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Abstract. We study the interactions between flowerlike micelles, self-assembled from telechelic associative
polymers, using a molecular self-consistent field (SCF) theory and discuss the corresponding phase behav-
ior. In these calculations we do not impose properties such as aggregation number, micellar structure and
number of bridging chains. Adopting a SCF cell model, we calculate the free energy of interaction between
a central micelle surrounded by others. Based on these results, we predict the binodal for coexistence of
dilute and dense liquid phases, as a function of the length of the hydrophobic and hydrophilic blocks. In the
same cell model we compute the number of bridges between micelles, allowing us to predict the network
transition. Several quantitative trends obtained from the numerical results can be rationalized in terms of
transparent scaling arguments.

PACS. 64.75.Yz Self-assembly – 64.75.Xc Phase separation and segregation in colloidal systems – 31.15.xr
Self-consistent-field methods

1 Introduction

Telechelic associative polymers are solvophilic linear poly-
mers modified with a solvophobic group or block at both
ends of the chain. The central block can, e.g., be a neutral
polymer such as poly(ethylene oxide) [1] and poly(acryl
amide) [2] or a polyelectrolyte [3]. Also for the end groups
a wide variety of choices exist, such as alkyl tails [1,2],
perfluoro-alkyl tails [4], pyrene groups [5], hydrophobic
polymer blocks such as poly(propylene oxide)s [6] and even
buckminsterfullerenes [7].

When two layers of end-adsorbed telechelic polymers
(also known as telechelic brushes), are brought close to
each other, bridges between the two surfaces will form. As
chains gain conformational freedom when they can form
bridges in addition to forming loops, an entropic attrac-
tion between the brushes results. Early numerical investi-
gations by Milner and Witten [8] revealed that the over-
all interaction potential between these types of brushes
is a balance between steric repulsion and a weak bridg-
ing attraction, both appearing at distances of the order
of twice the brush thickness. A recently published study,
using density functional theory, substantiates these con-
clusions [9]. There is also experimental evidence of bridge
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formation between end-adsorbed layers of telechelic poly-
mers [10,11].

Bridging also occurs between micelles of telechelic as-
sociative polymers and leads to the formation of transient
networks, but can also cause a demixing into a dilute and
a more concentrated liquid phase [12]. The depth of the at-
tractive well in the pair potential between these flowerlike
micelles is reported to depend primarily on the aggrega-
tion number and on the degree of stretching of the coro-
nal chains [13]. For ideal chains, the possibility to form
bridges increases the conformational possibilities with a
factor of 2 per chain. This leads to an increase in the en-
tropy per chain of kB ln 2 = 0.69kB , hence a change in free
energy of −0.69kBT per chain. For chains with excluded
volume, steric effects also come into effect, and as a result
the effective contribution, per chain, to the attraction is
reduced [14].

Based on theoretical predictions for the pair potential,
several descriptions are available that link the composi-
tions in the dilute and the dense coexisting phases to the
molecular architecture [15,16]. For associative polymers
bearing many associating groups per chain it is predicted
that, in the absence of excluded-volume interactions, all
solutions are unstable above the network threshold and
therefore must phase separate [17]. For telechelic associa-
tive polymers, with only 2 associating groups per chain,
we will show that formation of a transient network is not
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necessarily accompanied by phase separation. This is
also suggested by experiments on alkyl end-capped
poly(ethylene oxide)s [16].

In a previous study we have used the self-consistent
field theory of Scheutjens and Fleer in combination with
scaling arguments to investigate some important aspects
of the self-assembly of telechelic associative polymers into
spherical flowerlike micelles [18], such as the entropic
penalty associated with the formation of loops in the
corona. In this paper we extend this work in studying the
interactions between flowerlike micelles, and two of the
macroscopic consequences of these interactions; phase sep-
aration and network formation. Our method differs from
previous efforts to model the interactions between these
micelles. We choose a more “ab initio” approach; we do
not make a priori assumptions on the micellar structure
and aggregation number, instead these follow from our
analysis.

We will start from the free energy of interaction be-
tween a central micelle surrounded by others, calculated
in a so-called cell model. Subsequently, we use these re-
sults to predict the coexistence curves for dilute and dense
micellar phases. Finally, we briefly discuss the threshold
where intermicellar bridging leads to the formation of a
transient network, which can also be predicted from the
self-consistent field calculations. Several trends from the
numerical results will be explained using scaling argu-
ments based on the molecular architecture of the telechelic
polymers.

2 Self-consistent field cell model for micelles

Our calculations are based on the discrete self-consistent
field theory developed by Scheutjens and Fleer (SF-
SCF) [19,20]. In SF-SCF theory the same length a is
used to divide chains into segments and space into lat-
tice sites. We consider telechelic chains, with segments
s = 1, 2, . . . , N , and a spherical lattice consisting of h
concentric layers with reflecting boundary conditions. The
spherical lattice will be referred to as the “cell” in the re-
mainder of this paper. The mean-field approximation is
applied to each layer z with z = 1, 2, . . . , h, hence the
micelles are spherical. The key lattice parameters are the
number of sites L(z) in each layer, for our spherical geom-
etry L(z) = 4

3
π(z3 − (z− 1)3), and the a priori step prob-

abilities λ∆z(z). These step probabilities are given by the
fraction of all neighboring sites of a site in layer z that are
located at z +∆z (∆z = −1, 0,+1) and reflect the proba-
bility that a segment s − 1, linked to a segment s located
at z, is in layer z + ∆z. In a curved geometry, the step
probabilities are a function of z and obey the internal bal-
ance: λ−1(z)L(z + 1) = λ1(z)L(z) [21]. Nearest-neighbor
interactions are taken into account in terms of the Flory-
Huggins interaction energy that is parameterized by the
interaction parameters χxy, where x and y represent any
two different segment species [22].

In the context of this model we can define a molecular
state c of a species i, by the subsequent z-positions of all
chain segments zc

is. The number of possible conformations

ωc
i of a chain i in state c is, within a Markov approxima-

tion, given by

ωc
i = L(zc

i1)

Ni
∏

s=2

λ∆z(z
c
is)Z, (1)

where zc
is is the layer in which segment s of molecule i

in state c is found, L(zc
i1) is the number of sites in layer

z, where the first segment of species i in conformation
c is located, and Z is the number of neighbors of each

site.
∏N

s=2
λ∆z(z

c
is) is the multiple product of the step

probabilities of the subsequent steps, going from the layer
where segment 1 is located to the layer where segment 2
is located, etc. up to the last segment Ni, all according to
the conformation c.

The Helmholtz energy of the inhomogeneous system
can be written as a functional of the distribution of molec-
ular states;

F ({nc
i}, T )

kBT
=

∑

i,c

nc
i ln

(

nc
i

ωc
i

)

+
F int

kBT
. (2)

The first term accounts for the configurational entropy.
The Flory-Huggins interaction energy is given by the sec-
ond term, and can be written as

F int

kBT
=

1

2

∑

z,x,y

nx(z)〈φy(z)〉χxy+u′(z)

[

∑

x

nx(z) − L(z)

]

,

(3)
in which nx(z) is the number of segments of segment
species x in layer z. The factor 〈φy(z)〉 is the aver-
age fraction of y-segments among the nearest neigh-
bors of a segment in layer z and is found with
〈φy(z)〉 =

∑

∆z λ∆z(z)φy(z) where ϕy(z) = ny(z)/L(z).
The second term in equation (3) is coupled to the incom-
pressibility of the system, in which u′(z) is the Lagrange
parameter.

The abundance of each molecular state in terms of
a molecular field is obtained by evaluating ∂Ω/∂nc

i = 0
(∀i, c), with the grand potential

Ω = F −
∑

i

µini , (4)

where µi = (∂F/∂ni)T,nj 6=i
. The number of molecules of

species i in state c, nc
i , is found from a Boltzmann weight

of the potential fields for that species uc
i , and follows

nc
i ∝ ωc

i exp

[−uc
i

kBT

]

. (5)

The potential field for a species i in conformation c, follows
from summation over the segment potentials u(zc

is) for all
segments in the chain:

uc
i =

Ni
∑

s=1

u(zc
is). (6)

The segment potential for a segment s of type x in layer z
is obtained by differentiating the interaction term in the
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free energy (Eq. (3)) to the number of segments of type x
in that layer: ux(z) = ∂F int/∂nx(z).

A solution for the complete distribution of molecular
states {nc

i} should satisfy the following incompressibility
constraints:

∑

x nx(z) = L(z) for all z’s, which fixes u′(z),
and

∑

c nc
i = ni for all i’s, which gives the normalization

constant for equation (5).
It turns out that the segment density distributions,

that determine the molecular field, can be found using the
propagator scheme developed by Scheutjens and Fleer [19]
without explicitly evaluating all nc

i ’s. In this way both
the molecular fields and the segment density distributions
can be efficiently calculated in a numerical iteration pro-
cedure, until self-consistency is reached [23]. A more de-
tailed description of SF-SCF theory and its applications
to self-assembly can be found elsewhere [24]

In a previous study on the micellization of telechelic
polymers we have used a molecularly realistic model to
predict the self-assembly of a specific class of telechelic as-
sociative polymers, i.e. alkyl end-capped poly(ethylene ox-
ide)s, in which hydrogenated carbon atoms and ether oxy-
gens of poly(ethylene oxide) were treated as different seg-
ment types [18]. Here we choose a coarse-grained version
of that model, in which the solvophilic, middle-block seg-
ments are represented by one “average” segment type B,
and the solvophobic, end-block segments are represented
by segment type A, such that the present study is appli-
cable to a wide variety of telechelic associative polymers.
Freely jointed A-B-A chains are placed on the spherical
lattice together with a monomeric solvent S. The A-blocks
are oligomeric (NA between 10 and 35) and strongly seg-
regate with the monomeric solvent. The central B-blocks
are polymeric (NB between 100 and 10000). The inter-
actions between the three segment species are quantified
by the corresponding χ parameters. All calculations are
carried out under θ-conditions for the polymer backbone,
i.e. χBS = 0.5. For example for poly(ethylene oxide), one
of the most used neutral backbones in associative poly-
mers, it is known that the Flory interaction parameter
between the polymer and water at room temperature is
very close to 0.5 [25]. The other two parameters were cho-
sen such that the results for the critical micelle concentra-
tions (CMC) of the molecularly realistic model in [18] are
reproduced. The results from the earlier model could be
reproduced, with an error of less than 10% for the investi-
gated range of block lengths, with χAS = 1.9 and χAB = 1
in the present coarse-grained model. The correspondence
between the results for the CMC from the molecularly re-
alistic model [18] and the current model is illustrated in
Figure 1.

2.1 Isolated, non-interacting micelles

Isolated micelles are studied in the self-consistent field cell
model for large values of h, such that the central object
cannot interact with any neighbors. For large h, no bridges
can form, and all chains form loops (see Fig. 2).

According to the thermodynamics of small systems [26,
27], the work associated with the formation of micelles E

Fig. 1. Comparison between the numerical results for the crit-
ical micelle concentration for A20-BN -A20 chains using the
present coarse-grained model for telechelic polymers (filled
symbols) and the molecularly realistic model used in [18] (open
symbols).

Fig. 2. Schematic representation of the self-consistent field
cell model, at a cell size h, with reflecting boundary condi-
tions. Coronal chains, departing from the micellar core, have
two “dominant” configurations: i) loops, for all values of h, the
one shown here just reaches the outer layer and ii) bridges,
that cross the cell boundary, for not too large values of h.

must vanish, i.e. E = 0. In a real system, the number of
micelles N is adjusted by the system until this condition
is met, i.e. ∂F/∂N = E = 0. In this sense, the number
of micelles is not a controlled variable (i.e. it is not an
external variable). In the self-consistent field modeling of
flowerlike micelles, however, one studies a small system
that contains a single micelle. Indeed, for such an analysis
the number of micelles is exactly controlled. This implies
that the thermodynamic analysis of micellization in a SCF
model requires special attention.

The micellar object in the SCF model is translation-
ally restricted to the center of the coordinate system. The
grand potential Ω of such a micelle is readily available
from the SCF calculations (see Eq. (4)). For dilute so-
lutions one can estimate the translational entropy per
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Fig. 3. Typical results from the SF-SCF calculations for iso-
lated and non-interacting micelles (h ≫ hmin, a and c) and
for interacting micelles at the minimum of the interaction en-
ergy between the micelles with respect to h (h = hmin, b and
d). Results shown are for systems of A20-B500-A20 polymers,
dotted lines represent solutions that are not macroscopically
stable.

micelle as Strans = −kB lnϕm
p , where ϕm

p is the volume
fraction of micelles in the system. The overall work of for-
mation of a micelle in the SCF model is therefore

E = kBT lnϕm
p + Ω = 0, (7)

which gives the connection between the microscopic model
to the macroscopic thermodynamics [26,27]. In the SCF
model, equation (7) is used as follows. Typically from the
calculations the relation Ω(nagg) is known, where nagg

is the excess number of amphiphiles per micelle. From
equation (7) we then find ϕm

p (nagg). As 0 < ϕm
p < 1, it is

clear that relevant micelles have Ω > 0.
It can be shown that the Gibbs-Duhem equation for

micellization in the small system reads

∂Ω/∂µp = −nagg. (8)

As the fluctuations in (micellar) aggregation numbers are
related to ∂nagg/∂µp, and because this is necessarily a
positive number, we find from equation (8) that relevant
micellar systems obey to ∂Ω/∂nagg < 0 (stability con-
straint). In the context of this SCF model, the critical mi-
celle concentration is defined as the concentration where
∂Ω/∂nagg = 0. From equation (7) and Figure 3, it follows
that the concentration of micelles at the critical micelle
concentration is very small. This is consistent with the
classical view of micellization, as, e.g., explained in [28].

The aggregation number nagg is defined as the number
of polymer chains in the micelle, and is related to the total
number of polymer chains np in the system and the num-
ber of micelles N with np = Nnagg + V ϕb

p/N , where V is

the volume of the system, ϕb
p is the bulk unimer concen-

tration and N is the total chain length of the polymer. For
the calculations, where N = 1, the appropriate volume is
the cell volume V cell = 4

3
πh3.

In Figure 3a we see the grand potential as a function
of aggregation number, due to the stability constraint we
only consider the solutions for which ∂Ω/∂nagg < 0. In
Figure 3 all solutions from the self-consistent field calcu-
lations, which correspond to situations that are not macro-
scopically stable, i.e. when ∂Ω/∂nagg > 0, or which are
physically not meaningful, i.e. when Ω < 0, are indicated
with dotted lines.

2.2 Interacting micelles in concentrated systems

The interactions between micelles are studied in the cell
model by decreasing the cell size h to the same order of
magnitude as the size of the micelle. Typical results for
this situation are shown in Figures 3b and 3d. Here again
we only consider those solutions for which ∂Ω/∂nagg < 0.
By decreasing the cell size, which is equivalent to increas-
ing the concentration of micelles, the central object can
interact with its neighbors by way of the reflecting bound-
ary conditions. In essence the idea of a reflecting, i.e. mir-
roring, boundary, is straightforward. In a flat geometry,
the reflecting boundary is a plane of symmetry; for each
chain configuration that leaves the system volume through
the boundary, a complementary chain enters the volume
through the same boundary. Mathematically this is im-
plemented by forcing the segment densities, as well as the
segment potentials, in a given layer outside the boundary
to assume the same (known) value as its mirror-image in-
side the volume. The mathematical implementation of the
boundary condition in the current spherical geometry is
the same. An intuitive understanding of the resulting situ-
ation is, however, somewhat troublesome. Again, for each
chains that leaves the cell through the outer boundary a
complementary chain enters the volume as if it comes from
a neighboring micelle. The exact position of all neighbors
is however not realistically accounted for. The distance
between the center of the central micelle and its mirror
images is 2h. For small enough values of h we distinguish
two dominant types of conformations of the coronal parts
of the polymers upon interaction; bridges and loops. This
is illustrated schematically in Figure 2.

We compute the thermodynamic quantities for these
interacting micelles at Ω = 0 as a function of h. As
discussed in the previous section the grand potential is
directly coupled to the translational entropy of the mi-
celles (Eq. (7)). Setting the condition Ω = 0 implies
that we consider the translational entropy to be negli-
gible. At high concentrations, where the micelle interacts
with many neighbors, this assumption is reasonable. It is
known that under experimental conditions a structured
and highly interconnected micellar network is formed, in
which the translational freedom of the micelles is obvi-
ously suppressed [29]. One of the consequences of the cell
model,is that the distances between all micelles in the sys-
tem are approximated to be equal. We can argue that this
approximation should be reasonable for concentrated sys-
tems where the micelles are closely packed, and for sys-
tems where the micelles are trapped in an attractive well
that is many times larger than the thermal energy kBT ,
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such that fluctuations around the equilibrium position are
small. This issue is evaluated in somewhat more detail in
the Discussion at the end of this paper.

The free energy difference of a micelle surrounded by
neighbors with respect to an isolated micelle (for which
Ω = 0), is defined as ∆Fm(h) = Fm(h) − Fm(∞). Note
that this free energy difference is not a pair potential,
rather the interaction free energy between a central micelle
and all its neighbors. The cell size value where ∆Fm is
minimal is denoted hmin.

2.3 Computing biphase coexistence

The attractive interactions between flowerlike micelles can
cause macroscopic demixing [12]. To determine the coex-
istence in the context of this SCF model we make two
approximations. The first is that in the dilute phase the
micelles have no intermicellar interactions, such that we
can use the results for isolated micelles to predict the prop-
erties of this phase. The second approximation is that in
the dense phase the micelles have no translational entropy,
such that we can use the results from the cell model for
intermicellar interactions for this phase. These approxi-
mations are likely to be valid away from the critical point.
Close to the critical point however, the micelles will inter-
act with each other in both phases as well as have signifi-
cant translational entropy in both the dense and the dilute
phase. The true position of the critical point is therefore
not obtained in this approach.

In the coexisting liquid phases (denoted dense and
dilute) both the osmotic pressures (Πdense = Πdilute) and
the chemical potential of the polymer (µdense

p = µdilute
p )

should be equal. For the dilute phase we can argue that, as
the concentration of micelles is very low, the osmotic pres-
sure will be negligible. Here we approximate the osmotic
pressure to be zero. Consequently, the osmotic pressure in
the dense phase will also be zero. Although the concentra-
tion of micelles is significant in the dense phase, we can
argue that the attraction between the micelles, resulting
in a negative second virial coefficient, can strongly reduce
the osmotic pressure to negligible values. To predict co-
existence we need to find solutions to the self-consistent
field model for both isolated and interacting micelles, that
have the same chemical potential of the polymer µp.

Our approach is schematically illustrated in Figure 3.
We start with the typical result of the grand potential
versus aggregation number for interacting micelles (dense
phase). Above we discussed the choice for approximating
the osmotic pressure to be zero in both phases. For an
incompressible system, as is the case in these SCF calcu-
lation, we can find the osmotic pressure by differentiating
the free energy to the cell volume, that is given by 4

3
πh3,

hence

Π =
−∂Fm(h)

∂V
=

−∂Fm(h)

4πh2∂h
= 0. (9)

Since 4πh2 is always finite positive, ∂Fm/∂h must be zero.
As a consequence, we will regard the minimum of the free
energy of interaction with respect to h to be the equilib-
rium situation. In other words, we find the solutions to

the self-consistent field model for h = hmin and for which
Ω = 0. These requirements are met, as indicated in Fig-
ure 3b, for a given aggregation number (here nagg = 34).
In the plot of the chemical potential of unimers µp versus

aggregation number (Fig. 3d) we can now find the corre-
sponding chemical potential of the polymer chains in the
bulk phase (here −266.5kBT , arrow I).

The volume fraction in the dense phase (ϕdense
p ), given

by the composition in the cell, can be split up into two
contributions: that of polymer chains that are associated
in the central micelle (ϕm

p ) and that of free unimers (ϕb
p).

The contribution of chains in the micelle, ϕm
p , is obtained

by dividing the total number of polymer segments (each
occupying 1 lattice site) in the micelle by the cell volume
V cell = 4

3
πh3

min;

ϕm
p =

Npnagg
4

3
πh3

min

, (10)

where Np = 2NA + NB is the total chain length of the
ABA polymer. The bulk volume fraction of free unimers
follows from µp, using the Flory-Huggins expression for
the chemical potential for a system composed of species S
(solvent) and ABA (polymer) and segments S, A and B;

µp − µ∗

p

kBT
= − lnϕb

p + (1 − ϕb
p)(1 − Np) +

+
1

2
Np

∑

i

∑

j

(ϕb
i − Φi)χij(ϕ

b
j − Φj), (11)

in which µ∗

p is the reference state of the chemical potential
of the polymer, defined such that equation (11) returns
zero for ϕb

p = 1. ϕb
i and ϕb

j are the bulk volume fractions of
segment types i and j, with i or j = A, B, S. Φi and Φj are
the fractions of segments in ABA the polymer that are of
type i and j respectively. Hence, ΦS is zero, ΦA = 2NA/Np

and ΦB = NB/Np.
Now that we have all ingredients to compute the com-

position of the dense phase, we proceed to calculate the
composition of the dilute phase. We now start from the
chemical potential of the unimers found in Figure 3d (ar-
row I). As the chemical potential of the unimers must be
equal in both phases, we can find the coexisting config-
uration of a system of isolated non-interacting micelles.
In Figure 3c we see that at the given chemical potential,
the isolated micelles have an average aggregation number
of 25 (arrow II). For the dilute system we can now also
see, in Figure 3a, that at this chemical potential and cor-
responding configuration, the micelles have a finite, non-
zero grand potential (arrow III), in this case Ω ≈ 20 kBT .
This indicates that in the dilute phase the micelles do have
significant translational entropy, since Ω = −StransT .

With the chemical potential and the grand potential
known for the dilute phase, we can also calculate its overall
composition. Again, the overall polymer volume fraction
is given by ϕdilute

p = ϕb
p+ϕm

p . The bulk volume fraction ϕb
b

again follows from equation (11), and must be the same as
in the dense phase since the chemical potentials are also
equal. The volume fraction of polymer in micelles in the
dilute phase can be obtained from Ω (Eq. (7)).
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Fig. 4. Free energy of interaction ∆F m(h) between a central
flowerlike micelle and all its neighbors, calculated in the self-
consistent field cell model; a) for A20-BN -A20 polymers with
NB = 200, 400, 600, 800 and 1000 and b) for AN -B500-AN

with NA = 20, 25, 30 and 35.

2.4 Computing the number of bridging chains

In this SCF cell model it is also possible to obtain the
number of bridges nb that are formed by a micelle. To
find nb we start by defining the lattice parameters for the
central object and its mirror image. The system now con-
tains twice as many layers; z = 1, 2 . . . h, h + 1 . . . 2h. The
number of sites per layers L(z) is given by L(z) = 4

3
π(z3−

(z−1)3) ∀ z < h+1 and L(z) = L(2h−z+1) ∀ z > h. Con-
sequently, we need to mirror the step probabilities, such
that for z > h: λ∆z(z) = λ−∆z(2h−z+1) (∆z = −1, 0, 1),
and the segment potentials, with ux(z) = ux(2h−z+1) for
all z > h and x. By defining a bridge as a chain that has
its first segment in a layer with z < h + 1 and its last seg-
ment in z > h, we can calculate nb using the propagator
scheme of Scheutjens and Fleer.

3 Intermicellar interactions

Several results for the interactions between flowerlike mi-
celles, calculated in the SCF cell model, are shown in
Figure 4, as a function of backbone length (Fig. 4a) and
end-block length (Fig. 4b). We can recognize some clear
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Fig. 5. a) Effect of interactions in the cell model on the ag-
gregation number (nagg), in comparison to the interaction free
energy ∆F m for A20-B800-A20 polymers and b) dependence of
the aggregation number on the backbone length for isolated
micelles (h ≫ hmin, circles) and micelles at the minimum of
the interaction potential (h = hmin, triangles).

trends: the interactions decrease in strength and increase
in range with increasing backbone length and with de-
creasing length of the associating end blocks.

For end-adsorbed layers of telechelic polymers it has
been predicted that the range of both steric and bridging
interactions is proportional to the brush thickness [8]. For
micelles this suggests that the interaction range is char-
acterized by the radius of the micelle (R) [13]. We have
previously shown [18] that

R ∝
(

NB + nagg
1

6 N
2

3

A

)
1

2

nagg
1

4 . (12)

This follows from the Daoud-Cotton model [30], adjusted
for the non-zero size of the micellar core. When the con-
centration of micelles is increased, or, in other words, when
the typical distance between the micelles is decreased, the
chemical potential changes. This also leads to a change
in aggregation number. In Figure 5a the change in aggre-
gation number with h is shown (dotted curve). We see a
significant change of the number of chains per micelle with
decreasing h that is equivalent to increasing the concentra-
tion of micelles. This implies that, to properly apply equa-
tion (12) we must use nagg(h) rather than a fixed nagg. In
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Figure 5b it is shown that although the absolute value of
nagg depends on the concentration, the same dependence
between aggregation number and backbone length is found
for isolated micelles and micelles that interact with multi-
ple neighbors. The change in aggregation number with a
variation in the molecular architecture has been discussed
previously [18].

Adopting a Derjaguin approximation, Meng and Rus-
sel calculate the interactions between flowerlike micelles
starting from the results for flat telechelic brushes. Within
this approximation, the strength of the interaction is gov-
erned by two parameters only; the aggregation number
nagg and the degree of stretching of the coronal chains

RN
−1/2

B . They derive that ∆Fm ∝ naggNBR−2. For R
we can use equation (12). Here we can approximate R

by N
1/2

B nagg
1/4, since NB is generally much larger than

nagg
1/6N

2/3

A . Rewriting gives

∆Fm(h) ∝ nagg(h)
NB

R2
≈ nagg(h)

1

2 . (13)

With equations (12) and (13) as predictions for the range
and strength of the interactions respectively, we can plot
the curves in Figure 4 on rescaled coordinates. We plot
the normalized interaction energy ∆Fm/

√
nagg versus the

normalized distance between the centers of the micellar
objects h/R, where R is found from equation (12). The
result is shown in Figure 6.

We see that the curves, with the exception of the curves
for NB = 200 in Figure 6a, now almost collapse onto a
master curve. This confirms that the range of the inter-
actions is determined by the size of the micelles and that
the strength of the interactions is a function of the aggre-
gation number and chain stretching only. The curve for
the smallest middle block length (NB = 200) in Figure 6a
does not coincide with the other curves because the as-
sumption that nagg

1/6N
2/3

A is negligible compared to NB

(see derivation of Eq. (13)) is not valid for this short-chain
length.

If we take the value of the interaction energy at hmin

and divide this by the aggregation number, we find the
contribution per chain to the depth of the attractive well.
In the range of molecular parameters investigated here,
we find an average contribution per chain to the attrac-
tion of 0.6–0.7 kBT . This is of the same order of magni-
tude as the predicted value of kBT ln 2 = 0.69 kBT for
ideal chains [13]. We must note that, although we are at
θ-conditions for the polymer backbone (χBS = 0.5), the
chains do show stretching in the micellar corona. This is
also reflected in the fact that for micelles of ideal chains
the depth of the minimum would depend solely on the ag-
gregation number, whereas here we need to account for
chain stretching as well in order to collapse the curves
in Figure 6. We can attribute this apparent importance of
excluded-volume effects for chains in a θ-solvent, to crowd-
ing in the corona of the micelle.

The interactions start when h/R is approximately
unity, which corresponds to a separation between the cen-
ters of the interacting objects of roughly twice the micellar
radii. This has also been predicted previously [8].
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Fig. 6. Rescaled free energy of interaction between a central
flowerlike micelle and all its neighbors, calculated in the self-
consistent field cell model, plotted versus the rescaled cell size
h/R; a) for A20-BN -A20 polymers with NB ranging from 200 to
1000 and b) for AN -B300-AN with NA ranging from 30 to 35.

4 Biphase coexistence

In Figure 7 we show the numerically calculated coexist-
ing compositions (Eqs. (7), (10) and (11)) in systems of
flowerlike micelles, both as a function of the length of the
middle B-block and as a function of the length of the A-
end-blocks. We can immediately see that the phase dia-
grams are strongly asymmetric with respect to the volume
fraction of polymer at the extrapolated critical point.

In the concentrated phase the amount of unimers is
negligible compared to the chains assembled in the micelle,
hence ϕdense

p ≈ ϕm
p . Also Np ≈ NB as the end-block length

is small compared to the middle block in the molecular
architectures investigated here. We already argued that
hmin ∝ R. Using equation (10) we can derive

ϕdense
p ∝ naggNB

R3
. (14)

The proportionality ϕdense
p ∝ R−3 was already predicted

by Francois et al. [16]. The radius of the micelle R can

again be approximated by N
1/2

B n
1/4
agg. The aggregation

number is intricately linked to molecular architecture, as
discussed in [18]. As a first-order approximation we can
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Fig. 7. Numerically obtained binodals (symbols) as a function
of a) backbone length (NB) in a system of A20-BN -A20 poly-
mers and b) end block length (NA) in a system of AN -B500-AN

polymers. Solid lines are numerically calculated critical micelle
concentrations (CMC) and fits to the scaling relation in equa-

tion (15), with ϕp ∝ N
−1/2

B in a) and ϕp ∝ N
1/5

A in b).

use nagg ∝ N
4/5

A , in which the logarithmic dependency of
the aggregation number on NB has been omited as it is
much weaker than the power law proportionality between
NA and nagg. We now find

ϕdense
p ∝ N

−
1

2

B N
1

5

A . (15)

To test this scaling relation, we have fitted the dense

branches of the binodals in Figure 7 to ϕdense ∝ N
−1/2

B

(Fig. 7a) and ϕdense ∝ N
1/5

A (Fig. 7b), respectively. An
excellent correspondence is found between the scaling ar-
gument and the numerical results.

For the dilute branch of the binodal we find that the
compositions are close to the critical micelle concentra-
tions (CMC). This can be seen in Figure 7, where the
lower solid lines are the critical micelle concentrations.
For the parameters chosen here, that imply strong segre-
gation of the end blocks, we have previously [18] discussed
the dependency of the CMC on the molecular architec-
ture. Combining ϕdilute ≈ CMC with the result found
in [18] gives

ϕdilute
p ∝ N

3

2
+g

B exp

(

−3

2
NA

)

, (16)

where the exponential decay of the CMC with the end-
block length NA is similar to that of ordinary surfactants,
but twice as strong because there are 2 hydrophobic moi-
eties attached to a single chain. The factor Ng

B is the de-
pendency of the CMC on the length of the hydrophilic
block for equivalent diblock copolymers (in these calcula-

tions g ≈ 2), and the factor N
3/2

B accounts for the entropy
loss due to loop formation of non-interacting telechelic
chains in isolated flowerlike micelles [31].

Using the scaling relations for both branches of the
binodal in equations (15) and (16) we can also derive ex-
pressions for the point where these branches meet. This
intersection point can be considered to be an upper limit
for the critical value of NB or a lower limit for the value
of NA at the critical point. For example, to find the upper
limit for the critical backbone length (N∗

B), for a given end
block length NA, we start with ϕdense

p = ϕdilute
p . Rewriting

then gives

N∗

B ∝ N
1

10g

A exp

(

3

4g
NA

)

. (17)

As the latter, exponential, term grows much faster than
the first, power law, term, we can neglect the first term
and find; N∗

B ∝ exp ( 3

4g NA). Here g ≈ 2, giving; N∗

B ∝
exp (3

8
NA) This gives a quasi-Traube’s rule [32] for the

minimal length of a middle block, for a given end block
length, that assures that the system is homogeneous at all
concentrations, which could be used as a design rule, e.g.,
for the development of novel associative thickeners, where
the occurrence of demixing is undesired.

In the explanation of the approach to compute biphase
coexistence, we have mentioned that the model can be ex-
pected to be only valid far enough away from the criti-
cal point. As explained in more detail in the Discussion-
section of this paper, we expect all data points shown in
Figure 7 to lie within the validity of our model.

5 Transient network threshold

From the self-consistent field cell model we have also ob-
tained the number of bridges, nb, formed by the central
micelle with its neighbors. As stated in the introduction we
expect bridging to be an entropic phenomenon, driven by
the gain in conformational freedom when chains have the
possibility to form bridges in addition to forming loops.
For a chain, of which at least one segment is located at the
symmetry plane, the probability to form a loop and the
probability to form a bridge are equal. As a result, we ex-
pect that at high concentrations exactly half of all chains
have formed a bridge, whereas the other half is present in
loops. In Figure 8a the fraction of chains that have formed
a bridge α = nb/nagg is plotted versus polymer concentra-
tion. It shows that in the limit of high concentrations this
value indeed levels off at a plateau value of 1

2
. From the

same plot we can also conclude that the onset and sat-
uration of bridging occurs at lower volume fractions for
chains with larger middle blocks.

Now that we have obtained the number of bridges as a
function of polymer concentration we can estimate at what
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Fig. 8. a) Fraction of the total chains in the micelle that have
formed a bridge α = nb/nagg as a function of polymer volume
fraction ϕp for various values of NB (100, 200, 400, 1000, 2000)
in systems of A20-BN -A20 polymers. b) Same results as in a)

plotted as α versus ϕpN
2/3

B .

concentration a macroscopic association cluster of micelles
is formed. Above this concentration, where we have a per-
colated structure in our system, we can expect the me-
chanical properties of the system to change from fluid-like
to visco-elastic. The concentration ϕnet

p where this transi-
tion occurs is denoted the transient network threshold

To find the network threshold we need to define a cri-
terion for the average number of bridges per micelle that
are required for the formation of a macroscopic network
(nnet

b ). Here we will consider two estimates for this transi-
tion. The first is the so-called Flory gel point criterion [22],
that takes into account the functionality nagg of the nodes;

αnet =
nnet

b

nagg
=

1

nagg − 1
, (18)

where αnet = nb/nagg is the fraction of the total num-
ber of possible bridges that must form to obtain a macro-
scopic network. In these systems nagg ≫ 1, hence nnet

b
goes to unity. The Flory criterion does not take into ac-
count non-effective bridges, e.g. the formation of rings of
nodes (micelles) connected by bridges.

The second criterion is derived from classical bond per-
colation theory. For a 3-dimensional cubic lattice, Monte-
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Fig. 9. Comparison between transient network threshold
ϕnet

p ,as predicted by the Flory-criterion and the bond perco-
lation criterion by Stauffer et al. [33] as a function of central
block length NB , for A20-BN -A20 polymers.

Carlo simulations have shown that the fraction of bonds
formed should equal 0.25 to reach the bond percolation
threshold [33]. As the functionality of the nodes in a 3D
cubic lattice is 6 by definition, on average 1.5 bonds/node
are required for percolation. In our model we can use this
same value for nnet

b . This percolation approach does not
take into account the functionality of the nodes, rather
assumes a fixed value (6 for a 3D cubic lattice), but does
account for the formation of non-effective bonds.

The two different criteria are compared in Figure 9. We
see, as expected from the definitions of the two criteria,
that the predicted transient network thresholds are very
close, with the bond percolation criterion giving a slightly
higher predicted threshold concentration.

As for the other properties discussed in previous
sections, we can investigate how the network threshold
changes with variations in the molecular architecture. For
the proportionality of ϕnet

p with the backbone length NB ,
we can take a closer look at Figure 9. The solid lines are
power law fits to the results from the self-consistent field

calculations. We empirically find that ϕnet
p ∝ N

−2/3

B . Us-
ing this relation to rescale the volume fraction-axis of Fig-
ure 8a, as is done in Figure 8b, we see superposition of all
curves of the fraction of bridging chains versus concen-

tration. This indicates again that the quantity N
−2/3

B , for
a given NA, determines the bridge formation throughout
the concentration range.

Qualitatively we can understand that the transient
network is formed at lower concentrations when the mid-
dle block is longer. First of all, the minimal distance re-
quired between micelles to allow bridge formation, is larger
for larger middle blocks, as the chains can reach over
longer distances compared to smaller values of NB . Sec-
ondly, we know from [18] and Figure 5b that the aggre-
gation number is a decreasing function of NB . If we dis-
tribute the same amount of polymer material over many
micelles, with a smaller aggregation number, the typical
distance between the micelles will be smaller than when we
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have few micelles with a large aggregation number. Both
effects will contribute to the observed scaling of ϕnet

p with
NB . At this time however, we do not have a more quanti-
tative explanation for this dependency.

The proportionality of the concentration where a net-
work is formed with the end-block length NA is more com-
plicated. From our calculations we find that ϕnet

p ∝ Nk
A,

where the scaling exponent k itself is a function of NB .
For the current choice of parameters k ∝ N0.7

B . The in-
crease in ϕnet

p with increasing NA is again attributed to
effect that a change in associative block length has on the

aggregation number, as we know that nagg ∝ N
4/5

A . How
this translates into the intricate relation that is found, is
not clear to the authors at present.

In classical transient network theories, such as the
generalized Green-Tobolsky theory of Tanaka and Ed-
wards [34], rheological parameters such as the zero-shear
viscosity and plateau modulus are related directly to the
number of elastically active chains per unit volume. In
these theories a linear relation is expected between the
overall polymer concentration and the plateau modulus.
Experimental results however, predict a much stronger in-
crease. According to Annable et al. this must be attributed
to the fact that not only the number of micelles increases
with concentration, but that also the fraction of chains
per micelle that forms a bridge (i.e. α) is a strong func-
tion of concentration [35]. This is exactly what we see in
Figure 8.

In this section we have attempted to estimate the
polymer concentration where we can expect the first ap-
pearance of a macroscopic association cluster of micelles.
Of course the criteria used above are static criteria, and
do not capture any of the dynamics and possible non-
ergodicity of this transition in “real” experimental sys-
tems. Application of the results described in this paper,
to analyse this transition and its dynamical aspects in
more detail, could be an outlook for future research.

6 Discussion

With the predictions for the critical micelle concentra-
tions [18], the coexistence curves, and the transient net-
work thresholds, we can construct phase diagrams for our
telechelic associative polymers. In Figure 10 we show two
examples of phase diagrams, for two values of the end-
block length NA.

In comparing the phase diagrams for NA = 20 and
NA = 16, the depression of the upper limit of the crit-
ical value of NB (Eq. (17)) and the shift in the micel-
lization threshold are clearly distinguishable. The volume
fractions, corresponding to either the CMC (line 1) or the
dilute branch of the binodal (line 2), decrease exponen-
tially with a change in the end-block length NA (Eqs. (16)
and (17)), explaining the large effect for a relatively small
change in NA. For the network formation threshold (line
3), that is proportional to a power-law of NA, the change
is hardly visible.

From Figure 10 and the discussion of the various scal-
ing arguments above, it is clear that there are large dif-
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Fig. 10. Phase diagram for A20-BN -A20 (a) and for A16-BN -
A16 polymers (b). Indicated transitions are; 1) micellization
threshold, 2) the binodal for biphase coexistence and 3) the
transient network threshold. Note that the intersect of the two
binodal branches is not the actual critical point; it is an upper
limit for the critical point.

ferences in how volume fractions, at which the various
transitions occur, depend on the molecular architecture.
As a result it is not possible to superimpose these phase
diagrams by rescaling the volume fraction axis with re-
spect to the volume fraction at the critical point, which
is a technique commonly employed when studying phase
diagrams.

There is a regime, above the intersection of the micel-
lization threshold with the transient network threshold,
where any micelle formation of the associative polymers
immediately leads to the formation of a network. This is
the case when the middle B block is very long and as a
result nagg will typically be very low and the CMC rela-
tively high. As the corona chains can span large distances,
any self-assembly will then be accompanied by formation
of bridges, leading to a dilute network with nodes, i.e.
micelles, of low functionality.

As discussed above, we cannot obtain the true criti-
cal point in our approach, due to the approximations that
were needed to determine coexistence. Of course the bin-
odal should be continuous at the critical point; the true
binodal will have a different shape around the critical
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point compared to what is shown in Figure 10. We can
roughly estimate where our approach is no longer valid.
Phase separation no longer occurs when the depth of the
attractive minimum in ∆Fm(h) becomes smaller than the
thermal energy kBT . In other words, conditions where the
depth of the attraction is of order kBT must be close to
the critical point. Due to technical issues, it is difficult, in
this SF-SCF model, to calculate points close to the criti-
cal point. For all points that we have calculated, as shown
in Figure 7, we find that the attraction is at least several
kBT . This indicates that for all these results our approach
is valid. The regime where we expect the model to break
down is very close to the predicted critical point and is
too small to indicate in the constructed phase diagrams.

In-depth comparison of our results with existing exper-
imental data, such as in [12,16], is difficult as the experi-
mentally studied range and number of block lengths is too
limited to verify the scaling behavior that we predict here.
This calls for a systematic experimental investigation of
the properties discussed in this paper, over a larger range
of both end- and middle block lengths. On a more qual-
itative level, we find that the experimental studies [12,
16] show the tendency for phase separation to increase
when the hydrophobic blocks become longer and/or the
hydrophilic blocks smaller. This agrees with our model,
e.g. see equation (17) and Figure 10.

7 Conclusions

Using a self-consistent field cell model, and explicitly ac-
counting for the self-assembled character of the interact-
ing objects, we have mapped out the self-assembly and
phase behavior of telechelic associative polymers with
their soluble blocks at θ-conditions. Based on the calcula-
tions of intermicellar interactions, coexistence curves were
predicted. From the numerical results, the concentration
where a transient network is formed, was also predicted.
Together with the results for the micellization threshold,
phase diagrams were constructed.

Nearly all trends found from the numerical results
could be rationalized using relatively simple scaling argu-
ments. With these scaling arguments, a quantitative un-
derstanding of how the phase behavior depends on the
molecular architecture of the telechelic associative poly-
mers is easily accessible.

The work of J. Sprakel forms part of the research programme
of the Dutch Polymer Institute (DPI), project #564.

References

1. J.P. Kaczmarski, J.E. Glass, Macromolecules 26, 5149
(1993).

2. B. Grassl, L. Billon, O. Borisov, J. Francois, Polym. Int.
55, 1169 (2006).

3. A.S. Kimerling, W.E. Rochefort, S.R. Bhatia, Ind. Eng.
Chem. Res. 45, 6885 (2006).

4. N. Cathebras, A. Collet, M. Viguier, J.F. Berret, Macro-
molecules 31, 1305 (1998).

5. J. Duhamel, A. Yekta, Y.Z. Hu, M.A. Winnik, Macro-
molecules 25, 7024 (1992).

6. O. Ortona, G. D’Errico, L. Paduano, V. Vitagliano, J. Col-
loid Interface Sci. 63, 301 (2006).

7. X.D. Huang, S.H. Goh, S.Y. Lee, Macromol. Chem. Phys.
201, 2660 (2000).

8. S.T. Milner, T.A. Witten, Macromolecules 25, 5495
(1992).

9. D. Cao, J. Wu, Langmuir 22, 2712 (2006).
10. A. Courvoisier, F. Isel, J. Francois, M. Maaloum, Langmuir

14, 3727 (1998).
11. S.H. Kim, W. Lau, E. Kumacheva, Macromolecules 33,

4561 (2000).
12. Q.T. Pham, W.B. Russel, J.C. Thibeault, W. Lau, Macro-

molecules 32, 1999 (1999).
13. X.X. Meng, W.B. Russel, J. Rheol. 50, 169 (2006).
14. S.R. Bhatia, W.B. Russel, Macromolecules 33, 5713

(2000).
15. A.N. Semenov, J.-F. Joanny, A.R. Kokhlov, Macro-

molecules 28, 1066 (1995).
16. J. Francois, E. Beaudoin, O. Borisov, Langmuir 19, 10011

(2003).
17. A.N. Semenov, M. Rubinstein, Macromolecules 31, 1373

(1998).
18. J. Sprakel, N.A.M. Besseling, F.A.M. Leermakers, M.A.

Cohen Stuart, J. Phys. Chem. B 111, 2903 (2007).
19. J.M.H.M. Scheutjens, G.J. Fleer, J. Phys. Chem. 83, 1619

(1979).
20. J.M.H.M. Scheutjens, G.J. Fleer, J. Phys. Chem. 84, 178

(1980).
21. F.A.M. Leermakers, J. Sprakel, N.A.M. Besseling, P.A.

Barneveld, Phys. Chem. Chem. Phys. 9, 167 (2007).
22. P.J. Flory, Principles of Polymer Chemistry (Cornell Uni-

versity Press, Ithaca, 1953).
23. O.A. Evers, J.M.H.M. Scheutjens, G.J. Fleer, Macro-

molecules 23, 5221 (1990).
24. F.A.M. Leermakers, J. Lyklema, Colloids Surf. 67, 239

(1992).
25. B.Y. Zaslavsky, T.O. Bagirov, A.A. Borovskaya, N.D. Gu-

laeva, L.H. Miheeva, A.U. Mahmudov, M.N. Rodnikova,
Polymer 30, 2104 (1989).

26. T.L. Hill, Thermodynamics of Small Systems, Parts 1 and

2 (Dover Pub. Inc., New York, 1994).
27. D.G. Hall, B.A. Pethica, in Nonionic Surfactants, edited

by M.J. Schick (Marcel Dekker Inc., New York, 1967).
28. D.F. Evans, H. Wennerström, The Colloidal Domain

(Wiley-VCH, New York, 1999).
29. J. Francois, S. Maitre, M. Rawiso, D. Sarazin, G. Beinert,

F. Isel, Colloids Surf. A 112, 251 (1996).
30. M. Daoud, J.P. Cotton, J. Phys. (Paris) 43, 531 (1982).
31. G. ten Brinke, G. Hadziioannou, Macromolecules 20, 486

(1987).
32. C. Tanford, The Hydrophobic Effect; Formation of Micelles

and Biological Membranes (Wiley, New York, 1980).
33. D. Stauffer, J.G. Zabolitzky, J. Phys. A: Math. Gen. 19,

3705 (1986).
34. F. Tanaka, S.F. Edwards, Macromolecules 25, 1516 (1992).
35. T. Annable, R. Buscall, R. Ettelaie, D. Whittlestone, J.

Rheol. 37, 695 (1993).


