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Abstract. A four-dimensional variational (4D-Var) data gases based on measurements of concentrations in the atmo-
assimilation system for inverse modelling of atmosphericsphere Enting, 2002. Since such inversions of atmospheric
methane emissions is presented. The system is based on thransport are often ill-conditioned, a priori information on the
TM5 atmospheric transport model. It can be used for assimspatial and temporal distribution of sources and sinks derived
ilating large volumes of measurements, in particular satellitefrom emission inventories is normally used to regularize the
observations and quasi-continuous in-situ observations, androblem. The goal of inverse modelling is then to optimize

at the same time it enables the optimization of a large numbethese inventories and reduce their uncertainties using obser-
of model parameters, specifically grid-scale emission ratesvations.

Furthermore, the variational method allows to estimate un- Regarding atmospheric methane, mainly surface observa-

certainties in posterior emissions. Here, the system is apsions have been used for this purpose so faeif et al

plied to optimize monthly methane emissions over a 1-year1997: Houweling et al, 1999 Mikaloff Fletcher et al. 2004

time window on the basis of surface observations from theBergamaschi et al2005 Chen and Prinn2006 Bousquet
NOAA-ESRL network. The results are rigorously compared 4 al, 200§. While the existing network of surface mea-

with an analogous inversion by Bergamaschi et al. (2007)g,rements constrains global emissions relatively well, large
which was based on the traditional synthesis approach. The,ntinental regions (e.g. in the tropics) are poorly monitored.
posterior emissions as well as their uncertainties obtained iy asj-continuous in-situ observations close to source regions
both inversions show a high degree of consistency. At the.an provide important information on regional emissions
same time we illustrate the advantage of 4D-Var in reduc'ng(Bergamaschi et 312008, but the number of such measure-
aggregation errors by optimizing emissions at the grid scalgnents remains very limited. Recently, satellite observations
of the transport model. The full potential of the assimilation ¢ column-averaged methane mixing ratio became available
system is exploited in Meirink et al. (2008), who use satellite {0 the Scanning Imaging Absorption Spectrometer for
observations of column-averaged methane mixing ratios toAtmospheric Chartography (SCIAMACHY) instrument on
optimize emissio_ns at high_ ;patial resolution, taking advan+,qarq ESA's environmental satellite ENVISAB(chwitz
tage of the zooming capability of the TM5 model. et al, 2005 Frankenberg et 312005 200§ Buchwitz et al,
2006. Bergamaschi et a(2007) (hereafter BO7) used these
observations — along with the conventional surface measure-
1 Introduction ments — for the first time to optimize continental-scale emis-

) . ) sion rates.
Inverse modelling has been widely used as a tool to improve

our knowledge on sources and sinks of atmospheric trac%

Traditionally, most inverse modelling studies have been
ased on the synthesis approaémt{ng, 2002. This ap-
proach is mainly applicable when emissions are optimized on

Correspondence tal. F. Meirink a coarse resolution (e.g., for a limited number of pre-defined
BY (meirink@knmi.nl) regions). Grid-based optimization has been performed using
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the so-called adjoint techniquédguweling et al. 1999 2 Method

Kaminski et al, 1999, but was in these studies restricted

to relatively small sets of observational data. To take full 2.1 Transport model and adjoint
benefit from the existing and future satellite measurements

approaches that can handle large amounts of observationse TM5 mode is a global chemistry-transport model with

together with a large control vector are required. Two & WO-way nested zooming capabilitkrol et al, 2003.
branches of promising and computationally feasible tech-TM5 is driven by meteorolog|c_al fields (6-h forecasts) from
niques (of which the latter also uses the adjoint model)the European Ceptre for Medium Range Weather Forecasts
are ensemble data assimilatioBvénsen 1994 and four- (ECMWEF) operational model. We use the methane tracer

dimensional variational (4D-Var) data assimilatiofala- version as described in BO7, in which chemical oxidation

grand and Courtietl987), both building upon developments qf CHy is calculgted from prescribed .OH fields. T.hese QH
in Numerical Weather Prediction (NWP). fields were obtained from a full-chemistry model simulation

In recent years, variational data assimilation has been inand calibrated with methylchloroform observations, result-
creasingly applied for the estimation of emission rates of at-Nd in & tropospheric Chilifetime of 9.4 yearsgergamaschi
mospheric constituents. Examples include the inversion oft &), 2009. Thf model is operated on a basic h_ogzor:tal res-
emission rates based on TIROS Operational Vertical Sounde?lUt'OOn of & x4° globally. The zooming option via'2° to
(TOVS) CO» observationsChevallier et al.2005, Measure- 1°x 1° nested grids in specific regions is not used here, butin

ments of Pollution in the Troposphere (MOPITT) CO mea- Meirink et al.(2008. In the vertical direction, 25 layers have
surements §tavrakou and Nller, 20089, surface observa- been defined as a subset of the 60 layers used operationally
tions of various short-lived trace gas&Hern et al, 2007), in the ECMWF model in 2003. Emissions are described in

and LIDAR measurements of dust aerosdgrimoto et al, Sect.2.3 o o ) .

2007. In synthetic frameworks, 4D-Var has been used to For 4D-Var assimilation, an adjoint model is required. The
study the utility of CQ observations from the planned Orbit- €0ding of the adjoint was done manually by matrix transpo-
ing Carbon Observatory (OCO) missidBaker et al, 2006 sition, except for the _slopes ad_vgcnon sch(_alﬁ_aas(sell and
Chevallier et al.2007) and CH, observations from SCIA- Lerner 1981, for which an adjoint was originally gener-
MACHY (Meirink et al, 200 for reducing uncertainties in  &{€d by the Tangent and Adjoint Model Compiler (TAMC)
emission estimates. An ensemble data assimilation systerf>1€1ing and Kaminski1998. For the different processes

for inverse modelling of surface fluxes was, for example, pre-(vertical diffusion, convection, oxidation by OH, and emis-
sented byPeters et a2005. sions) the construction of the adjoint was a rather straight-
The purpose of this paper is to present and evaluate a nefprward task. Most complications encountered were related
to the merging and division of grid cells, which occurs in the

4D-Var system for inverse modelling of methane emissions. 1IN i X X
This new system is a further development of the work bycommunlcatlon between parent and child regions in the zoom

Meirink et al. (200§. The main changes include the use grid and in the reduced grid that is applied near the poles to
of TM5 instead of TM4 as underlying atmospheric trans- €NSUre numerical stability at reasonably large time steps. The
port model, the application of a different minimization al- exact reconstruction of so-called inactive variables, such as

gorithm, and an improved implementation of the backgroundthe air masses, was a}lsfo a difficult task. More _deta|ls on the
(also termed prior) error covariance matrix and precondition-construction of the adjoint model can be found in the supple-
ing. A major advantage of the new set-up is that it allows to Mentary materialitp://www.atmos-chem-phys.net/8/6341/
estimate uncertainties of the posterior emissions. 20()8/<'J‘(3F"8'f53_41-2008-Supplement)pdf'l'hzle adjoint was

To evaluate the new system, a 1-year inversion of surfacé/Sed recently in a study on the usefu!nesé GfO measure-
observations will be compared in detail with an analogousMents for determining OH concentratior§¢l et al, 2008.
synthesis inversion by BO7. The comparison shows a high TheT correctness of the adjoint was verified by checking the
degree of consistency, but also illustrates the advantage dtduality
the varla_tlonal method. IMeirink et al. (2008 the 4I_D-Var C(Mx, y) = (x,MTy), 1)
system is used to analyse SCIAMACHY observations with
focus over South America, exploiting the zooming capability whereM andM” denote the forward and adjoint TM5 model
of the TM5 model. operators applied over a certain time windavgndy are ar-

The paper is structured as follows. In Séttthe transport  bitrary forward and adjoint model states, anddenotes the
model and its adjoint as well as the 4D-Var implementationinner product. In the standard TM5 model the tracer slopes in
are presented. Sectidcontains the results of the compar- the advection scheme are limited to avoid negative concen-
ison with BO7’s synthesis inversion. Some specific issuedrations at the edges of grid boxes. These limiters represent
related to convergence of the variational algorithm, diagnos-a non-linearity, but in the methane tracer version they are not
tics of the assimilation system and aggregation errors are disaeeded, so that the forward model operator is linear and can
cussed in Secd. Finally, the main conclusions are summa- thus be written as a matrid. It was verified that the rela-
rized in Sectb. tive difference between the left-hand and right-hand terms in
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Eq. (1) is~ 1014 (i.e. machine precision), for arbitrary time termed posterior solution) is obtained by iteratively minimiz-

windows up to~ 1 year and arbitrary model statesandy. ing the following cost functiory with respect tox:
1
2.2 4D-Var J@x) =5~ xHTB 1(x — xb)
Compared toMeirink et al. (2006, the set-up of 4D-Var + }(Hx — TR L(Hx — y). )
has been further updated in a number of aspects, most im- 2

portantly the minimization algorithm. Therefore, the major The minimization algorithm requires calculations of the gra-
components of the previous system are summarized and thgient of the cost function:

new developments are described in detail. It should be noted ) b re1

that 4D-Var as applied in the context of source and sink op-VJ/ (*) =B "(x —x7) + H'R™"(Hx — ). 3)
timization differs from the conventional use in NWP. In the agter further differentiation, it can be seen that the Hessian
latter, measurements are used to optimize three-dimensionak ihe cost function is independent of

meteorological fields over time windows on the order of a

day, serving as initial conditions for forecasting. Here, mea-V2J(x) =B~ 1+ HTR™IH. (4)

surements are used to optimize the two-dimensional distri-

: a:
bution of surface emissions (although the three-dimensiona?tartIng from the property that Eqa)(evgluated at” Is zero,
- . L - . "It can be shown (e.gFisher and Courtie1 995 that the co-
initial concentration field is also optimized), and the time

. . . variance matrix of analysis errors (hereafter mostly referred
window is on the order of months. However, the mathemati- . . .

. . to as posterior errorg) equals the inverse of the Hessian:
cal framework is identical.

The optimization problem has the following ingredients: A= (B’l n HTRle) 1. ®)

1. A set of observationg with a corresponding error co-
variance matriXR. The vectory contains the available
observations during the time window of assimilation.
For convenience the time dimension is not explicitly de-
noted here.

This equation illustrates that the assimilation of observations
leads to posterior errors that are smaller than the prior errors.
In other words: the inversion yields an error reduction (also

termed uncertainty reduction in this paper), which is defined

as 1— 0%/o”, wheres” ando“ denote the (potentially ag-

2. A set of model parameteps (the control vector) with ~ 9régated) prior and posterior errors, respectively. _
a corresponding background error covariance matrix_ V€ use the same minimization method as employed in the
B. In our case, the control vector can be written as ECMWF 4D-Var Fisher and Courtierl999. A more de-
x = (7 sT.¢T, pT)T, wheres; are monthly- tailed description can be found there and als&hevallier

9 m’ bl 7 .

mean surface emissions for source categcapdm is et al. (20(_)3. In short, the method is base_d on the Lanc-
the number of source categories that are distinguished, Z0S algorithm kanczos 1950 and allows to simultaneously
is the three-dimensional concentration field at the startMinimize the cost function and derive the leading eigenval-
of the assimilation window, angh contains any addi- U€S and eigenvectors of the posterior error covariance matrix.
tional parameters, for example model parameters in pa\Vith preconditioning Courtier et al. 1994,
ramet_erizations of physicz_zll_processes. In f[he pre§ent Pay — L1y, andLL” =B, (6)
per, p is not used, but iMeirink et al.(200§ it contains
parameters that model a bias in the satellite observationwhich is applied to reach faster convergence to the minimum
that are assimilated. of the cost function, the Hessian with respect to the precon-

ditioned control variablegr becomes
3. A model operatoH, with Hx providing the equivalent

2 TTp-1
of the observations. This operator consists of applica- VyJGO =1+L H RHL. )

tion of the forward modeM to the time of the mea-  afier v iterations, the minimization algorithm has estimated
surements followed by application of an observation ihe v |eading eigenvalues; and eigenvectors; of this ma-
operator, which |nter.polates and/or vert|ca_lly integrates;yiy (With A1>A2> . .. >Ay). Writing the Hessian in terms of
methane concentrations on the model grid to produceys eigen decomposition, inverting, and transforming back

equivaler.lts.of thg observations. Since this observatioryom x 10 x, gives the approximation of the posterior error
operator is linear in our case (also for the SCIAMACHY  5\ariance matrix:

observations assimilated Meirink et al. (2008), the

. N
1
operatoH is linear. A~B+ Z (

- 1) (Lv) (Lvp)". ®)
The goal is to find the optimal control vector given the back- i=1
ground estimate and observations taking into account theiifhis approximation converges to the true posterior error co-
respective uncertainties. In 4D-Var this analysis (also  variance matrix ag; goes to one with increasing number of
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concentrationsC,, can be split into independent horizontal,

Ch, and verticalC?, parts. With these assumptions, we can
write:
[C;, 0 0 0 O
0.0 00
C=l0o0¢g,00
00 0GO
| 0 0 0 0G,
[C{,®C¢ 0 0 0 o0
0 . 0 0 0
= o oc ect o o @0
0 0 0 Q®CcC!ho
0 0 0 0 G

where® is the Kronecker matrix product ar@, is the er-
ror correlation matrix for the additional parameters. Here-
with, the storage requirements are reduced to a number of
C" matrices, which contain the square of the number of grid
points in a horizontal plane. This is typically on the order
of 107, small enough to be stored in computer memory. The
C" matrices are modelled by a Gaussian function of the dis-
tance between grid cells, with pre-defined correlation length
scalesLs; andL,. Similarly, thecgi are modelled by an ex-
ponential function of the time difference, with pre-defined
correlation time scales,;,. As outlined inMeirink et al.
(2009, C; is determined with the National Meteorological
Center (NMC) methodRarrish and Derbed992. Finally,
C, is usually an identity matrix, stating that the errors in the
parameters are uncorrelated. The square roots of the vari-
ous correlation submatrices, needed for the preconditioning
n- (EQ.6), are determined by eigenvalue decomposition.

Fig. 1. Definition of geographical regions used in the synthesis i

version by BO7. .
y 2.3 Inversion set-up

. . . : The CH; inversions presented in BO7 provide an excellent
iterations. From Eq.§) it follows that the diagonal elements test case for the newly developed 4D-Var assimilation sys-

of the approximation of\ strictly decrease with every iter- : : ) .
ation added. Therefore, the method always yields an overteM: Briefly, scenario S1 in BO7 comprised a 1-year synthe-

. . : sis inversion of monthly-mean methane emissions from 11
estimate of the diagonal elementsffwhich represent the . .
X . source categories and for a number of large geographical re-
posterior variances.

The a priori error covariance matrl is much 0o large gions, based on surface observations from the NOAA ESRL
(typically?v 101 numbers) to be stored in memory, Hgow- network. We have repeated this inversion with our 4D-Var

) . : %Dproach, copying the set-up as well as possible. Specifi-
ever, by making some reasonable assumptions, the require . .
cally, we use the same forward model, including meteoro-

;torage can be sharply reduce_d. First, the covariancg matr%gical input, the same a priori emissions, and the same set
is split up in a correlation matri€ and a diagonal matrio of surface observations and corresponding errors

containing the standard deviations: Total a priori emissions for the year 2003 are listed in Ta-
B = DCD. 9) ble 1 for the 11 source categories and for — depending on the
category — 1 to 7 large regions as shown in Hig.
Furthermore, the following assumptions are made: (i) the Methane surface observations are taken from the NOAA
emissions in different source categories, the initial concenESRL global cooperative air sampling networBIigo-
tration field, and the additional parameters have mutually unkencky et al. 1994 2003. Only flask measurements from
correlated errors; (ii) the error correlation matrices for emis-marine and continental background sites are used. The 32
sions,Cy,, can be splitintoindependentspat'ﬁj?,,andtem- selected sites are listed in BO7 (Table 1) and depicted in
poraI,Cgi, parts; (iii) the error correlation matrix for initial Fig. 2. The y; in the cost function are individual surface

Atmos. Chem. Phys., 8, 6348353 2008 www.atmos-chem-phys.net/8/6341/2008/
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Table 1. Prior and posterior emissions and uncertainties for synthesis inversion of BO7 (scenario S1) and two 4D-Var inversions aggregated
over the complete year 2003 and over the regions defined il Fignits are Tg CH yr—1. The fractional uncertainty reduction is given in

the columns 'U.r.. Two 4D-Var inversions with different error correlation length scales (see text) are shown. 4D-Var a posteriori emissions
deviating more than 20% from the synthesis inversion estimate have been printed in bold face. The same holds for uncertainty reductions
deviating more than 0.1 from the synthesis inversion estimate.

Synthesis 4D-VAR
B07 scenario S1 Scenario A Scenario B
L=4000— 20000 km L=1000 km
Source Region Prior Posterior u.r. Prior Posterior u.r. Prior Posterior u.r.
Coal NH1 3. & 15 4315 0.00 3414 4.4+ 1.4 0.02 3.&25 4.9+ 2.4 0.03
NH2 5.14+2.1 49-2.0 0.05 5% 2.0 6.2+ 1.9 0.03 5.+ 3.0 4.1+ 29 0.03
NH3 11.1+ 4.6 13438 017 1141 16.2-3.8 0.08 11.%5.2 11.7+4.8 0.07
SH 6.8+ 2.8 8.9+23 0.18 6.&24 9.0+ 2.2 0.11 6.&54 7.8+ 3.9 0.27
GLOBAL  26.6+6.0 31.5:50 017 26.659 358+54 0.09 26684 284+7.1 0.16
Oil and gas NH1 3414 49-1.2 0.14 3412 43+12 002 3.4+13 40+13 001
NH2 27.8:11.5 26576 034 27.899 16.9+6.5 0.35 27.810.9 22.1+8.6 0.21
NH3 16.:+ 6.7 8940 040 16.&50 149+32 036 16154 11.2+3.8 0.29
SH 3314 3414 0.00 3.31.0 3.8+ 10 0.02 3.x14 3.6+14 0.01
GLOBAL 50.6+13.5 43&7.2 047 50.614.1 39.8+84 040 50.612.9 40.9£9.0 0.30
Ent. ferm. NH1 15.3 3.8 17.%+34 011 15333 193+3.1 0.06 15336 193+ 34 0.04
NH2 25.9-6.4 23.6:5.6 0.12 25951 25.0+46 010 25949 26.0£4.6 0.07
NH3 37.5£9.3 30.&7.8 016 37.582 29.8+7.1 0.13 37590 32.6+81 0.10
SH 20.8:5.2 25639 0.25 20.&35 26.0+3.1 0.11 20.8:4.1 24.8+3.7 0.10
GLOBAL  99.6+13.0 97.1#109 0.16 99.612.7 100.1£11.0 0.13 99.611.7 102.7410.5 0.10
Rice NH1 1.3%0.2 1102 0.00 1.%0.2 1.1+ 0.2 0.00 1.#0.2 1.1+ 0.2 0.00
NH2 1904 1.9-04 0.00 1.940.3 1.9+ 0.3 0.01 19204 19+ 04 0.00
NH3 49.6+ 8.8 52.9:6.6 025 49679 456+6.2 022 49.693 50.9+74 0.21
SH 7.3:1.3 7513 0.00 7.209 7.0+ 0.9 0.01 716 6.8+ 1.6 0.00
GLOBAL 59.7+8.9 63.4-6.7 0.25 59.%#8.1 55.7£6.5 0.20 59.29.5 60.7£7.6 0.20
Bio. burn. EXNH 1.1+ 04 1.2:04 0.00 1.%#0.3 1.3+ 0.3 0.00 1.%04 1.3+ 04 0.00
TR1 8.4 2.6 8.8 2.2 0.15 8425 8.6+ 2.2 0.13 8.2 3.6 10.0+£3.1 0.15
TR2 9. H 25 10.6t2.1 0.16 9.4 2.3 9.1+ 2.1 0.10 9.4 3.4 9.5+ 2.8 0.18
TR3 3811 3411 0.00 3.&1.0 32+10 0.01 3.&16 3.3+15 0.02
EXSH 0.2£0.1 0.2c0.1  0.00 0.2 0.0 0.2+ 0.0 0.03 0.20.1 0.2+ 0.1 0.00
GLOBAL  23.6+3.8 23.6:3.1 018 23.637 225+32 014 23652 242+43 0.17
Waste NH1 10.8 4.5 11.663.7 0.18 10.83.9 13.9+-3.6 0.09 10.&43 14240 0.07
NH2 17.3:7.2 15.8:6.1 0.15 17.3 6.0 21.5£5.2 0.14 17.35.9 17.7£5.3 0.11
NH3 33.7414.0 34.6:98 0.30 33.%11.7 33.4+89 0.24 33.%£12.0 26.1+-99 0.18
SH 7.9-3.3 10.43.1 0.06 7418 9.1+ 17 0.04 7.%21 8.7+ 2.0 0.01
GLOBAL 69.7+£16.7 72.412.0 0.28 69.#15.9 77.9£12.1 0.24 69.#14.3 66.7£11.6 0.19
Wetlands EXNH1 3259.1 22327 070 32578 242+28 064 32598 256+3.8 0.61

EXNH2 8.9+ 2.3 3.2£13 0.43 8.%x21 29+1.1 0.46 8.+3.2 52+21 0.34
EXNH3 18.5- 5.7 17627 053 18548 145+23 052 185%6.7 17234 048

TR1 49.9£12.1 63.&66.0 0.50 49.910.6 61.5+-6.5 0.39 49.9+13.1 67.5+-7.2 0.45
TR2 24458 31245 022 24453 30644 017 24479 30.7£6.0 0.25
TR3 38.6£ 9.2 44270 024 386&7.1 42.8+6.5 009 38.6-9.6 46.7+8.7 0.10
EXSH 1.8:0.5 1.9 0.5 0.00 1.&04 22+04 0.08 1.80.7 2.0£0.7 0.03

GLOBAL 174.6:19.6 182.#9.4 052 1744187 178.8£10.1 0.46 174.422.2 195.0:12.0 0.46
Wild animals  GLOBAL 5621 6.5-2.0 0.05 5&1.9 7.2+1.9 0.00 5&0.7 5.2+ 0.7 0.00

Termites GLOBAL 19.28.0 30.6£7.0 012 19.273 30.3+6.7 0.08 19.23.7 22.+3.6 0.02
Soll GLOBAL -37.86-6.4 -29.8£6.0 006 -37.8658 -247+56 004 -37.&21 -36.421 0.00
Ocean GLOBAL 17.&7.0 1.9£3.2 054 17.86.3 1.4+3.3 0.48 17821 15.1+2.0 0.05
Total GLOBAL 507.#36.0 523.%44 0.88 507.#348 524.6:3.9 0.89 507.#34.8 525.2£6.8 0.80

observations, which are compared with modelled 3-hourlywith neighbouring grid cellsRergamaschi et al2009. This
mean concentrations. The measurement error is assumed yeelds values smaller than 1 ppb for the Antarctic stations,
be 3 ppb, to which an estimate of the representativeness eand typical values of 10 to 15 ppb for most other stations,
ror is added, based on the modelled concentration differencewith occasional increases to several tens of ppb’s at stations

www.atmos-chem-phys.net/8/6341/2008/ Atmos. Chem. Phys., 8, 63832008
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Fig. 2. Total emission increment f¢a) 4D-Var inversion of this study (scenario A) aftd) synthesis inversion of BO7 (scenario S1).

near large Chll gradients. Measurement errors are assumed constraint on emissions in the last months of 2003. The di-
to be uncorrelated. The inversion is carried out in two cycles.mension of the control vector thus becomes: (13 maoxiiis

In the second cycle only those observations are assimilatedource categories+25 vertical levels of the initial concentra-
that differ less than three times the observation error from theion field)x (60x 45 grid cells)=453 600, compared to 541 in
posterior model simulation of the first cycle. This approachBO07. The actual number of degrees of freedom in the 4D-Var
was used by BO7 to get rid of the possible detrimental im-control vector is only a small fraction of its dimension due to
pact of observations that cannot be reproduced by the modehe assumed spatial and temporal error correlations.

simulation even after modifying the surface emissions. The a priori errors of grid-cell emissions are set to the

The only important difference between the present inver-same relative levels as the a priori errors of big-region emis-
sion and BO7 is the control vector and therefore also the priossions in BO7, varying from 30% for enteric fermentation to
error covariance matrix. In BO7, the control vector consisted80% for, e.g., wetlands. Spatial correlations are modelled by
of monthly emissions for the different source categories anchormal distributions where the correlation length scales have
regions plus a scaling factor for the initial concentration field. been chosen such that the a priori errors aggregated to big re-
In the 4D-Var, the control vector consists of monthly emis- gions are close to those in BO7. This yields very large length
sions for the same categories but for all individual grid cells scales of 20,000 km for wild animals, termites, soil oxida-
plus the grid-scale initial concentration field. For techni- tion and ocean, 4000 km for wetlands, and 5000 km for the
cal reasons, we did not perform a two-months spin-up asther categories. Temporal correlations are specified exactly
in BO7, but we did include January 2004 in the assimila-the same as in BO7, i.e.: no correlations for wetlands, rice
tion window, since the measurements in this month providepaddies and biomass burning, and exponential correlations

Atmos. Chem. Phys., 8, 6348353 2008 www.atmos-chem-phys.net/8/6341/2008/
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with a 9.5-months correlation time scale (month-to-month OF .
correlation of 0.9) for all other sources. Taldleshows the — ~ _oE 3§ ]
resulting a priori errors aggregated to a whole year and to big B? 4t E

regions. They are indeed close to the values in the synthesis<

inversion. 2 -6 3 E
Apart from the above reference inversion (termed sce- & -8F E
nario A), an alternative inversion was conducted (sce- £ —10F E

nario B), in which the prior error spatial correlation lengths —12¢t
were set to 1000 km for all source categories. To arrive at the
same globally aggregated prior uncertainty as in the refer-
ence inversion, it was found that the prior standard deviations
had to be multiplied by a factee2.5.

log()

3 Results

3.1 Convergence

The convergence of the minimization algorithm is analysed = ¢ gg
in Fig. 3. The norm of the gradient of the cost function de- 0.05E
creases rapidly and steadily. The iteration is stopped whenag g g4 &
reduction of 18° is reached. This point is reached after 56 ' -t
iterations for the present inversion. A good proxy for conver- 2
gence are the eigenvalues of the Hessian, estimated by theZ’ 0.02¢
Lanczos algorithm. Fig3b shows that the eigenvalues de- g 0-01F
crease rapidly and have reached values close to one in theE 0.00
last iteration. A more direct way of evaluating convergence,

is to inspect the estimate of the Hessian itself, and changes . 1.0

.
—
3
o]
2

therein. Figs3c and d illustrate this in the form of uncer- 5 08
tainty reduction, defined in Se@.2. At the end of the in- 2 06
version, the mean grid-scale uncertainty reduction reaches a g

value of around 5%. As will be discussed in Sekt, full o 0.4

convergence has not yet been reached at this stage. When ag-$ g2 """
gregated over months, categories and large regions, the un- ° 0.0 ; ) )
certain_ty reduction converges much faste_r (B@) and sta- 0 20 40 60
ble estimates are obtained after about 45 iterations. Note that iteration
the uncertainty reduction on the grid scale is very low (and it
is even lower when the spatial error correlation length is de-Fig. 3. Convergence of the 4D-Var minimization. As a function of
creased). However, it becomes much larger when aggregatetbrationi are shown:(a) the log of the norm of the cost function
over months, categories and large regions, showing that thgradient relative to the prior simulatiofi) the log of the eigenvalue
measurements are indeed useful to constrain emissions on of the Hessian matrixc) the average uncertainty reduction of
larger spatial and temporal scales. 1-month, 1-category, 1-grid-cell emissions, gdjithe aggregated

In contrast to the errors in posterior emissions, the postegmission uncertai_nty reduction over 1_year, all categories, and 5
rior emissions themselves have converged in about 20 iterdierent large regions (as represented in fig.
ations (not shown). Thus, if one is interested in emissions

only, relatively few iterations are sufficient, but if reliable

posterior error estimates are needed, many more iterationSCth inversions propose enhanced emissions in the tropics
are required. This implies that large gradient norm reduc-and decreased emissions in the northern-hemispheric (NH)

tions must be achieved, for which an exact adjoint model is d"19h latitudes. This large-scale increment is mainly driven
prerequisite. by the need for the system to correct the too large interhemi-

spheric (IH) concentration gradient in the a priori TM5 simu-
3.2 Emission increments lation and reduce the emissions of NH wetlands during sum-
mer. When a closer look at the details is taken, some dif-
In Fig. 2the total emission increments (posterior minus prior) ferences emerge. Most notably, the emission increments in
obtained with the 4D-Var and synthesis inversions are com-South-East Asia are different. The 4D-Var suggests a quite
pared. At first glance the results are in excellent agreementstrong decrease in emissions, while the synthesis inversion
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Fig. 4. Comparison of model simulations based on prior emissions (blue), posterior 4D-Var emissions (red), and posterior synthesis inversion
emissions (B0O7, scenario S1) (green) with observations (black symbols) at eight NOAA stations during 2003. Black vertical bars indicate
the total observation error (including representativeness error).

provides a more mixed pattern. Further analysis shows thaiversions yield nearly vanishing posterior oceanic emis-
these differences can be largely attributed to opposite incresions. In Sect4.3 we will show that this is likely an arte-
ments in emissions from rice cultivation (see below). In prin- fact related to the large regions / large correlation lengths
ciple, 4D-Var is more flexible by optimizing (spatially corre- employed.

lated) grid-cell fluxes versus fixed flux patterns in a few big

regions in the synthesis inversion. In order to compare t03.3 Comparison with measurements

the synthesis inversion, very large correlation length scales

have been used in the present 4D-Var inverSion, so that th|$|gure4 shows a Comparison of prior and posterior model
difference in erXIblllty should be rE|atiVEIy small. It is thus simulations with observations at the same 8 stations dis-
not completely clear what causes the specific differences bepjayed in B07’s Fig. 4. In general, the observed seasonal
tween both inversions on the smaller scales. Certainly, th%yc|es and Synoptic-sca'e events are Captured very well al-
problem at hand has many near-optimal solutions. Thereready in the prior model simulation. There are two clear
fore, itis probably to be expected that both inversion systemsxceptions. First, at the NH high-latitude stations, here rep-
come up with slightly different answers. resented by Barrow, the prior simulation is much too high,
Table1 gives a more quantitative comparison of the emis- particularly in summer. This is explained by the high boreal
sions estimated by the synthesis and 4D-Var inversions. Thavetland emissions in the applied a priori inventory, which
overall agreement is good, although for some categories therare substantially reduced by the inversion, leading to a good
are substantial differences. For example, the global total ric&€orrespondence between the posterior model simulation and
emission increment ig-3.7 Tg and—4.0 Tg for the synthe-  the observations.
sis and 4D-Var, respectively. The difference is, however, Second, at the southern-hemispheric (SH) stations, the
still only slightly larger than the posterior uncertainty es- prior simulation is drifting away from the observations, lead-
timates of 6.7 and 6.5 Tg, respectively. Interestingly, bothing to an increasing underestimation in the course of the year.
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This feature reflects the general overestimation of the IH grain further iterations to yield non-negligible contributions to
dient in the free-running model. The cause of this overesti-the posterior error in E.
mation may be an error in the prior emissions or in the sea- Experiences with similar inversions of GQemissions
sonality and IH gradient of OH, but could also be related toshow a slower convergence of Hessian eigenvalues than in
errors in model transport. Detailed comparison of Sifmu- our case (F. Chevallier, personal communication). Obvi-
lations with observations also showed a slight overestimatiorously, the speed of convergence is related to prior and obser-
of the IH Sk gradient, although the derived IH mixing time vational errors and their correlations. One reason why there
of 10.4 months was well within the typical range of atmo- is slower convergence for GOmay be that the prior error
spheric transport model8érgamaschi et al2006. Since  distribution is more spatially homogeneous than used here
model transport and OH distribution are assumed to be perfor CHg, giving effectively more degrees of freedom to mod-
fect in the inversion, the overestimated IH gradient is cor-ify the emissions. Indeed, a test inversion with homogeneous
rected by enhancing emissions in the tropics and the SH.  CHjy a priori error distributions took about 40 iterations more
The green curves in Figl correspond with a simulation to converge than the reference inversion.
based on optimized emissions from BO7's synthesis inver- A second feature is that posterior errors aggregated over
sion. The time series from both inversions are hardly dis-space and time converge much faster than on the grid scale
cernible at most locations most of the time, highlighting (compare Fig3c and d). This can be explained as follows
again the high degree of consistency between the 4D-Var an¢see alsd-isher and Courtier1995 Chevallier et al.2005:

the synthesis inversions. in the first iterations the large-scale emission patterns are de-
_ _ termined, while in later iterations the smaller-scale patterns
3.4 Uncertainty reduction are finetuned. The increments in later iterations are mainly

. , : ) . _located in regions where the prior error is relatively small.
The posterior errors derived from the 4D-Var inversion Usingrhase increments do influence the mean grid-scale uncer-

Eq. @) have been glggre?]ated tol the big regions of t:e SYntheg,inty reduction, but they have very little impact on the aggre-
isrzstér:avirDSl(\)/gr”;IZ saﬁt-{weiigei?\j/grr;,?oﬂcs:;a\l/gtry rsinl:if;ronlisorgawd uncertainty reduction. Most often we are interested in
the alobal total emiZsion both apbroaches iel)tlj an err;)r reuncertalnty reductions over somewhat larger regions than the
ductgi]on estimate of almost 90°/ppDifferenc)és of more thang-rid scale. For thi_s pLrpose the Lanczos algorithm appears fo
0 give accurate estimates within a reasonable number of itera-

10% occur for only fo_l(er catigor)r/]-reglon co_mblna(';lons_;. ¢ tions. This remains true when large volumes of satelite data
From Eq. f) itis evident that the uncertainty reduction of .o assimilated, as is shownMeirink et al. (2008.
a surface flux is determined by (i) the extent to which this flux

is seen by the observations and (ii) the ratio of the a priorier-4 2 pjagnostics

ror (which is assumed to be proportional to the a priori flux)

and the observation errors. Indeed, the uncertainty reducaA useful diagnostic, indicating whether the assimilation may
tions are generally largest for the NH regions in which mostnot be optimal, i.e. measurement and prior errors have been
measurement stations are located and over which substammproperly set, is the 2 (e.g.,Tarantola 2005:

tial emissions take place. At first glance, the ocean category

seems to be a notable exception: it shows a large error reduce? = (Hx” — )T (HBH” + R~} (Hx? — y). (11)

tion of around 50% despite its modest prior uncertainty. TheWh b and , q q bei
explanation for this large error reduction is given in Séc3. énx- andy are interpreted as random \iectors, €ing ran-
domly distributed around the trutlf and y’, respectively,

the random variable in Eq1{) should follow ax? distribu-

4 Discussion tion with n degrees of freedom, wherds the number of ob-
servations. In 4D-Vard andH” are not available in matrix
4.1 Convergence representation. Therefore, we use an equivalent representa-

) ] tion in terms ofx“ (Tarantola20095:
There are a few issues evolving from Fithat deserve fur-

ther discussion. First of all, the mean grid-scale uncertaintyy? = 2J (x%) = (x* — x")TB1(x% — x?)

_reduqtion (panel c) may ap_pear_to have converged a_fter_55 + (Hx* — y)"RL(Hx“ — y). (12)
iterations, but when more iterations are performed, it still

shows an additional increase (not shown). From a series ofor the reference inversion, a satisfying valugéfn=1.30
inversions we could accurately approximate the convergencés obtained. The alternative inversion scenario B with
behaviour by an exponential function. From this approxi- shorter spatial error correlation lengths of 1000 km yields
mation it is estimated that for the present inversion the ac-x?/n=1.08, thus somewhat closer to 1, reflecting the larger
tual (converged) mean uncertainty reduction is about 7.5%nhumber of degrees of freedom in the control vector.

instead of 5%. Correspondingly, the Hessian eigenvalues Whereas theq2-criterion from Eq. (1) can be naturally

are close to 1 after 55 iterations, but remain large enoughapplied to a subset of the observations (e.g. at a certain station
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Uncertainty reduction all categories  scenario A (L=4000—10000km)
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Fig. 5. Emission uncertainty reduction aggregated over the complete year 2003 and over all source categajiefdar reference
scenario A andb) scenario B using shorter prior error correlation lengths. Note the different color scales in both panels.

or within a specific time window), this is not the case for x2/ny, = 0.9. It thus appears that 4D-Var, having a higher
Eq. (12 as it contains a background term which cannot beflexibility in changing emission patterns, is indeed able to
coupled to specific observations. Still, the analysis-minus-reach a closer fit to the observations than the synthesis inver-
observation residualdx® — y are often studied for selected sion, but when it is run with large correlation lengths the fit
observations. In case of uncorrelated observation errors, ont the observations is very similar. It should be noted that

then writes: x?/ns is considerably influenced by the 2-cycle inversion
. . ) approach (see Se@.3). In the first cycley?/n, is about

$2 ~ Z (((Hx )i — .Vi)> (13) 1.8, much higher than in the second cycle, because posterior
—~ oy, ’ outlier observations (typically 2.5% of the total number of

measurements) have not yet been removed.
whereoy, is the uncertainty of measuremeyi in an ob-
servation subset with size,. Given the omission of the Between the measurement stations there is considerable
background term, the calculated should be smaller than variability in x2/n,. The lowest valuesy?/n,~0.2) are ob-
ns. However, in our case the background term of the costtained for the Antarctic stations, indicating that the measure-
function contributes typically 10% to the total cost, so that ment precision estimate of 3 ppb may be too conservative.
x?2/ng from Eq. (L3) should still be close to 1. BO7 obtained On the other handy?/n, goes up to 2 at some stations (e.g.
x?/ns = 1.2 for the whole set of observations. Our refer- AZR). These high values may be related to unresolved small-
ence inversion yields the same value, while scenario B yieldscale variability in the model or to an underestimate of the
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representation error for some sites. The wide range of chi5 Conclusions

squared for different stations demonstrates that one should

be careful when using a single global chi-squared statistidVe have presented a 4D-Var system for optimizing methane
for diagnosing the overall performance of the assimilationemissions based on observations of atmospheric methane

system. concentrations. The main advantage of the 4D-Var system
compared to the classical synthesis inversion is that emis-
4.3 Uncertainty reduction and aggregation error sions can be optimized at high spatial resolution and that

large volumes of observational data can be taken into ac-

As shown in Tablel, the posterior ocean emissions in both count. Furthermore, a specifically useful feature of our inver-
the synthesis and the 4D-Var inversions are nearly zerosion system is that it allows to estimate uncertainties of the
while at the same time a large uncertainty reduction50% optimized emissions. A 4D-Var inversion with large spatial
is calculated. This feature is related to the so-called aggregaeorrelation lengths of prior emission errors was rigorously
tion error Kaminski et al, 2001, Engelen et a).2002. Due  compared with a previously performed synthesis inversion,
to the large spatial error correlation lengths assumed in thehowing a high degree of consistency in terms of both pos-
4D-Var inversion and the big regions applied in the synthesisterior emission estimates as well as their uncertainties. At
inversion, in fact all marine background stations contributethe same time, an inversion with smaller spatial error cor-
to an uncertainty reduction of the global ocean emission. relation lengths demonstrated the advantage of 4D-Var in re-

The alternative inversion scenario B with shorter error cor-ducing aggregation errors. The full benefit of the new system
relation lengths (see rightmost columns of Tabléurther il- becomes apparent when larger numbers of observations are
lustrates the impact of the aggregation error. The uncertaint@ssimilated. This is illustrated iMeirink et al. (2008, who
in the global ocean emissions is now reduced by only 5%. Atuse SCIAMACHY satellite observations to infer global £H
the same time, the ocean emissions are hardly reduced. Alsemissions with a focus on South America.
for other source categories large changes in posterior emis-
sions are obtained. In general, the posterior totals are muchcknowledgementslan Fokke Meirink was supported by the
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