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Brownian particles in transient polymer networks
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We discuss the thermal motion of colloidal particles in transient polymer networks. For particles that are
physically bound to the surrounding chains, light-scattering experiments reveal that the submillisecond dynam-
ics changes from diffusive to Rouse-like upon crossing the network formation threshold. Particles that are not

bound do not show such a transition. At longer time scales the mean-square displacement (MSD) exhibits a
caging plateau and, ultimately, a slow diffusive motion. The slow diffusion at longer time scales can be related
to the macroscopic viscosity of the polymer solutions. Expressions that relate the caging plateau to the mac-
roscopic network elasticity are found to fail for the cases presented here. The typical Rouse scaling of the MSD
with the square root of time, as found in experiments at short time scales, is explained by developing a
bead-spring model of a large colloidal particle connected to several polymer chains. The resulting analytical

expressions for the MSD of the colloidal particle are shown to be consistent with experimental findings.
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I. INTRODUCTION

Microrheology is a growing field of science, founded on
the pioneering work of researchers such as Weitz and Mason
[1,2] and MacKintosh and Schmidt [3,4]. In microrheology,
the thermal motion of probe particles is interpreted in terms
of the mechanical properties of the medium in which they
are suspended. The motion of the particles can be quantified
with a variety of techniques, such as diffusing wave spectros-
copy [5], dynamic light scattering [6], and various
microscopy-based techniques [7], often in combination with
tools such as optical tweezers [8]. Besides the study of syn-
thetic model systems, such as polymer solutions [9], associa-
tive polymer networks [10], and living polymer systems [6],
the field has found a connection with biology in the numer-
ous publications on biological materials such as actin net-
works [11], microtubule solutions [12], and membranes [13].

In order to relate measurements of particle dynamics to
the macroscopic viscoelastic moduli, Mason and Weitz as-
sumed that the Stokes drag for viscous fluids can be ex-
tended to describe the viscoelastic drag at all frequencies [1].
The generalized Stokes-Einstein relation that they proposed
assumes furthermore that the medium is homogeneous
around the particle and that it can be considered as a vis-
coelastic continuum. This seems justified if the particle ra-
dius R is much larger than the bulk correlation length & of the
medium. Nevertheless, significant differences between bulk
rheology and microrheology have been observed even for
R> £[6,10]. It has been argued that such discrepancies could
be related to depletion layers around the particles [14-16].
The occurrence of depletion should be very sensitive to spe-
cific interactions between the particles and the medium. In
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this paper we analyze in detail how such interactions affect
the dynamics of colloidal particles embedded in transient
polymer networks, in particular at short times.

Since Einstein’s famous paper on Brownian motion [17],
it is known that the mean-square displacement (Ar?) of col-
loidal particles in purely viscous fluids increases linearly
with time, the diffusion coefficient being the proportionality
constant. The motion of colloids in viscoelastic media, how-
ever, is more complex. Most types of motion show scaling
behavior:

(AF?) o< 1, (1)

For diffusion, a=1. All dynamics for which the exponent «
is smaller than unity, are denoted subdiffusive. According to
the generalized Stokes-Einstein relation used in microrheol-
ogy, such subdiffusive behavior can be related to the vis-
coelastic response of the medium at the corresponding fre-
quencies [1]. For example, for particles in elastic media with
G*(w)=G,, caging is observed (a=0); i.e., the particles
are restricted to displacements for which the elastic deforma-
tion energy of the surrounding matrix is smaller than the
thermal energy kT, leading to a plateau in the mean-square
displacement [ 18]. Another example of subdiffusive behavior
was observed for particles in solutions of F-actin, where «
=0.75 is found at short times. This can be related to the
G*(w) * w** behavior predicted for semiflexible polymers at
high frequencies [11]. For beads covalently bound to micro-
tubules, @ was found to depend on the flexibility of the
chains; “relaxed” chains yield «=0.8, whereas prestretched,
hence more rigid, microtubules gave significantly lower val-
ues of a [12]. Finally, subdiffusive behavior may also be
caused by local structural inhomogeneities in the medium,
unrelated to the bulk rheology. For example, particles in
F-actin networks were seen to “hop” between distinct pores
in the network, giving 0 <« <1, depending on the ratio R/§&
[19].
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Recently, we have reported evidence of a Rouse-like mo-
tion (az%) of colloidal particles that are physically bound to
flexible polymer networks [20]. In this paper we present a
detailed analysis of this type of submillisecond dynamics of
colloidal particles in transient polymer networks. The experi-
mental results are rationalized by constructing an analytical
model for the motion of a large colloidal particle connected
to a surrounding polymer network. We also discuss the mo-
tion of the probe particles at intermediate (milliseconds) and
longer (seconds) time scales, and compare these to predic-
tions based on the bulk rheological behavior of the solutions.

II. EXPERIMENT
A. Materials

Hydroxy-terminated polyethylene oxide (PEO), with a
nominal My, of 35 kg/mol and My/My=1.2, was used as
purchased from Fluka. Part of it was converted into a telech-
elic associative polymer by attaching hexadecyl (C,¢Hs3)
groups at the chain ends, as follows. The PEO was reacted in
toluene with hexadecyl isocyanate (Sigma) in the presence of
dibutyl tindilaurate [DBTDL] (Sigma), at 60 °C for 12 h.
After three cycles of dissolution in toluene and precipitation
in heptane, the polymer was further purified by dissolution in
ethyl acetate, filtration over 0.2-um syringe filters, evapora-
tion of the solvent, and drying. Critical chromatography in-
dicated that approximately 85% of all chain ends have been
modified with a hexadecyl tail; i.e., on average, 1.7 hydro-
phobic groups are attached per chain.

Silica particles (Monospher M100, Merck) with a hydro-
dynamic radius of 70 nm are used either without further
treatment (denoted plain silica particles) and after a pread-
sorption step with a high-molecular-weight PEO (referred to
as PEO-covered silica in the remainder of this paper). This
treatment involved diluting the silica particles to a 1 wt %
dispersion, adding 10 mg/l of polyethylene oxide (Polymer
Source), with a molecular weight of 1000 kg/mol, and stir-
ring for 72 h. Highly monodisperse, charge-stabilized core-
shell latex particles (R,=110 nm), polymerized from styrene
and some acidic acrylate monomers, where kindly supplied
by Akzo Nobel Coatings Research (Sassenheim, the Nether-
lands). The silica particles (plain and PEO covered) are used
at a volume fraction of 10~ and the latex particles at a vol-
ume fraction of 107>, such that particle-particle interactions
are negligible and multiple scattering is avoided.

The dynamic light-scattering experiments are carried out
on three different setups: (a) a homebuilt setup equipped
with a diode-pumped solid-state (DPSS) laser (A=532 nm),
a photomultiplier tube (PMT) detector, and hardware cor-
relator, with a fixed detection angle of 90°; (b) an ALV5000,
equipped with an argon laser (\=514.5 nm), ALV/SO-SIPD
fiber detector mounted on a goniometer and a hardware cor-
relator; and (c) a Malvern Nano-S, with a He-Ne laser (A
=632.8 nm), an avalanche photodetector at a detection angle
of 173°. In all experiments the temperature was controlled at
20 °C.

Rheological measurements are conducted on a Paar
Physica MCR301 rheometer. The viscosity measurements
are carried out in a couette (concentric cylinder) geometry at
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FIG. 1. Schematic representation of the two types of networks
that are discussed in this paper. On the left a solution of flexible
polymers above the overlap concentration, in which the junction
points are formed by entanglements. On the right a micellar, asso-
ciative network of telechelic polymers. In these associative net-
works the junction points are formed by flowerlike micelles, that
are interconnected by polymer bridges [20].

shear rates well within the Newtonian regime of the corre-
sponding system. The viscoelastic properties of the networks
are characterized in oscillatory experiments in a cone-plate
setup with a cone diameter of 75 mm. In these experiments
the frequency of deformation is varied at a fixed strain of
10%, which was checked to be in the linear regime. For both
geometries the temperature was kept at 20 °C with integrated
peltier elements.

B. Classification of systems

We study the motion of colloidal particles in two classes
of transient polymer networks; see Fig. 1. The first are en-
tangled systems of flexible homopolymers. We use aqueous
solutions of polyethylene oxide (PEO). The second class of
networks are associative networks formed from the
C,¢H33-modified telechelic associative polymers described
above. These types of polymers are known to form transient
networks, in which the nodes are flowerlike micelles, inter-
connected by polymer bridges [21].

In this study we distinguish two types of particle-matrix
interactions, as illustrated in Fig. 2. (i) Sticking particles:
when the polymer chains in the network can adsorb onto the
particle surface. In this study we use plain silica particles; it
is well-known that PEO strongly adsorbs onto silica surfaces
[22]. (ii) Nonsticking particles: when the polymer chains in
the network cannot adsorb onto the particle surface. For the
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FIG. 2. Schematic illustration of the two types of particle-
network interactions. On the left the “nonstick™ situation, in which
no chains of the matrix adsorb onto the particle. This situation also
applies when adsorbed chains are not entangled or associated with
the matrix. On the right “sticking” between particle and matrix as a
result of adsorption of polymer chains onto the particle surface.
These adsorbed chains are connected to the transient network, either
through entanglements or through associative interactions [20].
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entangled polymer networks these are the latex particles, and
in the associative networks these are the PEO-covered silica
particles; in this case, the high-molecular-weight PEO layer
adsorbed onto the particles ensures that the chains in the
network cannot adsorb [23]. The high-molecular-weight
polymers that are adsorbed onto these particles can, however,
participate in entanglements, which will also become impor-
tant in the associative networks at higher concentrations.

C. Dynamic light scattering

The mean-square displacement (MSD) (A7) of monodis-
perse spherical particles can be measured directly with dy-
namic light scattering (DLS) [24]. The intensity correlation
function g®(¢) evaluates fluctuations in the intensity / of
light scattered by the particles:

U+ 1)
@y - LDIT+1)
T

From g(z)(t) one obtains the normalized field autocorrelation
function gV(z):

(2)

§?2=1+AgV 0], (3)

where 0<A=1 is an instrumental constant. Assuming
Gaussian statistics, g"() gives direct access to the MSD of
the particles using

(AP0) = 21 0(0)], @
q

where g=4mn,, sin(6/2)/\ is the length of the scattering
vector, with @ the angle of detection measured with respect
to the incident beam, n,, the refractive index of the medium,
and \ the wavelength of the light in vacuum. Use of Eq. (4)
is justified when the scattering of the polymer matrix is neg-
ligible with respect to that of the particles and when particle-
particle interactions can be ignored. The particle concentra-
tions in our experiments are chosen such that both
requirements are obeyed.

In Fig. 3 we have plotted the MSD, at several fixed times,
versus the measurement angle in the light-scattering setup,
expressed as the scattering vector g. We see that the MSD
[Eq. (4)] is almost constant over the investigated g range,
which indicates that non-Gaussian contributions to the par-
ticle displacement are small. The small deviations from the
dotted horizontal lines, as seen in Fig. 3, must be attributed
to minor errors in the alignment of the optical train in the
light-scattering setup. These errors however do not influence
the results shown below, as these are obtained at fixed scat-
tering angles.

In the setups used here, the shortest available correlation
time is 200 ns. Our data, which was recorded during 2 h or
more per sample, starts at 10 us and ends at 100 s, hence
well within the borders of the accessible range of correlation
times. The accuracy of the normalized correlation function
g?(1)—1/A can be estimated using an approximation given
by Berne and Pecora [25]. For a measurement of 2 h, which
is the minimum here, the standard deviation in the correla-
tion function is approximately (1 X 107)% for 7=10 us and
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FIG. 3. (Color online) Angular dependence of the MSD of plain
silica particles (R,=70 nm) in a 80-g/l aqueous solution of PEO
(My=35 kg/mol) at a given correlation time ¢. The angle of detec-
tion was varied between 50° and 140° on light-scattering setup No.
2 and is expressed here as the scattering vector g. Shown are ¢
=102 ms (#), r=10"" ms (@), =1 ms (M), and r=2 ms (A).

0.1% for 7=100 s. Hence, the data presented here are accu-
rate over the entire time range investigated. Note that this
DLS technique offers a significantly higher short-time reso-
lution than video-based particle-tracking methods [26].

III. RESULTS AND DISCUSSION
A. Linear rheology of polymer solutions

For both polymer classes we have measured the low shear
viscosity 7 as a function of polymer concentration in the
absence of particles. The results are shown in Fig. 4. At low
polymer concentrations the viscosity increases very weakly
with polymer concentration. At a certain concentration, the
increase in viscosity becomes much stronger. We will loosely
denote this concentration as the network formation threshold
(where the network can be formed by micellar junction
points in the case of the telechelic polymers or by entangle-
ments in the case of unmodified PEO). For the unmodified
PEO, this occurs at approximately 25 g/, and the crossover
from the dilute to the entangled regime is rather gradual. For
the associative polymers this occurs at a significantly lower
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FIG. 4. (Color online) Low shear viscosities of aqueous solu-
tions of PEO [M =35 kg/mol (H)] and aqueous solutions of hexa-
decyl (C;4H33)-modified PEO of the same molecular weight (@).
Drawn lines are power-law fits to the experimental data.
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FIG. 5. (Color online) (a) Frequency dependence of storage [G’ ((J)] and loss [G” ((O)] moduli of a 50-g/l aqueous solution of
associative polymers. Drawn lines are fits to the Maxwell model [Egs. (5) and (6)]. (b) Plateau modulus [G (A)] and relaxation time [ 7,

(@)] versus associative polymer concentration. Drawn lines are power-law fits to the data, with Gy ¢>3 and 7, ¢

concentration of 5 g/l and the transition is much sharper.
Figure 4 also shows that the viscosity increase beyond this
network threshold is stronger for the associative networks
(9> c*?) than for the entangled systems (7occ*!). This is
due to the difference in network structure and strength of the
junction points.

In rheological oscillation measurements the viscoelastic
properties of a system can be determined. In these measure-
ments, the storage (G') and loss (G”) moduli are determined
as a function of the angular deformation frequency w. For the
associative system, a typical result is show in Fig. 5(a). The
simplest description of a viscoelastic fluid is the spring-
dashpot model, or so-called Maxwell model, which is gov-
erned by a single relaxation time 7, [27]. The Maxwell
model leads to the following expressions for the storage
modulus,

Gy w*
G'=—r0, (5)
I+ 7'(2)
and loss modulus,
G()’T()(U
G'=———, 6
1+ w27'20 (©)

where G is the plateau modulus. The mechanical response
of the associative networks is described well by the Maxwell
model, as seen from the fit to Egs. (5) and (6) in Fig. 5(a).
The Maxwell behavior of associative polymer systems has
been established extensively in the literature [28].

The values of G, and 7, obtained in this manner for the
associative polymer system, are plotted in Fig. 5(b) as a
function of polymer concentration. In classical transient net-
work theories, such as the generalized Green-Tobolsky
theory of Tanaka and Edwards [29], the plateau modulus is
linearly proportional to the number of elastically active
chains. When the fraction of all chains that are elastically
active is constant, we would also expect a linear relation
between plateau modulus and concentration. We observe a
much stronger increase in G, with concentration, however:
Gy c?3. Annable et al. [28] gave an explanation in terms of
structural changes of the network; i.e., not only does the total

0.75

number of chains in the system increase with concentration,
but also the fraction of those chains that are mechanically
active.

B. Motion of particles in polymer solutions

The primary result of the light-scattering experiments are
the intensity correlation functions [Eq. (2)]. In Fig. 6 we
show a set of such correlation functions for plain silica par-
ticles in associative networks. For particles in pure water, we
see a monoexponential decay, which is indicative of purely
diffusive motion of monodisperse particles. With increasing
polymer concentration the main relaxation time shifts to
higher values, as a result of the increasing viscosity of the
medium (as shown in Fig. 4). At higher polymer concentra-
tions the correlation functions start to deviate from a simple
monoexponential decay. This complex behavior will become
more apparent when the results are converted into the MSD
(Ar*(1)), using Eq. (4).

In Fig. 7 some typical results are shown. For particles in
pure water, here shown for both plain silica particles [Fig.
7(a)] and for PEO-covered silica particles [Fig. 7(b)], the
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FIG. 6. (Color online) Normalized intensity correlation func-
tions, as obtained with DLS, of plain silica particles (R,=70 nm) in
aqueous solutions of associative polymers as a function of polymer
concentration: 0 g/l (), 9.6 g/l (@), 30.1 g/l (A), 49.5 g/ (W), and
77.1 g/1 (O). Each curve consists of approximately 250 data points
[20].
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FIG. 7. (Color online) MSD of colloids in associative networks, as measured with DLS [Eq. (4)]. (a) Sticking conditions: plain silica
particles (R,=70 nm) in associative polymer solutions of 0 (#), 20.0 g/l (@), 30.1 g/l (A), 49.9 g/l (M), and 60.2 g/l (O). (b) Nonstick
conditions: silica particles pretreated with a high-molecular-weight PEO in associative polymer solutions of 0 (4 ), 10.0 g/l (@), 19.9 g/l (A),

30.1 ¢/ (W), and 40.0 g/1 (O).

monoexponential decay in the correlation curves corresponds
to a linear relation between the MSD and time. This is the
sign of pure diffusion, where the exponent « in Eq. (1) is 1.
The proportionality constant in this relation is 6D, where D
is the diffusion coefficient [17].

When the pure water that surrounds the particles is re-
placed by a polymer network, the behavior becomes more
complex. For nonsticking particles in a polymer solution that
has formed a transient network, as shown in Fig. 7(b), we see
at short times a diffusive behavior, again with a=1. At inter-
mediate time scales we see the appearance of a plateau in the
MSD (a=0). At a certain MSD, the energy associated with
elastic deformation of the network becomes of the order of
the thermal energy. As a result, the particles will be restricted
to motion within this typical length scale, resulting in the
plateau in the MSD. At longer time scales, due to the non-
permanent nature of the cross-links in these transient net-
works, we find a diffusive motion again. Similar experiments
in covalently cross-linked polymer networks showed a pla-
teau persisting up to the highest correlation times investi-
gated (10° s) [30].

For sticking particles, as shown in Fig. 7(a), the same
changes in the MSD at intermediate and long time scales are
observed when the medium crosses the network formation
threshold. However, we see an additional effect occurring at
short correlation times (<0.1 ms). For these short times and
for sticking particles we do not find diffusive motion, but a
subdiffusive dynamics with (Ar?)ccr!/2,

In the following sections we separately discuss the behav-
ior in the three different regimes that can be distinguished in
the dynamics of colloidal particles in transient networks: (i)
the diffusive (nonsticking) and subdiffusive (sticking) mo-
tion at short time scales (t<<10™ s), (ii) the caging plateau
at intermediate time scales (107 s<r<<107! s), and (iii) the
long-time diffusive behavior (1>1 s).

C. Short time scales

In Fig. 8 we have plotted the exponent « for the short-
time (t<<107* s) dynamics of various combinations of par-
ticles and networks as a function of polymer concentration.

We see that under sticking conditions (for plain silica par-
ticles) there is a transition from diffusive (a=1) to subdiffu-
sive motion with a=%. This transition is found, for both the
unmodified and associative polymer systems, at approxi-
mately twice the threshold concentration for network forma-
tion. For particles that are not bound to the surrounding net-
work, this transition is absent. This is shown in Fig. 8 for the
nonstick latex particles in entangled networks. For these par-
ticles the short-time motion remains diffusive over the entire
concentration regime. These results strongly suggest that the
typical exponent of % is related to the binding of particles to
the surrounding matrix and the presence of a network.

One special situation is also shown in Fig. 8 (squares) for
particles with a preadsorbed layer of a high-molecular-
weight PEO in associative networks. The associative poly-
mer chains forming the network cannot adsorb onto these
particles, so that we expect the particle not to show signs of
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0.5

T

0.25

\‘\\\\‘\\\\‘\\\\

25 50 75 100
c(g/L)

FIG. 8. (Color online) Effect of polymer concentration ¢ on the
exponent a [Eq. (1)] for short-time motion of particles in polymer
networks. Four different combinations of probe particles and poly-
mer are shown: silica particles (sticking) in solutions of unmodified
PEO (@), silica particles (sticking) in solutions of hydrophobically
modified, associative, polymer (A), PEO-covered silica particles
(special conditions, see text) in associative polymer solutions (H),
and nonstick latex particles in regular PEO solutions (4 ). The dot-
ted line indicates a=0.5 for Rouse-like motion [20].

S

061502-5



SPRAKEL et al.

subdiffusive behavior. However, at higher concentrations en-
tanglements also become important in the associative net-
works, in addition to the associative “cross-links” (i.e., mi-
celles) between the chains. The adsorbed layer at the surface
of the particle can probably take part in entanglements, and
as a result, we see that the transition from diffusive to sub-
diffusive motion is delayed from twice the network threshold
of the associative system (=20 g/I) to a higher concentra-
tion where entanglements also become important
(=60 g/1). The transition for this special situation is found
close to that of sticking particles in unmodified polymer so-
Iution. This indicates that entanglements become important
at roughly the same concentration in the unmodified and in
the modified systems.

A similar transition from diffusive to subdiffusive behav-
ior upon changing the surface chemistry has been observed
for particles in F-actin solutions by Chae and Furst [14].
These authors observed diffusive motion for nonsticky poly-
styrene probes preadsorbed with bovine serum albumin,
while bare polystyrene beads displayed a MSD proportional
to /*. The exponent of 3/4 is related to the bending (or
Rouse) modes of the semiflexible actin polymers. As we will
show in the next section, the analogous Rouse modes for
flexible chains lead to the #'/? scaling in the present work.

A physical interpretation of the short-time diffusive mo-
tion observed for nonsticking particles over the entire con-
centration range, even when there is a transient network sur-
rounding the particles, is for example given in [6]. The
nonsticking particles are surrounded by a depletion layer. At
short times, when the particle displaces over small distances,
the particles do not feel the surrounding network and exhibit
a diffusive motion, with a corresponding diffusion coefficient
that is of the same order of magnitude as the diffusion coef-
ficient of these particles in the pure solvent. The short-time
diffusion coefficient is slightly smaller than its pure solvent
counterpart, though, because the flow field arising from the
particle’s Brownian motion is weakly perturbed by the sur-
rounding network. A detailed analysis of such effects has
been given by others [15,16,31,32].

In the following section we will develop a model that
gives a physical interpretation of the subdiffusive short-time
dynamics observed for sticking particles in transient net-
works.

D. Rouse model for colloids bound to polymer networks

As we discussed in a recent paper [20], the exponent «
=% found for the short-time motion of sticking particles is
indicative of Rouse-like behavior. We proposed a bead-
spring model for the motion of a large particle anchored to a
set of polymer chains to explain this scaling. Here, we pro-
vide a more detailed description of the model.

We consider a particle connected to f adsorbed polymer
chains that are elastically active—i.e., connected to both the
particle and a junction point in the polymer network (Fig. 9).
The first segment in every chain m is connected to the par-
ticle, and the last segment N, is fixed in a cross-link. For
simplicity, we assume that N,,=N is the same for all chains.

PHYSICAL REVIEW E 77, 061502 (2008)
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FIG. 9. Illustration of the proposed model of a colloidal particle
(the large central bead) bound to several surrounding polymer
chains (the bead-spring chains attached to the particle) that are part
of a polymer network through the cross-links, here represented by
the gray beads at the ends of the chains. In this illustration the
number of adsorbed chains f is equal to 4 and the length of each
chain part N=4 [20].

The equation of motion for a polymer segment in one of the
adsorbed chains reads, neglecting inertia [33],

dar, ,
gO dt, =" k(2r111,n ~Tman—1— rm,n+1) + Fm,n’ (7)

where { is the friction coefficient of a polymer segment, & is
the spring constant of a bond between two monomers (re-
lated to the Kuhn length Iy by k=3kzT/ l%(), Y. denotes the
position of segment n in chain m, and F, , is the random
force acting on that segment due to collisions with the sol-
vent molecules. The colloidal particle is connected to f
chains, so that its motion is described by

f

dr

gpd_tpz_kz (rP_ m,1)+Fp’ (8)
m=1

where {p> (), is the friction coefficient of the particle and rp
its position. We assume that the chain ends can be considered
fixed in space at the short time scales we are interested in
here: dr,, y/dt=0. The random forces acting on the polymer
segments and on the particle are assumed to be Gaussian and
uncorrelated in time: (F, ,(1))=0 and (F, (OF, (1))
=2kpT Ly 0me Opnr Ot —1') according to the fluctuation dissi-
pation theorem [33]. Equations (7) and (8) constitute a set of
coupled differential equations that can be written in matrix

form: R=—A-R+F. The solution is obtained by determining
the eigenvalues and eigenvectors of the Rouse connectivity
matrix A [34]. These can be obtained numerically, but for
sufficiently long chains we can also obtain analytical expres-
sions by taking a continuum limit. In the Appendix, we de-
rive the MSD of the particle:
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(Ar*(n)) =

12k, T w1 = expl— (02k/ L)1) o
k

oot 03N + NX2F2 + xf)

where x={,/{p<<1 is the size ratio between a polymer seg-
ment and the probe particle and where w, is determined by
the characteristic equation w), tan(w,N) = xf. For very weakly
coupled particles, Nxf<<1, the motion is dominated by the
particle friction and the motion is diffusive until a plateau is
reached. On the other hand, for Nyf> 1, the connection with
the polymer becomes important and the particle MSD shows
three different regimes. At very short times (<< {f,/ Lokf?) the
particle friction dominates and the MSD is diffusive:
(Ar(t))=6Dpt, with Dp=kgT/ {p. Interestingly, at short time
scales the particle motion is indeed Rouse-like, as observed
in the experiments:

12k, T ,
f(fokﬂ')l/z

In this limit the prefactor does not depend on the friction
coefficient of the particle. Hence, the bead just follows the
motion of the polymer segments. Note that the MSD still
depends on the particle radius R in this regime, as the num-
ber of adsorbed chains f is a function of R. At longer time
scales t>N{p/fk, the MSD reaches a plateau, which de-
pends on the number of adsorbed chains f and their length N:

(AF(1)) = vz, (10)

6k TN
& = im(AF2 (1)) = —2—.

lim I (11)

This expression for the mean-square plateau displacement &>
is a balance between the thermal energy kzT of the probe
particle and the elastic energy in the surrounding network of
polymer chains. Note that in our model the cross-links were
assumed to be fixed, so that the long-time diffusive regime
observed experimentally is not accounted for in this model.

The model above gives a microscopic explanation of both
the short-time Rouse dynamics and the caging plateau at
intermediate time scales. Relating these equations to measur-
able quantities is, however, somewhat troublesome due to the
ingredients that were used, such as the number of elastically
active adsorbed chains f and their length N. From Egs. (10)
and (11) we can see, however, that for a given system, the
MSD for a given time ¢ in the Rouse regime and for the
mean-square plateau displacement should both scale with
1/f.

In Fig. 10 we compare the MSD in the Rouse regime and
at the caging plateau as a function of polymer concentration.
We see that both quantities show approximately the same
dependence on concentration. This implies that Egs. (10) and
(11) are consistent with our experimental data when we as-
sume that all parameters in the model except f remain con-
stant. The decrease in the MSD with polymer concentration
then indicates that the number of adsorbed chains that are
active in the network f increases with polymer concentration,
which is expected. When the total number of chains in the
system, as well as the number of junction points, increases,
the number of chains that are connected to both a particle
and a junction point in the network will also increase.
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FIG. 10. (Color online) Comparison of the effect of polymer
concentration on the MSD in the Rouse regime [at =107 s (A)]
and at the caging plateau where «(z) [Eq. (1)] is minimal (@) for
plain silica particles in associative networks. Dotted lines are drawn
to guide the eye.

E. Intermediate time scales

The previous section gave a microscopic explanation of
the short- and intermediate-time dynamics of colloidal par-
ticles in polymer networks. A more macroscopic consider-
ation is derived by Mason and Weitz [1], who derived a
generalized Stokes-Einstein equation that relates the MSD of
a particle to the viscoelastic modulus G*(w) of the surround-
ing medium. In the plateau region, where G*(w)=G,, this
gives, for the plateau MSD &,

. kgT

= . 12

This expression is a macroscopic analog to Eq. (11).

The comparison between the true plateau displacement
measured with DLS and the value predicted by Eq. (12),
using the bulk plateau modulus as plotted in Fig. 5(b), is
given in Fig. 11. We clearly see that the correspondence is
very poor. The predicted value of & is a much stronger func-
tion of concentration (&% c™22) than the measured plateau
displacement of the colloids (8% ¢™"%). This was also ob-
served previously for living polymer networks [6], where it
was tentatively attributed to the existence of a depletion layer
around the particle, which increases the actual cage size as
experienced by the particles. Levine and Lubensky [32] de-
veloped a shell model that takes into account the presence of
a depletion layer consisting of pure solvent, which was suc-
cessfully applied to actin and DNA solutions [14—-16]. In the
present case, however, depletion effects cannot explain the
deviations observed, as we find exactly the same plateau dis-
placement for particles which stick to the network (and
therefore should not have a depletion layer) and for particles
that do not (which do have a depletion layer around them)
(see Fig. 11).

Several other causes may be suggested to explain the
strong deviations. First of all, as stated in the Introduction, it
is the ratio of the dominant length scales, R/&, that is be-
lieved to determine whether the particle experiences a homo-
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FIG. 11. (Color online) Effect of polymer concentration on the
mean-square plateau displacement &* from the DLS measurements,
for plain silica particles (A) and PEO-pretreated silica particles (@)
in associative networks, and as obtained from Eq. (12) with the bulk
plateau modulus shown in Fig. 5(b) (). Drawn lines are power-law
fits to the data.

geneous medium. For the systems studied here, R was either
70 or 110 nm. For polymer solutions above the overlap con-
centration (as used here), the correlation length must be
smaller than the radius of gyration of the polymer coils,
which is approximately 5 nm in this case. We therefore esti-
mate R/ &= 10. However, it is possible that the system shows
structural and/or mechanical inhomogeneities on length
scales larger than the particle size and/or particle displace-
ment. If this is the case, the particles will preferentially probe
the elastically weaker areas in the network, as there they are
less restricted in their motion. The average elasticity that is
experienced by the particles is then significantly smaller than
the macroscopic elasticity, yielding a larger value of & than
expected from Eq. (12). This is exactly what we observe in
Fig. 11. Strangely, one would expect, when the bulk correla-
tion length becomes smaller—i.e., with increasing polymer
concentration—that the correspondence between the macro-
scopic prediction and the experimental results would also
increase. However, we see that the deviation between the two
grows with increasing concentration. This has also been ob-
served by van der Gucht et al. [6].

Another explanation of the deviations might be in the as-
sumption of a Maxwellian fluid. In Fig. 5(a), we can see that
the Maxwell model does not accurately describe the vis-
coelastic response of the system at high frequencies. The
frequency range that corresponds to the time scales of the
caging plateau is not accessible at all with conventional bulk
rheometry. As a result, we have to assume that the same
parameters (G, and 7,) that describe the experimentally ac-
cessible frequency range also describe the behavior at higher
frequencies. It is conceivable that this assumption is not
valid in this case and, as a result, could explain why Eq. (12)
fails to describe our experimental data.

F. Long time scales

For the long-time diffusive motion, at time scales beyond
the caging dynamics (t>1 s), we define a diffusion coeffi-
cient D;, given by [17]
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FIG. 12. (Color online) Stokes-Einstein diffusion coefficient,
calculated with Eq. (14) and the bulk viscosity, versus the long-time
diffusion coefficient obtained from the DLS experiments. For sys-
tems of (1) plain silica particles in entangled networks of unmodi-
fied PEO (A), (2) plain silica particles in associative networks (H),
and (3) silica particles, pretreated with a high-molecular-weight
PEO, in associative networks (@). The drawn line represents
kBT/67T770R=Dl.

(AP (¢
DZ = w . ( 13)
6dt
The Stokes-Einstein equation predicts the diffusion coeffi-
cient of a spherical particles in a homogeneous liquid with
viscosity 7:

kT

= . 14
67nR (14)

In Fig. 12 we have plot, for various combinations of particles
and networks, the diffusion coefficient calculated with Eq.
(14), using the bulk viscosity (as shown in Fig. 4) versus the
directly measured value of D; [Eq. (13)]. Both approaches
give, within the experimental uncertainty, the same value for
the diffusion coefficient, as seen from the drawn line in Fig.
12, which represents D;=kzT/67mR. The correspondence
between the measured diffusion coefficient and the macro-
scopic prediction with the traditional Stokes-Finstein equa-
tion suggests that at these longer time scales the macroscopic
properties of the networks dominate the particle dynamics.

IV. CONCLUSIONS

The thermal displacement of colloidal particles in tran-
sient polymer networks shows three distinct regimes: a slow
diffusive motion at long time scales, an elastic caging plateau
at intermediate time scales, and at short time scales either a
fast diffusive motion for particles that do not stick to the
surrounding network or Rouse-like dynamics for particles
that are physically bound to the surrounding network. The
behavior in these three regimes is addressed in this paper and
the experimental findings are compared to microrheological
models. We conclude that for short times, hence small dis-
placements, the microscopic details of the medium and the
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interactions between medium and particles are very impor-
tant, whereas at very long time scales the motion seems gov-
erned by the bulk viscosity. For the short-time Rouse dynam-
ics of particles bound to their surrounding polymer network,
we have proposed an analytical model, which is found to be
at least qualitatively consistent with the experimental results.
The findings in this paper indicate that both of the central
assumptions often made in microrheology—i.e., that
particle-matrix interactions can be neglected and that the par-
ticles displace through a homogeneous medium—must be
made with caution.
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APPENDIX

In this appendix we derive the MSD of a probe particle
connected to a polymer network by solving Egs. (7) and (8)
in the continuum limit. The continuous analog of Eq. (7) is

&rm(n,t) (92r (71,7
o o

ot

+F,(n,1), (A1)

with boundary conditions at the fixed (cross-linked) end of
the chain,

d
Tnn,n =0, (A2)
ot

and at the bead,

xZ oy )-‘92 2(0,1),

m=1 an (AS)

where x={,/{p<<1 is the size ratio between a polymer seg-
ment and the colloidal particle.

This partial differential equation can be solved by a trans-
formation to normal coordinates,

Fu(nat) = 25 Ry, (W)X, (0), (A4)

where the eigenfunctions R,, ,(n) are chosen such that

dX 1
—B:——XP+F,,, (A5)
dt 7,

where 7, is the relaxation time and F' » the effective random

force for the modes. The general solution of Eq. (A5) is

X, (1) = f exp[

]F (t")dt'. (A6)
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From Egs. (Al), (A4), and (A5), we find the following
equations for the eigenfunctions:

d’R
—m# =— )R, ,(n) (A7)
dn
with
w’ = ﬁ (A8)
P kT,
Boundary condition (A3) becomes
xE R = - WR,,(0). (A9)

mld

and for the fixed chain end at n=N we have R,,(N)=0. Equa-
tions (A7)—(A9) are the continuum version of the eigenvalue
equations of the Rouse connectivity matrix A. There are two
different types of solutions (normal modes). Antisymmetric
modes [R,(n)=sin(pmn/N) with p=1,2,...,N-1] have a
node at n=0, so that the particle is stationary [34]. Hence,
these modes do not contribute to the MSD of the particle.
For the other modes we have

R, (n) =sin[w,(n - N)], (A10)
with w, given by the characteristic equation
w, tan(w,N) = xf. (A11)

Due to the slightly unusual boundary condition (A9), the
eigenfunctions are not orthogonal. To proceed, we consider
the elastic energy of the system [35]:

J
E[r] = zf ( o ) dn = E X,a,X, (A12)
m=1
where a,, follows from Eqgs. (A4) and (A10):

_fk [V dR, dR fkwf,( i )
J dn dn =2 N v o Oa

(A13)

Hence, even though the eigenfunctions R,, , are not orthogo-
nal, the modes are statistically independent. Therefore, we
can write the fluctuation dissipation theorem for the modes
as

(F(0)f,(t"))=C,6,,0t—1"), (A14)
where C, is a constant to be determined. From Egs. (A6) and
(A14), we find, for the mean-square amplitude of the modes,

Cylo

200\ —
B0 =

(A15)

In thermal equilibrium, the distribution of mode amplitudes
must equal the Boltzmann distribution
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P(X) ~ exp[E[r]/ksT] = exp[kl—TZ a,,px,%}. (A16)
BY p

Hence, the modes are Gaussian distributed, with a mean-
square amplitude (X;(r)):kBT/ 2a,,,. Comparison to (Al5)
gives

kpTaw’k
C,=——2. (A17)
Loay)

We can now derive the MSD of a segment:
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[Pt = 10 n(0) ) = 32 Ry, ()X, (1) = X, (0)])
P

6
=3, = (1 - et )sin w,(n - N)],
p Gpp

(A18)

where the factor of 3 accounts for the three independent di-
mensions. For n=0 this reduces to the MSD of the probe
particle, Eq. (9).
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