). Along this trajectory, 

the system of partial differential equations 2-4 becomes: 
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subject to: 

 

c(τ,0) = 0, g(τ,0) = g0, m(τ,t) = m0, 

c(0,t) = c0, g(0,t) = 0,         (9) 
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in which τ is the travel time: 
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where u1 is the random deviation of the longitudinal velocity from its mean U [Dagan and 

Cvetkovic, 1996]. In the stochastic-convective framework (neglecting local scale 

dispersion), the expected contaminant mass flux through the control plane is now given 

by (see Appendix B for derivation): 

 

∫=
τ

τττ db1 );(),()( ptgnUAtQ
IP         (11) 

 

where Aip is the area of the injection plane. For the functional form of the arrival time 

probability density function (pdf) p(τ;b1) we used the inverse Gaussian distribution [Rao 

et al., 1981]. This distribution was also used in the following application of the advective-

dispersive stream tube approach. For the stochastic-convective approach, p(τ;b1) was 

parameterized using linear standard macrodispersion theory [Gelhar and Axness, 1983]. 



Stochastic Analysis of Nonlinear Biodegradation   

 24 

2.3.2.  Advective-Dispersive Stream Tube Approach 

Effectively, the advective-dispersive stream tube approach follows the same averaging 

equations as the stochastic-convective approach, but with different parameterization. As 

stated in the introduction, for a correct approximation of the reaction rates in the 

presence of local dispersion, the macrodispersion process has to be accurately 

separated in a mixing component and a strictly advective component. 

In the advective-dispersive stream tube approach, transverse dispersion (the mixing 

component) is modeled as enhanced longitudinal dispersion. Like Cirpka [2002], we 

used the longitudinal effective dispersion coefficient e

lD  of a solute plume originating 

from a point-like injection to parameterize this enhanced dispersion. e

lD  was calculated 

using the stochastic-analytical derivations of Dentz et al. [2000] and Fiori and Dagan 

[2000]. 

Thus, the amount of effective dispersion a solute particle has undergone at time τ, can 

be approximated by the time-averaged value of e

lD , e
lD (τ). The accurate reaction rates 

are now obtained by incorporating e
lD  into Eqs. 6 and 7: 
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The quantity e

lD  is conceptually equivalent to the longitudinal apparent dispersion 

coefficient of mixing Da as defined in Cirpka and Kitanidis [2000a], where it was 

calculated by means of the numerical evaluation of local breakthrough curves (see 

introduction). 

The correct amount of spreading (the strictly advective component) is achieved by 

parameterizing p(τ;b1) in Eq. 11 with the expected arrival time (b1/U) and the strictly 

advective variance of arrival times 2

1mσ , which can be approximated by the difference 

between the second central moment of the integrated breakthrough curve *
cm2  and the 

expected second central moment of breakthrough curves that is obtained locally ( cm2 ) 

[Cirpka and Kitanidis, 2000a; Cirpka, 2002]: 
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where X11 and Z11 are the longitudinal one and two particle variance of displacements, 

respectively, and *
lD is the longitudinal macrodispersion coefficient, which we evaluated 

using its first-order approximation as restated in Cirpka [2002]. 

In the calculations with both stream tube approaches, the ergodic hypothesis is 

assumed to be valid (AIP is sufficiently large relative to the transverse integral scale I3). 

 

 

2.4. Numerical Simulations 

To validate our analytical models, we performed two-dimensional numerical simulations. 

Since rectangular finite element grids are known to overestimate transverse dispersion 

by numerical diffusion and consequently also overestimate transverse mixing and 

biodegradation rates [Cirpka et al., 1999a], we used stream line-oriented grids, 

generated as described in Cirpka et al. [1999b]. It was claimed by Cirpka et al. [1999a] 

that the only transverse transport mechanism in these grids is the transverse dispersion 

imposed by the modeler and therefore numerical dispersion is restricted to the 

longitudinal direction. Our numerical method is identical to that used by Cirpka and 

Kitanidis [2000a,b], to which we refer for details. 

The grids represented 100m × 8m domains and were discretized into 1000 × 200 

elements, resulting in average element dimensions of 0.1m × 0.04m, or 0.1I × 0.2I3. By 

defining constant heads at the left and right boundaries of the domain, a mean hydraulic 

gradient J = (0.2,0,0) was imposed. A mean flow velocity U = 0.1 m/day was imposed by 

taking KG = 0.2 m/day.  

Simulations were performed for three degrees of heterogeneity: 2

Yσ = 0, 2

Yσ = 0.1, and 

2

Yσ =1.0. The latter case represents a reasonable upper limit estimation for 2

Yσ  for which 

the applied linear theory can still be assumed valid. This limit, however, has not been 

fully explored here or in previous work.  

Since ergodic conditions are not met within a single realization of the domain, we 

performed Monte Carlo analyses, averaging breakthrough curves over 5 realizations for 

2

Yσ = 0.1 and 25 realizations for 2

Yσ =1.0. These numbers of realizations appeared to be 
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sufficient to achieve convergence of the results. This series of calculations was 

performed two times: once for the purely convective case, setting the isotropic 

dispersivity (αL = αT) at 0m, and once for the advective-dispersive case, setting αL = αT = 

5·10-3 m. In all simulations, the parameter values of the base case (Table 1) were used. 

Additionally, the numerical calculations with 2

Yσ = 0.1 were repeated for a more distant 

control plane (at 300 m, the numerical grids were extended accordingly using the same 

discretization as described above) and for three different values of the isotropic 

dispersivity (αL = αT = 5·10-2 m, 5·10-3 m, and 5·10-4 m).  

 

 

2.5. Results and Discussion 

2.5.1. Introduction 

We avoid a discussion on effective hydraulic conductivities as we normalize the time 

axes of the numerical breakthrough curves with the ratio of the theoretical average 

conservative breakthrough time (b1/U) over the observed average breakthrough time 

from numerical tracer experiments <BTnum>. Furthermore, to facilitate comparisons 

Biodegradation 

parameters 

Flow and transport 

parameters 

µm                 0.05 day
-1 

J1                      0.2 m/m 

mc                1.0 mg/mg U                  0.1  m/day 

mg               5.0 mg/mg R                              3.0 

kc                   1.0 mg/L αL = αT (SC)         0.0 m        

kg                   2.0 mg/L αL = αT (AD)       5·10
-2

,   

5·10
-3

 or 5·10
-4

 m  

Initial concentrations Soil parameters 

c0                10.0 mg/L n                              0.4 

g0                  5.0 mg/L KG                     0.2 m/day 

m0              0.427 mg/L I                           1.0 m 

 I3                          0.2 m    

 

Table 1. Parameter values for the base case. SC = stochastic-convective 

transport. AD = advective-dispersive transport 
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between the semi-analytical model and numerical simulation, we scale the time axes to 

a dimensionless quantity with the relative celerity α of the traveling wave in comparison 

to the mean seepage velocity U and the integral scale I: 
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in which the relative celerity α of the traveling wave is given by Keijzer et al. [2000]: 
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For analytical breakthrough curves, naturally, the normalization term (b1/U)/<BTnum> 

occurring in Eq. 15 is omitted. For conservative breakthrough curves, the normalization 

term α is omitted. 

The expected mass fluxes are also scaled to a dimensionless form, using 
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where 0Q  = nUAIP is the mean fluid discharge through the injection plane. 

The first moment M1, second central moment c
M 2 , skewness γ and kurtosis κ of the 

breakthrough curves are calculated as follows: 
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For comparison, it may be noted that the second central moment c
M 2 , skewness γ, and 

kurtosis κ of the traveling wave solution for a homogeneous aquifer are constant 

because the wave does not change its shape when traveling through the domain. By 

contrast, the temporal moments for one-dimensional, Fickian, conservative transport are: 
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2.5.2. Coupled Effects of Nonlinear Biodegradation and Heterogeneity 

Strictly speaking, the semi-analytical expression of Keijzer et al. [2000] does not apply 

for conditions with zero local scale dispersion. Figure 2, however, shows that the 

simulated breakthrough curve of the contaminant in a homogeneous system is 

insensitive to a further decrease of the longitudinal dispersivity αL if the value is smaller 

than 0.005m. In this regime, there is still a balance between front spreading and 

sharpening, but the front shape is almost completely determined by nonlinear 

biodegradation. Therefore, we evaluate the one-dimensional semi-analytical solution for 

g(τ,t) of Keijzer et al. [2000] with αL = 0.005m and consider it as an approximate solution 

of Eqs. 6-9 for zero local scale dispersion. 

Figure 3a shows a comparison of dimensionless breakthrough curves of the 

Figure 2. Homogeneous breakthrough curves for different values of αL, 

calculated with the analytical traveling-wave solution of Eqs. 2-5 using the 

base-case parameters. 
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contaminant based on the analytical stochastic-convective model and on numerical 

simulations with zero dispersion (αL = αT = 0m). Evidently, the analytical model grasps 

the controlling transport processes embedded in Eqs. 6-9 excellently, since the match 

between analytical and numerical results is almost perfect. This justifies using our 

analytical model for stochastic-convective analyses. 

In Figure 3b, the reactive breakthrough curves are compared to the breakthrough curves 

of a conservative solute. This figure translates results previously obtained for nonlinear 

sorption (e.g. Berglund and Cvetkovic [1996]) to the present context of nonlinear 

biodegradation. In particular, the result for 2

Yσ  = 0 reveals that the bioreactive 

breakthrough curve is more spread than the conservative curve, which shows plug flow 

behavior. Moreover, the reactive breakthrough curve increasingly resembles the 

conservative breakthrough curve for increasing degree of heterogeneity. This implies 

that, as heterogeneity increases, the pdf of arrival time starts to dictate the contaminant 

mass arrival rather than the actual shape of the traveling wave front, which is 

determined by nonlinear biodegradation. 

 

Figure 3. (a) Comparison of results from the analytical stochastic-convective 

model with results from numerical simulations using the base case 

parameters. (b) Comparison of reactive breakthrough curves with 

conservative breakthrough curves, both calculated analytically. 
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2.5.3. Effect of Local scale Dispersion 

2.5.3.1. Validation of the Advective-Dispersive Stream Tube Approach 

Figure 4a shows the contaminant breakthrough curves, obtained both analytically (with 

the advective-dispersive stream tube approach) and numerically, for the base case 

incorporating local-scale dispersion (αL = αT = 0.005m). Figure 4b gives the development 

Figure 4. (a) Comparison of results from the analytical advective-dispersive 

model with results from numerical simulations using the base case 

parameters. (b) Development of the macrodispersion coefficient ( mac
lD ) and 

the effective dispersion coefficient ( e
lD ) for a conservative solute when 

transported from the injection plane to the control plane, calculated using the 

base case parameters (where applicable). (c and d) Comparison of analytical 

results with numerical results ( 2
Yσ  = 0.1) for a more distant control plane (300 

m) and for three different Pe values. For completeness, the stochastic-

convective result (SC) is also shown. 
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of the macro- and effective dispersion coefficient as a function of time, and shows that in 

the base case the control plane is located far enough from the injection plane for local 

dispersive mixing to become important. In fact, by the time needed for a conservative 

solute to reach the control plane, the time-averaged effective dispersivity has reached 

76% of the time-averaged macrodispersivity for both the 2

Yσ  = 0.1 as the 2

Yσ  = 1.0 case. 

From Figure 4a it is clear that, in the displayed examples, the analytical model correctly 

incorporates the influence of this mixing on the transport process. 

Figures 4c and 4d gives additional comparisons between numerical and analytical 

results, now for a more distant control plane (300 m) and for three different values of the 

inverse dimensionless transverse dispersivity (= Pe = I3/αT = 4, 40 and 400) (these 

calculations were carried out only for the 2
Yσ  = 0.1 case, because the time needed to 

perform a sufficient number of numerical Monte Carlo runs for the 2

Yσ  = 1.0 case is 

excessive). Again we observe a good agreement between the numerical and analytical 

results, and the comparisons constitute additional confirmation that the advective-

dispersive stream tube model is applicable to bioreactive transport. Using the analytical 

model to analyze the effect of local scale dispersion in more detail is therefore justified. 

 

 

2.5.3.2. Nonlinear bioreactive transport versus conservative and linear sorptive transport 

Berglund [1997], Dagan and Fiori [1997], Andricevic and Cvetkovic [1998], Fiori and 

Dagan [2000] and Fiori et al. [2002] have proved or stated that, for conservative and 

linear sorptive transport, transverse local scale dispersion only has a limited influence on 

the expected value of concentrations and fluxes, and primarily affects the concentration 

variance and the flux variance. Indeed, Figure 5b, showing for 2

Yσ  = 0.1 and for three 

different Pe values (Pe = 4, 40 and 400) the development of the cross-sectional 

integrated second central moment of the breakthrough curves as a function of the 

distance between injection and control plane for the conservative equivalent of our base 

case scenario, illustrates that even for Pe = 40 (which is relatively low as Pe is generally 

assumed to be larger than 100 in practical groundwater applications), transverse 

dispersion hardly affects the expected breakthrough. In practical applications, 

disregarding pore scale dispersion altogether for nonreactive or linear sorptive transport 

is therefore usually justified when the focus is on expected values [Fiori and Dagan, 
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2000]. However, from Figure 5a, showing the development of the second central 

moment of the reactive breakthrough curves, it is clear that in our bioreactive context 

transverse dispersion significantly affects the expected breakthrough even for the largest 

value of Pe we investigated (Pe = 400). We can understand the different behavior of 

nonlinearly biodegradable contaminants compared with conservative or linearly sorbing 

Figure 5. Development of the bioreactive (a) and conservative (b) second 

central moment of the expected contaminant breakthrough curves in the 

stochastic-convective (SC, no dispersion!) and the advective-dispersive 

stream tube (finite Pe numbers) model as a function of the distance between 

injection and observation plane. (c) Comparison of the effect of increasing 

longitudinal dispersion on the bioreactive and conservative second central 

moments of the homogeneous ( 2
Yσ  = 0.0) breakthrough curves (CP at 100 m). 

The conservative moments were calculated using Eq. 20. The value of the 

non-zero reactive second central moment for αL = 0 depends on the 

biochemical parameters used [Oya and Valocchi, 1997; Keijzer et al., 1999]. 
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solutes by considering again Figure 4b. The (conservative) macrodispersion coefficient 

quickly reaches its asymptotic level, which results in a linear increase with distance (or 

time) of the second central moment of the integrated breakthrough curve ( *
cm2 ) of a 

conservative solute. We observed this behavior in Figure 5b. The effective dispersion 

coefficient, however, only gradually catches up with the macrodispersion coefficient 

(and, as we will see later, never completely reaches it). This causes the second central 

moments of the conservative local breakthrough curves ( cm2 ) to increase exponentially 

with distance (or time) throughout the simulation. Since =− cc mm 22
* 2

1mσ  [Cirpka and 

Kitanidis, 2000a], strictly advective spreading slows down with distance. In fact, in 2-D, 

the large-distance value of 2

1mσ , scales with the square-root of x [Dentz et al., 2000; Fiori 

and Dagan, 2000]. In case of conservative or linear sorptive transport, the retarded 

advective spreading is almost completely compensated by the accelerated spreading of 

the local (intra-stream tube) fronts for realistic Peclet values. In our case of nonlinear 

biodegradation, however, the spreading of the intra-stream tube fronts is 

counterbalanced by the (front-sharpening) reaction. Indeed, Figure 5c, comparing the 

one-dimensional second central moments of reactive and conservative breakthrough 

curves for a range of longitudinal dispersivity values, illustrates that the reactive intra-

stream tube breakthrough curves are relatively insensitive to enhanced longitudinal 

dispersion when compared with the conservative case. Thus, the retarded advective 

spreading is only partially compensated, resulting in a concave development of the 

second central moments of the reactive breakthrough curves (see Figure 5a). 

The concave shape of the reactive breakthrough curves observed for all finite Pe 

numbers causes the error in predicting the breakthrough by neglecting transverse 

dispersion to increases with time. Thus, although reaction rates will be dominated by 

chromatographic effects in the large-time domain [Oya and Valocchi, 1998; Cirpka et al., 

1999a], enlarging the domain does not attenuate the difference between the advective-

dispersive and stochastic-convective results, as was hypothesized in earlier publications 

(e.g. Cirpka et al. [1999a] and Cirpka and Kitanidis [2000a]). 
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2.5.3.3. Nonlinear bioreactive asymptotic behavior versus Fickian and traveling wave 

behavior 

A closer look at Figure 5a reveals that the second central moment does not reach a 

constant value in any case, which means that, as opposed to the homogeneous case, 

no traveling waves develop in the heterogeneous case. We can understand this by 

analyzing Eq. 11, which states that the flux-averaged concentration is a convolution of 

the traveling wave solution with the pdf of advective arrival times p(τ;b1). The second 

and higher central moments of a convolution integral, such as the one in Eq. 11, equals 

the sum of the central moments of the convoluted functions. Hence, the second central 

moment of the substrate-breakthrough curve, equals the constant value of the traveling 

wave plus the value of 2

1mσ , which is used to parameterize p(τ;b1). As stated before, 2

1mσ  

does not approach an asymptotic value, but its large-distance value scales with the 

square-root of x. This implies that assuming the difference between the macro- and 

effective dispersion coefficient (a measure of advective spreading) to become irrelevant 

at large time [Kapoor et al., 1997; Kapoor and Kitanidis, 1998; Miralles-Wilhelm et al., 

1998] is not justified for our case. Biodegradation models that are based on this 

assumption [Miralles-Wilhelm et al., 1997; Oya and Valocchi, 1998]) may therefore not 

apply either: only in extreme (and unrealistic) cases (for example, for Pe = 4 the second 

central moment can be argued to reach a practically constant value), they may be a 

valid approximation, applicable in breakthrough predictions. 

Just like it is erroneous to assume that nonlinear effects will start to dominate in the 

large time regime (leading to traveling wave behavior), it is also incorrect to assume that 

the heterogeneity effects will control the transport process, as is shown in Figure 6. In 

this figure, the development of the higher order moments (skewness and kurtosis) of the 

bioreactive breakthrough curve are compared with the moments of breakthrough curves 

assuming Fickian behavior (indicated by grey lines). In Section 2.5.2 it was shown that if 

the nonlinear effects of biodegradation can be neglected (which leads to Fickian 

behavior), dimensionless reactive breakthrough curves equal dimensionless 

conservative breakthrough curves. Therefore, dimensionless reactive Fickian behavior 

follows Eq. 20, taking for D the time-averaged macrodispersion coefficient. This Fickian 

behavior was calculated for the extreme cases of extensive mixing (Pe = 4) and no 

mixing (SC). Again it shows that the moments of the nonlinear bioreactive breakthrough 
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curves are much more affected by mixing than the Fickian breakthrough curves. 

Moreover, comparison of the Fickian behavior with our advective-dispersive results 

reveals that none of the advective-dispersive cases approximate Fickian behavior within 

Figure 6. Development of skewness (a and b, for the 2
Yσ  = 0.1 and 1.0 case, 

respectively) and kurtosis (c and d, for the 2
Yσ  = 0.1 and 1.0 case, 

respectively) of the expected contaminant breakthrough curves in the 

stochastic-convective (SC), advective-dispersive stream tube (finite Pe 

numbers) and Fickian model as a function of the distance between injection 

and observation plane. In (a) and (c), the curves for Fickian, Pe = 40 and 400, 

coincide approximately with the “Fickian, SC” curve and were therefore 

omitted to keep the figures clear. In (b) and (d), the curves for Fickian, SC, Pe 

= 40 and Pe = 400 all coincide approximately with the “SC” curve and were 

therefore omitted also. 
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relevant distances, which means that all cases are significantly influenced by the 

nonlinear effects. 

 

 

2.5.3.4. The role of the relative retardation factor 

It has been hypothesized in the literature (e.g. Oya and Valocchi [1998] and Cirpka and 

Kitanidis [2000a]) that, if the retardation difference between the reacting species is large 

enough, the stochastic-convective model is applicable, because chromatographic mixing 

would dominate over dispersive mixing in determining the reaction rates [Oya and 

Valocchi, 1998]. In Figure 7, we investigate this hypothesis in more detail. We consider a 

travel distance of 100m, and compute the second central moments of the integrated 

breakthrough curves ( c
M 2 ) for increasing values of the retardation factor R, while 

keeping the total amount of the contaminant in the system constant by decreasing g0 

with the same factor R is increased with. We will call this simultaneous variation of R and 

g0 a variation in R*. In Figs. 7a and 7b, 2

Yσ  is 0.01, whereas in Figs. 7c and 7d, it is 1.0. 

Figs. 7a and 7c show dimensionless c
M 2  (scaled with (IUα)2) as a function of R*, 

whereas Figs. 7b and 7d show dimensional c
M 2 .  

In the low variance case (Fig. 7a), front shapes are dominated by the shape of the one-

dimensional traveling wave, which shows a dramatic and monotonic increase with R* 

(see the grey line in Fig. 7a) that can be explained by the decreasing contaminant 

concentration in the aqueous phase (g0), inducing a smaller microbial growth rate. In 

fact, the influence of g0 on the traveling wave’s c
M 2  is so large that even in the high 

variance case (Fig. 7c), R* still affects the shape of the integrated breakthrough curve. In 

the low variance case, effects of local scale dispersion are small because of limited 

plume fingering. Therefore, the (constant) difference between the dimensionless 

stochastic-convective and advective-dispersive results is small and, by virtue of the 

increasing value of c
M 2  with R*, even becomes insignificant for larger R*. To calculate 

the dimensional error induced by neglecting local scale dispersion, this constant 

difference has to be divided by (IUα)2 (Fig. 7b). It should be noted that increasing R* 

yields an asymptotic minimum for α (see Eq. 16) and therefore an asymptotic maximum 

for the dimensional error. So, also in the dimensional setting the error becomes relatively 

insignificant with increasing R*. 
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In the high variance case and in a dimensionless setting (Fig. 7c), the difference 

between the stochastic-convective and the advective-dispersive formulation is almost 

fully determined by the different p(τ;b1) used in both approaches (see the discussion of 

Figure 5). In contrast to the low variance case, the difference (the error) is now 

considerable, and in the dimensional setting (Fig. 7d) the asymptotic value of the error 

Figure 7. Dimensionless and dimensional (d = days) second central moments 

of the breakthrough curves as a function of R*, as calculated with the 

stochastic-convective model (SC) and the advective-dispersive model (AD), 

for three degrees of heterogeneity: 2
Yσ  = 0.0 (see (a), curve “Homogeneous”), 

2
Yσ = 0.01 (see (a) for dimensionless and (b) for dimensional BTC’s) and 

2
Yσ = 1.0 (see (c) for dimensionless and (d) for dimensional BTC’s). The 

difference between the second central moments as calculated by SC and AD 

is also shown (SC-AD). 

* * 

* * 
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remains to be significant compared to the absolute value of the correct second central 

moments (as given by the “AD” curve). 

Fig. 7 was calculated for a relatively low Peclet value (Pe= 40), and the effects of local 

scale dispersion displayed in this figure are therefore magnified. Figure 4a, however, 

already showed that also for Pe = 400 the effect of local scale dispersion on the mean 

contaminant flux is considerable, especially in the large-time, large-displacement regime. 

Having learned from Figure 7 that the absolute error induced by neglecting local scale 

dispersion hardly changes with increasing R*, we can conclude that even for a range of 

realistic Peclet values, the intensified chromatographic mixing that results from 

increasing R* still does not allow neglecting the contribution of dispersive mixing to the 

total mixing process, and application of the stochastic-convective stream tube approach 

is not warranted.  

 

 

2.6. Conclusions 

The semi-analytical one-dimensional traveling wave solution for nonlinear 

biodegradation of Keijzer et al. [2000] provides an accurate and efficient way for the 

calculation of the concentration profiles along the stream tubes in the stochastic-

convective and advective-dispersive stream tube approaches. 

We showed that the advective-dispersive stream tube approach developed by Cirpka 

and Kitanidis [2000a] is applicable to bioreactive transport. The analyses conducted with 

this model revealed that for nonlinear bioreactive transport, in contrast to conservative 

and linearly sorbing solutes, the shape of the integrated breakthrough curves are 

significantly affected by local scale dispersion, even for realistic Peclet values. The error 

induced by neglecting local scale dispersion (as is done in the stochastic-convective 

approach) was shown to increase with increasing time. Also, even for very high 

retardation differences between contaminant and electron acceptor, significant 

discrepancies were observed between results obtained with the stochastic-convective 

and the advective-dispersive model. Both observations indicate that, although reaction 

rates may be dominated by chromatographic mixing for larger time and larger R, the 

dispersive mixing process remains important for the prediction of contaminant transport 

in heterogeneous porous media. So, the advective-dispersive transport process can 
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generally not be approximated with a stochastic-convective stream tube approach, even 

in large-time, large-domain problems or in cases with large retardation differences 

between the reactants. 

The results of the stochastic analysis with the advective-dispersive stream tube model 

also revealed that in the typical parameter range of 2

Yσ  and αT, and at typical travel 

distances, the macroscopic displacement behavior neither may be parameterized by an 

equivalent homogeneous medium (in which a traveling wave would develop), nor is it 

Fickian. In theory, this Chapter revealed that traveling wave behavior (dominated by 

local nonlinearity) and Fickian behavior (dominated by heterogeneity) are limiting cases 

for nonlinear transport. This implies that describing macroscopic transport with a 

convection-dispersion equation that is adjusted with nonlinear interaction terms (as is 

done in many scientific and commercial codes) might be erroneous. For parameter 

ranges in the transition between nonlinear and heterogeneity dominance cases, it is not 

obvious how the macroscopic governing equations should read instead. 

 

 

Notation 

a  vector of Cartesian coordinates at the injection plane 

ai  xi coordinate at the injection plane 

AIP  area of the injection plane 

b  vector of Cartesian coordinates at the control plane 

bi  xi coordinate at the control plane 

BTnum  observed breakthrough time from numerical experiments  

c  dissolved electron acceptor concentration 

c0  inflow electron acceptor concentration 

CY  spatial covariance of Y 

D  dispersion tensor 

D  dispersion coefficient 

*
lD   longitudinal macrodispersion coefficient 

e
lD   longitudinal effective dispersion coefficient 

e
lD   time-averaged effective dispersion coefficient 

e  anisotropy ratio (= I3/I) 
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g  dissolved contaminant concentration 

g0  initial dissolved contaminant concentration 

I,I3  integral scale in the horizontal and vertical direction, respectively 

J  hydraulic gradient tensor 

kc  dissolved electron acceptor half saturation constant 

kg  dissolved contaminant half saturation constant 

K  hydraulic conductivity 

KG  geometric mean of K 

m  biomass concentration 

mc  ratio of electron acceptor consumption to biomass assimilation 

mg  ratio of contaminant consumption to biomass assimilation 

m0  initial biomass concentration 

m2c  second central moment of a local breakthrough curve (conservative) 

*
2cm   second central moment of the integrated breakthrough curve   

  (conservative) 

M1  first moment of the contaminant breakthrough curve 

c
M 2   second central moment of the contaminant breakthrough curve 

n  porosity 

p  arrival time probability density function 

Pe   Peclet number (= I3/αT)   

Q  contaminant mass flux through the control plane 

Q'  scaled contaminant mass flux through the control plane 

0Q    mean fluid discharge through the injection plane 

R  relative retardation factor  

r  lag distance 

R*  indicates that R is varied with the total amount of contaminant kept   

  constant  

t  time 

t'  dimensionless time 

U  mean groundwater velocity vector 

U  mean velocity in the horizontal direction (= <v1>) 

v  groundwater velocity tensor 
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vi  groundwater velocity in the direction i 

x  vector of Cartesian coordinates 

xi  spatial coordinate along the direction i 

X  position of a solute particle 

X11  longitudinal one particle variance of displacement 

Y  natural logarithm of K 

Z11  longitudinal two particles variance of displacement 

α   relative celerity of the traveling wave 

αL  longitudinal dispersivity 

αT  transversal dispersivity 

γ  skewness of the contaminant breakthrough curve 

κ  kurtosis of the contaminant breakthrough curve  

µm  maximum specific growth rate of biomass 

2
1mσ   strictly advective variance of arrival times 

2
Yσ   variance of Y 

τ  travel time 

 

 

Appendix A Semi-analytical Traveling Wave Solution 

Keijzer et al. [2000] derived semi-analytical solutions that describe the distribution of the 

contaminant and electron acceptor concentration and the microbial mass. To determine 

these distributions, they transformed the system of equations (2-4) subject to Eq. 5 into 

a nonlinear second order ordinary differential equation (ODE) system, using two newly 

defined functions of c, i.e. u and w: 

 

,)(
τ∂

∂
−=

c
cu  

τ∂

∂
=

g
cw )( .         (A1) 

 

The nonlinear second order ODE system is solved using an iterative procedure. In each 

iteration step, u and w are determined by Newton’s method. After the iteration, the 

function u is integrated numerically from a reference point with a designated chosen c. 
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Therefore, the solutions are unique up to a constant translate which is determined by 

mass balance considerations. 

 

 

Appendix B Stochastic-Convective Stream Tube Approach 

For ease of reference, the stochastic-convective stream tube formulation that leads to 

Eq. 11 is repeated here. Consider again a specific particle trajectory originating from a 

point a(0,a2,a3) in the injection plane which crosses the control plane in point b(b1,b2,b3). 

The mass-flux density qsl(t,b1) through the control plane at this specific stream line is 

given by: 

  

qsl(τ,t,b1) = n(U+u1(b1))g(τ,t)        (B1) 

 

where n is the effective porosity. It follows that the contaminant mass flux qst in a stream 

tube originating from an elementary area dAIP (= da2da3) in the injection plane and 

crossing the control plane through an elementary area dACP (= db2db3), is:  

 

=+= ∫ bdb1

d

1 ),())((),( tguUntq
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st ττ ∫ +
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tguUn

d

11 da a),())(( τ     (B2) 

 

in which the second equality follows from the Eulerian fluid continuity equation [Dagan 

and Cvetkovic, 1996]. For the contaminant mass flux Q(t), integrated over the entire 

control plane, we arrive at: 

 

∫ +=
IPA

tguUntQ ada11 ),())((),( ττ ,        (B3) 

 

in which AIP is the area of the injection plane. In Eq. B3, both u1 and τ are random 

variables, implying that for the calculation of the expected contaminant mass flux <Q(t)> 

their joint probability density function f(τ,U+ u1;b1) is required: 
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In Eq. B4, the dependency on a is dropped since in a statistically stationary velocity field 

with mean flow normal to the injection and control planes, the travel time distribution only 

depends on the distance b1-a1 = b1 [Dagan et al., 1992]. Further simplification can be 

achieved by assuming that g is independent of u1, which allows us to replace the joint 

pdf by the velocity-weighted marginal pdf or travel time p(τ;b1) [Dagan and Cvetkovic, 

1996; Berglund, 1997]:  
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3.1. Introduction 

Measurement network design or data worth analysis, whether done manually or using 

more or less sophisticated mathematical guidelines, is an inherent part of any soil and 

groundwater investigation, as it naturally evolves from the measurement campaign's 

purpose: obtaining the necessary information given the limited resources. Accordingly, 

this field of research receives constant attention in the literature. Nowadays, the 

literature offers a wide range of design strategies for a large number of applications, 

which roughly can be divided into five categories: 1) maximizing the likelihood of plume 

detection [Massman and Freeze, 1987a, b; Meyer and Brill, 1988; Meyer et al., 1994; 

Storck et al., 1997]; 2) minimizing the uncertainty in groundwater quality [Loaiciga, 1989; 

Herrera et al., 2000; Nunes et al., 2004; Wu et al., 2005]; 3) model calibration for 

minimizing the uncertainty in model predictions [McKinney and Loucks, 1992; Wagner, 

1995; Tiedeman et al., 2003; Tiedeman et al., 2004]; 4) optimizing groundwater and 

remediation management [James and Gorelick, 1994; Wagner, 1999; Feyen and 

Gorelick, 2005]; 5) model calibration for minimizing model parameter uncertainty 

[Hughes and Lettenmaier, 1981; Bogardi et al., 1985; Knopman and Voss, 1989; 

Knopman et al., 1991; Sumner et al., 1997; Pardo-Iguzquiza, 1998; Chang et al., 2005]. 

The last application hardly ever is a purpose on its own but is usually conducted in order 

to improve model prediction reliability, which in turn can potentially lead to the design of 

groundwater and remediation management strategies that are more cost-effective 

[James and Gorelick, 1994; Wagner, 1999; Feyen and Gorelick, 2005]. 

The design strategies reported in the literature generally seek the optimal placement 

and/or sampling times for measurements of heads, concentrations, parameters, or a 

combination of these three. In the past two decades, however, travel time 

determinations have found increasing application as another type of information with 

which flow models can be constrained. By travel time determinations we mean both 

groundwater age estimations and tracer arrival time measurements. Groundwater ages 

can be derived from concentrations of environmental tracers, such as 3H/3He (e.g. 

Smethie Jr et al. [1992]), 85Kr (e.g. Solomon et al. [1992]), chlorofluorocarbons (e.g. 

[Dunkle et al., 1993]), or a combination of them (e.g. Ekwurzel et al. [1994], Reilly et al. 

[1994] and Szabo et al. [1996]). By tracer arrival times we mean the advective (mean) 

arrival times that are obtained in field experiments using conservative tracers (e.g. 
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Anderman and Hill [2001]). When accurate, travel time determinations can be more 

informative than head and conductivity measurements, as the sensitivity of heads to 

parameters is usually limited and the spatial correlation range between travel time and 

conductivity is often larger than the correlation range of the conductivity itself [Harvey 

and Gorelick, 1995; Sheets et al., 1998; Stute and Schlosser, 2000]. 

Manual calibration of flow models using tracer derived groundwater ages has been 

performed by, for example, Reilly et al. [1994], Sheets et al., [1998] and Izbicki et al. 

[2004]. Systematic, mathematical approaches to parameter inference from age data or 

data on tracer arrival time are given by Harvey and Gorelick [1995], Portniaguine and 

Solomon [1998], Woodbury and Rubin, [2000], Cirpka and Kitanidis [2001], and Feyen et 

al. [2003]. However, travel time determinations have never been incorporated in the 

design of optimal measurement strategies. The purpose of the present study is therefore 

to propose an algorithm that optimally configures measurement networks including age 

or tracer arrival time determinations.  

We will focus our network design on minimizing contaminant breakthrough prediction 

uncertainty, thus making a contribution to the 3rd network design application category 

mentioned above. Aiming a measurement campaign at reducing prediction uncertainty 

makes sense, as "it is rarely feasible to improve the representation of all aspects of a 

simulated system. Thus it is of interest to identify the particular attributes of a flow 

system that are most important to the relevant predictions, and to focus field 

characterization on these attributes" [Tiedeman et al., 2003]. Yet, this category has 

received little attention in the literature. If we narrow down our search further to those 

studies that take correlations between measurements into account, then the state-of-the-

art is typified by the contributions of Wagner [1995], Tiedeman et al. [2003], Tiedeman et 

al. [2004] and Hendricks-Franssen and Stauffer [2005]. The first three of these 

contributions all used the first-order linear statistical inference method [Dettinger and 

Wilson, 1981] to infer the prediction covariance matrix from sensitivity matrices and the 

posterior parameter covariance matrix. They recalculated the posterior parameter 

covariance matrix in every network evaluation that is performed, which in their 

approaches requires repeated inversion of a squared estimation Jacobian, i.e. the matrix 

of state measurement sensitivities. This can become computationally demanding if the 

number of unknown parameters is large, for example in case of a highly discretized 
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hydraulic conductivity field. Hendricks Franssen and Stauffer [2005] circumvented the 

recalculation of the parameter covariance matrix for every design by explicitly calculating 

the (cross-)covariances between parameters and states using a Monte Carlo approach 

and solving a cokriging system to determine the variance reduction for every candidate 

network. 

Here, we will use an adjusted version of the representer-based inverse method [Valstar, 

2001; Valstar et al., 2004], a Bayesian algorithm which can efficiently calculate the 

linearized covariances between measurements and predictions, and between the 

measurements themselves. This circumvents time-consuming Monte Carlo analyses. On 

the basis of the thus approximated covariances, the posterior covariances of the states 

and predictions can be estimated for every possible measurement set, without having to 

recalculate the posterior parameter covariance matrix. 

The purpose of the proposed method is to provide insight in where in the flow field travel 

time information would be most valuable for the reduction of prediction uncertainty. A 

presupposition of the proposed method is that the travel times can be derived with a 

reasonable and quantifiable reliability from field measurements. As will be discussed in 

Section 3.5, for groundwater age this is a very challenging issue in itself, but how to do 

that is out of the scope of this chapter. 

In the next Section, we will discuss the concepts and the mathematical development of 

our first-order design method. The method will be illustrated with a numerical, synthetic 

example, the details and results of which are given in Section 3.3 and 3.4, respectively. 

Conclusions and a discussion on some aspects of the method follow in Section 3.5. 

 

 

3.2. Theory 

As we feel that the method is better explained by focusing it directly on a tangible 

illustrative example, first a hypothetical problem statement is introduced. Subsequently, 

an outline of the first-order design method is given, followed by a presentation on how 

we arrive at the necessary prior and posterior covariances in the applied Bayesian 

framework. 
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3.2.1.  Problem Statement 

The illustrative example with which the design method will be explained is schematized 

in Figure 1. It represents a two-dimensional cross-section of a confining layer (y2-y3) that 

protects Aquifer 2 (y3-y4) from a conservative contaminant released out of a source zone 

(x7-x8) at the top of Aquifer 1 (y1-y2). The control plane at which breakthrough is 

evaluated is located at y3 along the bottom of the area of interest (x6-x9, y2-y3). 

All parameters and dimensions in the example problem are assumed constant and 

known, except for the hydraulic conductivity (K) in the shaded center part (x5-x10,y2-y3) of 

the confining layer, the natural logarithm of which is assumed to be Gaussian distributed 

with known mean and variogram functions. A full description of the system’s quantitative 

properties will follow in Section 3.3 where the system visualized in Figure 1 is used in the 

example calculations. 

Figure 1. Schematic overview of the numerical grid used in the calculations, 

showing the prior contaminant flow (in dark grey). RCH = recharge. CHB = 

constant head boundary. x0 = 0m, x1 = 2.0m, x2 = 2502.0m, x3 =  2752.0m, x4 

= 2777.0m, x5 = 2779.5m, x6 = 2879.5m, x7 = 3009.5m, x8 = 3109.5m, x9 = 

3159.5m, x10 = 3259.5m, x11 = 3262.0m, x12 = 3287.0m, x13 = 3537.0m, x14 = 

6037.0m, x15 = 6039.0m. y1 = 0m, y2 = -2.0m, y3 = -22.0m, y4 = -32.0m. Bold 

lines indicate no-flow boundaries. Potential measurement locations labeled 

UR, UL, LR, LL and CNTR are the locations where the head variances are 

evaluated in Figure 4. Arrows indicate flow directions. 
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A steady-state head distribution is obtained by assigning recharge on top of Aquifer 1 

and by imposing constant head boundaries in Aquifer 2. Except for the upper boundary 

and the left and right boundaries of Aquifer 2, all boundaries are closed. For illustration, 

Figure 1 also shows the contaminant plume that spreads from the contaminant source 

zone when the confining layer is modeled as a homogeneous medium with K set to its 

geometric mean (see Section 3.3) and the boundary conditions are imposed as in the 

computational examples (Section 3.3). 

The question underlying the theoretical development given in the remainder of this 

Section is how to optimally choose between age, head and conductivity measurements 

and how to optimally distribute them over the potential sampling locations, indicated by 

the stars in Figure 1. 

 

 

3.2.2. Outline of the first-order design method 

If the control plane over which the breakthrough is predicted receives a significant inflow 

that does not originate from the contaminant source zone, as is the case in Figure 1, the 

contaminant breakthrough time probability distribution p(τBT) is a function of the travel 

time probability of the entire inflow and the contaminant breakthrough location 

probability:  
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or in discretized form: 
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In equations (1-2), τBT is the contaminant breakthrough time evaluated at the control 

plane, t0 is the starting time of the contamination, τ is arrival time (or groundwater age at 

the control plane), p(τ;xCP) is the marginal arrival time probability evaluated at xCP, xCP is 

a location at the control plane, ( )χ∈CP
xp  is the probability that x

CP belongs to the 
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contaminant breakthrough zone χ (χ is the collection of all breakthrough locations χ), and 

A and B are the spatial x limits of the control plane (x6 and x9 in Figure 1). CP
x∆  is the 

discretization interval along the control plane. 

Assuming that τ and χ are Gaussian distributed, we have 
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where N(p1;p2,p3) represents the probability density of p1 according to the normal 

distribution, parameterized with variance p2 and mean p3, τ(x
CP) is the arrival time of a 

particle arriving at the control plane at location x
CP, ( )

2
CPxτ

σ  is the arrival time (or age) 

variance at x
CP, and ( )CPx

µ
τ

 is the mean arrival time (or age) at x
CP. ( )SZ

xχ  is the 

breakthrough location of a particle that originated from xSZ, where x
SZ is a location in the 

contaminant source zone. ( )
2

szxχ
σ  and ( )szxχ

µ  are the breakthrough location variance and 

mean (along the x-axis) of a particle originating from x
SZ, respectively, SZ

x∆ is the 

discretization interval along the contaminant source zone, and C and D are the spatial x 

limits of the contaminant source zone (x7 and x8 in Figure 1). 

Finally, the variance of the breakthrough time 2

BTτ
σ can be calculated as: 
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where ( )BTτE  is the expected contaminant breakthrough time. Equation (5) is the 

objective function to be minimized in the search for an optimal network design. 

From equations (1-5) it follows that to evaluate the performance of different 

measurement network designs, the influences of the observable variables at their 

potential sampling locations on the prediction of the breakthrough time ( )CP
xτ  and the 
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breakthrough locations ( )SZ
xχ  have to be known. This makes ( )CP

xτ  and ( )SZ
xχ  our goal 

variables and they will be called as such throughout the remainder of this chapter. 

The recently proposed representer-based inverse method [Valstar et al., 2004] provides 

an efficient way to calculate these influences. The representers calculated in this method 

are equivalent to the linearized covariances between the observable variable at the 

potential sampling location and the variables for which the representers are defined. As 

such, they provide a first-order estimation of the prior covariances of the observable 

variables and the goal variables ( )CP
xτ  and ( )SZ

xχ . These covariances can subsequently 

be used to approximate the posterior covariances of the goal variables, and therefore 

the posterior breakthrough time uncertainty, before the measurements are actually 

taken. 

Thus, the presented algorithm can efficiently calculate, at first order, the expected 

posterior breakthrough time variance 2

BTτ
σ (equation (5)) of the contaminant for every 

candidate measurement network design. A Genetic Algorithm was used to efficiently 

search for a near-optimal design that minimizes 2

BTτ
σ . For clarification, a flow chart of the 

design method is given in Figure 2. 

 

 

3.2.3. Bayesian Framework: derivation of Ln(breakthrough time) and breakthrough 

location representers 

The covariances between the breakthrough location ( )SZ
xχ  and any observation are 

given at first order by breakthrough location representers. The covariances between the 

breakthrough times ( )CP
xτ  and any observation, as well as the covariance between 

groundwater ages and any other measurement, are given at first order by travel time 

representers. In this work, the derivation of the travel time representers will be carried 

out for lognormally distributed travel times, because unless the travel time is evaluated 

in the large displacement regime3, the travel time probability density function will, in 

general, show a significant skewness. In the literature, therefore, skewed distributions 

are often adopted for the travel time, such as the lognormal (e.g. [Simmons, 1982; 

Cvetkovic et al., 1992; Kovar et al., 2005] or the inverse-Gaussian (e.g. [Cirpka and 

                                                 
3
 By virtue of the Central Limit Theorem (e.g. [Zhang, 2002], p. 61),  after many correlation distances the Gaussian 

assumption might be valid.  



                                                         CHAPTER 3 

57 

 

Kitanidis, 2000]) distribution. Here, because of the analytical simplicity of logarithmic 

transformations, we will treat the travel time as a lognormally distributed variable, 

transform travel time estimations to the Gaussian distribution by taking their natural 

logarithm to make them comply with the Bayesian framework of the representer-based 

inverse algorithm, and derive Ln(travel time) representers accordingly. 

Consider the flow, the particle travel time, and the particle location equations: 
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Figure 2. Flow chart of the proposed network design algorithm. The numbers 

in the black boxes refer to the equations using which the actions described in 

the text boxes attached to them are performed. GA = Genetic Algorithm. 
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In these and following equations, subscripted indices show vector and matrix 

dimensions and how, where applicable, matrix-vector multiplications should be 

performed. Products of terms containing the same index twice should be summed over 

that index. The ranges of all indices used are given in Table 1. Furthermore, in 

equations (6-9), h is the vector of nodal heads, q is the vector of driving forces, and A(α) 

is the system matrix depending on the unknown parameters α (=Ln(K)), it is the travel 

time of particle i, s

it∆ is the duration of travel step s, ix  and iy are the locations along 

respectively the x- and y-axis of particle i, and s
ix∆  and s

iy∆  are the distances traveled 

along respectively the x- and y-axis by particle i during travel step s. For this study we 

applied a numerical particle tracking scheme in which travel step sizes are limited by 

reaching cell boundaries rather than by reaching set time step sizes. In this case, 

s
it∆ and s

iy∆ depend on s
ix and 1−s

ix  if travel step s is limited by reaching an x-boundary of a 

cell. Furthermore, s
it∆ and s

ix∆  depend on s

i
y  and 1−s

i
y  if travel step s is limited by 

reaching a y-boundary of a cell.  

The representer-based inverse method searches for the maximum a posteriori estimates 

of the parameters, given the measurements. In this chapter, the measurements that are 

taken into account are head (h), conductivity (K), groundwater age (t), and particle 

breakthrough location (χ) measurements. As will be explained in Section 3.4, χ 

measurements will be incorporated in the algorithm as pseudo observations only, to 

enable the calculation of cross covariances between the goal variable ( )SZ
xχ  and the 

other measurement types. 

Table 1. Ranges of indicators and indices 

 

Index ranges from 1 to the number of: 

i tracked particles, which equals the number of potential age determinations plus the 

number of pseudo breakthrough time and pseudo breakthrough location 

measurements. 

f,g head state variables. 

k,l uncertain parameters. 

n,p,q measurements. 
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For a steady-state system, if all parameters α and measurement errors v are assumed to 

be multivariate Gaussian distributed with known covariances and they are not cross-

correlated, the maximum a posteriori estimates of the parameters can be found by 

minimizing the following objective function: 
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where J is the objective function value, z is the vector of measurement values, M( ) is a 

linear function that interpolates the vector of model predictions at the nodal points to the 

locations of the measurements, α is the prior mean of the parameters, Pv is the 

covariance matrix of the measurement errors v, and Pα is the prior covariance matrix of 

the parameters. By the Lagrange Method, we expand the objective function as: 
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where Ni is the number of tracked particles, 
isN  is the total number of steps traveled by 

particle i, hλ  is the head adjoint vector, tλ  is the travel time adjoint vector, and xλ  and yλ  

are the x and y location adjoint vector, respectively. In the minimum of objective function 

*
J , the variation of *

J is zero for any variation of α, h, x, y, t, λh, λx, λy and λt. Forcing this 

condition on equation (11) yields a system of 9 coupled Euler-Lagrange equations (see 

Appendix A). The solution of the system of Euler-Lagrange equations gives the set of 

parameters at which the derivatives of the extended objective function (equation (11)) 

with respect to the parameters are zero. Assuming that equation (11) has only 1 global 

minimum and no local minima, this is the set of parameters that optimally obeys the 

observations given the prior information.  

The nonlinear system of Euler-Lagrange equations is solved by first linearizing its 

individual equations. Then, the unknowns are expanded into a finite number of 

representer terms, each of which represents the influence of one particular 

measurement on the unknown, see Appendix B. Subsequently, the representer 

expressions and the unknowns are updated iteratively. The representer expansions 

enable the decoupling of the Euler-Lagrange equations into a set of expressions for the 
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representers and their coefficients that can be sequentially solved (see Appendix C). In 

our first-order network design approach, the inverse algorithm is terminated in the first 

iteration after the Ln(τ) representers and the breakthrough location representers have 

been obtained. Updating the unknowns in preparation for the second iteration and 

further requires measurement information, which is assumed to be unavailable at this 

stage of the network design. 

From Appendices C9 and C7 it follows that after the first iteration the Ln(τ) representer 

(Θ*) for a particle i is given by: 
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with terminal conditions 0
1 =Χ +sN

i  and 0
1 =Υ +sN

i , and the breakthrough location 

representer is given by: 
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with boundary conditions 00 =Υi . In equations (12) and (13), Ψ  is the parameter 

representer (see Appendices B and C5), Ξ  is the head representer (see Appendix B and 

C6), and is
N

it is the breakthrough time of particle i. Equation (12) is in backward notation, 

because particles defined to calculate breakthrough time representers are tracked 

backward from the locations at the control plane where breakthrough time uncertainty 

information is desired. 

 

 

3.2.4. Computation of posterior breakthrough time probability 

The first-order posterior variances of the goal variables can now be calculated as: 
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where ( )pqM ΧΘΨΞ ∗
,,,  is a p×q representer matrix that contains the prior cross 

covariances between all observations, ( )
prior

τ i
P

Ln
is calculated by defining a pseudo 

measurement of iτ  and calculating the Ln(τ) representer for this measurement, and 

prior

χ i
P  is calculated by defining a pseudo measurement for χi and calculating the 

breakthrough location representer for this measurement. 

( )
posterior

τ i
P

Ln
 and posterior

χ i
P  can subsequently be filled in for ( )

2
CPxτ

σ  and ( )
2

SZxχ
σ  in equations (3) 

and (4), respectively (note that τ in equations (1-3) is replaced by its natural logarithm). 

( )CPxτ
µ  and ( )SZxχ

µ  in equations (3) and (4) are approximated by their first guess estimates, 

Ln(τF(xCP)) and χF(xSZ) (see also Appendix B), obtained by running a simulation with α = 

α . Now all necessary information is available to compute p(τBT) according to equation 

(2) and subsequently the variance of the breakthrough time 2

BTτ
σ according to equation 

(5). 

Note that although many network evaluations are performed in the Genetic Algorithm, 

this repeated evaluation requires calculating the representer matrix ( )ΧΘΨΞ ∗ ,,,M  (for all 

potential measurements and pseudo measurements) only once. With ( )ΧΘΨΞ ∗ ,,,M  

known, ( )
posterior

τ i
P

Ln
and posterior

χ i
P can be calculated for every candidate network by selecting 

the relevant variances and covariances from this matrix and performing the necessary 

operations with them according to equations (14-15). 

 

 

3.3. Numerical Application to a Synthetic Test Case 

We will now demonstrate the design methodology by numerically filling in the problem 

that was introduced in Section 3.2.1 and Figure 1 and performing example calculations 

with the thus created test case. 

Additional to the discretization of the flow model as shown in Figure 1, the area between 

x5 and x10 is discretized into 240 equally sized (∆x = 2.0 m) columns, and additionally the 

confining layer (y2-y3) is discretized into 40 equally sized rows (∆y = 0.5 m). The purpose 



Measurement Network Design Including Travel Time Determinations   

 62 

of all areas outside the area of interest is solely to reduce the impact of boundary 

conditions on the flow in the area of interest. 

The porosity is 0.4 everywhere, and Aquifer 1 and Aquifer 2 have a hydraulic 

conductivity (K) of 3.0 and 0.6 m/d, respectively. The Gaussian distribution of Ln(K) (= Y) 

in the center part of the confining layer (9,600 cells) has a geometric mean Ln(KG) of -

3.0 Ln(m/d), a variance 2
Yσ  of 2.0 unless stated otherwise, and an exponential variogram 

model with horizontal and vertical correlation ranges of 75 m and 25 m, respectively. 

Outside the shaded center part (x0-x5 and x10-x13) the confining layer is modeled as a 

homogeneous deposit with K equal to the KG assigned to the center part. A steady-state 

head distribution is obtained by assigning recharge (250 mm/year) to the top of all cells 

of Aquifer 1 and by imposing a constant head of 0.0 m and 15.0 m in the utmost left and 

utmost right cell of Aquifer 2, respectively. This resulted in a flow divide between x13 and 

x14, as indicated by the arrows in Figure 1. 

The stars in the area of interest indicate 42 potential measurement locations. All h and K 

measurements were assumed to be virtually error free with Gaussian distributed error 

variances of 0.0001 m2 and 0.001 (m/d)2, respectively. This in no way implies 

compromised generality of the method, as larger error variances could have been 

chosen just as well. The reason for the choice for small error variances will become clear 

later. 

For t determinations, the estimation error standard deviation is taken as a percentage of 

the expected (untransformed) age (tF) at the sampled location in the prior realization of 

the confining layer, in which all stochastic parameters are set at their prior means 

( ( ) αKα == Ln = -3.0 Ln(m/d)). This percentage varies between different examples.  

At the control plane, in every column one pseudo age determination was defined to 

enable the calculation of the covariances between the goal variable Ln(τ(xCP)) and the 

measurements in a design. The sensitivity terms in equation (12) (the Ln(τ) representer 

equation) were computed by backward tracking of particles traveling from the pseudo 

measurement locations at the control plane to the inflow zone (y = y1) and calculating 

the time step sensitivities of every travel step using the ADV2 package of MODFLOW 

2000 [Anderman and Hill, 2001]. 

Likewise, in the contaminant source zone, one pseudo location measurement was 

defined in every column, to enable the calculation of the covariances between the goal 
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variable χ(xSZ) and the measurements in a design. The terms in the breakthrough 

location (χ) representer equation (13) were computed by forward tracking of particles 

traveling from the pseudo measurement location in the contaminant source zone to the 

control plane and evaluating the displacement sensitivities of every travel step, again 

using the ADV2 package of MODFLOW 2000. 

In the example calculations, the desired number of measurements in the resulting 

designs was always fixed, although during the optimization it was allowed to vary. This 

was achieved by adding an extra term to the objective function (equation (5)) in the 

Genetic Algorithm. This term consisted of a multiplication of the absolute value of the 

squared difference between the required number of measurements and the actual 

number of measurements in the design under consideration, and a multiplication 

coefficient. This multiplication coefficient was chosen differently in every design 

optimization, as it affects the convergence of the Genetic Algorithm.  

 

 

3.4. Results 

In this Section, we will first investigate the validity of the first-order Bayesian 

methodology by checking the normality of Ln(t), and by comparing linearized variance 

predictions as given by the representer method with Monte Carlo results for increasing 

parameter variability. The Monte Carlo simulations were performed using MODFLOW 

[McDonald and Harbaugh, 1984] in combination with the particle-tracking software 

MODPATH [Pollock, 1994]. The number of Monte Carlo runs was 10000 for every 

calculation. 

Subsequently, we will take a look at the correlations between the observable variables 

and the goal variables. Knowing and understanding these correlations is useful to 

explain the observation networks as designed by the first-order method. The details of 

the procedure followed for the calculation of the correlations will be given in Section 

3.4.2. In Section 3.4.3, three examples of near-optimal network designs will be given 

and explained on the basis of the calculated correlations. 

Finally, in Section 3.4.4, we will compare the performance of networks consisting solely 

of age determinations with the performance of networks consisting solely of head and 

solely of conductivity measurements. 
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3.4.1. Validity of the first-order design method 

As our inverse method is defined in a Bayesian framework, it is important that all 

unknown parameters and dependent variables are (at least approximately) Gaussian 

distributed. It is well known that if Y is Gaussian distributed, at first order so are the 

hydraulic head and the particle displacement [Dagan, 1989]. Particle travel times, 

however, can be significantly skewed if the traveled number of correlation scales is 

limited (see Section 3.2.3). Fortunately, in our example, the natural logarithm of arrival 

time is approximately Gaussian if 2
Yσ  is not too large. This is shown in Figure 3, which 

gives the histogram of breakthrough times for a particle starting from the middle of the 

contaminant source zone. Also indicated in this figure is the Gaussian probability density 

function (pdf) parameterized with the mean and variance of breakthrough times 

calculated from the Monte Carlo results. The good correspondence of the Monte Carlo-

derived Ln(τ) histogram with the Gaussian distribution will deteriorate as 2
Yσ  gets larger 

and the untransformed travel times become more skewed. However, for the range of 2
Yσ  

values for which the linear theory applied here can be assumed valid (see below) the 

natural logarithm of the travel time can be considered as a sufficiently Gaussian 

distributed variable.  

Figure 3. Histograms of the distribution of breakthrough locations (A) and 

breakthrough times (B) for the Monte Carlo simulation of a particle starting 

from the center of the contaminant source zone, compared with the theoretical 

normal probability density function using the Monte Carlo derived means and 

variances (black lines). 2
Yσ  = 2.0. 
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Figure 4 addresses the question regarding the applicability of the linear theory for larger 

2
Yσ . Figure 4 compares the variances of the state variables as calculated by the 

representer approach with the variances of these variables computed with a Monte 

Carlo approach. Figure 4a shows the results for Ln(τ) of a particle originating from the 

center of the contaminant source zone. It should be noted here that the observed 

underestimation of the variances by the first-order method is caused by two distinct 

factors: increasing non-linearity of the flow equation and increasing non-normality of 

Ln(τ) as 2
Yσ  increases. Still, up to 2

Yσ  = 3.0 the difference between linearization and 

Monte Carlo results is less than 10%. 

Figure 4. Linearized Ln(τ) (A), χ (B) and h (C and D) variance predictions as 

given by the representer approach compared with variances obtained from a 

Monte Carlo series, as function of 2
Yσ . In (C) and (D), the labels UL, LL, UR, 

LR and CNTR correspond with the labels in Figure 1 and identify the 

locations in the domain at which the variances were evaluated. 
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Figure 4b compares Monte Carlo variances with linearized variances of the particle 

breakthrough location χ. The correspondence is excellent for the entire range 

investigated. The same holds for the head variance in the upper part of the domain 

(Figure 4c). Only for the head variance in the lower part, the correspondence between 

the first-order results and the Monte Carlo results deteriorates rather quickly as 2
Yσ  

increases. It is conceivable that the larger influence of the constant head boundaries in 

this part of the domain increases the nonlinearity of the flow equation. Nevertheless, 

considering the small absolute value of the underestimation of the head variance (note 

the factor 10 difference between the y-axes of Figures 4c and 4d), the error made is not 

expected to significantly influence contaminant breakthrough time uncertainty 

predictions.  

Based on the results given in Figure 4, for our synthetic example the outcome of our 

first-order design strategy as outlined in Section 3.2 is considered reliable up to a 

variance of Y of 3.0. 

 

 

3.4.2. Correlations between observed variables and goal variables 

Figure 5 shows plots of the spatial distribution of the correlations between the 

observable variables (h, Ln(K) and Ln(t)) and respectively the natural logarithm of the 

groundwater age at Q (Ln(τQ), see Figures 5a-5c, in which Q is the center of the a priori 

expected contaminant breakthrough zone) and the breakthrough location χQ of the 

particle a priori expected to break through at Q (Figures 5d-f). The particle that a priori is 

expected to break through at Q enters the confining layer at Z (see Figures 5d-f). 

Figure 5a gives the correlation between the conductivity everywhere in the domain and 

the groundwater age at Q. These correlations were computed by defining a pseudo age 

determination at Q and calculating the parameter representer of this measurement 

throughout the domain. The representer values were subsequently divided by the 

square root of the product of the prior parameter variance and the age variance at Q, to 

yield the correlations. The age variance at Q was calculated by computing the value of 

the Ln(τ) representer at location Q.  

Figures 5b, d and e were produced in a similar manner. For Figures 5b and e, however, 

the prior 2
hσ  field, which in contrast to the parameter variance is not known beforehand, 
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was inter- and extrapolated from prior head variances calculated at the potential 

measurement locations. Inter- and extrapolation of these values is justified, as the head 

variance field is smooth.  

Figure 5c was constructed by defining in every grid cell a pseudo travel time 

measurement and calculating their Ln(t) representers for Ln(t) at the location of the 

pseudo measurement itself (yielding the prior ( )
2
Ln tσ  field) and for Ln(τQ) (yielding the 

cross covariances). Figure 5f was produced in a similar manner, with the distinction that 

now for every pseudo travel time measurement the location representer was calculated 

for the particle that a priori is expected to break through in Q.  

From Figure 5 it appears that Ln(τQ) is particularly strongly correlated (correlation 

coefficient ρ > 0.6), in a narrow zone above Q, with Ln(K) and Ln(t). Whereas the Ln(t)- 

Figure 5. (A,B,C) The correlation between the groundwater age at or the 

travel time to Q and the log conductivity (A), the head (B) and the 

groundwater age (C) in every grid block of the centre area. (D,E,F) The 

correlation between the breakthrough location of the particle a priori expected 

to break through at Q (this particle enters the confining layer at Z) and the 

natural logarithm of the conductivity (D), the head (E) and the groundwater 

age (F) in every grid block of the centre area. 
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Ln(τQ) correlation (Figure 5c) obviously is the strongest at Q (here ρ = 1), the Ln(K)-

Ln(τQ) (Figure 5a) correlation is strongest around the center of the domain. This is 

because here Ln(K) maximally affects (via its covariance function) the conductivity of the 

area in which the particle moving towards Q is expected to travel, and therefore 

maximally affects Ln(τQ). A similar correlation pattern was found by Harvey and Gorelick 

[1995] (their Figure 6b). 

Figure 5b shows that the head is only very weakly correlated with Ln(t). This is due to 

the small sensitivity of heads to the parameters.  

The curvature of the positive Ln(t)-Ln(τQ) correlation zone in Figure 5c is caused by the 

fact that the particle arriving in Q has traveled a certain horizontal distance downgradient 

in Aquifer 1 before entering the confining layer (see also Figure 1). Travel times in the 

upper right part of the domain are correlated with the residence times of the 

corresponding particles in Aquifer 1, which are in turn correlated with the residence time 

in Aquifer 1 of the particle arriving in Q. 

Whereas Ln(τQ) shows particularly strong correlations with Ln(K) and Ln(t), χQ is 

especially strongly correlated with h and Ln(t) (Figures 5e and 5f, respectively). The 

large h- χQ correlations found in the upper part of the domain (Figure 5e) are related to 

the particle transport through Aquifer 1: because of the relatively large expected 

horizontal distance traveled in Aquifer 1 (see also Figure 1), χQ is determined for an 

important part by the hydraulic gradient in Aquifer 1, which in turn is correlated with the 

heads in the upper part of the confining layer.  

χQ-Ln(K) correlations (Figure 5d) are relatively weak, due to the limited vertical 

correlation of Ln(K) values. Figure 5f reveals that χQ shows strong correlations with Ln(t), 

particularly around Z. This makes sense, again because the horizontal distance traveled 

within the confining layer is expected to be very small and χQ is strongly determined by 

the distance travelled in Aquifer 1, which in turn is correlated with the vertical flow 

velocity in Aquifer 1. This vertical flow velocity is strongly correlated with the 

groundwater age near Z. 
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3.4.3 Examples of network designs 

Figures 6 shows examples of near-optimal 10-measurement network designs, in the 

search of which the Genetic Algorithm was allowed to choose among h, K and t 

measurements. The age estimation error standard deviation was set at 10% of the 

untransformed a priori expected value.  

In Figure 6a, the purpose of the observation network design was to minimize the 

groundwater age uncertainty at the control plane. The optimal design solely consists of 

age determinations, which is not surprising as they are strongly correlated with the 

groundwater age at the control plane. The horizontal correlation of travel time is not 

strong enough for all determinations to be placed next to each other at the control plane, 

which would be a logical configuration as then they directly sample the goal variables. 

Instead, the upper right part of the domain is also sampled, for reasons explained in the 

discussion of Figure 5c. 

For the design shown Figure 6b, the sampling objective was to minimize the 

contaminant arrival location variance. K, h and t measurements are located in those 

areas where, based on Figures 5d-f, strong correlations with the breakthrough location 

collection χ are expected. 

For Figure 6c, the objective was to minimize 2

BTτ
σ , which is a combination of the 

objectives used in Figure 6a and 6b (see equation 1). The head measurement in the 

upper left-hand part of the confining layer primarily serves to constrain arrival location 

(see Figs. 5e and 5b). The fact that the age determinations are placed at the control 

plane (as in Figure 6a), rather than in the upper part of the confining layer (as in Figure 

6b), indicates that they are primarily important to obtain information on τ(xCP), rather than 

on χ(xSZ). Apart from one head measurement, no measurements are chosen that are 

specifically aimed at reducing ( )χ∈CP
xp . The age determinations sample a narrower 

area than in Figure 6a, because their placement is now focused at obtaining information 

on the travel time towards the expected contaminant breakthrough zone, rather than 

towards the entire control plane. The focus of the design in Figure 6c on the reduction of 

arrival time uncertainty is probably due to the relatively wide contaminant source zone, 

which limits the reduction of the contaminant breakthrough location variance that can be 

achieved. 
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3.4.4 Performance of age estimation networks compared with K and h networks  

Figure 7 shows the posterior breakthrough variance of (near-)optimal designs as a 

function of network size, for observation networks containing only one measurement 

type. The figure shows that, if the travel time estimations are of a reasonable reliability, 

the uncertainty reduction that can be realized using travel time determinations is larger 

than can be achieved with the other measurement types (with reasonable network 

sizes). After having studied Figure 5 this is not surprising anymore: heads are only very 

Figure 6. Near-optimal designs for minimizing the groundwater age 

uncertainty at the control plane (A), for minimizing the contaminant arrival 

location uncertainty (B), and for minimizing the contaminant breakthrough 

time uncertainty (C). The domains shown in this figure represent the 

confining unit in the area of interest (see Figure 1). The black bold line in (C) 

represents a projection of the contaminant source zone on the top of the 

confining layer. Grey bold lines delineate the (a priori) expected contaminant 

flow through the confining layer. ∆ = t measurement, * = h measurement, ○ = 

K measurement. 
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weakly correlated with travel time, and conductivity is weakly correlated with arrival 

location. Groundwater age is the only variable that is strongly correlated with both arrival 

time and arrival location. Furthermore, groundwater age is more strongly correlated with 

arrival time than K is, and also more strongly correlated with arrival location than the 

head is. According to Figure 7, in our synthetic example an age determination network 

outperforms a K and an h network if the age estimation error standard deviation is less 

than 50% of the expected age, even though the error variances of the K and h 

measurements were chosen unrealistically small. So, if travel time estimations of a 

reasonable accuracy are available, more information can be obtained with fewer 

measurements than with the other two measurement types. 

 

 

3.5. Conclusions and Discussion 

A methodology was proposed that incorporates travel time determinations into 

measurement network design. The methodology was focused on minimizing model 

prediction uncertainty (specifically, contaminant breakthrough time uncertainty) and is 

Figure 7. First-order estimation of the posterior breakthrough time uncertainty 

for networks consisting of only one observation type (h = pressure head, K = 

conductivity, t = groundwater age), as a function of network size. The given 

percentages refer to different levels of the age estimation error standard 

deviation. The prior breakthrough time uncertainty (no measurements) for this 

example was 4.85*10
7
 d

2
. 
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one of very few that take correlations between observations into account when doing so. 

Moreover, by directly calculating the covariances between observations and predictions, 

instead of evaluating the influence of the observations on the predictions via the 

posterior parameter covariance matrix, a major computational advantage is 

accomplished compared to previously reported network design algorithms aimed at 

prediction uncertainty minimization. 

As the Gaussian assumption often is not valid for travel times, they were transformed to 

comply with the Bayesian framework applied here. The natural logarithm of travel time 

was shown to be approximately Gaussian distributed for systems of low to medium 

heterogeneity. 

Based on this result, we derived expressions for the linearized covariances between the 

measurable variables and the natural logarithm of travel time (equation (C24)) and 

breakthrough time (equation (12)). The latter, together with the cross covariances 

between the observable variables and particle breakthrough locations, given by equation 

(13), are necessary for the calculation of posterior breakthrough time uncertainty given a 

certain set of measurements. In a synthetic example of contaminant breakthrough in a 

confining layer, the discrepancy between the linearized approximation of the prior 

variance of the natural logarithm of travel time and Monte Carlo results was less then 

10% for variances of the natural logarithm of the conductivity up to 3.0. 

Age estimations, if of a reasonable quality, were shown to be more valuable for the 

reduction of breakthrough time uncertainty than head and conductivity measurements. In 

our numerical example, even if the age estimation error standard deviation was taken as 

large as 50% of the expected value and head and conductivity measurements error 

variances were assumed to be very small, (near-)optimal age estimation networks still 

outperformed equally sized (near-)optimal networks of head or conductivity 

measurements. 

Far sake of conciseness, we chose not to involve other considerations, like for example 

cost minimization, into the network design, other than restricting the designs to a certain 

number of measurements. However, such considerations can be accommodated very 

easily in the Genetic Algorithm by expanding the objective function with additional terms. 

An example of a Genetic Algorithm application involving both prediction uncertainty 

minimization and budget constraints is given by Wagner [1995]. 
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In our calculations we assumed Gaussian distributed measurement errors for the log-

transformed groundwater age estimations. It should be noted, however, that there are 

many factors contributing in different ways to the uncertainties involved in the translation 

of tracer concentrations to groundwater age, and the resultant of these factors might not 

always warrant the use of a Gaussian or even symmetric uncertainty structure. The most 

important sources of uncertainty are (note that not all uncertainty sources apply to all 

age dating techniques): pore-scale dispersion and macrodispersion resulting in mixed-

age samples [Maloszewski and Zuber, 1982; Bethke and Johnson, 2002; Weissmann et 

al., 2002; Castro and Goblet, 2005; Manning et al., 2005], analytical error [Solomon et 

al., 1992; Ekwurzel et al., 1994], influence of uncertain recharge temperature affecting 

tracer concentrations at time of recharge [Dunkle et al., 1993], nonconservative behavior 

of the tracer [Dunkle et al., 1993], contamination [Dunkle et al., 1993], water table 

fluctuations, and incomplete confinement of reactive decay products (e.g. 3He [Solomon 

et al., 1992]). It is yet unclear how reliable uncertainty estimates for age determinations 

can be obtained and whether corrections and transformations to the determinations can 

be formulated that can effectively make the uncertainty structure Gaussian. For arrival 

times in a conservative tracer test, on the other hand, these issues are far less 

problematic, considering the fact that the injection and detection times are relatively 

easy to determine and that the structure of the uncertainties involved in extracting the 

advective arrival time is likely to be either near-Gaussian or transformable to near-

Gaussian. 

In the present study, reactive-dispersive behavior of the tracers, and the influence of 

instationarity on this behavior, are accounted for only indirectly by treating them as 

sources of uncertainty to the travel time estimations that are themselves used in a strictly 

advective, conservative and stationary inverse computational framework. As such, the 

approach is suitable for situations in which reaction, dispersion and instationarity are 

thought to be of secondary importance for the tracer. 

To keep the presentation simple, transport of the contaminant in the numerical example 

was assumed to be strictly advective and conservative as well. Although we recognize 

that reactive-dispersive behavior of the contaminant might be even a bigger source of 

uncertainty than the residence time of the groundwater within the transport volume, the 

considered measurement types, as treated in this Chapter, can only provide information 
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on the latter factor. Therefore, reactive-dispersive behavior of the contaminant is beyond 

the scope of the presented methodology. 

The method is applicable to real world cases as long as using the Bayesian framework 

and the linear theory is warranted, which respectively places demands on data 

availability (e.g. parameter statistics and uncertainties, measurement errors, etc.) and 

puts restrictions on parameter variability. With regard to the computational demand of 

the method we can mention that the computation of the prior covariance matrix 

( )ΧΘΨΞ ∗ ,,,M  constitutes most of the computational burden. For the examples presented 

in Section 3.4.3, this took about 45 minutes on a Dell personal computer with a Pentium 

4 2.6 GHz processor and 2.5 GB RAM. This computer time increases with the number of 

potential and pseudo measurements: for every potential or pseudo head measurement a 

groundwater model run is performed twice and a particle tracking run is performed, for 

every potential and pseudo conductivity measurement a groundwater model and a 

particle tracking run are performed once, and for every potential and pseudo travel time 

and location measurement two groundwater model runs and two particle-tracking runs 

are performed. Finally, for every potential and pseudo measurement a convolution with 

the parameter covariance matrix is required, so the number of unknown parameters 

(9,600 in this Chapter) also greatly influences computation times. 

 

 

Appendix A Derivation of the Euler-Lagrange Equations 

Forcing the conditions for a minimum in equation (11) yields a system of 9 coupled 

Euler-Lagrange equations. Besides the flow equation (6), the particle travel time 

equation (7) and the particle location equations (8 and 9), this system consists of an 

adjoint travel time adjoint equation, two particle location adjoint equations, a head adjoint 

equation, and a parameter equation, all of which are derived below. 

 

 

A1. X Location Adjoint Equation 

The conditions for a minimum in the extended objective function (equation (11)) 

prescribe the variation of (11) with respect to the x location of tracked particles to be 

zero. This yields: 
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The derivatives in the third, fourth and the fifth term should only be taken for those travel 

steps s where xs is really variable (i.e. not fixed by reaching an x-boundary of a cell in 

that travel step). Taking this into account, filling in equations (6-9) into (A1), working out 

the derivatives and dividing by 2 yields: 
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Note that the second and the fifth term of equation (A2) are always zero because s
it∆  

and s
iy∆  only depend on the x coordinates of travel step s if the step size is limited by 

reaching the x-boundary of a cell, in which case equation (A3) applies. Taking this into 

account and rearranging yields the x location adjoint equation: 
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with boundary condition 01 =+is

i

N

xλ . 

 

 

A2. Y Location Adjoint Equation 

Following the same reasoning as in the derivation of the x location adjoint equation, the 

y location adjoint equation is given by: 
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A3. Travel Time Adjoint Equation  

The conditions for a minimum in the extended objective function (equation (11)) 

prescribe the variation of (11) with respect to the travel time to be zero. This yields: 
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The second, fourth and fifth term of equation (A8) are zero. Working out the other terms 

and dividing by 2 directly yields the travel time adjoint equation: 
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A4. Head Adjoint Equation 

The conditions for a minimum in the extended objective function (equation (11)) 

prescribe the variation of (11) with respect to the heads to be zero. This yields: 
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Working out equation (A10), dividing by 2 and rearranging yields the head adjoint 

equation: 
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A5. Parameter Equation 

The conditions for a minimum in the extended objective function (equation (11)) 

prescribe the variation of (11) with respect to the parameters to be zero. This yields: 
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Working out equation (A12), dividing by 2 and rearranging yields the parameter 

equation: 
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Appendix B Representer Expansions 

In the representer-based inverse algorithm [Valstar et al., 2004], the unknowns in the 

nonlinear system of Euler-Lagrange equations are expanded in finite series, allowing the 

equations in the system to be decoupled and solved iteratively. Every measurement 

adds a term to this finite series, consisting of (1) a basis function or representer, 

quantifying the influence of the measurement on the estimate of the variable for which 

the representer is defined, and (2) its coefficient, quantifying the weight given to the 

representer, which depends on the misfit between measurement value and 

measurement prediction. The definitions of the representer functions are: 
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where b is the vector of representer coefficients, Np is the number of measurements, 

ipΛ is the travel time adjoint representer of measurement p, calculated for particle i, ipΠ is 

the x location adjoint representer of measurement p, calculated for particle i, ipΗ  is the y 
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location adjoint representer of measurement p, calculated for particle i, fpΓ  is the head 

adjoint representer of measurement p, calculated for the head state variable f, lpΨ  is the 

parameter representer of measurement p, calculated for parameter l, gpΞ  is the head 

representer of measurement p, calculated for head state variable g, ipΧ and ipΥ are 

respectively the x and y location representer of measurement p, calculated for particle i, 

η is the iteration number and ∗Θip is the Ln(t) representer of measurement p, calculated 

for particle i. In order to be able to expand the untransformed travel time it , ∗Θ pi  is 

multiplied by the derivative iii ttddt =ln/ , which is estimated using its value in the 

previous iteration ( 1−η
it ). Fh , Fx , Fy , and Ft  are the solutions obtained by solving 

equations (6-9) with αα = . corrh , corrx , corry , and corrt  are correction terms. In our first-order 

design method, the algorithm is terminated after the first iteration, the unknown variables 

are not actually updated (this would require actual sampling) and therefore the 

representer coefficients b and the correction terms corrh , corrx , corry , and corrt do not have 

to be calculated. The algorithm is initiated using αα = , h = hF, ti = 
Fi

t , xi = 
Fi

x , yi = 
Fi

y , 

and λh =
it
λ =

ixλ = 
iyλ = 0. 

 

 

Appendix C Representer Derivations 

For the sake of readability, the explicit statement of the dependencies of A, t∆ , x∆  and 

y∆ are omitted from now on. 

 

 

C1. X Location Adjoint Representers 

 Inserting the representer expansions (B1-9) into the x location adjoint equations 

(A4-5) yields: 
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where ( )nM  = ( )( )bxxbtttbαbhhM corrFFcorrFlcorrFn Χ++Θ++Ψ+Ξ++ ∗
,,, Ln . The coefficients b 

for all p measurements are now chosen as: 

 

[ ] ( ( ))nnpnvp MzPb −= −1           (C3) 

 

Equations (C1-2) can only be fulfilled for nonzero b if: 
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with boundary condition 0
1

=Π
+

isN

ip
. The second term on the right hand side of (C4) and 

the term on the right hand side of (C5) are nonzero only in case of (pseudo) 

measurements of χi (by definition at s = 
isN ). In that case 

( )
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C2. Y Location Adjoint Representers 

Following the same reasoning as above, it follows for the y location adjoint representers: 
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with boundary condition 0
1

=Η
+

isN

ip
. The second term on the right hand side of (C6) and 

the term on the right hand side of (C7) are always zero. Therefore (C6-7) can be 

simplified into: 
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with boundary condition 0
1
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+
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ip
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C3. Travel Time Adjoint Representers 

Inserting the representer expansions (B1-9) into the travel time adjoint equation (A9) 

yields: 
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After inserting (C3) into (C10), the resulting equation can only be fulfilled for non-zero b 

if: 
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with boundary condition .0
1 =Λ +sN

ip  The second term of equation (C11) is nonzero only in 

case of measurements of Ln(ti). In that case 
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, with s

it  approximated by 

its most recent estimate. 

 

 

C4. Head Adjoint Representers 

Inserting the representer definitions (B1-9) into the head adjoint equation (A11) yields: 
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Equation (C12) can only be fulfilled for nonzero b if 
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C5. Parameter Representers 

Inserting the representer definitions into the parameter equation (A13) yields: 
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Equation (C14) can only be fulfilled for nonzero b if: 
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C6. Head Representers 

The head representers should be the exact linearizations of the heads around the head 

estimates of the previous iteration. For a derivation see Valstar (2001) and Valstar et al. 

(2004). The result is: 
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C7. X Location Representers 

For the calculation of the x location representer, an exact linearization of the x location 

equation (8) is performed around the most recent estimate of xi. Since the variation in 

the parameters induced by the measurements p is given by plp b∂Ψ  (B5), the variation of 

the heads by pgp b∂Ξ  (B6), the variation of the y location of particle i by pip b∂Υ  (B8), and 

the variation of the travel time of particle i by pipi bt ∂Θ∗  (B9), a linear relationship between 

the x location of particle i on one hand and the parameters, heads, y location of particle i 

and travel time of particle i on the other implies that the variation in x locations of 

particles, given by pip b∂Χ  (see equation (B7)), is: 
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with boundary condition 0
0 =Υip . The function of s′  is the same as that of s. Dividing (C17-

18) by pb∂ and putting it in sequential notation yields the x location representer: 
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00 =Υ=Χ ipip . 
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C8. Y Location Representers  

The same reasoning holds for the y location representers: 
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with boundary conditions 0
00 =Χ=Υ ipip . 

 

 

C9. Ln(Travel Time) Representers  

For the calculation of the Ln(t) representer, an exact linearization of the travel time 

equation (7) is performed around the most recent estimate of the travel time. Following 

similar considerations as above, the variation in Ln(ti) travel time, given by pipi bt ∂Θ∗ (see 

equation (B9)), is: 
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Dividing (C23) by pb∂ , rearranging, and putting it in sequential notation yields the Ln(t) 

representer: 
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with boundary conditions 0
000 =Υ=Χ=Θ∗
ipipip . 

 

 

C10. Correction Terms 

The correction terms corrh , corrt , corrx , and corry are chosen in such a way that the forward 

flow (6), the particle travel time (7), the particle x-location (8), and the particle y-location 
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equation (9) equation are fulfilled, respectively. For corrh , first the unknown variables in 

(6) are replaced with the representer expansions (B1-9), and subsequently the head 

representer equation (C16), multiplied by bp and summed over all measurements, is 

inserted. This yields [Valstar, 2001; Valstar et al., 2004]: 
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For corrt , first the unknown variables in (7) are replaced with the representer expansions 

(B1-9), and subsequently the Ln(travel time) representer equation (C24), multiplied by bp 

and summed over all measurements, is inserted. This yields: 
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Following similar reasoning, we have for corrx : 
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And for corry : 
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4.1.  Introduction 

It is well-known that the subsurface, including the part relevant for groundwater flow and 

transport, exhibits a complex and heterogeneous architecture [Bierkens, 1994]. 

Consequently, so do many system parameters needed in distributed groundwater flow 

and transport models. The presence of multiple classes (e.g. lithologies, lithofacies) in 

the parameter fields of highly discretized groundwater models make that these 

parameter fields often cannot be well described by assuming a unimodal hydraulic 

parameter distribution: their probability distribution has a multimodal shape. 

Whereas advanced geostatistical methods are available to generate multimodal 

realizations conditioned on static data (K, porosity etc.), the literature on the integration 

of state measurements (head, concentrations, travel time etc.) into the conditioning 

procedure is very limited for the bi- and multimodal cases. In its simplest form, 

calibration of multimodal spatial parameter fields is performed by regarding the spatial 

lithology distribution as known and fixed, thus merely calibrating the intra-lithology 

hydraulic parameters. An example of this method is given by Hendricks Franssen and 

Gomez-Hernandez, [2002], who used sequential self-calibration [Gomez-Hernandez et 

al., 1998] for the inversion of the hydraulic conductivity distributions within fracture 

planes, treating each fracture plane as an independent statistical population. Another 

example is given by Sun et al. [1995], who expressed the hydraulic properties (KH, KV) 

belonging to every node in their model as a function of the (known) thickness distribution 

of the different lithologies identified within this nodes exclusive subdomain, and the 

(unknown but assumed constant) hydraulic conductivity K associated with these 

lithologies. Thus, they reduced the number of unknown parameters to the number of 

lithologies. In both works, however, the assumed geological structure (respectively, the 

fracture plane distribution and the lithofacies distribution) is conditioned on static data 

and not further updated using the state measurements.  

Another approach is to only invert the lithology field. Methods for the inversion of 

Gaussian models can then be used, since lithology fields can be constructed using 

Gaussian methods. Following this line Hu [2000] used the Gradual Deformation method 

in combination with Gaussian Truncated Simulation to invert a binary lithology field. This 

method updates the lithology field by linearly combining either (in the first iteration) a 

random initial Gaussian field or (in subsequent iterations) the updated field from the 
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previous iteration, with a number of new and independent realizations. The contribution 

of every realization to the new, updated field is determined by an optimization search for 

the set of contribution coefficients that, after truncation of the Gaussian field, minimizes 

the objective function. Another application of Truncated Gaussian Simulation for the 

inversion of binary lithology fields is given by Wen et al. [2002], who use Sequential Self-

Calibration for the calibration of the Gaussian field, through its relation with the actual 

conductivity field that is formed after its truncation. Hu et al. [2001a] proposed the use of 

Truncated Pluri-Gaussian Simulation [Galli et al., 1994] for use in the Gradual 

Deformation approach for the inversion of multi-lithology fields (standard Truncated 

Gaussian Simulation is not generally suitable for the inversion of lithology fields with 

more than two soil types, as it can only produce outcrops in which the lithologies/facies 

are sequentially ranked [Dowd et al., 2003]). Liu and Oliver [2004] used the Truncated 

Pluri-Gaussian Simulation method in a Bayesian scheme for conditioning the lithology 

distribution to a time series of dynamic data. 

In principle, the calibration of the lithology distribution could be followed by filling the 

posterior lithology distribution with realizations of suitable parameter distributions per 

lithology, and calibrating these intra-lithology parameter fields while keeping the lithology 

field fixed. This would indeed yield a calibrated multimodal parameter field. True 

inversion of multimodally distributed spatial parameter fields would however somehow 

take the effect of the intra-lithology parameter variation on the residuals to be minimized 

into account during calibration of the parameter field. This means that we have to 

calibrate the spatial lithology distribution and the intra-lithology parameter distribution 

simultaneously. So, we have to treat the multimodal parameter distribution as a 

continuum, i.e. as one statistical population. This limits our possibilities, because many 

inverse algorithms fail for non-Gaussian models (like the multimodal problem at hand). 

For example, many Bayesian algorithms fail, due to the fact that in a model that is not 

(multi-)Gaussian, the decomposition of the posterior distribution in likelihood and prior, 

as stated in Bayes’ Rule, cannot be performed analytically. Also standard Gradual 

Deformation fails, because the trick of linearly combining realizations only works for 

Gaussian models: in general, doing the same with non-Gaussian models will not 

preserve the non-Gaussian distribution [Hu, 2000].  
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Two important exponents of non- (or better: not necessarily-) Gaussian methods that are 

applied to high-dimensional spatial inverse problems can be mentioned: a) an extension 

of the Gradual Deformation Method to realizations generated by sequential simulation 

(GDSS) [Hu et al., 2001b], and b) the Probability Perturbation (PP) method [Caers and 

Hoffman, 2006; Caers, 2007]. Both methods rely on sequential simulation to sample 

prior and posterior distributions. Sequential simulation requires sampling from local 

conditional cumulative distribution functions (ccdf’s), which do not need to be Gaussian. 

The extension of the Gradual Deformation method (GDSS) makes a linear combination 

of two independent realizations of a random Gaussian process used to draw from the 

(ccdf’s) during sequential simulation. The PP method basically optimizes the influence of 

the state observations on the local ccdf’s by performing perturbations of the pre-

conditionals (the ccdf’s incorporating all but the state observations), performing a 

sequential simulation using the resulting ccdf’s, and evaluating a model run with the 

result of this sequential simulation against the state observations.  

However, when imposing and propagating the perturbations of either the local ccdf’s (in 

PP) or the process of drawing from the ccdf’s (in GDSS), it is not possible to preserve 

both the geostatistical properties of the lithology field as well as those of the intra-

lithology parameters. The reason for this is that no spatial propagation model can be 

defined that captures all spatial dependencies in the multi-population parameter field. 

In this Chapter, we will propose a simple methodology as a workaround for the above 

sketched problem of the inversion of continuous multi-lithology parameter fields. The 

methodology produces realizations of the multimodal parameter field that are 

conditioned on all static and state measurements, while the misfits between the 

calibrated model predictions and the measurements are reduced to the level of 

predefined measurement errors. Our method preserves the original geostatistics (i.e. 

those belonging to the indicator field as well as those of the intra-lithology or intra-facies 

parameter distributions), which in this work are assumed known. Calibration of the 

parameters of the geostatistical models is out of the scope of this Chapter.  

In the following Sections, we first give an explanation of the concepts and mathematics 

involved in the developed inverse methodology. Then, we apply our ideas to a 2D 

synthetic example of a confining layer exhibiting a multimodal hydraulic conductivity (K) 

distribution. Using this synthetic example, we examine the applicability of our inverse 
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procedure, especially with regard to its ability to reproduce the original geostatistics. 

Throughout the Chapter the different statistical populations constituting the multimodal 

parameter distribution are referred to as lithologies. Of course, the reader could 

exchange this with lithofacies, facies, classes, et cetera. 

 

 

4.2.  Methodology 

4.2.1. The key idea 

The methodology we will present is a workaround for the difficulties existing inverse 

methods have with the multimodal distribution. The key idea is that, instead of proposing 

a completely new inverse algorithm, we transform the multimodal parameter field to the 

standard normal distribution. This puts existing inverse algorithms back in business. 

Subsequently, we tackle the problems caused by the transformation. These problems 

will be explained later. 

The stochastic inverse algorithm that we applied is the representer-based inverse 

algorithm developed recently by Valstar et al. [2004], and we present the methodology 

for the calibration of multimodal parameter fields in conjunction with this inverse 

algorithm. Some aspects of the presentation of the methodology are therefore specific 

for the representer method. The general idea is, however, not restricted to any particular 

(class) of inverse algorithms. 

 

4.2.2.  Bayesian Framework: parameterization by representers 

For completeness and for a good comprehension of the present study, we will here 

briefly recall the essence of the representer-based inverse method. 

Consider the flow equation: 

 

0)( =− qhA α            (1) 

 

where h = the vector of nodal heads, q = the vector of driving forces, and )(αA  = the 

system matrix depending on the parameters α. The representer method, as described in 

Valstar et al. [2004], searches for the maximum a posteriori estimates of these 

parameters α given observations of h. For a steady-state system, if all parameters α and 
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measurement errors v are assumed to be Gaussian distributed with known covariances 

and they are not cross-correlated, the maximum a posteriori estimate can be found by 

minimizing the following objective function:  

 

)()())(())((
11 αααα α −−+−−=

−−
PhMzPhMzJ

T
v

T       (2) 

 

where J = the objective function value, z = the vector of measurement values, M( ) = a 

linear function that interpolates the vector of model predictions at the nodal points to the 

location of the measurements, α = the vector of parameters, α = the prior mean of the 

parameters (in this study the unknown parameters are the hydraulic conductivities (K) 

assigned to the grid cells), Pv = the covariance matrix of the measurement errors v, and 

Pα = the prior covariance of the parameters. Multiplying the flow equation (Eq. (1)) with 

two times the head adjoint vector λ and adding this to the objective function (Eq. (2)) 

yields: 

 

[ ]qhAPhMzPhMzJ
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11 αλαααα α     (3) 

 

The addition of the flow equation to the objective function as a constraint allows for the 

parameters and heads to be treated independently, which has major computational 

advantages. 

The objective function is minimized if the gradients of the objective function with respect 

to α, h and λ are zero. Forcing this on Eq. (3) yields a system of three coupled Euler-

Lagrange equations (see Appendix). The solution of this system of equations gives the 

set of parameters α that minimizes the objective function. In order to decouple the Euler-

Lagrange equations, the parameter and state variables are expressed as an expansion 

in a set of basis functions (see Appendix). Every measurement adds a term to this 

expansion, which consists of (i) a representer, quantifying the influence of the 

measurement on the estimates of the variable for which the expansion is defined; (ii) a 

representer coefficient, quantifying the weight given to the representer (which depends 

on the misfit between measurement value and measurement prediction). 

By inserting the representer definitions in the Euler-Lagrange equations, explicit 

expressions for all representers and their coefficients can be obtained (see Appendix). 
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The adjoint head representer, the parameter representer and the head representer are 

calculated, respectively, in an iterative procedure, in which the unknowns in the 

representer expressions are replaced by their estimates from the previous iteration. Tlast 

step in each iteration is the calculation of the representer coefficients, which are actually 

the independent parameters of the inverse model. Since there is one representer 

coefficient for every measurement, the number of independent unknowns is reduced to 

the number of measurements. 

 

 

4.2.3.  Data Transformation and Backtransformation 

In the unimodal case, the condition of normality of α in the Bayesian framework outlined 

above is usually obeyed by using the natural logarithm of K (LN(K)) for α, as previous 

research suggested that K values in the field exhibit a lognormal-like distribution 

[Freeze, 1975; Hoeksema and Kitanidis, 1985]. In the multimodal case, the condition of 

normality can be fulfilled by performing another, more complex transformation, relating 

the cumulative probability of the parameters to the cumulative probability density 

function (pdf) of the standard normal distribution. 

The multimodal lognormal distribution function of the parameter K is described by: 
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where Pi, )( iKLNσ  and <LN(Ki)> are the marginal probability and the standard deviation 

and mean value of LN(K) belonging to lithology i, respectively. N is the number of 

lithologies. 

The corresponding cumulative distribution function (cdf) is then given by: 
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where erfc is the complementary error function. The Gaussian deviate of K, denoted α, 

can then be found by equating the cumulative probability of K with the cumulative 

probability of the cdf of the standard normal distribution: 
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where erf is the error function. 

As FK(K) is known from Eq. (5), α can be calculated using the inverse of the cumulative 

standard normal distribution function. The transformation procedure is illustrated in 

Figure 1. 

The backtransformation of α can be achieved with a hybrid Newton-Raphson/Bisection 

root finding algorithm [Press et al., 1986] to look for the value of K that equates Eq. (5) 

Figure 1. Illustration of the data transformation procedure, from FLNK, the 

cumulative probability function of LN K (a), to Fα, the cumulative probability 

function of α (b). 
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with Eq. (6). The derivative of K with respect to α, needed for the Newton-Raphson 

algorithm and also for the evaluation Eq. (A9), is given by: 
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α=             (7) 

 

The property formalized in Eq. 7 makes that the proposed transformation is easy to 

implement in existing inverse algorithms. 

 

 

4.2.4. Prior fields 

In this Chapter, two different types of calibration are performed: calibration starting from 

a homogeneous prior field and Monte Carlo calibration of heterogeneous prior fields. In 

our case of multimodal conductivity distributions both require a very different approach. 

Calibration starting from homogeneous prior fields can serve, for example, as a quick 

assessment of system response (conditional to the available measurements), the 

systems posterior covariances of the parameters and states, and its sensitivities 

[Valstar, 2001; Valstar et al., 2004]. Only one realization has to be calibrated, and 

therefore this approach may enjoy preference over (usually) time-consuming Monte 

Carlo runs. The representer method allows for the calculation of the posterior parameter 

and state variances by applying a linearization around the last estimates [Valstar, 2001; 

Valstar et al., 2004], and these posterior variances can be used, for instance, to guide 

future measurement campaigns. 

More challenging than the calibration of initially homogeneous fields, where no 

reproduction of the reference geostatistics is pursued, is the inverse modeling of 

heterogeneous multimodal prior fields. This is necessary if, for example, a realistic 

system representation is needed or if one wants to quantify the inherent uncertainty in 

model predictions made with a model in which the linearization assumption is not valid. 

In that case, a Monte Carlo analysis has to be performed, which means that a large 

number of unconditional realizations that obey the reference statistics are calibrated into 

equiprobable realizations that still obey the reference statistics but are now also 

conditional to all measurements. 
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If, however, a heterogeneous, multimodal realization is calibrated with the procedure 

described above, the resulting calibrated realization will not obey the reference 

geostatistics. This is the case because the α-variogram is a composite variogram 

constructed from N+1 different covariance functions C: Ci, (i = 1,2 …N) and CI (I stands 

for Indicator). Since the variance gain over a certain lag distance can never be the exact 

representation of the variance gain of more than one variable, information is always lost 

when variograms are combined. The N+1 separate variograms can therefore (after 

backtransformation) never be reproduced when the α-variogram is used for simulation. 

Furthermore, simulation using the α-variogram induces cross-correlation between the 

intra-lithology K distributions that was originally not there. 

As a solution. we have designed an iterative posterior conditioning procedure that 

preserves the original correlation structure of the indicator field. As the method is better 

explained using a specific numerical example, its details will be discussed in Section 

4.3.5. 

 

 

4.3. Simulation 

4.3.1.Conceptual Model 

We considered the synthetic example of a 2D complex confining layer of 500 (length) by 

20 (depth) m, discretized into 250 × 40 elements. Only the hydraulic conductivies to be 

assigned to the cells of this confining layer are assumed unknown. Thus, the number of 

parameters to be estimated is 104. On top of the confining layer we assumed a 

homogeneous sandy layer of anthropogenic origin with a thickness of 3 m (discretized 

into 250 x 1 elements) and a known hydraulic conductivity of 3.0 m/d, and underneath 

the confining layer we assumed a sandy aquifer with a thickness of 10 m (discretized 

into 250 x 1 elements) and a known value for K of 0.6 m/d. 

A steady-state head distribution was obtained with MODFLOW [McDonald and 

Harbaugh, 1984] by assigning recharge (250 mm/y) to the top of every top layer grid cell 

and by imposing constant heads of 0.0 m and 2.0 m in the utmost left and utmost right 

cell of the aquifer layer, respectively. A schematic representation of the flow model is 

given in Figure 2. 
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4.3.2. Reference confining layer and reference geostatistics 

The measurements with which the calibrations in this study were performed were 

obtained from a bimodal as well as a trimodal synthetic reference (or “true”) field. These 

reference fields were constructed in two steps: first, an unconditional two-class (or three-

class) indicator field I(x) (x(x1,x2) is the vector of Cartesian coordinates, I = 1,2 or 3) was 

generated with the GSLIB program SISIM [Deutsch and Journel, 1998]. Then, using the 

GSLIB program SGSIM, an intra-lithology hydraulic conductivity distribution was 

generated for every lithology type (Yi(x) = LN(Ki(x)), i = 1, 2 or 3). The intra-lithology K 

distributions were combined into one continuous bi- or trimodal realization of K(x) 

according to the indicator field (K(x) = Ki(x) if I(x) = i). The properties of the indicator 

fields and the continuous intra-lithology distributions are given in Table 1. The reference 

indicator fields are shown in Figure 3. 

Figure 2. Schematic representation of the flow model. Bold border lines 

indicate no-flow boundaries. Arrows indicate water sources and sinks. CHB = 

constant head boundary. RCH = Recharge. 
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Table 1. Geostatistics of the unconditional indicator fields, continuous fields 

and the transformed fields. Numerical subscripts indicate lithologies. 

Subscript H stands for the horizontal direction, subscript Z for the vertical 

direction. (*) Only given for the bimodal case. 

Parameter Value 

Indicator Fields 

P1 for Bimodal case 0.75 

P2 for Bimodal case 0.25 

P1 = P2 = P3 for Trimodal case 0.33 

aH,1 (m) = aH,2 = aH,3 100.0 

aZ,1 (m) = aZ,2 = aZ,3 10.0 

Variogram model Exponential 

Continuous Fields 

<Y1> (LN(m/d)) -4.0 

<Y 2> (LN(m/d)) 1.0 

<Y 3> (LN(m/d)) -2.0 

2

1Yσ  (-) = 
2

2Yσ =
2

3Yσ  0.05 

1H,a K (m) 20.0 

1Z,a K (m) 3.5 

2H,a K (m) = 
3H,a K  10.0 

2Z,a K (m) = 
3Z,a K  3.0 

Variogram model Exponential 

“Equivalent” Unimodal Fields
* 

<Y> (LN(m/d)) -2.75 

2
Yσ  (-) 4.74 

Variogram model Eq. 9 

Transformed Fields 

<α> (-) 0.0 

2
ασ (-)

 1.0 

aH,α(m) Bimodal / Trimodal 78.01 / 84.00 

aZ,α(m) Bimodal / Trimodal 8.30 / 9.50 

wH,α Bimodal / Trimodal 0.67 / 0.83 

wZ,α Bimodal / Trimodal 0.73 / 0.78 

Variogram model Eq. 8 
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When transforming a multimodal lognormal hydraulic conductivity field into a standard 

normally distributed one, its original geostatistical structure will be lost. In the first place, 

the transformed field, being standard normally distributed, will always have a mean and 

sill of approximately 0.0 and 1.0, respectively. Furthermore, the horizontal (aH) and 

vertical (aZ) ranges change. Finally, also the type of variogram (the variogram model) 

that applies for the transformed field differs from the one for the multimodal lognormal 

field. 

To obtain the parameter covariance matrix (Pα in Eq. (2)) of the transformed field, 5000 

unconditional, equiprobable realizations of the confining layer with the same 

geostatistical properties as the reference confining layer were generated. These 

realizations were then transformed according to the transformation procedure described 

above. Using a modified version of the GSLIB program GAM [Deutsch and Journel, 

1998], the average horizontal and vertical variogram of all transformed realizations were 

calculated, constituting Pα.  

Table 1 gives the geostatistical parameters for the transformed fields as they resulted  

from this multi-realization approach. It appeared that for both the bi- and the trimodal 

case, the variograms could be described very well with the following model: 

 






















−−⋅=

w

w

a

s
cs

3
exp1)(γ  ,         (8) 

 

Figure 3. Reference lithology fields for the bimodal (a) and trimodal (b) 

case. 
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where γ = the variance, c = the sill, s = the lag distance, w is a constant (w < 1), a is the 

effective range and aw is the actual range. Note that not only a but also w is different for 

the two principal directions. Wingle and Poeter [1998] presented a kriging method that 

can handle different variogram models in the different principal directions, and this is the 

method applied for this study. 

Throughout the rest of this chapter, the statistics given in Table 1 for the untransformed 

fields will be referred to as the “reference geostatistics”. 

 

4.3.3. Measurement sets 

In the reference field, 36 measurement locations were selected according to a regular 

grid. Different subsets of these measurement locations were used as input for the 

calibration procedure: we used subsets of 12, 18, 24 and 36 head measurements and 

equally sized subsets of K measurements. In the following, measurement sets will be 

referred to with a code consisting of the number of measurements of each type. For 

example, a measurement set with 18 head and 18 K measurements is indicated as the 

18H18K measurement set. The locations sampled in the various subsets are given in 

Figure 4. This figure holds for both head and K measurements (so a subset of K 

measurements consists of the same measurement locations as the equally sized subset 

of head measurements). 

Gaussian-distributed synthetic measurement errors were added to the head 

measurement values to account for their uncertainty: a measurement error variance of 

0.001 m2 was assumed. The method of incorporation of K measurements in the 

calibration procedure depended on whether a homogeneous prior field was being 

calibrated (Section 4.3.4) or a heterogeneous prior field in a Monte Carlo series (Section 

4.3.5). In the first case, actual continuous K measurements were sampled from the 

reference field and transformed to α, and a measurement error was added to them. A 

measurement error standard deviation of 20 and 10 percent of the mean K value of the 

corresponding lithology was assumed for K measurements that fell into the low and high 

conductivity category, respectively. Note that the measurement variance Pij (i = j) that 

has to be applied to α is dependent on the value of α. In the Monte Carlo series, only the 

lithology type was extracted from the reference field at the measurement locations, and 
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this information was incorporated in the calibration procedure by conditioning the prior 

indicator fields on it. This point is explained further in Section 4.3.5.  

The measurement information, together with the reference geostatistics, was assumed 

to be the only prior information available about the true hydraulic conductivity field. 

 

 

4.3.4. Calibration of homogeneous prior fields  

We performed this type of calibration only for the bimodal case. The absence of prior 

knowledge about the distribution of the parameter α over the domain was expressed by 

setting it at its mean value (α = 0.0) everywhere. For the bimodal case, this value of α 

corresponds to K = 0.06 m/d. The calibration was performed with both the 36H and the 

18H18K measurement set.  

For illustrative purposes, the calibration calculations were repeated using a unimodal 

approach, an approach a modeler inadvertently could choose if he fails to recognize the 

existence of multiple statistical populations of K. The bimodal nature of K is then 

replaced by the normal distribution with the same overall mean and variance. The 

covariance function that is now needed to describe the composite geostatistical 

Figure 4. Configuration of the 12H (a), 18H (b), 24H (c) and 36H (d) 

measurement sets, which are identical to the 12K, 18K, 24K and 36K 

measurement sets, respectively. 
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properties (see Table 1) and to fill Pα can be obtained using the analytical result 

presented by Rubin [1995], Lu and Zhang [2002] and Rubin [2003]:  

 

( ) ( ) ( )2

212
2

21
2

1 )()()()()()( ><−><++++= YYsCsCsCPsCsCPsC III     (9)  

 

where C1, C2, CI and C are the two intra-lithology covariance functions and the indicator 

and composite covariance functions, respectively.  

 

 

4.3.5. Calibration of heterogeneous prior fields 

As stated above, the transformation procedure and therefore also the calibration 

procedure destroy the reference geostatistics. An example of a posterior field calibrated 

on the 24H measurement set, together with the average horizontal prior, theoretical and 

posterior indicator variograms averaged over an ensemble of 100 posterior realizations 

conditioned on the same measurement set, is given in Figure 5. It is clear that the 

integral scales of the lithology field are severely underestimated. However, the calibrated 

field does give information on where the inverse algorithm wants to decrease the 

amount of one lithology in favor of another. This information can be used in an iterative 

posterior conditioning procedure that iteratively results in a conditional realization that 

Figure 5. Example of a calibrated lithology field before posterior conditioning 

(a) and the horizontal prior, theoretical and posterior indicator variograms 

averaged over 100 posterior realizations (also without posterior conditioning) 
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obeys the reference geostatistics. Incorporating this posterior conditioning procedure, 

the complete flow chart of a multimodal prior parameter field calibration consists of the 

following steps: 

1) Generate an indicator field that is conditional to the available hard data (if any) and 

that obeys the reference geostatistics (with SISIM); 

2) Generate (in this study unconditional) Ki (i = 1,2…N) fields (with SGSIM) and combine 

them according to the indicator field; 

3) Calculate the objective function (this objective function is discussed below); 

4) Calibrate the resulting bimodal realization using the methodology described above 

(the use of the representer method is however a matter of choice: also other inverse 

methods can be used). Note: this step results in fields with distorted geostatistics, as the 

field shown in Figure 5a; 

5) Determine which cells in the model have not changed lithology during the calibration; 

6) Generate (with SISIM, using the reference geostatistics) a new indicator field 

conditioned on the cells that have not changed lithology and on the available K 

measurements (if any); 

7) Repeat steps 2-6 until the objective function in step 3 meets a certain convergence 

criterion (this convergence criterion is discussed below); 

8) Combine the resulting lithology field with the initial Ki (i = 1,2…N) fields (from the first 

time that step 2 was executed); 

9) Calibrate the intra-lithology hydraulic conductivity distribution. 

 

Steps 5 and 6 constitute the proposed posterior conditioning procedure. Step 7 is 

referred to as the outer iteration loop of the calibration, to distinguish this iteration loop 

from the iterations performed in the calibration of the transformed field (step 4). These 

are referred to as inner iterations (in this study these are the iterations of the representer 

method). 

The objective function evaluated in step 3 (the objective function for the outer iterations) 

differs from the objective function used in the representer method for the inner iterations 

(see Appendix). The evaluation of the objective function used in the representer method 

requires the calculation of the representer expansions, which can only be done for the 

transformed field. Instead, we simply used a least-squares objective function in step 3, 
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summing, over all measurements, the squared differences between the measurement 

value and the model prediction. The value of the convergence criterion, with which the 

value of the objective function in step 3 is compared, was calculated as follows: 

 

∑
=

+⋅=
measN

meascrit VNC
1m

2
mH,H  σ           (10) 

 

where Nmeas is the number of measurements, VH is the head measurement error 

variance (= constant for all head measurements), and 2
mH,σ is the head variance at 

measurement location m assuming a fully known spatial lithology distribution and a 

completely unknown intra-lithology K distribution. Thus, the first part of the right-hand 

side of Eq. (10) accounts for the measurement errors, which allow a certain deviation of 

the model predictions made with the calibrated realization from the measurement 

values. The second part of the right-hand side reflects the variance that can be resolved 

by calibrating the intra-lithology hydraulic conductivity distributions, after an appropriate 

lithology distribution has been found. So, this variance does not have to be resolved 

during the calibration of the lithology distribution. An approximate value for 2
mH,σ was 

obtained by calculating the average squared difference between the reference head 

value at the measurement location and the head value at the same location in 100 

realizations having the reference lithology distribution but varying Ki (i = 1,2…N) 

realizations. Needless to say that this convergence criterion only works for a synthetic 

calibration case. 

The maximum number of inner iterations allowed in step 4 (iterations of the representer-

based inverse method) was set at 10. Due to the high nonlinearity of the problem, it 

happened occasionally that convergence was not reached after 10 iterations, or that the 

calibration got stuck in a local minimum. However, even fields that are not fully 

calibrated, or fields trapped in a local minimum, contain information about necessary 

parameter adjustments. Therefore, in such situations, the algorithm was set to proceed 

as usual to step 5. 

In step 5, the lithology distribution has to be regained from the continuous α-distribution. 

This was done by backtransforming α to K as explained in Section 4.2.3, and then 

appointing threshold values of K to distinguish between the lithologies. The threshold 
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between two lithologies was set at the value of K (between the two mean values of the 

lithologies) with the lowest probability. Considering the small intra-lithology variances 

and the high contrasts between the mean K values of the lithologies, the probability of 

assigning the wrong lithology type to a certain value of α was extremely low and did not 

hamper the calibration (in terms of reproduction of geostatistics). 

Advancing in the outer iteration loop, the number of conditioning cells used in step 6 

grows, thereby more and more fixing the newly generated indicator field and limiting the 

variation that induces progression in the convergence. This can cause the convergence 

to stop preliminarily. Therefore, in runs in which it was found necessary to promote the 

convergence speed, the new indicator field generated in step 6 was simulated with the 

Kriging of the unknown cells based on only a very small number of previously simulated 

nodes (the value of nodmax in SISIM was set at 2). This reduces the influence of the 

conditioning cells on the simulation of the unknown cells, and thus more variation is 

created in the simulation of these cells. We applied this technique in case both the 

number of outer iterations was larger than 10 and the objective function was still larger 

than 50% of its original value. 

In step 2, new Ki (i = 1,2…N) fields were generated with a randomly sampled value for 

the seed in every iteration. This was found necessary for preserving the reference 

lithology geostatistics, for the following reason. A cell that has not changed lithology 

during a certain outer iteration, is not likely to change lithology in upcoming outer 

iterations either if the prior intra-lithology K distribution with which the calibration in step 

4 starts remains the same: the influence of the measurements on the parameter value of 

this cell (quantified in the parameter representer of this cell) will not change much, leave 

alone that it changes sign. This means that, once a cell has been added to the 

conditioning file (an input file for SISIM with all conditioning cells) used in step 6, it is 

unlikely to be removed from this file during following outer iterations. After every outer 

iteration, cells are added to this conditioning file, and they are there to stay. The set of 

permanent conditioning cells grows fast, and moreover, as in every outer iteration the 

prior indicator field they originate from is different, this set does not obey the correct 

indicator variogram. Thus, the new indicator field generated in step 6 will be increasingly 

distorted. 
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If, however, the intra-lithology K distributions that enter step 4 is changed in every 

iteration, only those cells that do not change lithology in step 4 regardless of this intra-

lithology K distribution, become part of the subset of permanent conditioning cells. 

Changing the intra-lithology K distributions significantly changes the parameter 

representer field, which can make conditioning cells change lithology again and thus 

leave the conditioning file. The subset of permanent conditioning cells still does not obey 

the correct variogram (they still originate from a combination of prior indicator fields), but 

their number increases much slower. In other words: the spatial density of the new 

members to the permanent subset of conditioning cells added per outer iteration, is 

insufficient to adversely affect the spatial indicator correlation in a significant extent. The 

indicator simulation can incorporate them while honoring the imposed variogram. 

The set of remaining (non-permanent) conditioning cells changes from iteration to 

iteration and therefore its disturbing influence on the variogram of the newly generated 

indicator field in step 6 will not increase, but instead is corrected during outer 

subsequent iterations. 

The calibration of the intra-lithology K distributions (step 9) was performed using the 

representer method, assuming zero correlation between cells that have a different 

lithology, and using the appropriate intra-lithology geostatistics to calculate the 

covariance between cells that have the same lithology. 

 

 

4.4.  Results 

4.4.1.  Calibration of homogeneous prior fields 

Figure 6 shows the reference and the prior head distribution within the confining layer. 

The prior field shows a regular head fall from the upper right corner of the domain to the 

lower left corner, where the head was preset at 0.0 m. The reference head field, 

however, shows considerable deviations from this regular pattern, especially at the 

locations of the high-conductivity lenses which locally cause the flow to be more 

horizontally directed than in the prior, homogeneous field. 
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The head and K fields calibrated on the 36H measurement set with the unimodal and the 

bimodal approach, are given in Figure 7. Although both calibration approaches yielded 

head distributions that fit the head measurements equally well, the head fields and the 

calibrated K fields produced by them are clearly very different in nature. In the unimodal 

approach, posterior parameter variance was much smaller than the input variance (see 

Figures 7c and 7e): although the input variance 2
)LN(Kσ of the unimodal approach was 

4.74, the posterior value of 2
)LN(Kσ  was only 0.49. This resulted in a head field (Figure 7a) 

that is still rather smooth compared with the reference head field. In contrast, the 

bimodal calibration approach yielded a much more “realistic” K field (Figures 7d and 7f), 

with two distinct lithologies just as in the reference field. Both the unimodal and the 

bimodal approach predicted the high-conductivity zones at the correct locations (the 

locations of the sand lenses in the reference field), but only in the bimodally calibrated K 

field the difference between the high and low conductivity zones are as pronounced as 

in the reference field. Therefore, the posterior head field of the bimodal approach (Figure 

7b), although equally close to the measurement values, exhibits an overall pattern that 

resembles the reference head field much better than the posterior head field of the 

unimodal approach. Especially the horizontally directed flow at the locations of the high-

conductivity lenses is much better predicted. We also obtained the conditioned travel 

times needed for particles released in the top cell of every column in the numerical 

Figure 6. A comparison, for the bimodal case, between the reference head 

distribution (black lines) and the prior head distribution (white lines and gray 

scale) calculated from the homogeneous prior field. 
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model to reach the lower aquifer, using the particle-tracking software MODPATH 

[Pollock, 1994]. Figure 8 illustrates that the bimodal approach also results in a major 

improvement of the transport predictions. 

 

 

Figure 7. Calibration results obtained with the unimodal (a, c, and e) and the 

bimodal approach (b, d, and f). Figures 7a and 7b compare the calibrated head 

fields (white lines and gray scale) with the reference head distribution (black 

lines). Figures 7c and 7d show the calibrated LN K distributions. 
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4.4.2. Calibration of heterogeneous prior fields 

For the calibration procedure outlined in Section 4.3.5 to succeed (that is, to result in 

equiprobable realizations obeying the reference geostatistics and conditional to all the 

measurements) it is crucial that during the calibration in step 4 of the calibration flow 

chart (Section 4.3.5) the properties of α (specifically the shape of its distribution and its 

variogram) are preserved. Otherwise, a bias will be introduced that will propagate 

through the iterative posterior conditioning procedure (the outer iterations). Figure 9a 

shows, for the bimodal case, the α-histogram of 200 Monte Carlo realizations calibrated 

(without posterior conditioning) with the representer method, starting from random 

continuous bimodal fields and using the 24H measurement set. This histogram is 

compared to the theoretical histogram defined by the standard normal distribution. To 

exclude the influence of the reference field on the posterior histogram (which would 

result in a systematic bias), every unconditional realization from the Monte Carlo series 

was calibrated using measurements taken from a different reference field. Whereas the 

prior distribution of α matched the theoretical distribution almost perfectly (data not 

shown), the calibration introduces a minor bias of α towards values that are close to the 

lithology threshold (α = 0.675). It is conceivable that this is due to the extremely high 

value of the derivative dK/dα at this threshold, which can trick cells into an unjustified 

Figure 8. Unconditional (“Prior”) and conditional (to the 36H (a) and the 

18H18K (b) measurement set) travel times needed for particles starting 

from the top of the anthropogenic layer to reach the groundwater layer, 

compared with the reference (“REF”) travel times. “UNI” = unimodal 

approach, “BI” = bimodal approach. 
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lithology switch. In later iterations, this switch will sometimes not be completely undone 

anymore, but only partially by moving the α-value of this cell close to the threshold value. 

However, after backtransformation of the values with which the α-histogram was 

constructed, this bias appears not to affect the relative proportions of the two lithologies, 

and it only has an insignificant effect on the shape of the intra-lithology hydraulic 

conductivity probabilities (see Figure 9b). 

Figure 9. (a) Comparison of the posterior α histogram with the theoretical 

variogram as given by the standard normal distribution (black line). (b) 

Comparison between the prior and posterior LN K distributions. The dotted 

line gives the numerical difference between the two. (c) Comparison of the 

averaged posterior α variogram with the averaged prior and model variogram. 

(d) Example of the development of the objective function (logarithmic scale) 

during the calibration of one specific multimodal field, together with the 

development of the number of conditioning cells used in step 6 of the 

calibration flow chart (see Section 4.3.5). 
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Except for a minor reduction of the sill variance due to the small bias discussed above, 

the horizontal α-variogram is preserved well after calibration (see Figure 9c): the range 

and the model type are unaffected. The reproduction of the vertical α-variogram was 

equally good. In summary, Figure 9 shows that the representer method is able to handle 

the calibration of the normal transform of a bimodal variable in a satisfactory manner, 

despite of the difficulties that were to be expected because of the very high value of 

dK/dα at the threshold value of α. 

Figure 9d shows, for one particular initial realization in this Monte Carlo run, the 

development of the objective function as evaluated in step 3 of the calibration flow chart, 

as well as the number of conditioning cells used in step 6 to generate the next lithology 

field. 

Decisive substantiation of the proposed method for the calibration of continuous 

multimodal fields is achieved if the average statistical properties of a sufficient number of 

conditional realizations are shown to be close to the reference statistics. To this aim, 100 

unconditional random continuous bimodal realizations were calibrated on the 24H 

measurement set, again using a different reference field for every realization to be 

calibrated. This number of Monte Carlo calculations appeared to be enough to achieve 

Figure 10. (a) Comparison of the posterior indicator variograms, both 

averaged over all posterior realizations (“Posterior 1”) and averaged over only 

those realizations, the calibration of which did not require adjustment of 

nodmax (“Posterior 2”), with the averaged prior indicator variogram and the 

model variogram. (b) Comparison of the averaged posterior intra-lithology 

variogram with the averaged prior and model variogram. 



Inverse Modeling of Multimodal Spatial Parameter Distributions   

 120 

convergence of the results (average variograms). Figure 10a shows a comparison 

between the horizontal indicator variogram modeled using the reference statistics (see 

Table 1) and the averaged prior and posterior (line “Posterior 1”) horizontal indicator 

variogram. It shows that during calibration, the prior indicator variogram is preserved 

reasonably well. The small deformation of the variogram is caused by lowering nodmax 

in SISIM in slowly converging realizations (see §3.5): the average posterior variogram of 

the 51 (out of 100) realizations that did not require lowering nodmax in their calibration 

(line “Posterior 2” in Figure 10a) resembles the prior variogram very well. Equally good 

results were found for the vertical indicator variogram. 

After the convergence criterion for the calibration of the lithology distribution was met, 

the intra-lithology hydraulic conductivity distributions were calibrated (step 9 in Section 

4.3.5). For all 100 Monte Carlo realizations, only one extra iteration was required with 

the representer method to fulfill the convergence criterion. Figure 10b shows that the 

match between the average posterior horizontal intra-lithology K variogram and the 

model and average prior variogram is nearly perfect. The fact that the intra-lithology 

conductivity distributions could be calibrated to the measurements without disturbing the 

prior geostatistics further illustrates that the calibrated lithology fields agreed with the 

measurements sufficiently well. 

Figure 11 and 12 show a performance test for the proposed calibration procedure, 

respectively for the bimodal and the trimodal field. From left to right, the number of K 

Figure 11. Performance test for the bimodal case. From left to right, the 

number of K measurements increases, and from top to bottom the number of 

head measurements increases. 
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measurements is increased, and from top to bottom the number of head measurements 

is increased, both from 0 to 36. Thus, the image in the upper left corner of both figures 

shows the unconditional realization, while the image in the lower right corner shows the 

maximally conditioned realization that is possible with the chosen measurement sets. 

Figure 11 and Figure 12 further substantiate that data are correctly integrated by the 

proposed multimodal calibration method, as they show that the more data are used, the 

better the reference fields are reproduced. Moreover, both figures illustrate that when 

both types of measurements are used together, they have a complementary effect. A 

quantification of the improvement of the reference field reproduction is given in Figure 

13. 

Comparing Figure 13a with 13b reveals that, especially for head measurements, 

reproducing the reference lithology distribution requires much more sampling effort when 

the number of lithologies is larger. This can easily be explained from the increased 

number of possible lithology configurations that produce the same head responses at 

the measurement locations and still are conditional to the hard data. In the trimodal field 

(Figure 12), it takes the most extended conditioning set to capture most of the reference 

field characteristics. The poor resemblance, still, of the right hand quarter of the 

maximally conditioned field with the reference field is due to the small prior head 

variance in this area (dictated by the boundary conditions), indicating a small information 

content of the head measurements in that area. 

Figure 12. Performance test for the trimodal case. 
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In Figure 13a it can be seen that a better reproduction of the true lithology distribution is 

achieved when using the 36H measurement set than when additional to this 

measurement set observations of K are incorporated in the calibration. The reason is 

that K measurements, depending on their location, can introduce a bias into the site 

characterization that is only corrected by H measurements for the part that is important 

for reproducing the head at the measurement locations. The opposite, a worse lithology 

reproduction when including more H measurements, can also happen (for instance 

when going from the 12H24K to the 24H24K measurement set in Figure 13a). 

Depending on the location of the additional head measurements, the solution towards 

reproducing all measurements is not always found in lithology changes towards the 

reference lithology field. In other words, also head measurements can introduce a bias. 

Both phenomena make that a monotonically decreasing value of SI (the number of cells 

in the posterior field not having the correct lithology) in Figure 13 is not guaranteed.  

 

 

4.5.  Discussion and Conclusions 

We proposed a method that can generate realizations of a continuous, multimodal 

hydraulic conductivity distribution, conditioned on both state measurements and static 

data. 

Figure 13. Quantification of the match between the reference field and the 

fields shown in Figures 11 (Fig. 13a) and 12 (Fig. 13b). SI = the number of 

cells with a lithology that is different from the lithology in the corresponding 

cell of the reference field. 
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In the current presentation, the proposed method is used in conjunction with the 

representer-based inverse method. In this case, the geostatistical parameterization of 

the method is simple: it only requires prior estimates of the lithology ratios and 

variograms, prior estimates of the intra-lithology K statistics, and a variogram analysis on 

(a large number of) transformed fields. The method, when compared to the unimodal 

application of the representer algorithm, only involves (i) the replacement of the usual 

logarithmic transformation applied on the hydraulic conductivity data; (ii) recalculation of 

the parameter covariance matrix for the transformed parameter, and (iii) a 

backtransformation procedure. For calibration of heterogeneous, multimodal prior fields, 

we proposed an iterative posterior conditioning procedure that ensures the preservation 

of the original geostatistics. 

In the example calculations, contrasts between the hydraulic conductivities of the 

various lithologies were large. In this situation, the intra-lithology hydraulic conductivity 

distributions will only have a very minor influence on the flow and therefore their 

calibration (step 9 in the calibration flow chart) serves no practical purpose. We chose to 

use high contrast examples to demonstrate the applicability of our method in 

combination with the representer-based inverse algorithm, even when the problem is 

highly nonlinear and the derivative of K to α is locally very large, potentially causing 

numerical instability from Eq. (7). In our examples, this did not keep the calibration 

algorithm from finding realistic solutions to the inverse problem. For less contrasting 

lithologies and for wider intra-lithology K distributions, problems from Eq. (7) are likely to 

be alleviated, so the method is readily applicable to these cases. 

It is emphasized here, however, that the proposed method can be applied in conjunction 

with any other suitable inverse algorithm besides the representer-based algorithm. 

Therefore, even if the representer method should run into problems due to instability 

from Eq. (7), other inverse algorithms could be used that might suffer less from the large 

derivatives causing this instability. 

It should be noted here that our methodology needs modification when applied to 

significantly overlapping intra-lithology K distributions, as that case asks for a more 

involved translation procedure from K to lithology.  

The required CPU time is the most important disadvantage of the proposed method. In 

the iterative posterior conditioning procedure, the parameter field has to be calibrated 
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repeatedly. Using an Intel Pentium 4 2.4 GHz processor with 256 Mb internal memory, it 

took between 2 and 10 hours to calibrate one realization on 24 head measurements. Of 

course, the computation time depends mostly on the efficiency of the inverse algorithm 

applied for the calibration of the transformed, standard normal parameter field (the inner 

calibration). 

 

 

Appendix: inference of the parameterization by representers 

For easy reference, we provide a condensed derivation of the set of Euler-Lagrange 

equations and its solution. For a full derivation we refer to Valstar [2001] and Valstar et 

al. [2004]. 

In the minimum of the objective function the variation of the objective function is zero for 

any variation of the random variables. Forcing this condition on Eq. (3) yields the Euler-

Lagrange equations: 
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where f and g range from 1 to the number of head state variables; k and l range from 1 

to the number of uncertain parameters; and n and p range from 1 to the number of 

measurements. Indices repeated within a single product term are assumed to be 

summed over appropriate ranges.  

The solution of the set of equations given by Eq. (A1), (A2) and (A3) minimizes the 

objective function. For this solution, an efficient parameterization with representers is 

applied. The definitions of the representer functions are: 
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where b = the vector of representer coefficients, fpΓ  = the head adjoint representer for 

measurement p, calculated for head state variable f, lpΨ  = the parameter representer for 

measurement p, calculated for uncertain parameter l, 
gFh  = the prior estimates of the 

heads, gpΞ  = the head representer for measurement p, calculated for head state 

variable g, 
gcorrh  = a head correction term, needed to fulfill the flow equation (as the 

head expansion is performed around the last estimates, whereas the parameters are 

expanded around their prior means), Nz = the number of measurements, and lα  = the 

prior estimates of the parameters. Defining b as: 
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and subsequently inserting the representer definitions in the Euler-Lagrange equations 

and dividing by Eq. (A7) yields explicit expressions for all representers and the 

correction term. These expressions still depend on the optimal estimates for the 

parameters and state variables, which are unknown initially and have to be found 

iteratively. During iteration η, the head adjoint representer η
fpΓ  is given by: 
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The expression for the parameter representer η
lpΨ  is: 
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The expression for the head representer η
gpΞ  is: 
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The expression for the head correction term 
gcorrh  is: 
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And finally, the representer coefficients η
pb  can be calculated by a rearrangement of Eq. 

(A7): 

 

[ ] ))(())(( ηηη
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where )( η
pnM Ξ is the representer matrix, which consists of all representers at the 

locations of the measurements. 

The algorithm was assumed to have reached convergence when all differences between 

the measurement predictions from the representer expansion ( bhh corrF Ξ++ ) and the 

measurement predictions from the forward model with the updated parameters were 

smaller than a threshold value. For this research, this threshold value was set at 0.015 

m. 
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5.1. Introduction 

In groundwater model calibration studies, if one of the (spatially distributed) parameters 

that have to be calibrated contains more than one statistical population, the incidences 

of these different populations are often predefined, and calibration focuses on the intra-

population parameter distribution. In other words, the uncertain spatial distribution of the 

statistical populations is not allowed to explain deviations between measurements and 

model predictions during calibration. The model variation necessary to fit the 

measurements can then be shifted to the intra-population parameters or other 

parameters that are being calibrated, which can result in exaggerated and unjustified 

parameter adjustments, potentially rendering unrealistic parameter realizations. 

Recently, we presented a method for the Bayesian calibration of multimodal parameter 

distributions [Janssen et al., 2006 (Chapter 4)]. This method allows for the simultaneous 

calibration of both the spatial distribution of different statistical populations of a 

parameter (e.g. classes, lithologies, lithofacies) and the distribution of parameter values 

within the statistical populations (e.g. conductivities, porosities).  

The purpose of the work in the present chapter is twofold. First, we demonstrate the 

applicability of the multimodal calibration method of Janssen et al. [2006] to real-world 

situations. Second, we investigate the added value of the method compared to a 

conventional approach (i.e. with fixed positions of the statistical populations) for real-

world calibration studies. The presumption is, that the added value is established if both 

approaches lead to significantly different results, and that in such a case the result of the 

proposed multimodal method deserves more confidence as the uncertainties involved in 

the model parameterization are treated in a more complete and therefore more fair 

fashion. To ensure conclusive results with respect to both research questions, a real-

world case was chosen for which the positions of the statistical populations significantly 

affect the sampled variables (i.e., head values in this study). 

This study introduces four differences with respect to Chapter 4. First of all, Chapter 4 

concerned a hypothetical situation and a synthetic data set (for the sake of method 

demonstration), whereas the current study displays a real world case. A second 

difference, which follows directly from the first, is that in the current study the bimodal 

parameter field is calibrated together with other uncertain parameter fields. To our 

knowledge, this study is the first to demonstrate this ability, and this statement also 
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holds in general for the Bayesian co-calibration of multiple spatially correlated parameter 

fields of which one is non-Gaussian. A third difference is constituted by some 

improvements made to the original method to expedite convergence. Finally, a relatively 

minor difference between the previous and the current study is that in the first the 

method is applied to horizontal transmissivities, whereas here it is applied to the vertical 

conductance between two (model) layers. 

 

 

5.2. Method 

5.2.1. Theory 

The method largely follows Janssen et al. [2006] (Chapter 4). For the reader’s 

convenience, it is briefly restated here. The steps to be taken are schematically 

visualized in Figure 1, to which is referred in the following explanation of the method. 

First, using prior information (expert knowledge, hard data etc.), the geostatistical 

properties of the different statistical populations (e.g. lithologies) and their spatial 

distribution are estimated, based on which a realization is generated for the occurrence 

of the statistical populations (Fig. 1-1), and for the intra-population parameter fields 

(transmissivities, conductances, porosities, etc., see Fig. 1-2 and 1-3). These 

realizations are combined to one multimodal parameter field as shown in Fig. 1-4. This is 

the prior estimation of reality that will now be calibrated. In order to take away the fatal 

properties of this multimodal parameter field for the applicability of existing inverse 

methods (see Chapter 4), the parameter field in Fig. 1-4 is transformed to the standard 

normal distribution (Fig. 1-5). In case the field in Figure 1-4 has a bimodal lognormal 

distribution, the transformation equations of Janssen et al. [2006] (Chapter 4) can be 

used for this purpose. 

The inverse algorithm subsequently applied for the calibration of the transformed 

parameter field (we call this the inner iteration loop), requires the geostatistical 

properties of the standard normally distributed parameter. This transformed distribution 

per definition has unit variance, the ranges can be obtained by a Monte Carlo analysis 

on a large number of transformed fields, and a suitable geostatistical model can be 

parameterized by a nonlinear regression analysis on the variogram. 
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After back-transformation, the result of this calibration step is a bimodal parameter field 

that obeys the measurement information (Fig. 1-6), to the extent determined by the 

strength of the chosen inverse algorithm and the convergence criterion. However, due to 

the fact that, by effectively combining the geostatistical properties of both statistical 

populations and their spatial distribution into one variogram, inevitably geostatistical 

information gets lost, and the geostatistics of this parameter field are distorted with 

respect to the original geostatistics used to construct the fields in Fig. 1-1, 1-2 and 1-3. 

The working hypothesis is, however, that nonetheless this calibrated field contains much 

information on necessary switches in statistical populations to reduce the objective 

function. This information is made use of by selecting those cells that have not switched 

to the other statistical population (see for example the colored areas in Fig 1-7) and by 

using these cells to condition a new spatial distribution of the statistical populations. In 

the remaining cells (e.g. the white areas in Fig 1-7) the simulator used for the generation 

of this spatial distribution has freedom to introduce modifications with respect to the prior 

spatial distribution. Although not guaranteed, these modifications are likely to result in 

objective function reduction (compared to the prior field), since during the inner 

calibration they were introduced too. The spatial distribution of the statistical populations, 

newly generated in this way, is combined again with new realizations of the intra-

population parameter distribution and it is evaluated whether the new bimodal parameter 

field results in a sufficient match between model results and state observations (see 

Section 5.2.3. for the criterion used). If negative, the steps sketched above are repeated 

until it does (we call this the outer iteration loop, and this process of conditioning new 

“prior” multimodal fields on the cells that have not changed lithology during the inner 

calibration is referred to as iterative posterior conditioning in Chapter 4). If affirmative, 

the spatial distribution of the statistical populations is accepted, and a final run, here 

called a “postrun”, is performed (Fig. 1-8). This postrun consists of a “conventional” 

calibration, by which we mean here that the positions of the statistical populations are 

fixed at their calibrated positions and only the intra-population parameter fields (set back 

at their prior means) are calibrated. This postrun is necessary, because the parameter 

values assigned to these populations in Fig. 1-4 are still uncalibrated at the point where 

the convergence criterion for the outer calibration loop is evaluated. Note, however, that 

their uncertainty is taken into account while calibrating the indicator field via the outer ite- 
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Figure 1. Schematic overview of the multimodal calibration method. For 

explanation see text. 
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-rations, as they are co-estimated when calibrating the transformed field (inner 

iterations).  

 

 

5.2.2. Toolbox 

For the simulation of the spatial distributions of the statistical populations we used the 

sequential indicator simulator SISIM [Deutsch and Journel, 1992]. The sequential 

Gaussian simulator SGSIM [Deutsch and Journel, 1992] was used to generate the 

continuous parameter fields for every statistical population. 

For the inner iteration loop and the postrun, the Bayesian, representer-based inverse 

method [Valstar, 2001; Valstar et al. 2004] was used. Major advantage of this inverse 

method is the fact that the method is “optimal” with respect to the amount of information 

extracted from the observations in the Bayesian context. Other inverse methods can, 

however, be used also.  

 

 

5.2.3. Adjustments and extension of the original method 

For the current study, a number of adjustments were made with respect to the original 

presentation of the methodology in Janssen et al. [2006]. The most important adjustment 

is that in the current case study the calibration will not be limited to the multimodally 

distributed parameter, but simultaneously also other stochastic fields are calibrated. 

These fields are all assumed to be lognormally distributed and geostatistics have been 

derived for their Gaussian distributed, lognormal transform. This means that the 

calibrated values of these parameters, resulting from an inner iteration loop, can be 

adopted in the new model created at the start of the subsequent outer iteration or in the 

postrun, as their spatial correlation is not disrupted by an additional transformation 

procedure. Their mean (expected) values, however, are kept constant at the prior 

estimates during the entire calibration (outer iterations and postrun), to prevent the 

parameters to continuously drift away from the expected values, as that can result in 

unrealistic parameter values.  

Second, at the start of an outer iteration, not one but ten new bimodal parameter 

realizations (Fig. 1-4) are generated, and the best realization (the one with the lowest 
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objective function value) is chosen to enter the next inner calibration loop. In preliminary 

calculations, this was found to dramatically expedite convergence and might even 

alleviate the convergence problems mentioned in Janssen et al. [2006], although this 

latter suggestion was not verified. 

Finally, whereas the convergence of the outer calibration loop was tied to a certain value 

of the objective function in Janssen et al. [2006], here we simply consider the outer 

calibration to be converged if the objective function value has not significantly been 

reduced during a number of successive outer iterations (evaluated by visual inspection 

of the objective function value development). The reason for this other approach is that 

the convergence criterion applied to the synthetic case in Janssen et al. [2006] requires 

a fully known “true” spatial distribution of the statistical populations, a requirement that of 

course can not be fulfilled when dealing with a real-world case study. 

 

 

5.3. Model area 

The area chosen for the real-world case study is located in the east of the Netherlands 

(see Figure 1a). This area was chosen because of the availability of a large dataset and 

a state-of-the-art groundwater model (see next Section), and the presence of a highly 

discontinuous and heterogeneous clay layer at a depth of about 10 meters below the soil 

surface. Besides the heterogeneous clay layer, the model area is characterized by:  

• the presence of large groundwater abstraction clusters for drinking water 

production (see Fig. 2b). 

• the presence of two moraines (one in the western part of the domain and one in 

the center part, see Fig. 2c), formed during the last glacial period. At the locations 

of these moraines the surface elevation is higher and the unsaturated zone 

thicker; 

• the Regge river, draining the area between the moraines (see Fig. 2b); 

• intensive drainage in the north-eastern part of the area by a dense surface water 

system (see Fig. 2b). 
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For illustration, Figure 3 shows a 2D schematic east-west cross-section of the model 

area (through approximately the center of the domain) highlighting the position of the 

clay layer in the subsurface. The clay layer acts as a discontinuous confining layer 

between the upper aquifers and the “production aquifer” that contains all water 

abstractions. In previous model studies (mentioned in the next Section), head values 

were found to be quite sensitive to the conductance of this clay layer, which makes it 

ideal for the current study. Its schematization in a groundwater model greatly influences 

the calculated capture zones of the abstraction clusters, as shown by Van Leeuwen et 

al. [1999].  

 

 

5.4. Model description 

Mainly because of the presence of the drinking water abstractions and the resulting 

complex issues with catchment area delineation and protection and effects on 

groundwater levels, this area has been the subject of several previous groundwater 

modeling studies [Hoogendoorn and Te Stroet, 1994; Te Stroet, 1995; Van Leeuwen et 

al., 1999]. Furthermore, the current model area was covered by a MODFLOW model 

B C 

A 

Figure 2. The model area. A) Geographical position in The Netherlands. B) 

Landuse, surface waters and groundwater abstractions. C) Surface elevation 

(NAP = the dutch elevation datum (= “sea level”).  
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developed for a larger area by Snepvangers et al. [2004] and later by Snepvangers et al. 

[2007]. Due to the regional character of the latter two models, the clay layer was not 

calibrated explicitly in these studies. Van Leeuwen et al. [1999] treated the clay layer as 

a stochastic random field, but only conditioned it on borehole information. In 

Hoogendoorn and Te Stroet [1994] and Te Stroet [1995], the clay layer was calibrated 

using a zonation approach, not allowing the position of the clay layer to be altered during 

the calibration. 

For the current study, the area of interest was cut from the regional model built by 

Snepvangers et al. [2004] using MODTMR [Leake and Claar, 1999]. The resulting model 

has a discretization level of 100x100 meters in the horizontal plane, and consists 220 

columns, 220 rows, and 3 layers that represent the 2 upper aquifers and the production 

aquifer as shown in Fig. 3. At the model’s vertical borders, fixed head boundary 

conditions were imposed everywhere, the head values for which were adopted from a 

steady state run with the larger parent model. Boundary conditions in the top model 

layer include rivers, drains, recharge and evapotranspiration. A no-flow boundary 

Figure 3. Conceptual east-west cross-section trough approximately the center 

of the model area. The layers in this cross-section correspond with the 

groundwater model layers. 
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condition was imposed at the bottom of layer 3 (the hydrological base, see Fig. 3). The 

current study only uses the model in steady state. 

The clay layer was accounted for in the vertical conductance between model layer 2 and 

3 (abbreviated as Vcont in the remainder of this chapter). At locations where the clay 

layer is present, Vcont was taken as the quotient of the estimated or measured clay 

thickness D, and the estimated vertical conductivity Kv of the clay (assumed much less 

variable than the clay layer’s thickness and therefore constant, Kv = 0.005 m2/d). So, 

Vcont = Kv/D. The geostatistics of Vcont are therefore directly related to the geostatistics 

of the thickness of the clay layer. For the area outside the clay layer, the geostatistics of 

Vcont were derived from the parent model. The combination of the geostatistical 

population of Vcont values within the clay layer with that of the Vcont values outside the 

clay layer constitutes a bimodal distribution of Vcont.  

For the estimation of the geostatistical properties of the clay layer’s presence and 

thickness the same dataset was used as discussed by Van Leeuwen et al. [1999]. 

Figure 4a (“Full Set”) shows the locations of the 546 borehole drillings used to obtain this 

dataset. Van Leeuwen et al. [1999] showed that the observations of the clay layer’s 

thickness exhibit a lognormal distribution. Also for the vertical conductance at locations 

where the clay layer is absent a lognormal distribution was assumed. Thus, Vcont can 

Figure 4. A) Borehole locations in the model area. B) Probability field for 

clay absence and clay presence, derived from 1000 realizations of the 

indicator field. 

A B 
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be modeled as a bimodal lognormal distribution. Transformation to the standard normal 

distribution can therefore be achieved by applying the same transformation equations as 

used in Janssen et al. [2006]. Table 1 presents all derived geostatistics involved in 

modeling Vcont, as well as those of the standard normal transform of Vcont (acquired by 

Monte Carlo analysis on a large number of transformed Vcont realizations). 

Figure 4b shows the clay occurrence probability field calculated from 1000 Monte Carlo 

realizations of the spatial statistical population distribution, all conditioned on all 

abovementioned boreholes and using the derived geostatistics. In this figure, locations 

where the clay incidence probability is greater than the clay absence probability are 

designated as belonging to the clay layer (and vice versa). The thus created “average” 

Table 1. Geostatistics of the calibrated parameters. γ = semi-variance, s =  lag distance, 

LN = lognormal transform, Vcont = vertical conductance between model layer 2 and 3. 

For the definitions of the groundwater model parameters, we refer to McDonald and 

Harbaugh [1988]. For the definitions of the geostatistical parameters, we refer to 

Webster and Oliver [2001]. 

 

Parameter                                       Value 

Indicator Field 

P1 (marginal probability for “no 

clay”) 

0.8 

P2 (marginal probability for “clay”) 0.2 

a (isotropic range) 5400 m 

n (nugget) 0.05 

c (sill) 0.24 

Variogram model Exponential 

LN(Vcont) no clay 

µ (mean) -3.0 LN(m/d) 

a (isotropic range) 5000 m 

n (nugget) 0.0 

c (sill) 0.28 

Variogram model Exponential 

 

Parameter                                       Value 

LN(Vcont) clay 

µ (mean) -7.0 LN(m/d) 

a (isotropic range) 7000 m 

n (nugget) 0.55 

c (sill) 0.8 

Variogram model Exponential 

Standard Normal Transform of Vcont 

µ (mean) 0.0 

a (isotropic actual range) 1171 m 

n (nugget) 0.0 

c (sill) 1.0 

Variogram model 

γ(s) = c ·[1-exp(-

3s
0.82

/a)] 

 



Simultaneous Calibration of a Clay Layer’s Presence and Conductance: a Real-World Case  

 142 

idea of the clay layer’s extent is considered the best available estimation of its true 

shape, and will be used as such later when evaluating calibration results. 

Besides Vcont, also the spatially distributed transmissivities of model layers 1 and 3, and 

the river conductances are calibrated. Their geostatistical properties, which are input for 

the inverse model, are all adopted from the parent model and given in Table 1. From 

sensitivity analyses performed on both the parent model (results given in Snepvangers 

et al., [2004]) and the current model (results not shown) it was concluded that the 

transmissivities of layers 1 and 3, and the river conductances, are the only parameters 

that have a significant influence on head values at the observation locations within the 

parameters’ uncertainty ranges (given in Table 1). Other parameters were therefore not 

calibrated. 

 

 

5.5. Outline of the performed calculations 

The calibrations in this study were performed using both borehole information (clay 

presence/absence and clay thickness) and head values. The borehole information was 

used to condition the spatial lithology distributions (Fig 1-1) and the continuous vertical 

conductance field for the clay layer (Fig 1-3). Because borehole drilling density in The 

                        Parameter                                                 Value 

LN(Transmissivity Layer 1) 

a (isotropic range) 7000 m 

n (nugget) 0.0 

c (sill) 0.10 

Variogram model Exponential 

LN(Transmissivity Layer 3) 

a (isotropic range) 7000 m 

n (nugget) 0.0 

c (sill) 0.15 

Variogram model Exponential 

 

               Parameter                                                 Value 

LN(River Conductance) Class “Canals” 

a (isotropic range) ∞ m 

n (nugget) 0.0 

c (sill) 0.70 

Variogram model Exponential 

LN(River Conductance) Class “Other” 

a (isotropic range) ∞ m 

n (nugget) 0.0 

c (sill) 0.20 

Variogram model Exponential 

 

Table 1. (Continued) 
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Netherlands is not representative for data availability generally encountered in other 

parts of the world, only a fifth of the “Full Set” in Figure 4a was used for conditioning of 

the prior fields and conditioning during calibration. This “Subset for Calibration” is also 

shown in Figure 4a (colored dots). An advantage that comes with this selection is that 

we were able to use the remaining drillings for validation purposes. Values of Vcont 

outside the clay layer were, apart from the indicator class (or mode) designation and 

inference of geostatistics, never conditioned on borehole data in this study. 

All calibration runs in this study were performed on the same set of 125 groundwater 

head measurements (Figure 5). Only those available head measurements were used 

that are more than 2 km (20 model cells) away from the outer model boundaries, to 

minimize boundary effects in the residuals. 

All calibration runs performed, both the synthetic ones and the real world calibrations, 

started with the same prior model. The simulated realization of Vcont in this prior model 

(conditioned on the “Subset” of boreholes) is shown in Figure 6a. Compared with the 

“average” field (Fig. 4b), the prior clay layer extends much further into the east, has 

much more (continuous) clay in the south and generally underestimates the presence of 

clay in the northwest quarter of the domain. The prior fields of the calibrated parameters 

other than Vcont were identical to the calibrated fields of the parent model. So, in 

contrast to Vcont, these fields were not simulated prior to calibration. The prior fields of 

these parameters are shown in the Appendix (Fig A1a, A2a and A3a). 

 

Figure 5. Head observations observations in the model area, per model layer. 
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The performed calculations consisted of two sets of synthetic calibration runs and one 

set of full-blown, real-world calibrations. A set consisted of an A and a B calibration run, 

the first performed with the proposed multimodal method and the latter with the 

conventional approach (not allowing the clay layer to change shape). 

In the synthetic sets, measurement values at the measurement locations shown in 

Figure 5 were generated using a reference model that is considered to be the “truth”. 

The prior model and the reference model only differed in the bimodal parameter field 

(Vcont) realization. The reference realization of Vcont, conditioned on the “Full Set” of 

boreholes, is shown in Figure 6b. 

In the first synthetic set (runs 1A and 1B) only Vcont was calibrated. The head 

observations were assumed virtually error free. The most important purpose of these 

calibration runs was to check the algorithm and its implementation, and to demonstrate 

its power. Because the observations were assumed virtually error free, and all residuals 

could be explained by Vcont, the reference field is expected to be largely found back. 

This is not necessarily the case if other parameters are calibrated and measurement 

errors are involved. 

In the second synthetic set (runs 2A and 2B), also the other parameters (the 

Figure 6. A) Prior realization of Vcont, conditioned on information from the 

Calibration Set of boreholes (Fig. 2a). B) Reference realization of Vcont, 

conditioned on information from the Full Set of boreholes (Fig. 2a). 

A B 
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transmissivities of layers 1 and 3, and the river conductances) were calibrated. 

Furthermore, realistic measurement error variances were assigned to the head 

observations (based on the true, real world data set). The purpose of runs 2A and 2B 

was to check whether the case shows enough sensitivity of the head values to Vcont to 

constitute an interesting real-world case, and to find out whether the measurement 

errors and other parameters could together obscure adverse effects of neglecting the 

uncertainty involved in delineating the clay layer, by fully absorbing the need to reshape 

the clay layer. 

The actual real-world calibration exercise is constituted by model runs 3A and 3B. Runs 

3A and 3B were identical to runs 2A and 2B, the only difference being that now true 

head observations were used. Thus, the similarity between the synthetic and real-world 

runs was maximized, facilitating the use of the synthetic results to help understand the 

results of the real-world calibration runs 3A and 3B.  

 

 

5.6. Results 

5.6.1. Run 1 (Synthetic) 

The results of run 1A and 1B (synthetic calibration of only the vertical conductance 

between the second and the third model layer) are shown in Figure 7a-d. Figures 7a and 

b compare the Vcont field obtained with respectively the proposed multimodal method 

and the conventional method. In the multimodal calibration, clay occurrence diminished 

substantially in the southern and eastern part of the domain compared to the initial field 

(Fig. 6a). In fact, the multimodal method resulted in a calibrated spatial position of the 

clay layer that much resembles that of reference field (Fig. 6b). 

In the calibrated field that resulted from the conventional approach, on the other hand 

(Fig. 7b, note that the color scale definition is identical to Fig. 7a), a strong bias to higher 

conductance values within the clay layer is evident, as well as a bias towards lower 

conductance values outside it. 

To understand the results, we first need to take a look at the maximum a posteriori 

estimator employed in the representer approach [Schweppe, 1973; Valstar et al., 2004]. 

This estimator penalizes observation misfits, as well as the adjustments of parameters 

(with respect to their prior estimates). In the conventional calibration approach, the 
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positions of the statistical deviations are not allowed to explain (part of) the residuals. 

This makes that the intra-population parameter adjustments, necessary to get a good 

observation reproduction, inevitably are bigger than they need to be if the residuals were 

to be reduced first by optimizing the positions of the statistical populations. In the current 

example, the parameter adjustments in conventional calibration run 1B are so big that 

even the overall parameter distribution as a whole becomes biased. Since in the initial 

field the clay occurrence in most areas is overestimated rather than underestimated, the 

conventional calibration yields a heavy bias towards high conductance values in the 

posterior Vcont distribution for clay. This is also shown in Fig. 7c, in which the posterior 

Vcont distributions for clay are compared with the initial Vcont distribution, indicated by 

the green line. From the posterior Vcont distribution resulting from the conventional 

calibration run (red histogram), it is clear that the calibration caused a large shift in the 

parameter distribution. In Fig. 7c this histogram is cut off, but it extends well into the 

range of values that belong to the “no clay” mode of the bimodal distribution. Using the 

multimodal approach, on the other hand, the shape of the Vcont distribution (white 

histogram) was virtually unaffected, i.e. it remained virtually identical to the Vcont 

distribution taken as the “truth” in this synthetic calibration example. 

Undoubtedly partly due to the same (though inverted) mechanism, also the Vcont values 

outside the clay layer show a bias, as can be observed from the extended dark green 

areas in Fig. 7b (a simple histogram comparison between the prior and posterior 

distribution would however not be fair: because of the long correlation ranges of Vcont 

outside the clay layer, the initial and calibrated realizations of Vcont outside the clay 

layer are far from ergodic). 

In the maximum a posteriori estimator, the need for larger parameter adjustments 

automatically leads to poorer observation reproduction, as the balance between 

parameter adjustment and observation misfits, as searched for in the solution of the 

inverse problem, will shift towards the residuals if parameter adjustments get larger. This 

effect can be observed in Fig. 7d, which shows the development of the objective function 

(sum of squared residuals) during both calibration runs. By letting the clay layer change 

shape, not only the prior distribution of Vcont is preserved, but also a better observation 

reproduction is achieved than when it is fixed at its prior position: the postrun of the 

multimodal calibration resulted in a sum of squared residuals (J) of 0.028 m2, whereas 
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the B-run (conventional approach) converged at J = 0.32 m2. Although also the latter J 

value still implies good observation reproduction, it is more than 11 times the first, and 

observations were therefore approximated considerably better in the multimodal 

calibration run. Moreover, as stated above, in the conventional approach the good 

observation reproduction could only be achieved at the cost of a realistic posterior 

parameter distribution. 

   

Fig. 7A) Calibration result for Vcont achieved with the multimodal method 

(run A). B) Calibration result for Vcont achieved with the conventional 

approach (run B). C) Comparison between, on one hand, the prior histogram 

of Vcont, and the posterior histograms obtained with Run A and B on the 

other. D) Development of the sum of squared residuals during the various 

calibration runs. J = sum of squared residuals. 
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5.6.2. Run 2 (Synthetic) 

Whereas in run 1 only the vertical conductance between the second and third model 

layer was calibrated, and this calibration was performed on synthetic observations which 

were assumed virtually error-free, in run 2 also other parameter fields were calibrated, 

and realistic measurement errors were assigned to the (still synthetic) observation 

values. 

Fig. 8a-d shows the results of both calibration run 2A and 2B. These runs behaved in a 

manner that is comparable to the 1A and 1B runs: again, the multimodal calibration run 

resulted in an adjustment of the prior clay layer towards a realization that more 

resembles the reference field than the prior realization, without introducing a bias in the 

Vcont values (see Fig. 8a). However, the changes made to the shape of the clay layer 

are less pronounced, which is due to the increased number of parameters involved in 

the calibration (presenting the calibration algorithm with more freedom to resolve the 

residuals) and the realistic observation errors that were now assigned to the head 

measurement values (decreasing the need for residual reduction altogether). 

The calibration result of conventional run 2B (Fig. 8b and Fig. 8c, red histogram) again 

exhibits a bias in the Vcont distribution towards higher values of the reference 

distribution, as was observed in the result of run 1B (Fig. 7b). Although the bias is less 

severe than for run 1B, which can be explained by the same reasons as given above for 

the less pronounced adjustment of the clay layer’s position in Fig. 8A compared to Fig. 

7A., the bias is still dramatic. Moreover, the price paid for the reduced bias is a much 

higher value of the objective function after convergence (Fig. 8d) compared to run 1B, 

suggesting that not so much the other parameters are taking over some of the 

explanation of the residuals, as is the calibration algorithm gratefully utilizing the 

relaxation offered by the measurement errors. In run 2A, the algorithm does much less 

so: by bringing the clay layer’s shape in line with the observations, there is much less 

the need to exploit the noise around the measurements, and the residuals are still 

reduced to a very low level. 

The fact that the clay layer’s position was significantly altered in run 2A, and a bias was 

realized when this position change was not allowed in run 2B, confirms that 1) the 

groundwater model shows enough sensitivity to Vcont for it to constitute an interesting 

real-world test case for the multimodal calibration method, and 2) variation of the other 
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calibrated parameters cannot decrease the residuals to the extent that adverse effects of 

the conventional calibration method are masked. This means that if the model is good 

enough, it should be possible to observe the same adverse effects of the conventional 

calibration approach in the real-world case. 

 

Fig. 8A) Calibration result for Vcont achieved with the multimodal method 

(run A). B) Calibration result for Vcont achieved with the conventional 

approach (run B). C) Comparison between, on one hand, the prior histogram 

of Vcont, and the posterior histograms obtained with Run A and B on the 

other. D) Development of the sum of squared residuals during the various 

calibration runs. J = sum of squared residuals. 
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5.6.3. Run 3 (Real-world) 

The calibration results for Vcont of the full-blown real-world runs 3A and 3B are given in 

Figures 9a and 9b, respectively. In Figure 9a it can be seen that in the A-run significant 

modifications were made to the spatial distribution of the clay layer. For easy 

comparison, the change in clay occurrence is visualized in Figure 10. From this figure it 

becomes clear that adjustments largely were made at those locations where, based on 

the differences described above between the probability field (Fig. 4b) and the prior field, 

they were to be expected the most. For example, the calibration clearly reduced the 

occurrence of clay in the south and east part of the domain, whereas the amount of clay 

in the northwest quarter of the area was increased substantially. 

In the result of the conventional approach (Fig. 9b and 9c, red histogram), again a 

significant bias can be observed in the Vcont distribution for clay towards higher values. 

Assuming that all important aspects of the groundwater system other than the clay 

layer’s position were modeled sufficiently well, the same explanations can be attributed 

to this bias as was done in the synthetic cases. Interestingly enough, also the result of 

the multimodal calibration shows a bias now, but in the opposite direction. A simple but 

conceivable explanation for this reduction of the mean conductance of the clay layer 

could be that the prior mean of the vertical conductivity of the clay was overestimated. 

This hint did not present itself during the conventional calibration run. In fact, from that 

run the modeler could conclude that perhaps the vertical conductivity was 

underestimated (considering the bias towards higher conductance values in the 

calibration result). The result would be very different conclusions about well capture 

zones and the protective capacities of the clay layer. 

The adjustments made to the co-calibrated parameter fields (the transmissivities of 

model layer 1, the transmissivities of model layer 3, and the river conductances) are 

illustrated in the Appendix, in Figures A1b-c, A2b-c, and Tabel A1, respectively. From 

these figures and table the general pictures arises that adjustments to the prior fields of 

these parameters were generally much smaller in run 3A than in run 3B, the only 

exception being the river conductances, see Table A1. These results therefore illustrate 

the projection of parameter variation, necessary to fit the measurements, from Vcont to 

the other parameter fields, in case of the conventional calibration approach. 
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Figure 9d shows the development of the sum of squared residuals during the iterative 

calibration runs. The conventional run (green line) was converged after three iterations, 

after which the sum of squared residuals was reduced from 31.3 m2 to 11.59 m2. The 

outer iteration loop of the multimodal calibration run was considered converged after 

iteration 22, when the sum of squared residuals was reduced from 31.3 m2 to 5.97 m2. 

The subsequent postrun converged in three inner iterations, during which the sum of 

Fig. 9A) Calibration result for Vcont achieved with the multimodal method 

(run A). B) Calibration result for Vcont achieved with the conventional 

approach (run B). C) Comparison between, on one hand, the prior histogram 

of Vcont, and the posterior histograms obtained with Run A and B on the 

other. D) Development of the sum of squared residuals during the various 

calibration runs. J = sum of squared residuals. 
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squared residuals was reduced from 6.92 m2 to 5.24 m2. So, the bimodal calibration 

resulted in a sum of squared residuals that was more than 50% less than achieved with 

the conventional approach. This difference is not surprising: improvement in the final 

objective function value was to be expected as the calibration algorithm is presented 

with an extra degree of freedom by allowing switches between statistical populations. 

The question that remains is whether the result produced with the proposed multimodal 

calibration approach is indeed more realistic. This is a difficult issue since the reality is 

not known. However, by not using all available boreholes for the conditioning of the clay 

layer during calibration, a couple of tests can be performed to at least get some 

quantitative scores on plausibility of the calibration results obtained with both 

approaches: 

• Direct point-level comparison of clay layer presence between the calibration 

results and the borehole information. This comes down to counting the number of 

boreholes that was incorrectly modeled with respect to the presence of clay in 

both calibration results. We call this score N- ; 

• Calculation of a plausibility score by cell-by-cell summation of the probability of 

encountering the modeled statistical population at that cell. The probabilities were 

obtained from the probability field shown in Fig. 4b. In mathematical notation: 

 

 Figure 10. Illustration of the changes made to the spatial distribution of the 

prior clay layer during calibration run 3A. 
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in which PR stands for what we call here the probability residual, which we define 

as the difference beween the probability of a perfect model of a completely known 

reality (which is 1), and the probability of the actual model. Furthermore, N is the 

dimension of the indicator array (in this case 220 x 220 = 48400), Ii represents the 

indicator (in this case either clay or “no clay”) at location i, and p(Ii) the probability 

of encountering that indicator at location i.  

The idea of using PR next to N- is that it gives some indication on the general 

improvement of clay layer’s position, which might not always be revealed by point-level 

comparison due to the highly discontinuous nature of the clayer and the amount of 

scatter produced by the indicator simulator SISIM. 

Per definition, the conventional approach yields no improvement on both scores, as the 

clay layer’s position is fixed. The prior and posterior scores for the multimodal approach 

are given in Table 2, together with the relative improvement due to calibration. 

Both plausibility scores show, by coincidence, an improvement of 10 % by calibration 

with the multimodal approach. 

 

 

5.7. Conclusions and Discussion 

We showed that the multimodal calibration method presented by Janssen et al. [2006] is 

applicable to a real world case. Moreover, the calibration of the multimodal, spatially 

correlated parameter field was successfully combined with the calibration of additional 

parameter fields (other than the multimodal one). This ability of Bayesian co-calibration 

Table 2. Plausibility scores for the prior realization of the clay layer and the 

posterior realization resulting from the multimodal calibration run. 

Score Prior Posterior Improvement 

N- 107 96 10 % 

PR 0.242 0.218 10 % 
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of a spatially correlated non-Gaussian parameter field (as is the multimodal parameter 

field of this study) with other spatially correlated parameter fields has, to our knowledge, 

not been reported elsewhere in the hydrological literature. 

As not only the intra-population distributions are uncertain, but the positions of the 

statistical populations of a multimodal field are uncertain as well, the multimodal 

calibration method constitutes a more fair approach to deal with the model’s inherent 

parameter uncertainty. The calculations show that not incorporating the uncertainty of 

the clay layer’s position in the calibration (called the conventional approach in the 

current Chapter) can lead to biases is the calibrated parameter values. The bias can be 

so strong that parameter values become unrealistic for the statistical population they 

belong to. The conventional approach can also lead to different and even opposite 

conclusions about the conductive and protective capacities of the clay layer compared to 

a calibration run in which the clay layer is allowed to change shape. 

If we compare the results obtained using the multimodal calibration method with those of 

the conventional approach, we can conclude that co-calibrating the position of the clay 

layer, as enabled by the approach advocated in this Chapter, is an improvement on 

several aspects. In the synthetic calibration runs, the prior shape of the parameter 

distributions were relatively unaffected, the co-calibrated parameter fields stayed closer 

to their prior means, and lower objective function values were achieved when using the 

multimodal method. Furthermore, also in the real-world case a lower objective function 

value was achieved, most parameter fields stayed closer to their prior means, and, on 

top of that, the number of incorrectly modeled boreholes decreased by 10%, and the 

probability of the indicator field improved as well. If these improvements are considered 

together with the fact that the inverse problem is better formulated by including more of 

the relevant uncertainty, the multimodal calibration approach renders a more reliable 

posterior model than the conventional approach. 

The multimodal approach presents the calibration algorithm with an additional degree of 

freedom compared to the conventional one, and therefore with an extra possibility to 

explain residuals that are in fact caused by model errors. This is not different from 

adding an uncertain parameter to any other calibration effort, but the effects of model 

error masking on model predictions might be stronger if the masking manifests itself 

through unjustified lithology changes. For example, adjustment of the prior model by 
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enlarging the extent of the clay layer in a certain region of the model domain, in order to 

reduce residuals that are in fact caused by model errors, can result in a large 

overestimation of the travel times of contaminants towards nearby groundwater 

abstractions below the clay layer. One way to cope with this risk of masking model errors 

would be to explicitly account for model error in the calibration algorithm (the 

representer-based algorithm is equipped for this, see for example Valstar et al., [2004]). 

Another way would be to make use of complementary data types, providing “second 

opinions” on lithology change as a means for better observation reproduction. Travel 

time / groundwater age determinations and concentration measurements come to mind 

as data types that have particularly high potential with this respect. The theoretical 

framework for implementing groundwater age or travel time information in the 

representer-based inverse algorithm was presented by Janssen et al. [2008]. For 

concentration data, this was done in Valstar [2001] and Valstar et al. [2004]. 
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Appendix 

This Appendix presents the prior fields and the calibration results of the co-calibrated 

parameters: the transmissivities of model layer 1 (Fig. A1), the transmissivities of model 

layer 3 (Fig. A2), and the river conductances (Fig. A3 and Table A1).  

 

 

 

 

A 

C B 

Figure A1. (A) Prior field of the transmissivities of model layer 1, (B) 

adjustment of this prior field during calibration run 3A (in % of the prior 

values), (C) adjustment of this prior field during calibration run 3B (in % of 

the prior values). 
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A 

C B 

Figure A2. (A) Prior field of the transmissivities of model layer 3, (B) 

adjustment of this prior field during calibration run 3A (in % of the prior 

values), (C) adjustment of this prior field during calibration run 3B (in % of 

the prior values). 
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 Adjustment 

Run “Canals” “Other” 

3A (Multimodal) 479 % 360 % 

3B (Conventional) 360 % 310 % 

Figure A3. (A) Prior field of the river conductances, (B) subdivision of the 

streams in classes “Canals” and “Other” (as applied by Snepvangers and 

Minnema [2004]) both having their own statistical properties (see Table 1). 

A B 

Table A1. Adjustments, with respect to the prior field, applied to 

the river conductances during calibration runs 3A and 3B. 
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Implications 

 

 

The general objective of the present thesis was to increase our capabilities to fully, fairly 

and efficiently account for heterogeneity in groundwater models, and to effectively 

manage the uncertainty that inevitably results from this heterogeneity. This chapter 

discusses to what extent this objective has been reached, what the proposed methods 

and obtained results (can) mean for the current practice of groundwater modeling, and 

what improvements are still necessary and/or possible. This chapter does so separately 

for each main chapter of the thesis (Chapters 2-5). 

 

 

Chapter 2 

Chapter 2 presented theory and methodology to account for the effect of heterogeneity 

on local-scale dispersion and mixing in the context of nonlinear bioreactive transport. 

Chapter 2 clearly established that for nonlinear bioreactive transport, asymptotic 

behavior reveals a special regime in the sense that it is neither Fickian nor does it lead 

to the formation of traveling waves. Fickian and traveling wave behavior were shown to 

be extreme regimes. An either Fickian or traveling wave-like asymptotic regime would 

greatly simplify the upscaling of nonlinear reactive transport to typical grid sizes 

employed in real-world groundwater models. Fickian asymptotic behavior would imply 

that upscaling could be achieved by applying the regular convection-dispersion equation 

with an adapted, effective dispersion coefficient. Traveling wave behavior, on the other 

hand, would actually justify the commonly applied upscaling of nonlinear bioreactive 

transport in many commercial and scientific codes: applying the regular convection-

dispersion equation with nonlinear reaction terms. The fact that, for the chosen, realistic 

parameters values used in Chapter 2, traveling wave behavior does not occur, means 

that the upscaling inherently performed in these codes probably does not reflect the 

correct large-scale behavior of the reaction and transport process, and may induce 

errors in the model results. 

The results of Chapter 2 (especially Figures 5 and 6) have shown that, although the 

asymptotic transport behavior never really reached either Fickian or traveling wave 
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behavior for the chosen parameter values, at least these regimes are increasingly 

approximated with increasing distance (especially Fickian for high Peclet values, and 

traveling wave for low Peclet values). For certain combinations of Peclet values and 

bioreaction parameters, other than the ones applied in Chapter 2, the mentioned 

regimes might be approximated quicker. With the ever-increasing availability of 

computer power, however, the level of model grid discretization will tend to increase, 

meaning that grid cells become smaller. In that case, the combinations of bioreaction 

parameters and Peclet numbers, with which either a Fickian or a Traveling Wave regime 

can be assumed to be reached within grid cell dimensions, will probably become more 

extreme and unrealistic. 

To efficiently test the behavior of the nonlinear bioreactive transport process with other 

parameter sets (for example, to test the assumption put forward in the previous 

paragraph, or to gain insight in the performance of bioremediation strategies in 

heterogeneous environments, along the lines of Keijzer [2001]), the availability of (semi-) 

analytical tools is crucial. Chapter 2 established the advective-dispersive stream tube 

approach in combination with the traveling wave approach as an accurate semi-

analytical model that can be used for this purpose. 

Although Chapter 2 has demonstrated that the current practice of upscaling nonlinear 

bioreactive transport probably does not reflect the actual reactive transport regime 

occurring at typical grid cell scales well, the question how to perform the upscaling 

instead was out of the scope of this study. The fact that the bioreactive transport process 

does not reach well-defined regimes at the scale of typically sized model grid cells, 

makes that the upscaling problem for nonlinear bioreactive transport is a current 

research frontier and thus needs further attention. In the meantime, the current practice 

is likely to continue to be the norm. In research aimed at cracking the upscaling problem, 

the stochastic-analytical developments presented in Chapter 2 can be very valuable.  

 

 

Chapter 3 

Chapter 3 presented a means to increase our capabilities with respect to subsurface 

characterization by proposing a method for including travel time information 

(groundwater age, tracer arrival times, etc.) into observation network design. The used 
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representer-based inverse method is very effective for measurement network design, as 

by directly and efficiently calculating linearized covariances between parameters and 

states, the calculation of the posterior parameter covariance matrix for every proposed 

measurement network, as well as time-consuming Monte Carlo analyses, are avoided. 

In Chapter 3, the representer method was extended to allow integration of this new data 

type, and thus a method for measurement network design including this data type was 

obtained. This new method now allows us to optimally profit from the potentially very 

high informative value of a new data collection effort that includes sampling for travel 

time determinations. 

In Chapter 3, the tracers were assumed to undergo strictly advective transport. This is a 

rather limiting (probably the most limiting) assumption. Dispersion will, in natural 

systems, always play a role, increasing with distance and the amount of heterogeneity 

encountered along the way (see also Chapter 2). Therefore, dispersion adds much 

uncertainty to the travel times derived from tracer concentrations. In Chapter 3, 

dispersion was accounted for indirectly by recognizing the added uncertainty and 

applying large error variances to the travel time determinations. For the purpose of 

Chapter 3, which was mainly method development and demonstration, there was no 

need for obtaining actual estimates for the uncertainty, not in the least because the 

study was synthetic. For implementation of the method in a real-world case, however, 

the issue of incorporating the effect of dispersion into the uncertainty estimates should 

be tackled first. 

A number of approaches can potentially assist in this, which include Monte Carlo 

analysis using direct simulation of groundwater age (age-mass approach, Goode [2000]) 

on a large number of equiprobable model realizations calibrated on tracer 

concentrations, or comparison of ages determined using different tracers (as different 

tracers are affected differently by dispersion (e.g. Ekwurzel et al. [1994]). None of these 

approaches have been applied in the literature with the specific aim of arriving at 

quantified age uncertainty estimates for individual determinations. It therefore deserves 

recommendation to further explore them in future research efforts, and to give more 

attention to this research aspect in general. 
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Chapter 4 

Chapter 4 extended the applicability of inverse modeling to multimodal spatial parameter 

distributions. The most important implication of this new capability is that now, during the 

calibration process, the spatial distribution of different statistical populations existing in a 

parameter field can be treated stochastically as well. This is an important improvement 

of the treatment of the existing heterogeneity in the field: the spatial distribution of these 

statistical populations will have a larger influence on state measurements than the 

parameter distributions within these populations, at least if the probability distributions of 

the statistical populations are largely non-overlapping. 

At the same time this means that if a parameter field is considered important enough to 

be calibrated during the inverse process (read: the state observations show enough 

sensitivity to the parameter field), and the parameter field consists of contrasting 

statistical populations, then treating the positions of the statistical populations 

deterministically is technically wrong and renders the calibration result questionable. The 

proposed multimodal calibration method is the first to offer a solution to this problem. 

The question has often been asked to what extent the method would be applicable to 

highly contrasting media. Here the example of karstic aquifers comes to mind. In 

response to this, it is important to keep in mind that the method in principle targets 

situations in which intra-lithology parameter distributions actually influence state 

predictions. In case of highly contrasting media, this will often not be the case. In that 

case there is, in principle, no need to treat the parameter distribution as a multimodal 

continuum, and perhaps other calibration methods, aimed at the inversion of discrete 

lithology fields, are available to the modeler too (e.g. the Gradual Deformation Method 

and the Probability Perturbation Method, see the introduction of Chapter 4). 

Nevertheless, the question of the method’s limitations in the context of highly contrasting 

media is interesting, not in the least because it is unclear how the methods for the 

calibration of discrete lithology fields perform in real-world hydrological settings. 

Substantiation of good performance of the concerned methods in real-world cases is 

very scarce in both hydrological- and petroleum engineering (the field from which these 

methods generally originate) literature. 

For the performance of the proposed multimodal calibration method for highly-

contrasting media, everything depends on the performance of the inverse algorithm 
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used for the calibration of the transformed field; the more contrasting the different 

statistical populations, the more severe the discontinuities in the derivative of the 

transformed parameter to the multimodally distributed parameter. In Chapter 4, the 

contrast between the two lithologies was considerable: still the representer-based 

inverse algorithm managed to find solutions. However, even though modifications to the 

line search could further increase the power of the representer algorithm with respect to 

the large discontinuities, surely at some point a limit is expected to be reached at which 

the representer method does not perform satisfactorily anymore. 

Then again, any suitable inverse algorithm can be used for the calibration of the 

transformed field. Other inverse algorithms might be better in dealing with the heavy 

discontinuities then the representer-based inverse method. Particularly, inverse 

algorithms that do not calculate the abovementioned derivative could turn out powerful in 

this respect. 

Definitely the most important drawback of the proposed multimodal calibration method is 

its computational demand. The method places inverse algorithms, usually quite 

computationally expensive themselves, in an iterative loop. Further research should 

therefore be directed at accelerating the method. 

With respect to the applicability of the method outside geohydrology, it can be 

mentioned that the method could be useful in any situation in which multimodal spatially 

correlated parameter distributions have to be calibrated. An obvious example is 

petroleum engineering, as it has already been mentioned above that practically all 

research targeted at the inversion of lithology fields originates from this field of research. 

 

 

Chapter 5 

In Chapter 5, the multimodal calibration method was tested in a real-world case. 

Pronounced differences were found between the calibration result obtained with the 

multimodal method, and the result of a calibration effort in which the position of the clay 

layer was treated deterministically. Although in the end, of course, a modeler should not 

so much be interested in a single calibrated realization but in a sufficiently large 

ensemble of realizations to be able to deduce uncertainties of the model output, it is 

unlikely that both methods would result in a similar ensemble, as the biases observed in 
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the calibration result of the conventional approach were very likely to be due to the 

“model error” induced by the deterministic treatment of the position of the clay layer. 

Both calibration approaches would therefore result in very different states predictions 

and uncertainty estimates. Considering the real-world case of Chapter 5, both 

approaches would yield very different conclusions about the shape and extent of a well 

protection zone to be installed to safeguard continuity of the groundwater production in 

the modeled area. 

The calibration of the real-world case performed in Chapter 5 would greatly benefit from 

a more realistic simulator for generating clay layer realizations. The SISIM simulator 

used here produced unrealistic scatter in the indicator field: the discontuity of the clay 

layer was very likely overestimated, as the produced level of discontuity cannot be 

explained by geological formation processes. A genetic modeling approach, as 

suggested by deMarsily et al. [2005], would be highly recommendable. Unfortunately, for 

the clay formation treated in Chapter 5, such a model is currently not available. 

It is stressed here that the calibration exercises performed in Chapter 5 were only 

performed on head observations, which are generally relatively insensitive to 

conductances compared to other data types such as travel times and concentrations. 

Although observed differences between the results of the multimodal and conventional 

calibration approach in the real-world case already were more pronounced than we 

initially anticipated, much more can be expected from other types of observations. For 

example, a well-designed grid of reliable travel time or groundwater age observations in 

the production aquifer would be of great value, as they would be highly sensitive to the 

position and conductance of the clay layer. The theoretical framework for implementing 

groundwater age or travel time information in the representer-based inverse algorithm 

was presented in Chapter 3. 
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Summary 

 

 

Few groundwater systems have escaped the consequences of the ever-expanding 

human influence on the natural environment. Globally, groundwater systems are heavily 

stressed, the most important reasons being overexploitation, contamination, and 

straitjacketing.  

For tackling these issues, knowledge of the groundwater system and how it responds to 

new influences is crucial. Groundwater models are popular and essential tools to 

formalize and administrate the existing knowledge of groundwater systems and utilize 

this knowledge to produce areally distributed state descriptions and predictions based 

on the best available information. It is clear that the more sound the description of 

processes and system properties, the more accurate the model outcome. Unfortunately, 

“knowing” the system, and therefore describing and modeling it, is greatly complicated 

by spatiotemporal heterogeneity. Methods are needed to allow modelers to accurately, 

fairly and efficiently account for all relevant heterogeneity, and to manage it effectively.  

The main chapters of the thesis, though quite diverse, all share one common, ultimate 

purpose: improved modeling of flow and transport processes in heterogeneous 

subsurface environments. Specifically, the current thesis offers contributions to a better 

incorporation of heterogeneity in physically-based, fully distributed numerical 

groundwater models. It does so in both forward and inverse frameworks. In the thesis a 

number of major issues with respect to handling heterogeneity and uncertainty in 

different situations are tackled, and thus the ability to correctly, fairly and/or effectively 

deal with and manage heterogeneity is extended to these particular situations. 

 

Chapter 2 contributes to the upscaling of bioreactive transport in heterogeneous 

environments. It does so by investigating the interplay between heterogeneity in the 

hydraulic properties of the medium, local-scale dispersion and nonlinear biodegradation 

of a sorbing contaminant moving through the medium, in a synthetic small-scale system 

in which biodegradation is stimulated by injecting oxygen-rich groundwater. The ultimate 

purpose of this (type of) investigation is to study long-term asymptotic behavior of solute 
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fronts, in order to derive (the validity of) process descriptions for nonlinear bioreactive 

transport applicable to the larger scale. 

In Chapter 2, the coupled effects of nonlinear biodegradation and heterogeneity are 

analyzed by combining recent advances in analytical one-dimensional modeling of 

bioreactive transport with stochastic concepts of dispersive mixing in heterogeneous 

domains. The transport process in the heterogeneous environment is modeled by 

applying the so-called stochastic-convective and the advective-dispersive stream tube 

approaches, in which a semi-analytical traveling wave solution for one-dimensional 

reactive transport is used. The results of numerical simulations validate the traveling 

wave solution as an efficient and accurate way to evaluate the development of intra-

stream tube concentration distributions, as well as the advective-dispersive stream tube 

approach as a suitable approach to describe nonlinear bioreactive transport in systems 

controlled by local-scale dispersion. In contrast to conservative transport, the mean 

contaminant flux is shown to be significantly influenced by transverse dispersion, even 

for realistic Peclet values. Furthermore, asymptotic front shapes are shown to be neither 

Fickian nor constant (traveling wave behavior), which raises questions about the current 

practice of upscaling bioreactive transport. The error caused by neglecting local 

dispersion was found to increase with time and to remain significant even for large 

retardation differences between electron acceptor and contaminant. This implies that, 

even if reaction rates are dominated by chromatographic mixing, the dispersive mixing 

process cannot be disregarded when predicting bioreactive transport. 

 

In Chapter 3, managing heterogeneity, in terms of reduction of model output 

uncertainties, is enhanced by extending inverse theory to determinations of travel time. 

Travel time determinations have found increasing application in the characterization of 

groundwater systems. No algorithms are available, however, to optimally design 

sampling strategies including this information type. Chapter 3 proposes a first-order 

methodology to include groundwater age or tracer arrival time determinations in 

measurement network design and applies the methodology in an illustrative example in 

which the network design is directed at contaminant breakthrough uncertainty 

minimization. Linearized (cross) covariances are calculated between potential 

measurements and the goal variables of which we want to reduce the uncertainty. These 
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goal variables are the groundwater age at the control plane and the breakthrough 

locations of the contaminant. The travel time is assumed to be lognormally distributed 

and therefore we logtransform the age determinations in compliance with the adopted 

Bayesian framework. Accordingly, expressions are derived for the linearized covariances 

between the transformed age determinations and the parameters and states. In a 

synthetic numerical example, the derived expressions are shown to provide good first-

order predictions of the variance of the natural logarithm of groundwater age if the 

variance of the natural logarithm of the conductivity is less than 3. The calculated 

covariances can be used to predict, at first order, the posterior breakthrough variance 

belonging to a candidate network before samples are actually taken. A Genetic 

Algorithm is used to efficiently search, among all candidate networks, for a near-optimal 

one. It is shown that, in our numerical example, an age estimation network outperforms 

(in terms of breakthrough uncertainty reduction) equally sized head measurement 

networks and conductivity measurement networks, even if the age estimations are highly 

uncertain. 

 

Chapter 4 extends the applicability of inverse methods to a challenging but ubiquitous 

type of parameter distributions: multimodal distributions. Multimodal distributions arise 

when within one parameter field multiple statistical populations exist, each having 

different means and/or variances of the parameter of concern. 

Multimodal distributions cannot be handled well by existing inverse algorithms. Chapter 

4 proposes a method that resolves the difficulties the multimodal distributions pose to 

the existing inverse algorithms, so that they can be used again. The method is applied to 

a synthetic model of a confining layer with a bi- and trimodal hydraulic conductivity 

distribution. 

The basis of the technique is the transformation of the original multimodal conductivity 

distribution to the standard normal distribution, thus fulfilling the condition of normality 

that is required by the used inverse algorithm (in this case the representer method). 

Using this transformation, a calibration that starts from a homogeneous prior field is 

shown to radically improve the estimation of the protective properties of the confining 

layer compared to a unimodal approach of the calibration. The method is also used for 

the calibration of multimodal heterogeneous prior fields. The inevitable distortion of the 
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original parameter ranges in the posterior fields that results from the transformation 

process, is absorbed by an iterative post-conditioning procedure, in which lithology 

information obtained from the distorted calibrated fields is used to condition the 

generation of a new multimodal field that complies again with the original geostatistics. 

After transformation, this new field can be calibrated again, and this process is repeated 

until the newly generated field agrees with the measurement information sufficiently well. 

Then, the lithology distribution of this new field is fixed and the intra-lithology conductivity 

distributions are calibrated. This approach is shown to preserve the original 

geostatistics, both of the lithology field and the intra-lithology hydraulic conductivity 

distributions. 

 

Chapter 5 applies the method developed in Chapter 4 to a real-world case. The 

multimodality in the parameter field is now caused by the presence of a highly 

heterogeneous and discontinuous clay layer, which is modeled through the vertical 

conductance between the second and the third model layer. At locations where this clay 

layer is present, the vertical conductance is on average much smaller than at the 

locations where it is absent. As the proposed method allows for the calibration of the 

continuous parameter field, and vertical conductance is the quotient of conductivity 

(assumed constant) over layer thickness, simultaneously the presence of the clay layer 

and its thickness are calibrated. 

In Chapter 5, not only the multimodally distributed parameters, but also other parameter 

fields are calibrated. This ability of co-calibrating a spatially correlated non-Gaussian 

parameter field (as is the multimodal parameter field of this study) with other spatially 

correlated parameter fields has, to our knowledge, not been reported elsewhere in the 

hydrological literature. Furthermore, some improvements to the method as presented in 

Chapter 4 are proposed, to stimulate algorithm convergence. 

Besides method demonstration, emphasis is given to the performance of the proposed 

multimodal calibration method when compared to a “conventional” approach in which the 

different statistical populations are not allowed to change position (read: the position of 

the clay layer is not allowed to change). Pronounced differences are found in the 

calibration result. The conventional calibration seems to suffer severely from the 

restriction imposed by the predefined position of the clay layer, causing projection of 
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necessary changes to this position on the parameters that are calibrated. Several 

performance criteria are investigated to quantify the differences in calibration result 

between the two approaches. Scores on these criteria all favor the result of the 

multimodal method as the more likely solution of the inverse problem. 
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Samenvatting 

 

 

Maar weinig grondwatersystem ontsnappen aan de gevolgen van de immer uitbreidende 

menselijke invloed op de natuurlijke omgeving. Wereldwijd staan grondwatersystemen 

onder druk door met name uitputting, verontreiniging en beheersing. 

Om deze problemen het hoofd te kunnen bieden is kennis van het grondwatersysteem 

en van hoe dit systeem reageert op nieuwe invloeden cruciaal. In veel 

grondwaterstudies worden mathematische modellen gebruikt om de bestaande kennis 

te formaliseren en te bundelen, en om met de beste beschikbare informatie uitspraken 

te kunnen doen over de toestand van het systeem, ruimtelijk gedistribueerd, nu en in de 

toekomst. Hoe beter de proces- en systeembeschrijvingen, hoe accurater de 

modeluitkomsten (i.e.: meer in overeenstemming met de werkelijkheid). Het “kennen” 

van het systeem wordt echter sterk bemoeilijkt door ruimtelijke en temporele 

heterogeniteit. Er is een behoefte aan methoden die de grondwatermodelleur helpen om 

alle relevante heterogeniteit in het systeem op een accurate, eerlijke en efficiënte manier 

in de gebruikte modellen te verwerken en vervolgens op een effectieve manier te 

beheersen. 

De inhoudelijke hoofdstukken van dit proefschrift zijn vrij divers, maar hebben één 

gemeenschappelijk doel: verbeterde stromings- en transportmodellering door 

verbetering van de verwerking van de heterogeniteit in de ondergrond in volledig 

gedistribueerde, numerieke grondwatermodellen. Aandacht wordt hierbij gegeven aan 

zowel het voorwaartse als het inverse geval. 

In het proefschrift worden belangrijke problemen behandeld met betrekking tot het 

omgaan met heterogeniteit en onzekerheid in verschillende situaties en wordt op deze 

manier de mogelijkheid correct, eerlijk en/of effectief om te gaan met heterogeniteit en 

deze te beheersen, uitgebreid naar deze specifieke situaties. 

 

Hoofdstuk 2 levert een bijdrage aan het opschalen van bioreactief transport in een 

heterogene ondergrond. Het hoofdstuk doet dit door het samenspel te bestuderen 

tussen heterogeniteit in de doorlatende eigenschappen van het medium, de lokale 

dispersie die door deze heterogeneit versterkt wordt, en niet-lineaire biodegradatie van 
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een sorberende verontreiniging, welke door een kleinschalig, synthetisch systeem 

beweegt waarin biodegradatie wordt gestimuleerd door de injectie van zuurstofrijk 

grondwater. Het uiteindelijke doel van dit (type) onderzoek is het bestuderen van het 

lange-termijngedrag van het transportproces, om zo (de geldigheid van) 

procesbeschrijvingen voor niet-lineair bioreactief transport op een hoger schaalniveau 

(lees: gridcellen van een toegepast grondwatermodel) af te leiden. 

In Hoofdstuk 2 worden de gekoppelde effecten van niet-lineaire biodegradatie en 

heterogeniteit geanalyseerd door recente ontwikkelingen in analytische 1D-modellering 

van bioreactief transport te combineren met stochastische concepten van dispersieve 

menging in heterogene media. Het transportproces in de heterogene omgeving wordt 

gemodelleerd door toepassing van de zogenaamde stochastisch-convectieve en 

advectief-dispersieve stroombaanbenaderingen, waarbij een semi-analytische “lopende-

golf” oplossing wordt gebruikt voor het 1D reactief transport. Numerieke simulaties 

valideren de lopende-golf oplossing als een efficiënte en accurate manier om de 

ontwikkeling van de concentratieverdeling binnen een stroombaan te berekenen, en de 

advectieve-dispersieve stroombaanbenadering als een bruikbare aanpak om niet-lineair 

bioreactief transport te beschrijven in systemen waarin lokale dispersie een belangrijke 

rol speelt. 

De gemiddelde massaflux van de verontreining blijkt, in tegenstelling tot het 

conservatieve geval, significant beïnvloed te worden door lokale dispersie, zelfs voor 

realistische Pecletwaarden. Verder wordt aangetoond dat de asympotische frontvormen 

noch “Fickian”, noch constant (lopende-golf gedrag) zijn. Dit roept vragen op over de 

huidige praktijk van het opschalen van niet-lineair bioreactief transport. De fout die 

veroorzaakt wordt indien lokale dispersie wordt genegeerd neemt toe met de tijd en blijft 

zelfs significant bij grote verschillen in de mate van retardatie tussen de 

electronenacceptor en de verontreiniging. Dit impliceert dat, zelfs als de 

reactiesnelheden gedomineerd worden door chromatografisch mixen, het proces van 

dispersieve menging niet kan worden verwaarloosd voor het geval van niet-lineair 

bioreactief transport. 

 

In Hoofdstuk 3 worden de mogelijkheden voor het beheersen van de heterogeniteit in de 

ondergrond vergroot door het uitbreiden van inverse theorie naar bepalingen van de 
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ouderdom van het grondwater en reistijden. Deze bepalingen worden meer en meer 

toegepast bij het karakteriseren van grondwatersystemen. Er zijn echter nog geen 

methoden beschikbaar die het ontwerp van meetnetten voor dit datatype kunnen 

optimaliseren. Hoofdstuk 3 stelt daarom een eerste-orde methode voor om ouderdoms- 

en reistijdenbepalingen mee te kunnen nemen in het ontwerp van meetnetten, en past 

de methode toe in een illustratief, synthetisch voorbeeld waarin het meetnetontwerp is 

gericht op het minimaliseren van de onzekerheid in doorbraaktijd van een conservatieve 

verontreiniging. 

De methode berekent gelineariseerde covarianties tussen de potentiële metingen en de 

doelvariabelen waarvan we de onzekerheid willen minimaliseren. Deze doelvariabelen 

zijn de ouderdom van het grondwater in het doorbraakvlak en de doorbraaklocaties van 

de verontreiniging. Er wordt aangenomen dat de reistijden/ouderdommen lognormaal 

verdeeld zijn en daarom worden de reistijdmetingen getransformeerd naar hun 

natuurlijke logaritmen zodat voldaan wordt aan het Bayesiaanse raamwerk van deze 

studie. In het verlengde hiervan worden uitdrukkingen afgeleid voor de gelineariseerde 

covarianties tussen de getransformeerde leeftijdsbepalingen en de parameters en 

toestandsvariabelen. In een synthetisch, numeriek voorbeeld, blijken de afgeleide 

uitdrukkingen goede eerste-orde voorspellingen te geven van de variantie van de 

natuurlijke logaritme van de grondwaterleeftijd als de variantie van de natuurlijke 

logaritme van de doorlatendheid kleiner is dan 3. De berekende covarianties kunnen 

gebruikt worden om, in eerste orde, de a posteriori doorbraaktijdvariantie te berekenen 

van een meetnetwerk voordat de metingen daadwerkelijk genomen worden. Een 

Genetisch Algoritme wordt gebruikt om, op een effectieve manier, tussen alle mogelijke 

meetnetten, te zoeken naar de meetnetconfiguratie die optimaal of vrijwel optimaal 

presteert. 

Er wordt aangetoond dat, in het numerieke voorbeeld van dit hoofdstuk, een netwerk 

bestaande uit leeftijdsmetingen beter presteert (wat betreft de afname van de 

onzekerheid in doorbraaktijd) dan stijghoogtemeetnetten en doorlatendheidsmeetnetten 

van gelijke grootte (aantal metingen), zelfs als de leeftijdsmetingen zelf zeer onzeker 

zijn. 

 

 



                                                SAMENVATTING 

181 

 

Hoofdstuk 4 breidt de kunst van het inverse modelleren uit naar een lastig, maar 

veelvuldig voorkomend type parameterverdelingen: multimodale verdelingen. 

Multimodale verdelingen ontstaan wanneer binnen één parameterveld meerdere 

statistische populaties bestaan, elke met een ander gemiddelde en/of variantie van de 

betreffende parameter. 

Bestaande inverse algoritmen kunnen niet goed overweg met deze multimodale, 

ruimtelijk gecorreleerde parameterverdelingen. Hoofdstuk 4 presenteert een methode 

die de problemen wegneemt, die bestaande inverse algoritmen met dit type verdelingen 

hebben, zodat deze weer gebruikt kunnen worden. De methode wordt toegepast op een 

synthetisch model van een deklaag met een bi- en trimodale hydraulische 

doorlatendheidsverdeling. 

De basis van de voorgestelde techniek wordt gevormd door een transformatie van de 

originele multimodale verdeling naar de standaard normale verdeling, waarmee voldaan 

wordt aan de voorwaarde van normaliteit die gesteld wordt door het gebruikte inverse 

algoritme (in dit geval de representermethode). Met deze transformatie levert een 

calibratie startend met een homogeen initieel parameterveld een sterk verbeterde 

voorspelling op van de beschermende eigenschappen van de deklaag. De methode 

wordt ook ingezet voor de calibratie van heterogene initiële parametervelden (initiële 

parametervelden die aan de originele multimodale geostatistieken voldoen). De 

onvermijdelijke verstoring van de originele geostatistieken in de gecalibreerde velden, 

welke het gevolg is van de transformatie, wordt geabsorbeerd door een iteratieve post-

conditioneringsprocedure, waarin de lithologische informatie afkomstig van de 

verstoorde gecalibreerde velden gebruikt wordt om een nieuw initieel veld te genereren 

dat weer voldoet aan de originele geostatistieken. Na transformatie kan dit veld weer 

gecalibreerd worden, en dit proces wordt herhaald totdat een nieuw gegenereerd initieel 

veld in voldoende mate voldoet aan de meetinformatie. Vervolgens wordt het 

lithologieveld vastgezet, en worden de parameterverdelingen daarbinnen gecalibreerd. 

Er wordt aangetoond dat deze aanpak de originele geostatistieken, zowel van het 

lithologieveld als van de parameterverdelingen daarbinnen, in stand houdt. 

 

In Hoofdstuk 5 wordt de in Hoofdstuk 4 ontwikkelde methode toegepast op een 

grondwatermodel van een werkelijk gebied. De multimodaliteit in het parameterveld 
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wordt nu veroorzaakt door de aanwezigheid van een zeer heterogene en discontinue 

kleilaag, welke gemodelleerd wordt via de verticale conductance tussen de 2e en 3e 

modellaag: daar waar de kleilaag aanwezig is, is de verticale conductance gemiddeld 

veel kleiner dan waar de kleilaag afwezig is. Aangezien de voorgestelde methode de 

calibratie van het continue parameterveld mogelijk maakt, en de verticale conductance 

het quotiënt is van de (constant geachte) doorlatendheid en de laagdikte, worden de 

aanwezigheid en dikte van de kleilaag tegelijkertijd gecalibreerd. 

In Hoofdstuk 5 worden niet alleen de multimodaal verdeelde parameters, maar 

tegelijkertijd ook andere velden gecalibreerd. Voor zover bekend is deze mogelijkheid tot 

co-calibratie van een ruimtelijk gecorreleerd niet-Gaussisch parameterveld (zoals het 

multimodale veld in deze studie) met andere ruimtelijk gecorreleerde parametervelden, 

niet eerder beschreven in de hydrologische literatuur. Verder worden ook enkele 

verbeteringen van de methode voorgesteld ten opzichte van Hoofdstuk 4, ter versnelling 

van de convergentie. 

Naast demonstratie van de voorgestelde multimodale calibratiemethode wordt nadruk 

gelegd op de prestatie van de methode ten opzichte van een “conventionele” aanpak 

waarin de verschillende statistische populaties niet van positie kunnen veranderen, i.c. 

de positie van de kleilaag vastgelegd wordt. Er worden uitgesproken verschillen 

gevonden in het calibratieresultaat. De conventionele calibratie lijkt te lijden onder de 

restricties die het gevolg zijn van het vastleggen van de positie van de kleilaag, 

waardoor noodzakelijke aanpassingen aan deze positie geprojecteerd worden op 

parameters die wel gecalibreerd worden. Verschillende prestatiecriteria worden 

onderzocht om de verschillen in het calibratieresultaat tussen de twee benaderingen te 

kwantificeren. De scores op deze criteria zijn alle beter voor het resultaat van de 

multimodale methode, waardoor dit resultaat waarschijnlijker lijkt. 
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Dit proefschrift was nooit tot stand gekomen zonder de begeleiding, hulp en 

ondersteuning van een aantal mensen, dat ik hier graag wil bedanken. 

 

Allereerst gaat mijn dank uit naar mijn promotor en mijn copromotor, respectievelijk 

Sjoerd van der Zee en Johan Valstar. 

Johan, ik beschouw jou als degene die mij het vak van geohydroloog heeft bijgebracht. 

Mijn achtergrond in deze discipline was bij aanvang behoorlijk zwak te noemen en ik kan 

me niet voorstellen dat je in het begin geen twijfels hebt gehad of ik wel zo’n geschikte 

kandidaat was om het onderwerp van dit proefschrift op te pakken en daar ook binnen 

afzienbare tijd significante vooruitgang in te boeken. Ik hoop dat je tevreden bent over 

het eindresultaat. Ik wil je bedanken voor het grote vertrouwen dat je in mij gesteld hebt 

en ook voor de grote vrijheid die je me daaruit voortvloeiend hebt gegeven om de 

promotie in te vullen. Dat vond ik erg prettig werken. Ik heb onze inhoudelijke discussies 

altijd erg gewaardeerd en was altijd onder de indruk van je expertise. Het was heel 

geruststellend om iemand met zoveel vakkennis en inzicht als jij “achter de hand” te 

hebben. Ik heb erg veel van je geleerd en hoop in de toekomst nog veel met je samen te 

werken in onze nieuwe Groundwater Quality groep bij Deltares/TNO. 

 

Sjoerd, jou moet ik natuurlijk allereerst bedanken voor de kans die je me hebt gegeven 

middels de aanstelling als AIO. Ook van jou ging een enorm vertrouwen uit, waardoor ik 
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gebeurd tijdens het afstudeervak dat ik bij jou gedaan heb. Je was toen zelfs de eerste 
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mijn vertrek naar TNO de kamer heb gedeeld. Ellen, zoals ik al eens eerder heb gezegd 
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