
EXPLORING THE BIOFLUIDDYNAMICS 
OF SWIMMING AND FLIGHT

David Lentink



Promotor prof. dr. ir. Johan L. van Leeuwen
Hoogleraar in de Experimentele Zoölogie, Wageningen Universiteit. 

Copromotoren prof. dr. Michael H. Dickinson
Esther M. and Abe M. Zarem Professor of Bioengineering, 
California Institute of Technology, United States of America. 

prof. dr. ir. GertJan F. van Heijst
Hoogleraar in de Transportfysica, Technische Universiteit Eindhoven. 

Overige leden 
promotiecommissie

prof. dr. Peter Aerts 
University of Antwerp, Belgium.

prof. dr. Th omas L. Daniel
University of Washington, United States of America. 

prof. dr. Anders Hedenström
Lund University, Sweden.

prof. dr. Jaap Molenaar
Wageningen Universiteit.



EXPLORING THE BIOFLUIDDYNAMICS 
OF SWIMMING AND FLIGHT

David Lentink

Proefschrift
ter verkrijging van de graad van doctor

op gezag van de rector magnifi cus
van Wageningen Universiteit,

prof. dr. M.J. Kropff 
in het openbaar te verdedigen
op dinsdag 9 september 2008

des namiddags te vier uur in de Aula.



Lentink, D. (2008) Exploring the biofl uiddynamics of swimming and fl ight.

PhD thesis, Experimental Zoology Group, Wageningen University.
P.O. Box 338, 6700 AH Wageningen, the Netherlands.

Subject headings: biofl uiddynamics/vortex/stability/chaos/scaling/swimming/fl ight/design.

ISBN 978-90-8504-971-5



Summary

Many organisms must move through water or air in order to survive and reproduce. Th erefore 
both the development of these individuals and the evolution of their species are shaped by 

the physical interaction between organism and surrounding fl uid.  One characteristic of macro-
scopic animals moving at typical speeds is the appearance of vortices, or distinct whorls of fl uid. 
Th ese vortices are created close to the body as it is driven by the action of muscles or gravity, 
then are ‘shed’ to form a wake (in eff ect a trackway left behind in the fl uid), and ultimately are 
dissipated as heat. It is useful to analyze fl uid motion as a collection of vortices, yet the dynamics 
are complex: vortices interact with the moving organism, interact with each other, and evolve 
independently in time.
 Th is research examines two fl ow phenomena that are central to the locomotory perfor-
mance of certain organisms. Th e fi rst of these is leading-edge vortex stability. A tornado-shaped 
vortex has been observed above insect wings, parallel to the leading edge. Th e leading edge vortex 
substantially augments lift and is integral to insect fl ight. Here I consider in detail the conditions 
that stabilize this fl ow pattern. Th e second dynamical phenomenon is vortex wake periodicity.  
Depending on conditions, the wake structure behind a moving organism can be regular and 
predictable, or chaotic. Although the fl uid fl ow is always deterministic, in the latter case its exact 
structure becomes hypersensitive to small disturbances. Th is can reduce the ‘forecast horizon’ 
within which fl uiddynamic forces acting on the body can be reliably predicted. Here I describe 
the onset of chaotic vortex interactions in biologically relevant models, and consider the conse-
quences for feedback-mediated neural control.
 Th ese studies were carried out using models that represent swimming fi sh, fl ying insects, 
autorotating plant seeds, and birds. Th e fl ow patterns and forces were observed using (in order 
of increasing realism) a two-dimensional fl apping foil in a soap fi lm tunnel, a dynamically 
scaled three-dimensional robotic fl y and seed wing in oil, and freeze-dried swift wings in a wind 
tunnel. Th e measurements were designed and understood by means of dimensional analysis: 
dimensionless parameters can identify the fl uid accelerations and stresses that dominate the 
fl ow; when mapped as a function of morphological and kinematic variables that produce the 
fl ow, they yield an overview of the biofl uid-dynamical parameter space. Using this framework 
we were able to show that: (1) Symmetric and periodic fl apping fi ns and wings can produce 
asymmetric and chaotic vortex wakes. (2) Rotational accelerations stabilize leading edge vortices on 
revolving wings of insects and other organisms. (3) Stable leading edge vortices augment lift 
in both animal and plant fl ight. (4) Wing morphing in birds drastically improves glide perfor-
mance. (5) Flapping insect wings are less effi  cient than spinning and translating insect wings.
 Th is reverse-engineering analysis of biofl uidic locomotion has furthermore helped us to 
forward-engineer two micro-air vehicles. We have designed, built, and fl own a robotic fl apper 
(DelFly) and a morphing model swift (RoboSwift). Clearly the formal methods and fi ndings 
presented here can lead directly to novel technological products.
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1 Introduction



1.1
EXPLORING THE BIOFLUIDDYNAMICS OF SWIMMING AND FLIGHT

David Lentink

Adaptations for locomotion

We are surrounded by organisms that seem to walk, swim and fl y eff ortlessly while traveling 
long distances. In fact, we are profi cient long distance runners ourselves and adaptations 

like sweating help us to stay cool. Presumably we can run marathons today because our pred-
ecessors used to catch prey on the African savannah by chasing them down for hours, until the 
prey was exhausted and could be caught easily (Bramble and Lieberman, 2004). Even these days, 
some of us enjoy chasing down animals. Such as Huw Lobb, who is the fi rst man ever to beat 
a horse in the annual ‘man against horse race’ of 2004 over 22 miles at Llanwrtyd Wells in mid 
Wales. While it was a triumph for Huw, who won one of the biggest unclaimed prizes in British 
athletics of £25,000, Bookie William Hill had to pay out on scores of bets struck at odds of 16/1 
(BBC News, 13-06-2004). Th is illustrates how we are fascinated with the locomotory capabilities 
of other organisms, and that we are willing to pay the price just to outperform them. Perhaps 
we especially admire organisms that swim and fl y, for which we are poorly adapted. Most of us 
have learned about our poor adaptations for swimming and fl ight as kids, when trying to swim 
in deep water and falling from heights. How can we better understand the adaptations needed 
for swimming and fl ying? 

Swimming and fl ight is constrained by fl uid dynamics
Th e habitats on earth can be divided in land, water, air and their interfaces. Th e physical proper-
ties of these habitats constrain the locomotion of organisms. Just think of us running; we not 
only depend on friction to push off ; the deformational properties of the material on which we 
run directly aff ects running effi  ciency. We experience these diff erent effi  ciencies when running 
on streets consisting of solid materials versus sand, which is a granular material that shares mate-
rial properties of both solids and fl uids. Understanding the diff erences in dynamical properties 
between solids and fl uids gives insight in how these properties can constrain locomotion. Fluids 
behave very diff erently compared with solid and granular materials, they cannot resist a load 
without deforming continuously. We experience this diff erence in material properties of land 
versus water when we attempt to walk over water and sink straight to the bottom. When we swim 
back to land, we are moving packets of water backwards with our hands, arms and legs. Th ese 
packets of water resist being moved, which enables us to push off  against these packets and swim 
forward. Hence we rely on the dynamic properties of water to move through it. From a physical 
point of view, the dynamics of water and air are similar irrespective of their diff erent material 
properties, such as density and viscosity. Th ey are both fl uids because they only resist rate of 
deformation, but not deformation itself. Th is particular dynamical property of fl uids is captured 
by the Navier-Stokes equation, which describes the dynamics of fl uid motion. Compared to our 
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humble swimming performance and our inability to fl y, many organisms have evolved into spe-
cialists with adapted morphology and body kinematics tuned to match the dynamical properties 
of fl uids, which enables them to swim and fl y well. E.g. half of all vertebrates are fi sh, moving 
through water, roughly a quarter of all mammals are bats fl ying through the air, and the majority 
of insects and birds can fl y. How do all these organisms manage to move so well through water 
and air, and how do they bring the fl uid in motion to accomplish this? 

Organisms can generate fl uid vortices 
Th e fl uid very close to the body of an organism is forced to follow the body’s motion, irrespec-
tive of the fl uid’s inertia, because fl uid cannot fl ow through the body and viscosity makes it 
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Fig. 1 | Many macroscopic animals generate large vortices which they shed in their wake. Such 
a wake is illustrated for a butterfl y in (A), taken from Brodsky (1996). Top; the vortex wake of 
this particular butterfl y consist of a ‘folded ladder’ composed out of start and stop vortices that are 
generated at the start and end of each stroke. Th ese start and stop vortices are connected through 
the tip vortex, that is connected with the wing tip. Bottom; together the start, stop and tip vortices 
form interconnected ring vortices that build up the ‘folded ladder’ vortex wake. For several organ-
isms, such as butterfl ies, the vortex ‘ladder’ starts at the leading edge of the wing with a so called 
‘leading edge vortex’. Th ere exists no blueprint of an organism’s vortex wake, its shape and dynamics 
depend on both the morphology and the kinematics of an organism. Th ere exist, however, many 
similarities among vortex wakes of diff erent organisms. Th is is illustrated by several photographs 
of vortex trails of swimming and fl ying organisms: (B) Smoke visualization of fl ow around a maple 
seed (Onda et al. 1986), (C) Ink visualization of fl ow around a pearl danio (Rosen, 1959), (D) Saw 
dust visualization of fl ow around a Shaffi  nch (Kokshaysky, 1979) and (E) Smoke visualization of 
fl ow around a hawkmoth (Ellington et al., 1996).
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stick to the body. Th e fl uid that sticks to the body continuously 
shears and forms shear layers, which are left behind in the wake 
of the organism. Th ese shear layers are unstable when the inertia 
of the fl uid dominates its viscosity. As a result, shear layers can 
roll-up into packets of rotating fl uid, vortices, as soon as they 
separate from the body. Many macroscopic swimming and fl ying 
organisms such as animals and plant seeds create large vortices 
with their fi ns and wings when they move through water and 
air. Th ese vortices are shed in their wake, and together they form 
the footprint of the organism in the fl uid, Fig. 1 (e.g. Alexander, 
1999). 

Leading edge vortex stability
We have all heard the apocryphal story that bumble bees can-
not generate enough lift to hover with their wings according 
to the aerodynamic theory of aircraft, pioneered by Lanchester 
(1907), and later Prandtl (1918, 1919). Th is mystery was solved 
through the discovery of a stable leading edge vortex on top of 
the wing of a hawkmoth, which augments lift beyond predicted 
values, because the low pressure core of the vortex sucks the wing 
upward (Ellington et al., 1996), Fig. 2A, B. Ever since we have 
a mental picture of how hawkmoths, bumble bees and other 
insects can generate enough lift, but we are left with the mystery 
why this tornado-like vortex rests stably on top of insect wings 
(Ellington et al., 1996; Birch and Dickinson, 2001). Currently, 
the stable leading edge vortex has become a fl uid dynamic mech-
anism that potentially can also explain the elevated swimming 
and fl ight forces of many other organisms. Swept model wings of 
gliding swifts, for example, generate a stable leading edge vortex 
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Fig. 2 | Leading edge vortices (LEVs) on the wings and fi ns of 
animals. (A) Artistic impression of leading edge vortices on hawk-
moth wings (George Hayhurst in Dalton, 1999, after Ellington 
et al., 1996). Experimental observations of leading edge vortices: 
(B) Front view of a model fl apping hawkmoth wing. Th e LEV is 
visualized with smoke (Ellington et al., 1996). (C) Hind view of 
the pectoral fi n of a sunfi sh, which generates both a leading and 
trailing edge vortex (TEV). Both vortices are visualized using 
velocity vectors measured with particle image velocimetry (PIV). 
(Bandyopadhyay et al., 2008). (D) Side view of the wing of Pallas’ 
long-tongued bat. Th e LEV is visualized using velocity vectors and 
colors that represent the vorticity fi eld, which is a measure of the 
fl uids rotation. (Muijres et al., 2008). (E) Side view of a fl apping 
goose wing model. Th e LEV is visualized using velocity vectors and 
colors that represent the vorticity fi eld. (Hubel, 2006). (F) Hind 
view of a model gliding swift wing that is swept back. Th e LEV is 
visualized with velocity vectors (Videler et al., 2004).
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(Videler et al., 2004). Using a fl apping goose 
model, Hubel and colleagues found a stable 
leading edge vortex in forward fl apping 
fl ight (Hubel, 2006). Recent in-fl ight mea-
surements have revealed that Pallas’ long-
tongued bat also generates a stable leading 
edge vortex when it hovers, like insects do 
(Muijres et al., 2008). Th ere is even evi-
dence that suggests that sun fi sh generate 
both a stable leading and trailing edge vor-
tex, which could augment force generation 
(Lauder and Madden in: Bandyopadhyay 
et al., 2008), Fig. 2. Why, and under which 
conditions leading edge vortices are stable 
on fi ns or wings is, however, still unclear.
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Fig. 3 | Vortices have their own dynamics. 
(A) A sketch of a three-dimensional vortex 
tube in a fl uid. Th e vortex tube represents a 
local region in the fl uid that rotates around 
its centerline. A two-dimensional vortex is 
simply the cross-section of the three-dimen-
sional vortex tube. (B) Two-dimensional vor-
tex shedding of a translating foil in a soap 
fi lm. Th e foil represents a streamwise cross-
section of a wing or fi n set at an angle of 
attack with respect to the fl ow, in this case 
45°. At such high angles, the fl ow around the 
wing separates from the surface at the lead-
ing and trailing edge. Th ese separating ‘shear 
layers’ roll up into leading and trailing edge 
vortices that are unstable and start to shed 
from the foil. Due to the vortex shedding, 
the fl uid force exerted on the foil (i.e. lift and 
drag) fl uctuates. (C) Co-rotating vortices can 
merge when they get close enough to infl u-
ence each other’s path in the fl uid. Th e two 
high-lighted two-dimensional vortices in a 
soap fi lm merge in three successive (time) 
steps downstream of a fl apping foil. (D) Th e 
shear fi eld of vortices can elongate and tear 
other vortices apart. Th e high-lighted two-
dimensional vortex in a soap fi lm is torn 
apart by neighboring vortices in three successive (time) steps downstream of a fl apping foil. (E) 
Th e laminar structure of three-dimensional vortices can break apart, burst, when axial fl ow in the 
vortex core (‘centerline’) decelerates; shown is spiral bursting of a leading edge vortex attached to a 
fl apping wing. (Th e Reynolds number, a measure of the relative importance of inertial acceleration 
versus viscous stress, is of order 1000 in all cases.)
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Vortex wake periodicity 
Th e shape and dynamics of a vortex wake are not simply a consequence of the order in which an 
organism sheds the vortices it creates in the wake. Vortices have their own dynamics – vortices 
can shed, merge, tear, burst and interact with each other and with the organism in all kinds of 
manners that are co-determined by vortex dynamics, Fig. 3. In some cases, these interactions are 
benefi cial to an animal’s locomotory performance. Insects, for example, can recapture their vortex 
wake and generate extra lift (Dickinson et al., 1999) while birds fl y in formation to capture energy 
from each other’s wake (Lissaman and Schollenberg, 1970). Trouts even adopt a special Kármán 
gait when swimming in the vortex wake of a half-cylinder to save energy (Liao et al., 2003). 
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Th e lateral line of fi sh enables them to sense these vortices (Chagnaud et al., 2006) and tune 
into their dynamics. Th is illustrates that some animals explicitly adapt their behavior to vortex 
dynamics using their sensory system. Th is raises the question how diffi  cult it is for an animal to 
predict vortex dynamics based on its sensory information, such that it can tune its fi n or wing 
kinematics to exploit vortices.
 Vortex wakes of animals are typically interpreted and illustrated as a periodic row of 
alternating vortices, Fig. 1. Th is is contrasted by two basic numerical studies of two-dimensional 
heaving foils that model the fi ns and wings of animals (Lewin and Haj-Hariri, 2003; Lentink 
and Gerritsma, 2003). Although several periodic vortex wakes have been found as a function of 
fl apping kinematics, compelling evidence was found for a specifi c set of foil kinematics that cause 
the vortex wake and lift and drag forces to be chaotic (Lentink and Gerritsma, 2003), Fig. 4. 
 Chaos (Lorenz, 1963) signifi cantly limits the forecast horizon of the dynamics of vortices 
and corresponding fl uid dynamic forces. If animals would actually have to cope with chaotic 
vortices and forces, it might well constrain both their ability to exploit vortices and their neural 
control of body motion. However, we do not know yet whether chaotic vortex wakes are excep-
tional or common in the parametric space of a fl apping foil. 

Biofl uiddynamics as an inspiration for design
Swimming and fl ying organisms have inspired us long before we realized that they juggle with 
vortices to move well. Th ey made us dream of exploring the oceans and taking off  into thin 
air ourselves. Engineers have provided us with an array of ingenious devices, high-tech ‘orth-
eses’, to accomplish this; from submarines and aircrafts to spacecrafts. Yet, after we descended 
to the ocean fl oor, fl ew non-stop around the world, and landed on the moon, the discoveries 
of biologists and climate researchers woke us up again. Nowadays we are constantly remind-
ed that our technology is often not sustainable, and that many of our designs are still primi-
tive compared with nature. To fi nd new ways to make our vehicle designs more eff ective, 
engineers now again look for inspiration in nature – bio-inspired design (e.g. French, 1988; 
Dickinson, 1999; Nachtigall and Blüchel, 2000; Pfeifer et al., 2007). But for such designs we 
need to understand how exactly the locomotion of organisms works in order to prevent us from 
copy-pasting designs that do not make our vehicles more eff ective. An integrated approach that 

Fig. 4 | Computational fl uid dynamic simulations of the fl ow and forces generated by a thin 
two-dimensional heaving foil at the scale of a fruit fl y (Lentink, 2003; Lentink and Gerritsma, 
2003). Th e colors represent the vorticity fi eld; yellow vortices spin clockwise, whereas orange vorti-
ces spin anti-clockwise. (A) An amplitude of 0.5 chord lengths in combination with a wave length 
of 4 chord lengths results in a symmetric and periodic vortex wake and a corresponding limit cycle 
in the lift-drag phase diagram. Note that the limit cycle is the ultimate path of the resultant force 
vector that is composed of a drag and a lift component. Th e dots indicate the force vector path 
before the limit cycle kicks in. (B) Increasing the amplitude to 1.5 chord lengths and the wave 
length to 6 chord lengths results in an asymmetric vortex wake and corresponding asymmetric lift-
drag phase diagram. Th e fl ow is, however, still periodic. (C) When we keep the amplitude constant, 
set at 1.5 chord lengths, and decrease the wave length to 4 chord lengths, we fi nd a vortex wake 
that never repeats itself over the 167 simulated periods. Th e corresponding lift-drag phase diagram 
shows a limit cycle of which the shape changes every period and never repeats itself, which results 
in a so-called ‘strange attractor’. A further analysis has shown that this fl ow is initial-condition 
sensitive and that the frequency spectrum of lift and drag forces is broad; these are all hallmarks of 
chaos (Lorenz, 1963). 
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includes both fundamental biofl uiddynamic research and engineering design has the potential 
to provide us with new insights into swimming and fl ight mechanisms in nature, and novel bio-
inspired designs that work. Th is thesis is the result of such an approach. I integrated biofl uid-
dynamic research and aerospace engineering design, which resulted in inspiration for designing 
new fl apping and morphing micro air vehicles (Fig. 5). 

Th esis aim and outline 
Th e locomotion of most macroscopic organisms that swim or fl y depends on caudal fi ns, pectoral 
fi ns, or wings. Th e swimming and fl ying animals and plant seeds that I will study here create 
vortices with their fi ns and wings that are shed in a wake. Th ese vortices have their own dynam-
ics, which the organisms have to cope with to move eff ectively through their surrounding fl uid. 
Th e aim of this thesis is, therefore, to explore how the swimming and fl ight apparatus of organisms is 
constrained by vortex dynamics. I focus on how principal morphological and kinematic parameters of 
fi ns and wings co-determine leading edge vortex stability and vortex wake periodicity, which mediate 
fl uid force augmentation and forecast horizon, respectively. Th e principal fi ndings of this thesis will 
serve as an inspiration for the design of new micro air vehicles. To answer these questions, I need to 
mount a systematic exploration of these morphological and kinematic parameters. And this can 
be achieved most eff ectively by fi rst gaining a rough overview over the most relevant parameters 
with the help of so-called dimensionless numbers. In fl uid dynamics, these numbers map out 
which fl uid accelerations and stresses dominate a fl ow as a function of the shape and kinematic 
parameters that cause the fl ow to exist, e.g. the fl ow generated by an airplane. However, no 
coherent framework of dimensionless numbers exists for studying the biofl uiddynamics of fi ns 
and wings. 
 In this study, we start out with a dimensional analysis of the Navier-Stokes equation to 
derive a coherent framework of dimensionless numbers for the fl ow generated by translating, 
spinning and fl apping fi ns and wings. Th is framework enables us to determine which fl uid accel-
erations and stresses dominate the fl ows dynamics as a function of fi n and wing morphology and 
kinematics. We used this framework for designing all our experiments and therefore derive and 
illustrate it in Chapter 2: Designing a map for exploration. 
 Based on this dimensionless map we explored both leading edge vortex stability and 

Fig. 5 | Examples of success-
ful morphing and fl apping 
micro air vehicles.  (A) Gull-
like variable wing dihedral 
for enhanced stability versus 
maneuverability (Lind et al., 
2004). (B) Bird-like wing twist 
for enhanced roll-perform-
ance (Lind et al., 2004). (C) 
Insect-like fl apping wings that 
generate both lift and thrust 
(Pornsin-Sirirak et al., 2001) 
(D) Prototype robotic fl y that 
can take-off  guided by wires 
(Wood, 2008). 

A

C

B

D



1.1  Exploring the biofl uiddynamics of swimming and fl ight 10

vortex wake periodicity as a function of foil kinematics using a two-dimensional fl apping foil in 
a soap fi lm. Like others before us, we fi nd that the leading edge vortex is unstable on two-dimen-
sional fl apping foils. More signifi cantly this study provides the fi rst experimental confi rmation 
that chaotic vortex wakes can be generated by a periodically and symmetrically fl apping foil. 
Surprisingly we fi nd that chaotic wakes are common, which is shown in Chapter 3: A journey 
through fl atland. 
 Leading edge vortices are unstable on two-dimensional fl apping foils, whereas they are 
stably attached to the three-dimensional fl apping wings of hovering insects. Th e dimensionless 
Rossby number, which we derived in Chapter 2 for three-dimensional fl apping wings, predicts 
that the rotational centripetal and Coriolis accelerations could mediate leading edge vortex sta-
bility. According to the prediction this works both for fl apping and spinning wings, provided 
that the Rossby number is close to one. To test this we performed systematic experiments with a 
three-dimensional robotic model of a dynamically scaled fl y wing that can translate, spin and fl ap 
at various Rossby numbers. Th ese experiments confi rm our theoretical prediction that rotational 
accelerations stabilize leading edge vortices on revolving wings for Rossby numbers close to one, 
which we describe in Chapter 4: Take-off  into the third dimension. 
 Based on the previous study it became evident that autorotating seeds might also aug-
ment their lift with a stable leading edge vortex, because their Rossby number is close to one. 
We investigate this prediction by measuring the fl ow generated by dynamically-scaled models 
of maple and hornbeam seeds. Our fl ow measurements show that these seeds indeed generate a 
stable leading edge vortex. Th is result suggests that the leading edge vortex represents a conver-
gent aerodynamic solution in the evolution of fl ight performance in both animals and plants, 
which we discuss in Chapter 5: Swirling down to earth. 
 Finally, we study the lift augmentation of the stable leading edge vortex generated by 
swept swift wings and compare it to the lift of fully extended wings. For this we mounted freeze-
dried swift wings to a balance system in a low-speed wind tunnel. Th ese experiments not only 
show that the lift augmentation of a leading edge vortex on swept swift wings is insignifi cant 
compared to the lift augmentation found for fl apping and spinning wings. It also provides us 
with a functional perspective of the unique morphing wings of birds, which allows them to adapt 
the shape of their wings to obtain maximal glide performance at both low and high speeds by 
varying wing sweep, which we describe in Chapter 6: Escape into thin air. 
 After all these studies I synthesize my fi ndings into 5 biofl uiddynamic conclusions and 
two designs of micro air vehicles inspired by these conclusions: A morphing micro air vehicle 
inspired by swifts and a fl apping micro air vehicle inspired by insect fl ight. Th rough this synthesis 
we found that micro air vehicles that fl ap their wings do not hover very effi  ciently. Th erefore, 
I close my synthesis by describing a future experiment with spinning hummingbird-inspired 
wings, which can provide inspiration for designing more effi  cient hovering micro air vehicles in 
Chapter 7: Biofl uiddynamics as an inspiration for design. 
 Th e research outlined here got me really excited about the comparative biofl uiddy-
namics of swimming and fl ight. Th is motivated me to write an NWO-ALW grant proposal 
for comparing the aerodynamics of fruit fl ies with the hydrodynamics of zebra fi sh larvae, 
which are both high performance locomotors in the same fl ow regime. For this comparison 
between fl y and fi sh we developed new experimental setups to quantify the swimming perfor-
mance of zebra fi sh as a function of swimming speed and age. Th is future work is illustrated in 
Chapter 8: Back to the future.
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BIOFLUIDDYNAMIC SCALING OF FLAPPING, SPINNING AND TRANSLATING FINS AND WINGS
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Summary

Organisms that swim or fl y with wings and fi ns physically interact with the surrounding 
water and air. Th e interactions are governed by the morphology and kinematics of the 

locomotory system that form boundary conditions to the Navier-Stokes (NS) equations. 
Th ese equations represent Newton’s law of motion for the fl uid surrounding the organism. 
Several dimensionless numbers, such as the Reynolds number and Strouhal number, meas-
ure the infl uence of morphology and kinematics on the biofl uiddynamics of swimming 
and fl ight. Th ere exists, however, no coherent theoretical framework that shows how such 
dimensionless numbers of organisms are linked to the NS-equation.
 Here we present an integrated approach to scale the biological fl uid dynamics of 
a wing that either fl aps, spins or translates. Both the morphology and kinematics of the 
locomotory system are coupled to the NS-equation through which we fi nd independent 
dimensionless numbers that represent rotational accelerations in the fl ow due to wing kine-
matics and morphology. Th e three corresponding dimensionless numbers are the (1) angu-
lar acceleration number, (2) centripetal acceleration number, and (3) the Rossby number 
which measures Coriolis acceleration. Th ese dimensionless numbers consist of length scale 
ratios, which facilitate their geometric interpretation. Th is approach gives fundamental 
insight into the physical mechanisms that explain the diff erences in performance among 
fl apping, spinning, and translating wings. Although we derived this new framework for the 
special case of a model fl y wing, the method is general enough to make it applicable to other 
organisms that swim or fl y using wings or fi ns. 
 

Introduction 

Th e use of dimensionless numbers for understanding complex biological fl ows has helped us 
enormously to better understand adaptations for swimming and fl ight in nature, as well as the 
corresponding fl ow phenomena. For example, the Reynolds number, Re, is the ratio of convec-
tive acceleration times density over viscous stress in the fl uid (e.g. Tritton, 2005). It not only 
dictates what kind of propulsive mechanism the organism has at hand (viscous vs. inertial) it also 
determines whether the fl ow is reversible or irreversible, or whether it is laminar or can become 
turbulent. Such dimensionless numbers can be interpreted in at least three ways: as ratios of 
force, time, or length (e.g. Tennekes and Lumley, 1983). For example, although the Reynolds 
number is often described as the ratio of inertial to viscous forces, it can be interpreted as the 
ratio of convection length (or time) over diff usion length (or time) for a standard transport time 
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(or distance) (e.g. Tennekes and Lumley, 1983). Th e wide-ranging use of the Reynolds number 
in biologically-relevant fl ows is well illustrated in Steven Vogel’s book ‘Life in moving fl uids’ 
(Vogel, 1996). 
 Th e Strouhal number St is another important dimensionless number, which has been 
used extensively in the biological fl uid dynamics literature. It is typically defi ned as  
where f is fl apping frequency, A is fl apping amplitude, and U is mean fl ow velocity. Its original 
context was as a measure of dimensionless shedding frequency for a bluff  body undergoing von 
Kármán shedding in a constant fl ow (e.g. Guyon et al., 2001), but is has additional uses in bio-
logical fl uid dynamics (Triantafyllou, 1993; Taylor, 2003). For example, it is proportional to the 
tangent of maximal induced angle of attack by a fl apping wing or fi n when the stroke plane is 
perpendicular to the direction of motion (Taylor, 2003, Lentink et al., 2008). Th is amplitude-
based Strouhal number closely resembles the inverse of the advance ratio  as defi ned 
by Ellington (Ellington, 1984), where Φ is total wing beat amplitude in radians, f is fl apping 
frequency, and R is root-to-tip wing length. Note that 2ΦR is actually the total wingtip excursion 
in the stroke plane (down stroke plus upstroke), whereas U / f measures wingbeat wavelength λ, 
the distance traveled during one stroke cycle. Th e advance ratio is therefore a measure of the pitch 
of a fl apping wing; very much like the pitch of a propeller (and the pitch of a screw) provided 
that the stroke plane is normal to body speed. Dickinson (1994) and Wang (2000b) defi ned a 
chord-based Strouhal number,  where c is chord length. Th is number closely resembles 
the reduced frequency k defi ned by Daniel and Webb (1987) for swimming , which 
is usually defi ned as a ratio of velocities due to fl apping to velocity due to forward motion. It 
should be noted that, in engineering fl uid dynamics, Strouhal numbers are often reserved to their 
original purpose - to describe natural vortex shedding processes (e.g. Green, 1995) - whereas 
reduced frequencies (or the analogues dimensionless wavelength) are more appropriate for forced 
vibrations, such as fl apping wings (e.g. Tobalske et al. 2007). 
 From our brief overview it becomes clear that diff erent points of view exist in the biome-
chanics fi eld on how to best defi ne and use dimensionless numbers to study swimming and fl ight. 
Further, the interpretation of these dimensionless numbers is not always straightforward, or per-
haps more importantly, similarly defi ned throughout the fi eld. Our goal is to improve this for fl ap-
ping studies by deriving a new set of dimensionless numbers. Th ese numbers are not only directly 
linked to the Navier-Stokes (NS) equations, but can also be interpreted more easily based on the 
morphology and kinematics of the wing (or fi n). For this we choose to use morphological and 
kinematic length scale ratios, because they are most easy to interpret and illustrate geometrically.
 For simplicity we focus our analysis on fl y wings. In the discussion we will indicate how 
to apply the theory to the wings and fi ns of other organisms such as insects, birds, fi sh, and 
samara seeds. First we derive the dimensionless NS-equation with respect to the surface of the 
fl apping wing of a forward fl ying fl y. Next we show that the angle between the body velocity vec-
tor of a fl y and its (approximate) stroke plane can be neglected for estimating the correct order 
of magnitude of the dimensionless numbers that depend on speed. We then further simplify the 
NS-equation for hover conditions. Next we simplify the NS equations even further for spinning 
and translating fl y wings. Th ese more simplifi ed forms of the NS-equation and the correspond-
ing dimensionless numbers are illustrated graphically for three-dimensional wings. Our frame 
work can therefore be readily applied to the design of appropriate parameter spaces for complex 
biofl uiddynamic studies of fl apping, spinning and translating wings and fi ns. Finally we discuss 
how three-dimensional and two-dimensional wing kinematics are related and can potentially 
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mediate the stall characteristics of a wing. Experimental tests of the effi  cacy of this new approach 
in characterizing salient features of biologically-relevant forces and fl ows are presented elsewhere 
(Lentink and Dickinson, 2008).

Materials and methods

NS-equation of a fl y in forward fl apping fl ight 
For problems related to fl ying and swimming, the relevant external media (air and water) are 
incompressible to within a good approximation. Th is signifi cantly simplifi es the governing 
equations such as those describing the conservation of mass (Eqn. 1) and momentum (Eqn. 2) 
(e.g. Anderson, 1991; White, 1991; Guyon et al., 2001; Tritton, 2005):

, (1)

,  (2)

in which is the gradient (del) operator, u velocity, ρ density, t time, p 
pressure and μ dynamic viscosity. Note that ρ and μ are constant (incompressible air and water). 
Th ese equations are necessarily derived with respect to an inertial reference frame attached to 
earth. We can compute the time-dependent fl ow fi eld, u(x,t), around a fl ying fl y using this sys-
tem of time-dependent and non-linear partial diff erential equations (x is the position vector in 
space). In order to solve the equations, we need to specify an initial velocity condition to start 
up the solution, and we need velocity boundary conditions to keep the solution within bounds, 
Fig. 1. An appropriate and simple initial condition is that the fl y starts (t = 0) at rest in still air:

. (3)

While we can further assume that the air far away from the fl y remains practically unaff ected by 
the fl y’s movement, on the outer boundary Sob: 

inertial
X

Y

Z

g

Sob

t=0

t>0

Sfb Fly

Fig. 1 | Boundary and initial conditions 
of the Navier-Stokes (NS) equations of air 
around a fl y. Th e fl y fl ies with respect to an 
inertial coordinate system (X,Y,Z) fi xed to 
earth in a volume bounded by the outer sur-
face Sob where the air remains at rest (outer 
boundary condition). Th e fl y takes off  at 
t = 0 when the fl y and fl uid is at rest (initial 
condition). Th e air at the surface of the fl y 
Sfb adopts the same velocity as the fl y’s body 
surface (inner boundary condition). Gravity 
is indicated with g. 
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. (4)

Finally the air extremely close to the fl y’s outer surface Sfb can neither fl ow though, nor slip 
with respect to the fl y’s surface; the air adopts therefore the same velocity as the fl y’s surface 
(e.g. White, 1991):

. (5)

Although the initial condition (Eqn. 3) and the boundary condition far away of the fl y 
(Eqn. 4) are simple because they are zero (homogeneous), the boundary condition at the fl y’s 
surface (Eqn. 5) is not. Th e mathematical expression of the velocity boundary condition on the 
fl y surface must describe the fl y’s velocity distribution over its (microscopic) surface architecture, 
while tracking its position in space as the fl y fl ies around. Th is formidable problem can be solved 
numerically using Computational Fluid Dynamics (CFD) techniques (e.g. Liu. and Kawachi, 
1998; Wang, 2000a; Sun and Tang, 2002), or experimentally through building physical models 
of fl ying insects in the lab (Maxworthy, 1979; Dickinson, 1994; Ellington, 1996; Dickinson, 
1999). 

Coordinate transformation that simplifi es the fl y’s velocity boundary condition
A complementary approach is to fi rst transform the governing equations and boundary condi-
tions (Eqn. 1-5) such that the velocity boundary condition on the surface of interest is simplifi ed. 
Preferably, the velocity boundary condition becomes zero such that we do not need to track the 
surface explicitly, but implicitly through the coordinate transformation (e.g. Anderson, 1991; 

Fig. 2 | Th e veloc-
ity profi le in the 
boundary layer 
around an airplane 
wing depends 
on the observer; 
airplane spotter 
(inertial observer) 
versus pilot (local 
observer). In engi-
neering problems 
the reference frame 
(analogous to the 
observer) is custom-
ary attached to the 
wing (like the pilot 
is). Th is transforma-
tion simplifi es mathematical analysis, numerical simulations and experiments, e.g. through the use 
of wind tunnels. Th e main advantage is that the surface of interest remains stationary with respect 
to the reference frame. A similar approach can be used for propellers; in this case the reference 
frame (or unfortunate observer) is fi xed to the spinning and forward moving propeller, which again 
simplifi es analysis. Here we propose to use a similar approach for studying the aerodynamics of the 
even more complicated motion of fl apping fl y wings.     

airflow over 
wing

airflow over
propeller

pilot view

Uplane

0
observer on propeller

    spotter view Uplane

0
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White, 1991; Vanyo, 1993; Guyon et al., 2001; Greitzer, 2004; Tritton, 2005). Such an approach 
is standard for studying cars, airplanes and even weather patterns on earth (e.g. Anderson, 1991; 
Batchelor, 1998). Transformation of the NS-equation by placing the reference frame on a mov-
ing object such as an airplane, Fig. 2, seems almost trivial through its common use, e.g. in wind 
tunnels. Transformations of coordinate systems are similarly helpful when studying the fl ow 
around a propeller (Fig. 2) or turbine blade (e.g. Du and Selig, 1998; Dumitrescu and Cardos, 
2003). Such an approach simplifi es the mathematical analysis of the boundary layer fl ow, which 
mediates the shear stress and pressure distribution on the surface, and therefore the net aerody-
namic force and moment. 
 Here we attach our local frame of reference (x, y, z) to a fl apping wing, at the wing’s joint 
Fig. 3. To simplify our analysis we assume that the fl y fl ies along a straight path at constant speed 
in an arbitrary direction. In this transformation we neglect possible morphological undulations 
such as traveling waves in the wing, which holds because the amplitudes of undulations in a fl y 
wing are typically small compared to the wings stroke amplitude. Th e kinematics of the wing, 
to which we attached our reference frame, consists of three rotational components; stroke (φ), 
deviation (ϕ) and angle of attack (α), generate velocity gradients along the wing, Fig. 3A. Th e 
velocity transformation (Baruh, 1999) needed to make the velocity boundary condition identical 
to zero is (Vanyo, 1993; Greitzer et al., 2004):

. (6)

Th e resulting transformed boundary conditions are: 

, (7)

, (8)

. (9)

Th e fl uid acceleration with respect to the inertial frame (X, Y, Z), ainert is related to that in the 
rotating frame aloc by the following transformation (Baruh, 1999; Vanyo, 1993; Greitzer et al., 
2004): 

, where (10)

, (11)

, (12)

. (13)

Here  is the angular velocity and  is the angular acceleration of the rotating frame, and r 
and uloc are the position and velocity of a fl uid volume in the rotating frame, respectively. Th e 
three terms enclosed in brackets in Eqn. 10 are the angular (aang), centripetal (acen) and Coriolis 
(aCor) accelerations (note that we neglected the accelerations of the body itself because we assume 
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steady fl ight. We now substitute the coordinate transformation described by Eqn. 10 into the 
NS-equation, Eqn. 2, and obtain its form with respect to the local coordinate system (x,y,z) 
fi xed to the wing (Eqn. 14). Note that  in Eqn. 2, whereas  in Eqn. 14, because 
we drop the ‘inert’ and ‘loc’ subscripts in the NS-equation for easy notation in every subsequent 
NS-equation.

.  (14)

Th is equation captures the (relative) accelerations and stresses that a ‘fl uid particle’ with local 
velocity u experiences close to the wing (i.e. in its boundary layer). We consider accelerations 
(Eqns. 10-13) instead of the analogous “fi ctitious forces”, which point in the opposite direction 
(e.g. Vanyo, 1993; Greitzer et al., 2004). 
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Fig. 3 | Th e kinematics and 
morphology of a forward fl ying 
fl y. (A) Th e fl y fl ies with velocity 
ubody while fl apping its wings 
with angular velocity Ωwing. Th e 
cross product of the wings angu-
lar velocity vector and the local 
radius r induces three veloc-
ity gradients along the wing; a 
velocity gradient due to devia-
tion uϕ, stroke uφ, and angle 
of attack variation uα. Th ere 
are two reference frames, the 
inertial reference frame (X,Y,Z) 
attached to earth and the local 
reference frame (x,y,z) attached 
to the fl y’s wing at the joint. (B) 
Wing morphology. Wing radius 
is the radial distance between 
the wings root and tip; R. Th e 
wings radius of gyration Rg can 
be calculated using a blade ele-
ment method and is roughly 
equal to half the wings radius 
(Ellington, 1984). Th e average 
chord length of the wing can 
be calculated by dividing single 
wing area S by single wing span 
bs. We defi ne the single wing 
aspect ratio as R / c. (C) Th e 
defi nition of wing deviation ϕ,
stroke φ, and angle of attack α 
which depend on time t (Sane 
and Dickinson, 2001).  



Scaling the NS-equation in the reference frame attached to the fl y’s wing
To fi nd out how these acceleration and stress terms infl uence the physical phenomena around a 
fl y wing, we scale all terms in Eqn. 14 with respect to their orders of magnitude:

,  (15-21)

in which ‘*’ indicates a scaled, dimensionless, variable. Th e velocity u scales with the (absolute) 
time-averaged speed of the fl apping wing at its wingtip U. Th e del operator  scales with the 
average chord length as 1 / c, for which we divided the wing’s single wing area S by its single 
wing span bs (c = S / bs), Fig. 3B Time t scales with the time it takes the fl uid to travel over the 
wings chord c / U (e.g. Anderson, 1991; Tritton, 2005). Th e angular acceleration  and velocity 

 scale with the (absolute) time-averaged angular acceleration amplitude  and time-averaged 
angular velocity amplitude  of the wing, respectively. Th e local radius r scales with the wing tip 
radius, R, and the pressure p scales with the ambient (atmospheric) pressure p0. After substituting 
Eqns. 15-21 in Eqn. 14 we normalize the resulting equation by dividing it with the order of 
magnitude of the convective acceleration term of the fl uid ρU2 / c (e.g. Anderson, 1991; Tritton, 
2005; Greitzer et al., 2004). Th e resulting equation is dimensionless, for simplicity we omit ‘*’: 

,   (22)

Th e scale factors in this equation give the relative order of magnitude of all accelerations and 
stresses acting on an infi nitesimal volume of fl uid, compared to the convective acceleration. 
Hence these scale factors enable us to pin point how dominant the corresponding terms are 
and allow us to identify the dominant physical mechanisms that scale with these dimensionless 
numbers. 

Results

Basic kinematic model of a fl y wing in forward fl ight 
Th e dimensionless numbers that scale the aerodynamics of a fl y wing can be derived easi-
er without loss of generality if we simplify the fl ight conditions and kinematics. Th is works 
because the order of magnitude of the scale factors are more important than their precise value. 
Mathematically our insect fl ight model is simplifi ed in three steps: (1) Flight without sideslip, 
Fig. 4A. (2) Straight fl ight at constant speed U∞ in an arbitrary direction with respect to gravity, 
Fig. 4B. (3) Zero wing deviation ϕ (Eqn. 23) and sinusoidal wing stroke φ (Eqn. 24) and angle 
of attack α (Eqn. 25) kinematics:  

, (23)

, (24)

, (25)

in which the wing stroke and angle of attack fl ap 90° out of phase at the same frequency f. Note 
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that Φ0 is stroke amplitude, which is half the full amplitude defi ned by Ellington (Ellington, 
1984), and α0 is angle of attack amplitude (the ranges found for insects are 0° < Φ0 < 90° and 
0° < α0 < 90°). In our simplifi cation we use Ellington’s observation that the wing kinematics of 
many insects can be approximated well with sinusoidal stroke kinematics, and that wing devia-
tion with respect to the stroke plane is typically small (Ellington, 1984). Th is has also been found 
by Fry and co-workers for fruit fl ies (Fry et al., 2003). Based on Eqn. 23-25 we calculated the 
resulting angular velocities and accelerations as:

, (26)

, (27)

,  (28)

. (29)

Visualizing rotational fl ow accelerations due to wing stroke
For many insects, including fl ies, the velocity and acceleration due to wing stroke are larger than 
the velocity and acceleration due to angle of attack variation, because Φ0R  >  α0c holds. Using 
Eqns. 11-13 we can draw and interpret the rotational accelerations that result from the wing 

Fig. 4 | Simplifi ed forward fl ight mod-
el of a fl y. (A) We fi rst assume that the 
side slip angle of the fl y, with respect to 
its body velocity, is zero. (B) Defi nition 
of the stroke plane angle β (Ellington, 
1984), fl ight path angle ξ (Ellington, 
1984), and the angle between the normal 
vector of the stroke plane and the body 
velocity γ. (C) A hovering fl y induces 
three rotational accelerations in the fl ow 
due to stroke (down stroke shown). 
Shown are the angular aang, centripetal 
acen, and Coriolis acor accelerations that 
are induced in the fl uid near the wing 
and result from the wings stroke, its 
propeller-like swing. Th e angular veloc-
ity of the wing stroke is Ωstroke and its 
angular acceleration is . Th e local 
velocity of fl uid with respect to the 
local reference frame (x,y,z) is uloc. We 
color coded the stroke plane of the wing 
orange and the ‘outer shell’ blue, which 
features the white wingtip path. (Note 
that the depicted direction of angu-
lar acceleration was chosen to prevent 
image clutter).
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stroke and act on the fl uid near the wing, Fig. 4C. Th e fi rst component aang is the manifesta-
tion of the angular acceleration of the wing around its base, which results locally in a chord-wise 
acceleration (Fig. 4C). Th e second term acen represents the centripetal acceleration, which is 
directed spanwise towards the wing’s base (Fig. 4C). Th e third term aCor, represents the Coriolis 
acceleration, its direction depends on the direction of local fl uid velocity uloc (Fig. 4C). Both the 
centripetal and Coriolis accelerations (acen and aCor) are ‘quasi-steady’ in that they depend on 
the instantaneous value of the angular velocity  of the wing (Eqns. 12, 13.), in contrast to the 
angular acceleration (aang), which depends on the rate of change of angular velocity  (Eqn. 11). 
Th ese rotational accelerations arise in the fl uid because the ‘fl uid particles’ on the wings surface 
are forced to rotate with the same angular velocity and angular acceleration, as the wing. Th e 
angular velocity and acceleration acquired by the ‘fl uid particles’ on the surface then diff use into 
the fl ow and form the boundary layer around the wing in which the Coriolis acceleration acts on 
the fl uid when it moves with respect to the rotating wing. 

Scaling rotational accelerations due to wing stroke
We now simplify and interpret the dimensionless scale factors of the rotational accelerations 
(Eqn. 22) Using Eqns. 26 and 27, we can calculate the (absolute) time-averaged values for  and 

 based on stroke kinematics:    

, (30)

, (31)

in which T is the fl ap period, with 
T = 1 / f. Th e wingtip path is illustrat-
ed in Fig. 5. Th e tip speed consists of 
a component in the direction of fl ight 
ut and normal to it un from which we 
can calculate the absolute, time aver-

λ*

2A*

γ

wing

wing

body

body

Fig. 5 | Flapping wing in forward 
fl ight. Graphical representation 
of the dimensionless numbers in 
the NS-equation that describe the 
wingtip kinematics; A* the dimen-
sionless stroke amplitude and λ* the 
dimensionless wavelength. Th e body 
and wingtip speed are indicated with 
blue and orange vectors respectively. 
Th e dashed line is the wingtip path 
for γ = 0° (fast forward or climbing 
fl ight). Th is fi gure holds for arbi-
trary fl ight direction with respect to 
gravity.
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aged, wing tip speed:

. (32)

It is essential that both wing and body speed are included in the average speed U, so that it 
represents the right magnitude and ensures that we can continuously scale the NS-equation 
from fast-forward to hovering fl ight (Lentink and Gerritsma, 2003). We now insert Eqn. 26 in 
Eqn. 32 and calculate the tangential and normal velocity components due to the angle between 
the stroke plane and direction of fl ight γ, Fig. 4B:

, (33)

in which U∞ is the body speed. We found in an earlier study (Lentink and Gerritsma, 2003) that 
this equation can be approximated with an error less than 5% for γ = 0° and 0° ≤ arctan( J ) ≤ 90°, 
in which  is the advance ratio:

. (34)

Th is approximation is derived such that it is exact for both hovering (U∞ = 0) and non fl apping 
fl ight (f = 0). In Fig. 6 we show that this approximation also holds for 0° ≤ γ ≤ 90° and we will 
therefore incorporate it in our model. We now substitute the expressions for  (Eqn. 30),  
(Eqn. 31) and U (Eqn. 34) into the scaled NS-equation (Eqn. 22) and obtain an easier to inter-
pret dimensionless NS-equation for a fl apping fl y wing in forward fl ight (see Appendix I): 

, (35)

in which J is the advance ratio, A* the dimensionless amplitude of the wing, ARs the single wing 
aspect ratio, Eu the Euler number, which is irrelevant for incompressible fl ow around insects 
(White, 1991), and Re the Reynolds number. 
Th e defi nitions of the dimensionless numbers 
in Eqn. 35 are as follows: 

, (36)

,  (37)

, (38)
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Fig. 6 | Approximation average wing tip 
velocity. Th e absolute average of the wing 
tip velocity (Uave) can be approximated well 
(Uapprox) within the same order of magnitude 
using Eqn. 34 for any combination of γ and J 
(advance ratio). 
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. (39)
 
Note that the Reynolds number consists of two components; the fi rst is due to body speed, Reb, 
and the second due to wings stroke, Res.

Graphical representation of dimensionless numbers 
To better understand how the dimensionless numbers in the NS-equation of a fl apping wing 
relate to wing kinematics and morphology we represent them graphically. Th e advance ratio 
(Eqn. 36) is equal to dimensionless wavelength  divided by the total wing tip excur-
sion in the stroke plane 4A*, Fig. 5. Th e fl y hovers for J = 0 and fl ies forward (or descends) in 
arbitrary direction when J  >  0. For γ = 0°, which approximates fast forward and climbing fl ight, 
advance ratio is a direct measure of the average pitch of a fl apping wing. Th e average pitch is 
a measure of the average induced angle of attack of the fl apping wing, Fig. 7, and determines 
together with the geometric angle of attack amplitude (with amplitude α0) the average eff ective 
angle of attack amplitude, Fig. 7. Th e eff ective angle of attack amplitude modulates wing lift and 
drag. For 0° < γ ≤ 90°, Fig. 5, the geometric interpretation of J is gradually modifi ed, γ = 90° being 
the extreme case. Th is case is relevant for slow hovering (Dickson and Dickinson, 2004), under 
such conditions the advance ratio also measures how much the fl y moves forward along its fl ight 
path compared to its total stroke length. Th e average induced angle of attack is, however, zero, 
because it is proportional to cos(γ). 
 Th e geometric representation of the dimensionless amplitude A* (Eqn. 37) is shown in 
Fig. 5 and its geometric interpretation is simple. An equivalent dimensionless total amplitude 

Λ = 2A*, has been defi ned by Ellington 
(1984). Th e geometric interpreta-
tion of the single wing aspect ratio 
(Eqn. 38) is also straight forward and 
can be inferred from Fig. 3B by noting 
ARs= R / c = Rbs / S (in which bs is the 
semi-wing wingspan). Finally, Re can 
be interpreted as the ratio of convec-
tive versus diff usive transport length 
for a fi xed time interval. It measures 
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wing

body

wing

body

arctan(J)

αgeo

αeff
αind

Fig. 7 | Graphical representation 
of A* and λ* for γ = 0°; fast forward 
or climbing fl ight. Under these 
conditions arctan( 1 / J ) is the aver-
age induced angle of attack αind of 
the fl apping wing. Th e maximum 
induced angle of attack amplitude at 
mid stroke can be calculated using 
arctan( π / 2J ) (Lentink et al., 2008). 
Th e eff ective angle of attack of the 
wing αeff  is equal to the induced angle 
of attack αind minus the geometric 
angle of attack αgeo. 
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how strongly the velocity boundary condition at the wing surface is diff used into the fl ow and 
is a measure of boundary layer thickness (e.g. Schlichting, 1979; Tennekes and Lumley, 1983), 
Fig. 2. 
 How do scale factors of the rotational accelerations in Eqn. 35 behave? Th e angular accel-
eration scales with , which increases for decreasing A* at constant J and increases 
for decreasing J at constant A*. When A* = 0 a careful analysis of the product is needed, which 
shows that it will become zero (non-singular) provided that U ≠ 0; there is fl ow. Th e analy-
sis holds for the subsequent terms discussed below, they are also non-singular provided that 
U ≠ 0. Th e centripetal acceleration scales with , which increases for decreasing ARs 
at constant J and increases for decreasing J at constant ARs. Th e Coriolis acceleration scales with 

, which also increases for decreasing ARs at constant J and increases for decreasing 
J at constant ARs. Similar to the dimensional analysis of wind turbines (Dumitrescu and Cardos, 
2003) we fi nd that the ratio of Coriolis over centripetal acceleration is , the same goes for 
Coriolis acceleration over angular acceleration. Th is suggests that angular and centripetal accel-
eration decay faster than Coriolis acceleration for increasing advance ratio. 

Hovering fl ight 
When insects fl y slowly at advance ratios less than 0.1 they hover according to the defi nition 
of Ellington (Ellington, 1984). Th is notion is confi rmed by calculating the scale factors in 
Eqn. 35. Th e eff ect of forward fl ight is scaled by the inverse of  for Coriolis and the square 
of that for centripetal and angular acceleration, which makes them even less sensitive to low J’s. 
Evaluating J = 0 and 0.1 yields two scale factors that diff er only 0.5 %. For such low values of J 
we can simplify Eqn. 35 into:

 (40)
 
Perhaps this equation will remain a good approximation for even higher J values. Many insects 
seem to perform such fl ights during vertical take-off  and landing and slow hovering fl ights 
(Ellington, 1984), which makes Eqn. 40 particularly useful.

From fl apping to spinning and translating fl y wings 
Th e aerodynamics of fl apping and spinning fl y wings share important traits at zero advance 
ratio. Dickinson and co-workers (Dickinson et al., 1999) showed that a ‘quasi-steady’ aerody-
namic model of a fl apping fruit fl y wing can predict the majority of lift generated based on 
the lift that the same wing generates when it simply spins. Ellington and collaborators showed 
for hawkmoths that both fl apping and spinning wings generate a stable leading edge vortex 
(Ellington et al., 1996; Usherwood and Ellington, 2002). Th ese fi ndings suggest that the aerody-
namics of fl apping and spinning insect wings could be similar to the aerodynamics of propellers 
(Himmelskamp, 1947) and wind turbines (e.g. Dumitrescu and Cardos, 2003; Tangler, 2004). 
Hence we further simplify Eqn. 35 for an insect wing spinning at constant angular velocity 
(  ) at a constant geometric angle of attack (  ):

. (41)
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Because angular velocity is now constant we need to rewrite the defi nition of advance ratio as:

, (42)

and the Reynolds number as:

. (43)
 
Th e corresponding graphical interpretation of the dimensionless numbers is illustrated in 
Fig. 8. During one full period the wingtip has rotated over a dimensionless circular distance equal 

to  and has moved forward 
through the air over a linear distance of 

. Our derivation of Eqn. 41 
for a spinning insect wing is similar to 
that for wind turbines (e.g. Dumitrescu 
and Cardos, 2003). 
        Th e single diff erence between pro-
peller and turbine kinematics is that pro-
pellers operate at positive angles of attack 
generating forward pointing lift, which 
costs power, while turbines operate at 
negative angles of attack, which results 
in backward pointing lift and allows for 
harvesting power from wind (and water 
currents). Th e comparison of Eqn. 41 
and 35 shows that the dimensionless 
numbers and accelerations involved in 
the aerodynamics of fl appers, propellers 
and turbines are indeed similar, pro-
vided that unsteady eff ects measured by 
A* do not dominate over ‘quasi-steady’ 
rotational eff ects measured by ARs. By 
noting that  (combining 
Eqn. 37 and 38) for a fl y wing and that 

 is typically close to one for insects 
(Ellington, 1984) we fi nd that unsteady 
accelerations measured by 1 / A* and 
‘quasi-steady’ accelerations measured by 

s*

D*

wing

body

wing

atan(J)

body

Fig. 8 | Propeller in forward fl ight. 
Graphical representation of the dimen-
sionless numbers in the NS-equation 
that describe the wingtip kinematics; 
D* and s*.  Note that the induced angle 
of attack is again arctan( 1 / J ).    
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1 / ARs are of the same magnitude. Th is might explain the physical analogy between fl apping 
and spinning insect wings, and possibly, propellers and turbines that operate at much higher 
Reynolds numbers. Propellers that operate at zero advance ratio J = 0 operate under hover condi-
tions, such as hovering insects, which further simplifi es Eqn. 41.
 Although fl ies are not known to glide, dragonfl ies and many birds and bats do. When 
animals glide the transformed NS-equation that describes the aerodynamics of their translating 
wings has the same form as those for airplane wings (Fig. 2), which is obtained by setting  = 0 
in Eqn. 41. 

Two-dimensional pitch and heave wing kinematics
Th ere are a large number of insect fl ight models in the literature that range from fully three-
dimensional wing kinematics (e.g. Ellington et al., 1996; Dickinson et al., 1999) to two-dimen-
sional pitch and heave kinematics (e.g. Dickinson , 1994, end-baffl  es were used to make the fl ow 
quasi-two-dimensional). A further simplifi cation is to consider a wing cross-section; the airfoil 
(z-coordinate constant) (e.g. Wang 2000b; Lentink et al., 2008). Although two-dimensional 
studies are more restrictive, they have provided valuable insight in insect wing performance. 
Here we focus on a three-dimensional wing that pitches sinusoidally with amplitude α0 and 
heaves sinusoidally with amplitude A. Since the sinusoidal heave kinematics results in a linear 
acceleration of the wing, this linear acceleration term awing must be added to Eqn. 10. Th e (pitch 
and) heave kinematics is identical to the two-dimensional fl attened stroke plane shown in Fig. 5 
(lower panel). Th e wing stroke acceleration is derived similarly to Eqn. 27 and 29: 

, (44)
 
in which swing is the stroke position of the wing in the stroke plane. Th e corresponding (absolute) 
time-averaged acceleration  is calculated analogous to Eqns. 30 and 31 as:

. (45)
 
Th e resulting scaled order of magnitude of the wing’s heave acceleration awing is:

, (46)
 

Th is scale factor times the dimensionless wing acceleration awing is inserted in the dimensionless 
NS-equation Eqn. 22 of the pitching and heaving foil. Further the relevant radius now becomes 
the pitch radius, which scales with c instead of R (Appendix I): 

   (47)
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With the following expressions for advance ratio, which is similar to Eqn. 36:

. (48)
 
Note that the acceleration terms in Eqn. 47 are much simplifi ed compared to three-dimensional 
kinematics, because many vector components are zero:

 (49-52)
 

From inspecting Eqn. 47 we conclude that the angle of attack rotation induces rotational accel-
erations in the plane of the airfoil, which are proportional to the geometric angle of attack ampli-
tude. Th ese rotational acceleration components are also present in Eqn. 35, but are dominated by 
those due to the wing’s stroke (its propeller-like swing). Th e rotational accelerations due to stroke 
(can) have a component normal to the z-plane which confi nes the wing’s airfoil. Th e relative 
magnitude of the accelerations for A* = 0 can again be inferred correctly by either reformulating 
the scale term as a whole or calculating the limit value, because J also depends on A* (Eqn. 48). 
Th e expression for the Reynolds number is similar to Eqn. 39; it can be obtained by inserting 

.

Simple vibrating fl y wings
Some insect wing models are even simpler and just consist of a heaving (vibrating) foil at con-
stant geometric angle of attack (  ) (e.g. Wang, 2000b; Lentink and Gerritsma, 2003):

. (53)

Using Eqn. 48 we can simplify  into:

,  (54)
 
which relates to the synchronization bands Williamson and Roshko (Williamson and Roshko, 
1988) found in experiments with a vibrating cylinder in the parameter space spanned by dimen-
sionless wavelength (X-axis) and amplitude (Y-axis). In this elliptically-shaped synchronization 
band the vortex wake synchronizes with the vibrating cylinder. Th is occurs when the cylinder 
eff ectively vibrates at a multiple of the natural von Kármán vortex shedding wavelength  of the 
cylinder at rest  for n = 1 and 3 (Lentink, 2003; Ponta and Aref, 2005). Th e 
present derivation shows that this relation can be linked to the scale factor that represents the 
linear acceleration of the vibrating cylinder in the NS-equation (Eqn. 53). Whether or not vortex 
wake synchronization bands also occur for fl apping wings is unclear (Lentink et al., 2008).
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Discussion

We derived a dimensionless form of Navier Stokes (NS) equations for a three-dimensional fl ap-
ping fl y wing to identify the dimensionless numbers that scale the underling physical mecha-
nisms. Th is derivation showed that fl apping wings induce three rotational accelerations: angular, 
centripetal and Coriolis in the air near to the wing’s surface, which diff use into the boundary 
layer of the wing. Next we simplifi ed these equations incrementally using increasingly more 
restrictive assumptions. Th ese simplifi cations allow us to easily interpret the dimensionless num-
bers geometrically for conditions that approximate both forward fl ight and hovering. In subse-
quent steps we derived the NS-equation for spinning and translating three-dimensional fl y wings 
and for fl apping and vibrating two-dimensional airfoils

Dimensionless template for parametric fl apping wing studies 
Th e dimensionless numbers that scale the NS-equation facilitate the design of the parametric 
space in which one can systematically investigate the fl uid dynamics of fl apping wings. Th ese 
numbers are of additional importance to other kinematic parameters of the wing such as angle of 
attack amplitude α0 and the angle between the normal vector of the average stroke plane and the 
direction of fl ight γ. When the most general conditions NS-Eqn. 22 hold, we fi nd the following 
relevant scale factors:

, in which Cang is the angular acceleration number.  (55)
 

, in which Ccen is the centripetal acceleration number.  (56)
 

, Ro in which is the Rossby number.  (57)
 

, in which Re is the Reynolds number.  (58)
 

Using this notation we are able to accommodate elegantly the defi nition of both Reynolds 
(Reynolds, 1883) and Rossby numbers (Rossby, 1936) that already exist in the biological 
and rotational fl uid dynamics fi eld. Th ree of these terms are relatively new in the biological 
fl uid mechanic fi elds: (1) the angular acceleration number measures the unsteadiness of the fl ow 
induced by the rotational acceleration of the wing; (2) the centripetal acceleration number mea-
sures the centripetal acceleration due to the wings rotation, and (3) the Rossby number measures 
the Coriolis acceleration induced by the relative motion of fl uid with respect to the rotating 
wing. All these rotational accelerations diminish for large values of the dimensionless numbers 
that represent them. Although these numbers can be readily calculated they do not give clear 
insight into how they represent wing kinematics and morphology, which can be critical for the 
design of a careful parametric study of fl apping wing aerodynamics. 
 We developed a geometric frame work to provide insight into the dimensionless numbers 
that describe the aerodynamics of the fl apping wings of a fl y, fl ying at constant velocity. Within this 
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framework we assumed sinusoidal stroke and angle of attack kinematics and zero wing deviation. 
Comparing Eqn. 22 and Eqn. 35 we fi nd the following geometric interpretation for the dimen-
sionless numbers Cang, Ccen and Ro:

, (59)

, (60)

. (61)
 
Whereas J and A* are measures of the wings kinematics, ARs is a measure of single wing mor-
phology. Again we note that the eff ect of large values of these dimensionless numbers is that it 
diminishes the corresponding accelerations. Th e eff ect of forward fl ight J  >  0 is, therefore, that 
it reduces the rotational accelerations. Th e rotational accelerations increase for smaller stroke 
amplitudes and single wing aspect ratios at constant advance ratio. Th e extreme case is hovering 
fl ight (J = 0) for which the rotational accelerations are maximal. For hovering fl ight we also note 
that Ccen (Eqn. 60) becomes identical to the Rossby number Ro, because both are equal to a 
single wing spect ratio ARs. Using the dimensionless scale variables J, A* and ARs we can now 
systematically vary the infl uence of rotational accelerations in parametric studies of the aerody-
namics of fl y wings (in forward and hovering fl ight). Perhaps more importantly, the graphical 
approach presented in Figs. 5, 7 and 8 facilitates an intuitive design of numerical and experimen-
tal studies of fl apping (fl y) wings with a direct link to the NS-equations.

Comparing three- and two-dimensional wing kinematics
How important are rotational accelerations for understanding the aerodynamics of a fl y? Here 
we present an alternative approach to compare two- and three-dimensional stroke kinematics, 
which proved to be pivotal for designing our experiment to test how important rotational accel-
erations (due to stroke) are for the stability of a fl y’s leading edge vortex (Lentink and Dickinson, 
2008). Th is vortex allows the fl y to generate exceptionally high lift with its wing at angles of 
attack at which helicopter blades and airplane wings stall. Th ere exists, however, an intrigu-
ing parallel between the lift augmentation due to the presence of a stable LEV on a fl y wing 
and the lift augmentation found near the hub of wind turbine blades. Such blades are said 
to undergo ‘three-dimensional stall’ or ‘stall-delay’ near their hub, which increases lift, whereas 
they undergo ‘two-dimensional stall’ near the blade tip, which decreases lift (e.g. Tangler, 2004), 
Fig. 9A. For wind turbines three-dimensional stall is not observed beyond ‘local aspect ratios’ of 
three (r / c > 3, in which r is the local radius, see Fig. 9A, (e.g. Tangler, 2004)). Th ree is approxi-
mately the value of a fruit fl y’s aspect ratio, Fig. 9, which might explain why fl apping and spinning 
fl y wings do not seem to stall and generate extraordinary high lift like wind turbines and propel-
lers (Himmelskamp, 1947) do near their hub. To gain insight into the possible eff ect of rotational 
accelerations we gradually transform rotational stroke kinematics into translational stroke kine-
matics, Fig. 9B. We do this by letting  and  such that the wing amplitude g  
remains constant in the limit (at the radius of gyration Rg). In doing so we do not change the 
wing’s geometry, we simply place the same wing further outward as shown in Fig. 9. Because the 
wing’s radial distance from the center of rotation R goes to infi nity (  ), the single wing 
aspect ratio based on this radial distance ARs = R / c also goes to infi nity. Th e NS-equations of a fl ap-
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Fig. 9 | Is there an analogy between the infl uence of rotational accelerations on the stall charac-
teristics of wind turbines and fl apping fl y wings? (A) Slender wings, such as wind turbine blades, 
have been found to possess distinctly diff erent stall mechanisms near the root, for r / c < 3 where 
they stall locally ‘three-dimensional’, and near the tip, where they stall locally ‘two-dimensional’. 
Fly wings are much less slender than wind turbine blades, therefore their whole wing is ‘submerged’ 
in the region of ‘three-dimensional stall’. Clearly the circular path (in the stroke plane) of outward 
wing sections become progressively less curved compared to chord length. We illustrated how the 
local ‘rotational component’ of the radial speed component Ω⋅Δr becomes less and less important 
towards the tip compared to the ‘linear component’ of radial speed Ω⋅r. By taking Δr = c we fi nd 
that the ratio of ‘linear component’ over ‘rotational component’ of radial speed is exactly r / c. 
(B) Based on the observations in (A) we designed fl apping wing kinematics that allow us to change 
the relative importance of rotational accelerations R / c for a fl y wing, which has a constant geo-
metric slenderness. We achieved such a gradual transition from a linear velocity distribution to a 
constant velocity over the wing by gradually sticking the fl y wing more outward on an extension 
rod between the wing and its joint. In this we keep the stroke amplitude ‘actuator disk’ areas swept 
by the wing in the stroke plane constant (orange) while it travels forward (blue). It can be dem-
onstrated that a constant actuator disk area corresponds with a nearly constant stroke amplitude 
along the path sg at the radius of gyration Rg. Th e relative curvature of the wing sections path with 
respect to its chord length is again measured by R / c the single wing aspect ratio. Graphically we can 
directly infer that the paths traveled at more outward radii are much less curved and therefore the 
corresponding three-dimensional rotational accelerations will diminish. 
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ping (Eqn. 35) and spinning wing (Eqn. 41) show that the centripetal and Coriolis acceleration 
go down with aspect ratio. We have performed exactly this experiment to show that rotational 
accelerations mediate LEV stability in hovering insect fl ight (Lentink and Dickinson, 2008).

Rotational accelerations due to wing stroke versus angle of attack kinematics
Th e angular velocity of fl apping wings consists of two signifi cant components (1) angular veloc-
ity due to the wing’s stroke and (2) angular velocity due to geometric angle of attack variation. 
Angular velocity due to wing stroke is approx. maximal mid-stroke, while angular velocity due to 
wing angle of attack variation is approx. maximal at stroke reversal. Th e resulting velocity magni-
tudes are proportional to Φ0Rf  for stroke and α0c f  for angle of attack. Th e ratio of both veloci-
ties is Φ0R  / α0c ≈ R  / c because Φ0 ≈ α0 for most insects. For aspect ratios signifi cantly larger than 
one we can assume, therefore, that rotational accelerations due to stroke dominate those due to 
angle of attack variation. In experimental tests, one can test if this holds by doing the experi-
ments with and without rotational stroke kinematics (reciprocating revolving vs. reciprocating 
translating wings) for all relevant angle of attack amplitudes, which lie in the range 0° ≤ α0 ≤ 90° 
(Lentink and Dickinson, 2008). 

Scaling the NS-equation more accurately
In some fl y wing experiments more accurate dimensionless numbers are needed. For example in 
a careful comparison of aerodynamic forces that result from diff erent, but related, wing kinemat-
ics. In such cases one needs to calculate the velocity and length scales more accurately by using 
a blade element method. For such detailed lift and drag studies, the wings radius of gyration 
should be chosen as the radial length scale and the accompanying velocity at the radius of gyra-
tion should be chosen as velocity scale in the NS-equation. Calculating the radius of gyration is 
straightforward for hovering insects (Weis-Fogh, 1973; Ellington, 1984):

, (62)
 
in which Rg is the radius of gyration and S single wing area. For forward fl ight conditions this 
computation gets increasingly more complicated, e.g. see Dickson and Dickinson (Dickson and 
Dickinson, 2004). In practice it is therefore more convenient to consider the wing radius instead 
of the radius of gyration, because they can be derived much easier from lab and fi eld data. 
Th e values of wing radius and wing speed (due to stroke) at the radius of gyration are roughly 
half the value calculated at the wingtip, because Rg / R ≈ 0.5 (Ellington, 1984). Th is estimate 
helps evaluating if more precise values would change the conclusions using ‘back of the envelop 
calculations’. Finally we note that we approximated π / 2 ≈ 1 in Appendix I, this ratio could be 
approximated more accurately by π / 2 ≈ 1.5 if needed.

Relation between existing and present dimensionless numbers
Some of the dimensionless numbers that we derived here can be related to existing dimensionless 
numbers. Th e advance ratio J is already in use (Ellington, 1984). It is equivalent to the inverse 
of the amplitude based Strouhal number as discussed in the Introduction. We prefer the advance 
ratio because it is readily interpretable geometrically and commonly used as such in aeronautics 
and biological fl uid dynamics. Further, the Strouhal number is perhaps best reserved for its original 
purpose – characterizing natural shedding frequencies. Th e dimensionless amplitude A* is a nor-
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mal dimensionless variable, 2A* represents the total dimensionless amplitude Λ introduced by 
Ellington (1984), we prefer A*, because it represents the mathematical defi nition of amplitude. 
We further prefer the dimensionless wave length λ* over the inverse, the reduced frequency k, 
because λ* is a length scale ratio that can easily be drawn and interpreted graphically, e.g. 
Fig. 5, while the time scale ratio k cannot. Th e importance of the dimensionless single wing 
aspect ratio for calculating rotational accelerations is new in the fi eld of insect fl ight. Th e corre-
sponding Rossby number is, however, commonly used in the analyses of rotating fl uids (Rossby, 
1936; Vanyo, 1993; Greitzer, 2004; Tritton, 2005). Th e inverse of the single wing aspect ratio, 
c / r, is in use in the wind turbine literature (e.g. Lindenburg, 2004), but we prefer r / c because it 
corresponds to single wing aspect ratio which is easier to interpret geometrically for animal fl ight, 
and because r / c corresponds with the defi nition of Rossby number, which is in use in the much 
more elaborate literature on rotational fl ows (compared to wind turbines). Finally there is the 
Reynolds number. Our defi nition has the advantage that it works continuously from hovering 
fl ight to fast forward fl ight Eqn. 39 (Lentink and Gerritsma, 2003).

Application of dimensionless numbers in wing and fi n studies 
Our derivation of the dimensionless NS-equation for fl apping, revolving and translating fl y 
wings and airfoils represent the various three- and two-dimensional insect fl ight models in litera-
ture; from three-dimensional fl apping wings to two-dimensional vibrating wings. By comparing 
Eqn. 35 for a three-dimensional fl apping wing and Eqn. 47 for a two-dimensional fl apping wing 
we conclude that the signifi cant rotational accelerations due to the fl apping motion in three-
dimensional fl y aerodynamics are neglected in two-dimensional models. Th e possible importance 
of such diff erences is amplifi ed by the experimental observation that three-dimensional fl y wings 
that either spin (e.g. Usherwood and Ellington, 2002) or fl ap (e.g. Birch, et al., 2004; Ellington 
et. al., 1996) around their base generate a stable leading edge vortex, while fl apping two-dimen-
sional airfoils (e.g. Dickinson, 1994; Lentink et al., 2008) do not. We further note that two-
dimensional vibrating insect wing models neglect all rotational accelerations (e.g. Wang, 2000b; 
Lentink and Gerritsma, 2003). Th e above insect fl ight models therefore increasingly incorporate 
the rotational accelerations induced in the fl ow due to the rotational kinematics of the wing’s 
kinematics. 
 Two and three-dimensional models similar to those of insect fl ight have also been used 
to study the aerodynamics of birds (Hubel, 2006) and the hydrodynamics of the fi ns of fi sh 
(Triantafyllou et al.,1993; Bandyopadhyay et al., 2008). Th e dimensionless NS-equation we 
derived for a fl apping fl y wing also represent such models, provided that care is taken that the 
assumptions used to derive the various equations hold. For completeness we repeat three non-
trivial assumptions: (1) the fl uid behaves fully Newtonian like water and air, (2) the fl uid does 
not cavitate, and (3) the amplitudes of undulations in the body are small compared to stroke 
amplitude. Th e fl ow can, however, be turbulent. 
 Finally we note that even the abstract problem of spinning fl y wings, Eqn. 41, is of direct 
relevance for biological fl uid dynamics studies, because autorotating seeds spin with exactly such 
kinematics as they swirl down to earth. While doing so, autorotating seeds extract energy from 
the fl ow very much like wind turbines harvest energy from wind at much higher Reynolds num-
bers. Th is intriguing example illustrates that our theoretical approach has the potential to provide 
a valuable link between the fl uid dynamics of translating, rotating and fl apping wings & fi ns in 
nature and technology. 
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Symbols
α wing angle of attack

 1st time derivative of wing angle of attack
 2nd time derivative of wing angle of attack

α0  wing angle of attack amplitude
αeff   eff ective angle of attack 
αind induced angle of attack 
αgeo geometric angle of attack 
β stroke plane angle
γ angle between the stroke plane and direction of fl ight
Δr width spanwise wing section
φ wing stroke angle
  1st time derivative of wing stroke angle
  2nd time derivative of wing stroke angle

Φ total wing amplitude in radians
Φ0  wing stroke amplitude (half the total stroke amplitude Φ)
ϕ wing deviation with respect to stroke plane
λ wingbeat wave length
λ* dimensionless wavelength 

  natural von Kármán vortex shedding wavelength 
μ dynamic viscosity
ν kinematic viscosity
ρ fl uid density
ξ fl ight path angle with respect to horizon
Ω  absolute time-averaged angular velocity amplitude 

  absolute time-averaged angular acceleration amplitude 
  angular velocity of the rotating frame
  angular acceleration of the rotating frame

  angular velocity of the fl y wing

  gradient (del) operator 
 ‘*’  dimensionless variable scaled with its order of magnitude 

aang angular acceleration
acen  centripetal acceleration
aCor  Coriolis acceleration
ainert acceleration with respect to inertial coordinate system
aloc acceleration with respect to local coordinate system
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awing linear acceleration of an airfoil 
A fl ap amplitude
A* stroke amplitude
ARs single wing aspect ratio
bs single wing span
c average wing (or foil) chord length
Cang angular acceleration number
Ccen centripetal acceleration number
D* dimensionless circular distance moved during one full period (propeller)

  total diff erentia operator:  
Eu Euler number
f fl ap frequency
g  gravity
J advance ratio
k reduced frequency
l characteristic length
n  multiple (of )
p pressure
p0 ambient atmospheric pressure 
r magnitude of radius vector
r  position of a fl uid particle in the rotating frame
R wing radius
Rg  wing radius of gyration
Re  Reynolds number
Reb  Reynolds number component due to body speed
Res  Reynolds number component due to wings stroke, 
Ro Rossby number
s* dimensionless linear distance moved through air during one full period (propeller)

  magnitude linear acceleration of the wing
S single wing area
Sfb outer surface of fl y
Sob Outer boundary surface
St Strouhal number
t time
u velocity vector
ubody  velocity center of gravity of fl y 
ufl y velocity of fl y at its outer surface
uloc velocity in local coordinate system
un component of wingtip speed normal to fl ight direction
ut component of wingtip speed in fl ight direction
uα linear velocity distribution due to angle of attack variation
uφ  linear velocity distribution due to stroke 
uϕ linear velocity distribution due to deviation 
U characteristic speed; absolute time-averaged speed of the wingtip

   absolute time-averaged linear acceleration of the wing
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U∞ forward fl ight speed (arbitrary direction with respect to gravity)
x position vector 

  x-component of awing
(x, y, z)  local coordinate system
(X,Y,Z) inertial coordinate system

  y-component of awing

Appendix I: Derivation of dimensionless numbers 

Th ree-dimensional kinematics
Th e dimensionless numbers in Eqn. 35 are derived by inserting the following expressions in Eqn. 22 
(as explained in the main text); , , and , which results 
in:

, (I,1)

we took π / 2 ≈ 1 instead of the more accurate π / 2 ≈ 1.5, because it suffi  ces for an order of 
magnitude analysis. 

, (I,2)

, (I,3)

 (I,4)

 

Two-dimensional kinematics
Th e dimensionless numbers is Eqn.47 are derived by inserting the following expressions in Eqn. 22 
to which awing is added (as explained in the main text); , ,  

 and , which results in:

, (I,5)
 

, (I,6)

again we took π / 2 ≈ 1 instead of the more accurate π / 2 ≈ 1.5, because it suffi  ces for an order of 
magnitude analysis. 
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, (I,7)
 

, (I,8)

. (I,9)
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3 A journey through fl atland



3.1
VORTEX-WAKE INTERACTIONS OF A FLAPPING FOIL THAT MODELS ANIMAL SWIMMING AND FLIGHT

David Lentink*, Florian T. Muijres, Frits J. Donker-Duyvis and Johan L. van Leeuwen 

J. Exp. Biology. 211, 267 – 273 (2008).

Summary 

The fl uid dynamics of many swimming and fl ying animals involves the generation and 
shedding of vortices into the wake. Here we study the dynamics of similar vortices shed 

by a simple two-dimensional fl apping foil in a soap fi lm tunnel. Th e fl apping foil models 
an animal wing, fi n or tail in forward locomotion. Th e vortical fl ow induced by the foil is 
correlated to (the resulting) thickness variations in the soap fi lm. We visualized these thick-
ness variations through light diff raction and recorded it with a digital high speed camera. 
Th is setup enables us to study the infl uence of foil kinematics on vortex wake interactions. 
We varied the dimensionless wavelength of the foil (λ* = 4-24) at a constant dimensionless 
fl apping amplitude (A* = 1.5) and geometric angle of attack amplitude (Aα,geo = 15º). Th e 
corresponding Reynolds number is of order 1000. Such values are relevant for animal swim-
ming and fl ight. 
 We found that a signifi cant leading edge vortex (LEV) was generated by the foil at 
low dimensionless wavelengths (λ* < 10). Th e LEV separates from the foil for all dimen-
sionless wavelengths. Th e relative time (compared to the fl apping period) that the unstable 
LEV stays above the fl apping foil increases for decreasing dimensionless wavelengths. As the 
dimensionless wavelength decreases the wake dynamics evolves from a wavy von Kármán 
like vortex wake shed along the sinusoidal path of the foil into a wake densely packed with 
large interacting vortices. We found that strongly interacting vortices can change the wake 
topology abruptly. Th is occurs when vortices are close enough to merge or tear each other 
apart. Our experiments show that relatively small changes in the kinematics of a fl apping 
foil can alter the topology of the vortex wake drastically. 

Introduction 

Th e complex fl uid mechanics of many animals that swim or fl y is governed by the non-linear 
formation, shedding and dynamics of vortices (e.g. Dickinson et al., 2000). Th ese vortices can 
potentially aff ect performance through their interactions with wings, fi ns or tails (e.g. Birch and 
Dickinson, 2003). Th e nature of the interactions is related to the kinematics of the wing, fi n or 
tail, though the precise relation is not yet known. Th is relation is better understood for vibrating 
cylinders. Williamson and Roshko (1988) report in their inspirational paper how the vortex wake 
topology of a vibrating cylinder depends on both the dimensionless amplitude, (A*, Eqn. 2.) 
and dimensionless wavelength (λ*, Eqn.1) which is analogous to the dimensionless stride length 
and the inverse of the reduced frequency. Williamson and Roshko showed that synchronization 
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(lock-in) can occur between the driving frequency of a vibrating cylinder and multiples (n) of 
the natural von Kármán (eigen-) frequency of the vortical fl ow. Synchronization resulted in 
periodic vortex wakes shed by the vibrating cylinder. Th e synchronization region consists of two 
bands of periodic wakes, in between the wake is mostly aperiodic. Both synchronization bands 
are approximately elliptic in the parametric space spanned by A* and λ*:  in 
which  is the dimensionless wavelength based on von Kármán frequency (independently found 
by Lentink (2003) and Ponta and Aref (2005)). Th e fi rst band is related to the von Kármán 
frequency itself (  ≈ 5; A* = 0), the second to a third of that frequency (  ≈ 15; A* = 0). Similar 
computational fl uid dynamic studies of two-dimensional plunging foils (Lewin and Haj-Hariri, 
2003; Lentink and Gerritsma, 2003) showed that the wake and fl uid forces that act on a foil can 
either be periodic or aperiodic. Lentink and Gerritsma (2003) found evidence for the existence of 
chaotic modes. Th e actual mode depends on the dimensionless wavelength and amplitude of the 
foil. Th e simulations show that the near-wake dynamics (wake mode) of the foil directly aff ect 
the character of the fl uid forces (periodic versus aperiodic) that act on the foil. Hence these results 
suggest that kinematics potentially have a signifi cant infl uence on the periodicity of the wake of 
a fl apping foil and its corresponding propulsive and lifting forces. 
 Here we study the possible signifi cance of vortex dynamics as a physical constraint to 
animal locomotion in fl uids. A two dimensional fl apping foil is a simplifi ed model of animal 
wings, fi ns or tails. We aim to visualize and quantify the vortex wake interactions of such a two-
dimensional fl apping foil as a function of its kinematics. To this end we decided to fl ap our foil 
in a soap fi lm tunnel: A thin layer of water between two molecular layers of soap molecules, 
driven by gravity (Rutgers et al., 2001). Gharib and Derango (1989) have demonstrated that a 
soap tunnel is eff ective for studying a wide range of two-dimensional fl ow phenomena. To our 
knowledge Couder et al. (1989) were the fi rst to actively drive an object similar to a fl apping foil 
in a soap fi lm. In their pioneering work they studied the vortical fl ow generated by a vibrating 
cylinder that moved trough a static soap fi lm. To our knowledge the present study is the fi rst to 
consider a fl apping foil in a soap tunnel.
 Earlier fl apping foil studies have demonstrated both the value and eff ectiveness of a two-
dimensional approach for gaining new insight into animal locomotion (Triantafyllou et al., 1993; 
Dickinson, 1994; Wang, 2000a, 2000b; Miller and Peskin, 2004). We foresee, nevertheless, that 
a full study of vortex dynamics as a physical constraint to animal locomotion requires an exten-
sion to three dimensions. In three dimensions the vortex dynamic complexity is further increased 
(e.g. Buchholz and Smits, 2006; Ellenrieder et al., 2003) by processes like vortex stretching 
(Guyon et al., 2001). High Reynolds numbers also facilitate three-dimensional instabilities that 
can result; for example, in coherent vortices with a turbulent structure (e.g. Van Dyke, 1982). 
Note, however, that two-dimensional vortex dynamic mechanisms are a sub-set of three-dimen-
sional vortex dynamics. Th is makes two-dimensional fl apping foil studies intrinsically valuable 
for our understanding of how vortices generated by animals that swim or fl y interact with each 
other and the animal.
 Here we focus on the two-dimensional dynamics of vortices shed by a fl apping foil in 
forward motion as a function of dimensionless wave length. It enables us to gain more insight in 
the generation and dynamics of leading edge vortices and vortex-wake interactions. 
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Materials and methods 

Parameterization of the fl apping foil
Similar to others (Triantafyllou et al., 1993; Dickinson, 1994; Wang, 2000a, 2000b; Miller and 
Peskin, 2004), we model the kinematics of wings, fi ns and tails with a two-dimensional sine 
shaped excursion and rotation of the foil with a phase diff erence of 90°. Th e fi ve main scaling 
variables of such a foil are: (1) Th e fl apping frequency f of the excursion and rotation, which are 
equal to the animal’s fl apping frequency; (2) Th e excursion amplitude A, typically taken at the 
radius of gyration or 75% of an animal’s wing, fi n or tail semi-span; (3) Th e geometric angle of 
attack amplitude Aα,geo, taken at the same span-wise position as the excursion amplitude A. (4) 
Th e (average) forward speed of the foil U∞, which is equivalent to the animals forward speed; (5) 
the chord length of the foil l, which represents the average chord length of an animal wing, fi n or 
tail (we will describe foil shape in the next section). 
 Non-dimensionalization allows us to objectively quantify the scale eff ects (Guyon et al., 
2001) of a fl apping foil. We follow an approach described in Lentink and Gerritsma (2003) that 
is consistent from hovering fi ght, with zero dimensionless wavelength, to fast forward fl ight for 
which the dimensionless wavelength approaches infi nity. Th e resulting non-dimensionalization 
is defi ned below and illustrated in Fig. 1. Th e dimensionless wavelength (λ*) represents the num-
ber of foil lengths traveled forward during one stroke:

, (1)

in which, U∞ is the free stream velocity, f the fl apping frequency and, l the foil length. Th e non-
dimensional amplitude A* represents the amplitude of the foil excursion A with respect to the 
foil length l:

. (2)

Th e amplitude based Strouhal number StA is equal to the ratio of dimensionless amplitude (A*) 
and dimensionless wavelength (λ*) and scales with the maximum induced angle of attack at mid-
stroke (see Fig. 1 and equation 4):

. (3)

Th e eff ective angle of attack amplitude Aα.eff  is equal to the angle of attack amplitude induced by 
the fl apping foil minus the geometric angle of attack amplitude, Aα,geo:

λ

       2A*

arctan(2StA )

Re

*

Fig. 1 | A graphical representation of the 
non-dimensional parameters of a sinusoi-
dally fl apping foil: Dimensionless wave-
length λ*, amplitude ratio A*, amplitude 
based Strouhal number StA, geometric angle 
of attack amplitude Aα,geo, eff ective angle of 
attack amplitude Aα,eff , and the stroke aver-
aged Reynolds number Re.
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. (4)
 
Th e time averaged velocity Uave of the fl apping foil can be approximated as follows (Lentink and 
Gerritsma, 2003):

. (5)

Based on this average velocity we defi ne the time averaged Reynolds number, Re that represents 
the relative importance of inertia vs. viscosity:

, in which , (6)
 
where ν is the kinematic viscosity. In our model we choose the dimensionless wavelength (λ*) 
and amplitude ratio (A*) as independent variables following Williamson and Roshko (1988), 
to which we need to add the angle of attack amplitude. Th e other parameters (StA and Re) can 
therefore be expressed as a function of λ*, A* and Re∞ (Eqn. 3-6). 

Fig. 2 | Flapping mechanism as mounted on the soap tunnel framework (further illustrated in 
Fig. 4). Th e fl apping mechanism consists of a crank mechanism that generates both a stroke and 
angle of attack amplitude that are 90 degrees out of phase with respect to each other. Th e angle 
of attack amplitude is reduced with a series of pulleys. Th e stroke amplitude is reduced with the 
aid of a pantograph. Th e fl apper is driven by a DC motor. We mounted a special dial-plate with 
one micro-switch (four are drawn) on the motor housing. Th is switch is pressed by a disk with a 
small knob in a phase we predetermined with the dial, in this way the camera can be triggered in a 
specifi c phase of the stroke. Th e angle of attack and stroke amplitude can be varied independently 
by changing the distance between the motor and the sled, indicated with “set distance”, and the 
arm length of the crankshaft “set crank amplitude”, which is hidden under the motor house in its 
current position. Finally the angle of the stroke plane of the foil can be set with respect to the free 
stream direction by rotating the whole crank mechanism which is indicated with “set body angle”, 
in this study it is zero (as drawn). 
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Foil shape and fl apping mechanism 
Th e foil is a fl at plate and its kinematics is generated with a crank-shaft mechanism. Th e foil has 
a thickness t of 0.3 mm and length l of 3 mm; hence it has a relative thickness of 10%. It is made 
out of a thin piano-steel wire bend into an “L” shape. Th e horizontal part of the “L” functions as 
the foil in the soap fi lm while the vertical part is mounted to the mechanism. Th e foil is mounted 
such that its axis of rotation is located at approximately ¼ foil length (with respect to the leading 
edge). Th e leading edge of the foil is naturally rounded as a result of bending the wire, while the 
trailing edge is more or less blunt (fl at) as a result of cutting the wire. 
Our custom-build fl apping mechanism is illustrated and described in Fig. 2. It consists of a 
crank-shaft that generates both the stroke amplitude and a 90° out of phase angle of attack ampli-
tude. Th e stroke amplitude is reduced with a pantograph and the angle of attack amplitude is 
reduced with a series of pulleys. A crank-shaft mechanism cannot generate pure sinusoidal stroke 
amplitudes (Fig. 3). Th e angle of attack amplitude is, however, very close to being sinusoidal. 
In our experiments we applied Aα,geo = 15°. All deviations from purely sinusoidal kinematics 
are therefore as follows: Th e root mean square (rms) deviation of the excursion is 9.4% of A*, 
and the rms deviation of Aα,geo is 0.4%. Note that the resulting stroke kinematics is not fully 
symmetric (Fig. 3). 

Soap-fi lm tunnel set-up
Th e present soap-fi lm tunnel design (Fig. 4) is based on a gravity driven, constant fl ow design by 
Rutgers et al. (2001). Th e ratio of the soap-fi lm width to thickness is of order 10,000 (Rutgers et al., 
2001). Th e vortices generated in a soap fi lm are therefore roughly 1000 times wider than thick, 
indicating that the fl ow fi eld is essentially two-dimensional. As a result, a soap fi lm is ideally 
suited for studying the two-dimensional vortical fi eld behind a fl apping foil. Th e corresponding 
vorticity fi eld is directly correlated to minute thickness variations in the soap fi lm (Chomaz and 
Costa, 1998; Rivera et al., 1998; Chomaz, 2001). Th ese thickness variations can be visualized 
as they diff ract light transmitted by a mono-chromatic lamp (Rutgers et al., 2001). We used a 
high-frequency, low pressure, SOX lamp (Philips) as light source. Th e resulting diff raction pat-
terns were recorded time-resolved with a Redlake® (Redlake MotionPro, San Diego, CA, USA) 
high speed camera system at 800 fps and a shutter time of 1/1600 s. Th is visualization and cap-
turing technique enables us to time-resolve the dynamics of the vorticity fi eld eff ectively: Little 
experimental and computational time is required for generating and interpreting the fl ow fi eld 
of a soap tunnel in order to study complex vortex dynamic fl ows as a function of foil kinematics. 
Additionally the fl ow visualizations have a certain artistic appeal.
 Th e most important physical variables of the soap-fi lm in our experimental setup are its 

A
A+d

A-d
A

time

mechanism
sinusoid

TT/20

stroke

Fig. 3 | Stroke kinematics generated with 
our fl apping mechanism. Th e stroke kin-
ematics deviates with magnitude +/- d from 
a sine with amplitude A. 
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fl ow velocity, U∞, and kinematic viscosity, υ. Th e viscosity of a soap-fi lm is not exactly known. 
However, accurate measurements by Martin and Wu (1995) show that the viscosity, for a solu-
tion similar to ours, is approximately 1⋅10-6 m2 / s (4% Dawn dishwashing detergent). We will 
adopt this value for our solution of approximately 2% Dawn dishwashing detergent (Procter & 
Gamble, professional line). Th e soap-fi lm velocity varies over the width of the fi lm from zero at 
the walls (due to the no-slip condition) to a maximum velocity in the middle. In air the resulting 
velocity profi le obtained in a soap tunnel corresponds to a plug-like profi le (Rutgers et al., 2001). 
We determined the variation of the fl ow velocity over the amplitude range of the fl apping foil 
with particle tracking velocimetry (PTV) of small pollutants in the soap-fi lm. Th e fl ow velocity 
was determined at three locations; at the start, middle and end of the stroke, of which the maxi-
mum standard deviation is 12%. Th e accuracy of the frequency measurement is better than 3% 
while the length of the foil is measured with an accuracy of approx. 5%. 

Applied foil kinematics and soap tunnel settings
We chose to study the infl uence of dimensionless wavelength on vortex wake interactions inspired 
by a two-dimensional numerical study of insect fl ight (Lentink and Gerritsma, 2003). In this 
study of a plunging foil, a chaotic mode was found for λ* = 4 at Re = 150. Similar simulations for 
λ* = 6 (unpublished) revealed a periodic mode. A plunging foil is, however, a limited model of 
insect fl ight and animal locomotion in general. Th e main reason being that thrust generation is 
minimal for zero geometric angle of attack amplitude. Th is is due to a minimal frontal surface 
area for the pressure-diff erence to act on in forward direction (Lentink and Gerritsma, 2003). 
Th erefore we chose to fi x the angle of attack amplitude in this study to a more realistic value, 
Aα,geo = 15°. Th is value facilitates the generation of signifi cant thrust (note that the correspond-
ing time average lift is approximately zero if the near fl ow fi eld is symmetric). Th e stroke ampli-
tude of the foil was adopted from the numerical study; A* = 1.5. Such amplitude has relevance for 
insects and bird wings and fi sh fi ns and tails, but is not related to a specifi c animal (because time 

Fig. 4 | Th e soap-fi lm tunnel is mounted in an 
inclined frame and driven by gravity. It consists out 
of three sections: a divergent section (I), the constant 
width (60 mm) test section in which the foil fl aps (II) 
and a convergent section (III). Th e soap reservoir (a) 
produces a constant head by using an overfl ow. Th e 
soap fl ows from the reservoir (a) through a tuning 
valve (b) and an oval nozzle made out of a plastic 
pipette (c). At the pipette (c) the soap fi lm starts: it 
runs down, driven by gravity, between two 1mm thick 
Nylon wires (d) into tunnel sections (I-III). Th e Nylon 
wires are pulled apart with 0.2 mm Dynema fi shing 
lines (e). Finally the soap is collected in a reservoir (f ) 
and is drained into the main soap reservoir and 
pumped (P) again to reservoir (a). 
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III
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average lift is approximately zero, the present study relates best to forward swimming and climb-
ing fl ight, e.g. during vertical take-off ). Intrigued by the numerically found dependence of wake 
mode on dimensionless wavelength, we decided to study the wake patterns and the leading edge 
vortex (LEV) as a function of dimensionless wavelength for 4 ≤ λ* ≤ 24. We fi xed the soap fi lm 
speed to approximately U∞ = 0.20 m / s. As a result the time-averaged Reynolds number ranges 
between 600 and 900, the lowest obtainable range in our facility. Th ese Reynolds numbers are 
4-6 times higher than in the numerical study (Lentink and Gerritsma, 2003).

Results

We have visualized and subsequently classifi ed the vortical wakes of our fl apping foil as a func-
tion of dimensionless wavelength inspired by the nomenclature developed by Williamson and 
Roshko (1988) for vibrating cylinders. In this approach, the number of single vortices (S) and 
vortex pairs (P) are identifi ed per stroke (period). However, such a classifi cation is almost never 
fully objective. Th e shedding of tiny vortices, which usually merge immediately with larger vor-
tices, can make the fl ow analysis tedious. Williamson and Roshko, for example, had to work 
around the coalesce of many small and large of vortices in some cases. Th is approach is never-
theless suitable for describing and sorting out the relation between the shedding of leading and 
trailing vortices (LEVs and TEVs) and the subsequent formation of the wake as a function of 
dimensionless wavelength. 
 For all experiments we started at zero fl apping frequency which we subsequently increased 
monotonically to obtain the desired dimensionless wavelength. In this way we avoided hysteresis 
loops. Similar to earlier fi ndings for hovering insect fl ight (Dickinson, 1994), we found that the 
LEV is unstable at all dimensionless wavelength in two-dimensions. We defi ne a LEV as unstable 
when it moves from the leading edge towards the trailing edge during the stroke. We restrict 
ourselves to scoring if the LEV is generated and if its center passes the trailing edge before stroke 
reversal. If a LEV does not pass the trailing edge we refer to it as “attached”. We further describe 
the wake structure as a function of vortices shed at the leading and trailing edge of the foil. We 
loosely refer to a ‘bifurcation’ when the wake switches between two seemingly co-existing wake 
patterns at a constant wavelength (an introduction to bifurcations can be found in Addison, 
1997). We found an array of wake patterns and vortex interactions, which we will illustrate 
starting at λ* = 24 and ending at λ* = 4:

Vortex wake for λ* = 12-24, Fig. 5A   
Th e eff ective angle of attack amplitude is low at these high dimensionless wavelength, Aα = 7°~23°, 
hence no LEVs or TEVs are formed during a stroke. Although a minute LEV starts to become 
visible at λ* = 12, it remains negligible compared with the ones found for lower dimensionless 
wavelengths. Th e basic wake pattern emerges from a wake instability that results in the roll-up 
of the shear layer behind the foil into an alternating row of vortices. Th is wake shed along the 
sinusoidal path of the fl apping foil is similar to the von Kármán vortex street shed by a cylinder; 
hence our name wavy von Kármán wake: WK. Th e Reynolds number is close to 600 and the 
specifi c parameters in Fig. 5A are: [λ* = 24, A* = 1.5, Aα = 7° and Re = 600].
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Fig. 5 | Visualization of 
the evolution of vortex 
wake topology and the 
attachment of the LEV for 
decreasing dimensionless 
wavelength λ*: Th e wake 
dynamics evolves from a 
wavy von Kármán wake 
(WK) into an aperiodic 
wake densely packed with 
large interacting vortices 
(Fig. A-G, left: overview 
wake, right: zoom in on 
LEV). Th e soap fi lm fl ows 
from left to right and all 
images have been taken 
mid-stroke during the 
down-stroke. Th e leading 
edge vortex is indicated with 
LEV, a vortex pair with P, 
a single vortex with S, 
vortex tearing with t, and 
vortex merging with m. 
Note that the naming of 
the wakes is simplifi ed and 
should be taken as a guide-
line: We have neglected a 
few tiny vortices that are 
shed at some advance ratios 
for simplicity. 
Note; 

λ*Fig,A = 24,
λ*Fig,B = 10, 

λ*Fig,C = 7.9, 
λ*Fig,D = 6.8, 
λ*Fig,E = 6.3, 
λ*Fig,F = 4.5, 
λ*Fig,G = 4.0.
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Vortex wake for λ* = 8.6-10, Fig. 5B.  
At these dimensionless wavelengths, Aα ranges from 29° to 33° and as a result LEVs and TEVs 
are generated, which form in most cases a pair when shed. Due to the high dimensionless wave-
lengths, however, the initial vortices shed long before the end of the stroke, enabling the fl ow to 
generate and shed a secondary LEV and / or TEV within the same stroke. During the upstroke 
2 LEVs and 2 TEVs are formed, which form two vortex pairs (2P), in contrast to the down-strok 
when 1 LEV and 2 TEVs are generated, which form a single vortex (S) and a vortex pair (P). Th e 
net result is a 3P+S vortex wake that evolved out of the vortices (3LEVs+4TEVs) shed during a 
fl ap period. At λ* = 8.6 a bifurcation is observed: Th e vortex wake switches between the current 
3P+S and a 2P+2S mode (Fig. 6, bifurcation 1). LEVs are in all cases shed before the end of the 
stroke. Th e Reynolds number for this range of λ* is again close to 600 while the parameters of 
Fig. 5B are: [λ* = 10, A* = 1.5, Aα = 29° and Re = 600].

Vortex wake for λ* = 6.8-8.6, Fig. 5C.  
For these dimensionless wavelengths Aα ranges from 33° to 39°, the vortices become increasingly 
larger due to the higher eff ective angle of attack. We fi nd that 1 LEV and 2 TEVs are formed and 
shed during both the up and down stroke. Th ese vortices (2LEV+4TEV) organize into a 2P+2S 
wake. For lower dimensionless wavelengths the wake evolves from a 2P+2S into a 2P+S mode. 
Th e dimensionless wavelengths at which this happens has, however, not been determined. LEVs 
are in all cases shed before the end of the stroke. Th e Reynolds number range is 600-700 while 
the parameters resulting in Fig. 5C are: [λ* = 7.9, A* = 1.5, Aα = 29° and Re = 600].

Vortex wake for λ* = 6.3-6.8, Fig. 5D. 
Th e eff ective angle of attack amplitude starts at 39° and ends at 41° for this range of λ*. During 
the up-stroke 1 LEV and 2 TEVs are shed which form a P+S. During the down stroke 1 LEV 
and 1 TEV are shed which form a P. Th e fi nal result is a 2P+S wake pattern. LEVs are again shed 
before stroke reversal. Th e single vortex is subsequently merged with a vortex pair down stream. 
We observed a bifurcation between the 2P+S and 2P mode at λ* = 6.3 (Fig. 6, bifurcation 2). 
Th e Reynolds number for this range of λ* is close to 700 while the parameters of Fig. 5D are: 
[λ* = 6.8, A* = 1.5, Aα = 39° and Re = 700].

Vortex wake for λ* = 5.4-6.3, Fig. 5E.  
Th e eff ective angle of attack amplitude ranges from 41° to 45°. During each fl apping period 
2 LEVs and 2 TEVs are shed, that evolve into a 2P wake pattern. At these low dimensionless 
wavelengths the LEVs and TEVs stay long enough attached to the wing to prevent the develop-
ment of secondary vortices during a stroke. We did not identify a bifurcation between the current 
and next mode found at lower dimensionless wavelengths. Th e LEVs stay attached to the wing 
until stroke reversal while the Reynolds number ranges from 700 to 800. Th e parameters that 
result in Fig. 5E are: [λ* = 6.3, A* = 1.5, Aα = 41° and Re = 700].

Vortex wake for λ* = 3.9-4.6, Fig. 5F,G.  
As Aα further decreases from 49° to 53° we encounter the strongest vortex wake interactions. 
At the beginning of the down-stroke, the LEV created during the upstroke is still attached to 
the foil. Th is LEV interacts with the new developing TEV and fi nally these vortices are either 
merged or torn apart when they come within critical distance. Th is merging m and tearing t has a 
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signifi cant infl uence on the wake formation and results in a strongly asymmetric P+S wake 
mode. In the same wake some tiny vortices are shed that are either merged or torn apart due to 
mutual interactions. Th e parameters of Fig. 5F are [λ* = 4.5, A* = 1.5, Aα = 49° and Re = 800].
 Within this range of dimensionless wavelengths we found two co-existing wake modes 
that are sensitive to small disturbances resulting in bifurcations (Fig. 6, bifurcation 3). Th e sec-
ond wake mode is an aperiodic variant of the fi rst, which is illustrated in Fig. 5G [λ* = 4.0, 
A* = 1.5, Aα = 52° and Re = 900]. Th e overlap of both modes is most likely due to a combination 
of experimental challenges, as they occur at the highest frequencies obtainable, and dynamical 
complexity. Th e LEV is ‘attached’ for all these dimensionless wavelengths, while the Reynolds 
number ranges from 800-900.

Discussion

We summarized the ‘attachment’ of the LEV, the number of shed LEVs and TEVs and the 
resulting wake patterns and bifurcations of the fl apping foil as a function of dimensionless wave-
length in Fig. 6. 

Aperiodic
2LEV+2TEV shed

P+S
2LEV+2TEV shed

2P
2LEV+2TEV shed
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2LEV+3TEV shed

2P+2S
2LEV+4TEV shed
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prematurely

no LEV
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Fig. 6 | Summary of vortex wake topologies: Th e attachment of the LEV and the number of shed 
leading and trailing edge vortices (LEVs and TEVs) as a function of dimensionless wavelength λ*. 
Note that the eff ective angle of attack amplitude Aα strongly increases with decreasing λ*, which in 
part explains the increasing vortex size. Th e more densely packed wake at low λ* is a direct result 
from the smaller distances between shed vortices. Solid lines (1-3) indicate bifurcations found in 
one movie sequence. Black and white fi lling of the circles is for easy distinction between modes 
only.
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Attachment of the LEV
Th e two-dimensional LEVs generated by our fl apping foil are unstable at all dimensionless wave-
lengths. Th e LEVs grow stronger due to the higher eff ective angle of attack amplitudes at low λ*. 
For such λ* we defi ne the LEV as ‘attached’, because its center has not yet traveled past the trailing 
edge at stroke reversal (Fig. 6). ‘Attachment’ of LEVs at low λ* is benefi cial for both lift and thrust 
generation because the low pressure core of the LEV can act on the wing during the full stroke 
(Dickinson, 1994; Ellington et al., 1996). Note that the position of such LEVs are stable with 
respect to the leading edge in three-dimensional models of hovering insects due to three dimen-
sional fl ow eff ects such as spanwise fl ow (Ellington et al., 1996; Lentink and Dickinson, 2005). 

Vortex wake formation and interactions
Our experimental analysis shows that the wake topology depends in part on the number of lead-
ing and trailing edge vortices (LEVs and TEVs) shed in the wake (Fig. 6). Th e vortex modes were 
found to bifurcate between subsequent modes in three instances. Th ese bifurcations infl uenced 
only small (single) vortices at high dimensionless wavelengths (Fig. 6, bifurcation 1, 2). Hence 
we consider these bifurcations weak. At low dimensionless wavelengths it involved, however, vor-
tex merging and tearing which alter the vortex wake topology drastically (Fig. 6, bifurcation 3). 
We consider such bifurcations and the corresponding vortex interactions strong. Compared with 
weak bifurcations, strong bifurcations appear more sensitive to disturbances and the wake modes 
switch more abruptly. 
 Th e number of shed vortices (LEVs and TEVs) decreases with dimensionless wavelength 
because they have relatively less time to develop and shed from the foil. At very low dimensionless 
wavelengths, the barely shed LEVs will be hit by the foil during stroke reversal, resulting in strong 
foil-vortex interactions. Th e similarly strong vortex merging (Cerretelli and Williamson, 2003; 
Leweke et al., 2001) and tearing interactions depend critically on the timing of vortex shedding, 
because it determines the spacing of the vortices in the wake. 

Asymmetric and aperiodic vortex wakes
We expect that both wake asymmetry and wake aperiodicity could be relevant to animal loco-
motion. Th e presented wakes result from slightly asymmetric stroke kinematics. Th is makes 
it diffi  cult to rigorously determine the infl uence of vortex-interactions on the asymmetry of a 
wake. Numerical studies (e.g. Lewin and Haj-Hariri, 2003; Lentink and Gerritsma, 2003) show, 
however, convincingly that asymmetric wakes can arise from symmetric foil kinematics. Th e 
orientation of the asymmetric wakes (e.g. in Fig. 5F; with respect to the horizontal axis) depends 
on the start-up condition and is sensitive to large disturbances. For λ* = 3.9-4.6 we fi nd strong 
vortex wake interactions that result in an aperiodic mode. Th is corresponds with the chaotic 
mode found numerically for a roughly similar plunging foil by Lentink and Gerritsma (2003). 
Using the current setup we were, however, unable to determine if the aperiodic mode is chaotic 
(Addison, 1997). 

Vortex wake synchronization?
We found almost exclusively periodic vortex wakes in this study. We did not fi nd a (confi ned) 
synchronization ‘band’ for our fl apping foil similar to those found for cylinders (Williamson and 
Roshko, 1988). We think this could be due to two reasons. First the lower number of experiments 
we were able to perform with our setup in the parameter space of the fl apping foil (λ*; A*; Aα,geo). 
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Second such ‘bands’, or regions, might well be very complex shaped for a fl apping foil, because 
a translating (non-fl apping) foil has a range of natural vortex shedding frequencies as a function 
of angle of attack (α) (e.g. Katz, 1981; Dickinson and Götz, 1993) instead of a single shedding 
frequency (like cylinders have). We conclude that the role of vortex-wake synchronization in the 
wake of a fl apping foil remains to be determined, both in 2D and 3D, for a wide range of fl ap-
ping kinematic parameters and more realistic wing, fi n and tail morphologies. 
 Finally, we observed in our two-dimensional experimental setup that relatively small 
changes in the kinematics of a fl apping foil can alter the topology of its vortex wake drastically. 
Numerical simulations have shown that the corresponding fl uid mechanic forces can change 
drastic too (e.g. Lewin and Haj-Hariri, 2003; Lentink and Gerritsma, 2003). Th e possible 
relevance of similar vortex wake bifurcations for animals that swim or fl y could be studied, inside 
and outside of the behavioral envelope of the animal, with realistic three-dimensional robotic 
animal models (e.g. Ellington, 1996). We hypothesize that such a study might provide new 
insight into the infl uence of vortex wake dynamics on the swimming and fl ight behaviour of 
animals.
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Symbols
λ* dimensionless wavelength

   dimensionless wavelength based on von Kármán frequency
A fl apping amplitude
A* dimensionless fl apping amplitude
Aα.eff  eff ective angle of attack amplitude
Aα,geo geometric angle of attack amplitude
d amplitude deviation from sinusoidal kinematics
f fl apping frequency
l foil length
n multiple (of the natural von Kármán frequency)
Re Time averaged Reynolds number of a fl apping foil
Re∞  Reynolds number of a fl apping foil based on U∞
StA amplitude based Strouhal number
t thickness foil
Uave  Time averaged velocity of the fl apping foil
U∞ forward velocity of fl apping foil; equavalent to free stream velocity
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Summary

Many fi sh depend primarily on their tail beat for propulsion. Such a tail is commonly 
modeled as a two-dimensional fl apping foil. Here we demonstrate a novel experi-

mental setup of such a foil that heaves and pitches in a soap fi lm. Th e vortical fl ow fi eld 
generated by the foil correlates with thickness variations in the soap fi lm, which appear as 
interference fringes when the fi lm is illuminated with a monochromatic light source (we 
used a high-frequency SOX lamp). Th ese interference fringes are subsequently captured 
with high-speed video (500 Hz) and this allows us to study the unsteady vortical fi eld of a 
fl apping foil. Th e main advantage of our approach is that the fl ow fi elds are time and space 
resolved and can be obtained time-effi  ciently.
 Th e foil is driven by a fl apping mechanism that is optimized for studying both fi sh 
swimming and insect fl ight inside and outside the behavioral envelope. Th e mechanism 
generates sinusoidal heave and pitch kinematics, pre-described by the non-dimensional 
heave amplitude (0-6), the pitch amplitude (0°-90°), the phase diff erence between pitch 
and heave (0°-360°), and the dimensionless wavelength of the foil (3-18). We obtained 
this wide range of stride lengths for a foil 4 mm long by minimizing the soap fi lm speed 
(0.25 ms-1) and maximizing the fl apping frequency range (4-25 Hz). Th e Reynolds number 
of the foil is of order 1000 throughout this range.
 Th e resulting setup enables an eff ective assessment of vortex wake topology as a func-
tion of fl apping kinematics. Th e effi  ciency of the method is further improved by carefully 
eliminating background noise in the visualization (e.g. refl ections of the mechanism). Th is 
is done by placing mirrors at an angle behind the translucent fi lm such that the camera 
views the much more distant and out-of-focus refl ections of the black laboratory wall. Th e 
resulting high-quality fl ow visualizations require minimal image processing for fl ow inter-
pretation. Finally, we demonstrate the eff ectiveness of our setup by visualizing the vortex 
dynamics of the fl apping foil as a function of pitch amplitude by assessing the symmetry of 
the vortical wake.

Introduction

Marine fi sh that live and hunt in the water column (pelagic piscivorous fi sh) are both fast and 
effi  cient swimmers. Many of such fi sh, like tuna, have slender tails (caudal fi ns) and propel 
themselves primarily with their tail beat; hence they are referred to as thunniform swimmers (e.g. 
Sfakiotakis et al. 1999). Th unniform swimmers operate at a Reynolds number of 1000 and up 
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(Webb and Weihs 1986). Th e fl uid mechanics of the heaving and pitching tails is governed by the 
generation and shedding of vortices (e.g. Triantafyllou et al. 1993; Sfakiotakis et al. 1999). Th ese 
vortices infl uence swimming performance through their interactions with the tail. Th e nature of 
these vortex interactions depend on the foils kinematics and are not fully understood (Lentink 
et al. 2007). To better understand the vortex dynamics of thunniform swimmers, scientists often 
model the tail with a simple, non-fl exible, pitching and heaving foil (Fig. 1) (Triantafyllou et al. 
1993). Studying such simple foil geometry, kinematics and dynamics is a fair fi rst approximation 
of thunniform swimmers. 
 Here we present a novel experimental setup for studying such a fl apping foil in a soap 
fi lm tunnel. Soap fi lms provide an important advantage compared with conventional setups 
using digital particle image velocimetry (DPIV): the vortical fl ow can be visualized and fi lmed 
time and space resolved without image correlation. Gharib and Derango (1989) illustrated the 
eff ectiveness of such setups for studying many types of two-dimensional fl ows. Rutgers et al., 
2001 developed a simple and high quality soap tunnel (driven by gravity ) that has eliminated 
many of the challenges of earlier designs (e.g. Gharib and Derango 1989; Couder et al. 1989). 
Georgiev and Vorobieff  (2001) improved this setup for low fl ow speeds. Couder et al. (1989) 
studied vibrating cylinders in a static soap fi lm, they were probably the fi rst to actively drive an 
object similar to a fl apping foil in a soap fi lm. Zhang et al. (2000) studied freely fl apping fl ags in 
a soap fi lm tunnel, such fl uid-structure interactions are also relevant for understanding anguil-
liform swimming of fi sh larvae, eels and swimming snakes. To our knowledge we were the fi rst to 
actively fl ap a foil in a soap fi lm tunnel (Lentink et al. 2007).
 A soap fi lm consists of a thin sheet of water stabilized by soap molecules on the sur-
faces. Th e soap molecules give the fi lm elasticity, which mediates the propagation of disturbances 
through the fi lm in the form of elastic Marangoni waves (Couder et al. 1989). Couder et al. 
(1989) and Chomaz and Costa (1998) showed that the in-plane dynamics of thin soap-fi lms 
dominate the out-off -plane dynamics if the fi lm speed is signifi cantly slower than the Marangoni 
wave speed (elastic Mach number signifi cantly smaller than 1). Hence “sub-sonic” soap-fi lms can 
be regarded as 2D fl uids. Chomaz and Costa (1998) further showed that a soap fi lm obeys the 2D 
incompressible Navier-Stokes equations provided that the elastic Mach number is signifi cantly 
lower than one and the initial fi lm thickness variations are small. In the same paper Chomaz and 
Costa show that the vorticity fi eld in the fi lm is correlated to thickness variations of the soap-
fi lm. Rivera et al. (1998) showed that the correlation between the thickness and vorticity fi eld in 
the wake of a grid of cylinders, generating 2D turbulence, remains strong well beyond 19 cylin-
der diameters downstream (region of interest: 50 mm downstream; cylinder diameter: 2.7 mm). 
Here we will study the vortical fl ow generated by a fl apping foil less than 10 chord lengths 
downstream. Hence we may expect a particular strong correlation between vorticity and thick-
ness fi eld. Th ickness variations in a soap fi lm can be visualized by illuminating the soap fi lm 
with monochrome light, which results in interference fringes (Rutgers et al. 2001). Filming 

Figure 1 | Th e tail (caudal fi n) of a 
thunniform swimmer (e.g. tuna and 
many sharks) forms the main source 
of propulsion. Th e tail can be eff ec-
tively approximated as a heaving and 
pitching foil.
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these fringes time and space resolved enables the quantitatively study of vortex dynamics in soap 
fi lms. Th is makes slow and uniform soap-fi lms ideally suited for studying two-dimensional vor-
tex dynamics at sub-sonic speeds. 
 Here we quantitatively describe our set-up and illustrate its eff ectiveness for studying the 
topology of the vortical wake of a harmonically fl apping foil. We chose a dimensionless wave-
length and fl apping amplitude of the foil that is relevant for thunniform swimmers. Subsequently 
we qualitatively study the symmetry of the vortical wake of the fl apping foil as a function of pitch 
amplitude. 

Materials and methods

Dimensionless parameterization of a fl apping foil
Th e kinematics of a two dimensional foil can be described using diff erent dimensionless vari-
ables; we chose an approach inspired by the work of Williamson and Roshko (1988). We have 
published this approach (Fig. 2) elsewhere (Lentink et al. 2007). We describe the harmonic kine-
matics of a heaving and pitching foil with an dimensionless wavelength λ*, dimensionless ampli-
tude A*, geometric angle of attack amplitude (or pitch angle) Aα,geo and Reynolds number Re. 
Th e dimensionless wavelength λ* represents the number of chord lengths travelled forward dur-
ing one full fl ap period of the foil: 

, (1)

in which, U∞ is the free stream velocity, f the fl apping frequency and, l the foil length. Th e non-
dimensional amplitude A* represents the amplitude of the foil excursion A with respect to the 
foil length l:

.  (2)
 
Th e amplitude-based Strouhal number StA is equal to the ratio of dimensionless amplitude A* 
and dimensionless wavelength λ*, and scales with the maximum induced angle of attack at mid-
stroke (see Fig. 2 and equation 4):

. (3)

λ

       2A*

arctan(2St
A

)

Re

*

Figure 2 | A graphical representation of the 
non-dimensional parameters of a sinusoidal-
ly fl apping foil: dimensionless wavelength, λ*, 
dimensionless heave amplitude, A*, amplitude-
based Strouhal number, StA, geometrical angle 
of attack amplitude, Aα,geo, eff ective angle of 
attack amplitude, Aα,eff , and the stroke-aver-
aged Reynolds number, Re. (adapted from 
Lentink et al. 2007).
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Th e eff ective angle of attack amplitude Aα,eff  is equal to the angle of attack amplitude induced by 
the fl apping foil minus the geometric angle of attack amplitude, Aα,geo (the pitch amplitude):

 . (4)
 
Th e time-averaged velocity Uave of the fl apping foil can be approximated as follows (Lentink and 
Gerritsma 2003):

. (5)
 
Based on this average velocity we defi ne the time-averaged Reynolds number, Re that represents 
the relative importance of inertia vs. viscosity in the fl ow:

, in which , (6)

note that ν is the kinematic viscosity. 

Flapping foil mechanism
Th e foil is a fl at plate and its kinematics is generated with a mechanism that can generate nearly 
perfect sinusoidal heave and pitch kinematics. Our fi rst mechanism generated kinematics with a 
small asymmetry because the design is based on a crank-shaft mechanism (Lentink et al. 2007). 
Here we present and describe an improved fl apping mechanism that can generate symmetric 
sinusoidal kinematics.
 Th e foil has a thickness t of 0.2 mm and length l of 4 mm (relative thickness 5%). It is 
made out of a thin piano-steel wire bend into an “L” shape. Th e horizontal part of the “L” func-
tions as the foil (in the soap fi lm), while the vertical part is mounted to the fl apping mechanism 
(Fig. 4b). Th e foil is mounted such that its axis of rotation is located at approximately ¼ foil 
length behind the leading edge. Th e leading edge of the foil is naturally rounded as a result of 
bending the wire, while the trailing edge is more or less blunt (fl at) as a result of cutting the 

pin

rod

sled

disk

bearing

sine

cosine

bearings

rail

rail

Figure 3 | Working principle of our fl ap-
ping mechanism. Th e spinning disk (con-
stant RPM) is connected to the rod (by a pin 
fi xed with bearings), and the rod is connected 
to the sled that slides over two (horizontal) 
rails. Th e rod moves up and down with a sine, 
while the sled moves left and right with a 
cosine. Th e cosine of the sled is used to drive 
the heave of the foil while the sine of the rod 
drives the pitch of the foil. We use one such 
mechanism to generate the heave kinematics 
(using the sleds cosine) and another one to 
generate the pitch kinematics (using the rods 
sine). We coupled the disks of both mecha-
nisms such that they operate at the same fre-
quency, phase locked (Fig. 4).
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wire. 
 Th e harmonic heave and pitch 
kinematics of the foil are generated by two 
coupled mechanisms. A single mechanism 
consists of a high-inertia constant-RPM 
spinning disk (aluminum) that drives a light-
weight sled (aluminum) of which a schemat-
ic is shown in Fig. 3. Th e disk is connected 
with a pin (brass) to a rod (carbon fi ber tube) 
that is connected to the sled. Simple Nylon 
and Brass bearings and proper lubrication 
resulted in a smoothly running mechanism 
that can generate both a sine (translation 
of rod) and cosine (translation of sled). Th e 
frequency of these harmonics is determined 
by the disk’s RPM, while the radius at which 
the pin connects the disk to the rod (and 
hence the sled) determines the amplitude 
of the harmonic. Both the heave and pitch 
amplitude can be varied independently (at 
the same frequency), because we used two 
coupled disk-sled mechanisms to generate 
both the heave and pitch kinematics, which 
we further explain in Fig. 4. 
 Th e mechanism allows presetting 
the heave amplitude (0-6 chord lengths), 
the geometrical pitch amplitude (0°-90°) 
and the phase diff erence between pitch and 
heave (0°-360°). Th e mechanism is driven 
by a reduced electric motor (water cooled) 
that spins at moderate frequencies (4-25 Hz). 
Additionally we can also preset the stroke 
plane angle of the fl apping foil with respect 
to the free-fl ow velocity of the soap-fi lm, 
which is relevant for fl apping fl ight, e.g. 
insects (David 1978).
 We determined how accurate the 
mechanism can generate harmonic kinemat-
ics by tracking the foil in the soap fi lm tun-
nel with our high speed video. For our error 
analysis we considered three fl ap periods to 
determine the error in heave amplitude ( εA ), 
pitch amplitude ( εAα ), heave-pitch phase-
diff erence ( εϕ ) and frequency ( εf ) (Fig. 5). 
We determined the error using a best fi t 
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disk 1

disk 1

disk 2

rod

rod

 sled 1

cable

foil

pully

mirror

b

disk 2

 sled 2

Figure 4 | Overview of fl apping mecha-
nism (a) and detailed photo (b). Th e upper 
part of the mechanism is indicated with “1”, 
the lower part with “2”. Th e fl ap mechanism 
consists of two rotating disks driven by an 
electric motor (water cooled). Th e upper 
disk (see b) is connected to a sled such that 
it generates the harmonic stroke kinematics 
(Fig. 3). We mounted the foil on the upper 
sled. Th e lower disk is connected to the low-
er sled with a rod that drives the harmonic 
pitch kinematics of the foil. Th e pitch kin-
ematics is transferred by 0.2 mm piano steel 
wires, which slide through a fl exible Tefl on 
tube, to the upper sled were they connect to 
a pulley on which the foil is mounted. Th e 
whole mechanism is shielded by two mirrors 
set at an approximate angle of 45°. 



3.2  Wake visualization of a heaving and pitching foil in a soap fi lm 62

method (cftool Matlab 7, method: least squares, algorithm: trust-region) for kinematics gener-
ated at diff erent heave amplitudes (1 and 4 chord lengths), pitch amplitudes (0°, 45°, 60°) and 
frequencies (4-21Hz), see Table 1. Th e heave-pitch phase-shift is set to 90° (Read et al. (2002) 
showed that a fl apping foil produces maximal thrust for such a phase shift). We normalized the 
data with respect to these input variables in our error analysis. Th e variable range considered 
(Table 1) comprises the most extreme cases that we can obtain with our setup. Hence our error 
analysis can be considered a worst case analysis. We found that the mechanism accurately pro-
duces harmonic (sinusoidal) pitch and heave kinematics (Fig. 5). Th e maximum (local) deviation 
from ideal sinusoidal kinematics occurs at maximum excursion and is less than 5%, but this an 
extreme value, it is typically less than 2%. Hence our new mechanism does not produce perfectly 
symmetric kinematics (as any other mecha-
nism would) but it does generate much 
more symmetric kinematics than our earlier 
design (Lentink et al. 2007). 

0 0.5 1 2

-1

0

1 heave
pitch

1.5

Figure 5 | Measured pitch and heave kin-
ematics fi tted with sine and cosine func-
tions to determine the accuracy of our 
mechanism. Note that we made the kin-
ematics dimensionless with respect to the 
frequency (here 23 Hz), amplitude (here 1l ) 
and geometric angle of attack amplitude 
(here 60°) in Table 1. Th e subsequent error 
indicators are the heave amplitude error εA, 
the pitch amplitude error, εΑα the phase 
error, εϕ and the frequency error εf. 

-0.05
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heave

pitch
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RMSE parameter error
Figure 6 | Error analysis of the kinemat-
ics generated by mechanism compared 
with ideal harmonic kinematics. Black 
lines indicate average; fi lled circles indicate 
individual measurements and correspond to 
Table 1; triangle not part of average (measured at 
4.5 Hz). Left, RMSE for both heave and pitch 
kinematics, showing that the kinematics are 
indeed harmonic. Right, mean relative errors 
in heave amplitude εA, pitch amplitude εΑα, 
phase εϕ (with respect to the max. phase 
error; 360°) and frequency εf. All errors are 
of order 0.05 (5%) or less. At low frequency 
(4.5 Hz) we found that the amplitude error 
(but not the other errors) is signifi cantly lower 
than at high frequency (~20 Hz). We expect 
that this is due to the inertial loading on the 
mechanism.

f [s-1] A [mm] Aα,geo [°] symbol
20.0 4 60°
23.0 4 60°
20.4 16 0°
20.6 16 45°
4.5 16 60°Table 1 | Variables used in error analysis.
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 Th e average root mean square error (RMSE) of the present mechanism is small for both 
the pitch and heave kinematics (< 0.02), Fig. 6. Th e results of the error analysis for the four fl ap 
variables are given in Fig. 6, they represent simply the diff erence between the intended value 
and the observed value of the fl ap parameters. Within one image sequence of three periods (part 
of a run of orders of magnitude more periods) we did not fi nd signifi cant fl uctuations. Hence, 
the errors in Fig. 6 represent the resolution at which we can predetermine the parameters of the 
mechanism that defi ne the fl ap kinematics. From this analysis we conclude that the harmonics 
generated with our mechanism can be preset reasonably accurately (under worst case conditions) 
with errors close to 0.05. Note that the frequency error is particular low, less than 0.01. Further 
note that phase shifts (errors) do not infl uence the symmetry of the foils kinematics provided that 
this shift is constant, as found for our mechanism. We found that such phase shifts are due to a 
misalignment of the top and bottom disk in the mechanism (Fig. 4). 

Soap fi lm tunnel
Our soap fi lm tunnel generates a constant velocity soap fi lm that runs between two wires, driven 
by gravity. We based our design (Fig. 7) on the simple and eff ective soap tunnel designed by 
Rutgers et al. (2001) and Georgiev and Vorobieff  (2001). Th e frame of the current design is made 
out of cast iron and steel and is therefore more rigid than our fi rst light weight soap tunnel build 
out of glass fi ber tubes (Lentink et al. 2007). Our soap solution consists of tap water and 3% 
Dawn dishwasher detergent (Dawn “Manual pot and pan detergent”, Professional line, USA). In 
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Figure 7 | Th e soap fi lm tunnel consists of a frame that spans two Nylon tunnel “walls”. Th e 
frame is set at an inclination of 5°. Th e tunnel has a diverging section (I), a test section (II) in 
which the foil is placed in the fi lm, and a convergent section (III). Th e main components of the 
soap tunnel are: the main reservoir (a), a medical pump (b), a constant-height reservoir (c), a valve 
(a micrometer that constricts the tubing) (d) and a drain (e).
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the current literature there is still considerable controversy with respect to the exact viscosity of 
soap-fi lms (Rutgers el al, 1996). One of the most extensive studies to date has been performed 
by Martin and Wu (1995), they determined that the kinematic viscosity of a soap-fi lm consisting 
of a 4% Dawn soap solution (Dawn “Manual pot and pan detergent”, Professional line, USA) 
is in the order of 10-6 m2s-1, we adapt this value in our study. We stored the soap solution in a 
one-liter reservoir (Fig. 7: a) and pumped it with a peristaltic pump (1000 Mity Flex) into a two 
meter high, constant height, ‘overfl ow’ reservoir (Fig. 7: b). Th e soap solution then fl ows from 
the reservoir through tubing into a valve (Fig. 7: c) that regulates the mass fl ow. From the valve 
the soap solution fl ows to two parallel 1mm thick nylon wires that gradually diverge (Fig. 7: 
section I), which results in a stable fl owing soap-fi lm. Th e two Nylon wires run parallel (separa-
tion: 0.12 m) along the test section (Fig. 7: section II), in which the fl ow velocity is approxi-
mately constant in fl ow direction. Th e fl apping foil is inserted in this test section. Th e soap fi lm 
continues fl owing from the test section along two converging wires (Fig. 7: section III) into the 
drain (Fig. 7: d) from where the fi lm fl ows into the main reservoir, which completes the cycle.
 Th e soap fi lm speed and thickness can be controlled by two parameters once the Nylon 
wires are fi xed to the frame: First, the valve (control of mass fl ow) and second, the tilt angle of the 
fi lm with respect to the horizon (preset of gravitational component in fl ow direction). Reducing 
the fl ow at the valve results in slower and thinner fi lms, while reducing the tilt angle results in 
slower and thicker fi lms. Super-critical fi lm speeds, at elastic Mach numbers (ratio of fi lm speed 
over elastic wave speed) of order one, can be obtained at large tilt angles (up to 90°) when the 
valve is wide open (Rutgers 1999). Under “supersonic” conditions, at fl ow speeds up to 4 ms-1 
and higher, “shockwaves” can occur in the fi lm (Rutgers 1999; Wen et al. 2003). Such fl ows are 
not relevant for fi sh and should be avoided, also because fl ows at high elastic Mach numbers do 
not correlate with transonic and supersonic fl uid dynamics in air or water (Wen and Lai 2003). 
For studying subsonic fl ows, our goal, tilt angles need to be low. For a tilt angle of 5° (at low 
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Figure 8 | Foil in the test 
section of the soap fi lm 
tunnel (34 × 41 mm). 
Th e non-fl apping foil 
generates small vorti-
ces downstream. Nylon 
wires (1 mm thick) that 
bound the test section 
are indicated with thick 
horizontal lines. 
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mass fl ow, not measured) we obtained a thick fi lm (not measured) with an average speed of 
0.25 ms-1, which is 50% slower than “Th e slowest soap-fi lm tunnel in the Southwest” (Georgiev 
and Vorobieff  2002). At lower speeds, typically lower than 0.15 ms-1, fl ow separation starts to 
occur at the end of the test section near the Nylon wires. For every run we tuned our valve to 
obtain the lowest possible speed without fl ow separation. Our optimally tuned soap fi lms pro-
duced nice plug-like velocity profi les in the test section (Fig. 8). Note that we measured the veloc-
ity profi le over a width of 34 mm, compared with the 60 mm width of the test section (Fig. 8, 9). 
Th ese profi les were obtained by tracking small pollutants in the soap fi lm, which we fi lmed with 
a RedLake ® MotionPro digital high speed video. Pollutant tracking was performed manually 
with a dedicated Matlab program. We tracked pollutants (diameter of order 10 pixels) over the 
full width of the camera image (of order 1000 pixels), which resulted in good tracking accuracy 
(better than 1%). Th e measured velocity profi les in the area of investigation in the test section 
are shown in Fig. 9. Th e velocity profi les are reasonably fl at, while the average fi lm speed is non-
constant over a time period of several hours. Hence we measured the velocity profi le several times 
during a measurement cycle to account for these slow fl uctuations in our experiments. We always 
determined the average velocity over the whole heave excursion (twice the amplitude) in order 
to obtain good average velocities for the non-dimensional variables that depend on this velocity 
(dimensionless wavelength and Reynolds number). 

Visualization setup 
Th e fl apping foil in the soap fi lm generates shear layers that roll up into vortices. Th e resulting 
vorticity fi eld correlates strongly with thickness variations in the soap-fi lm (Rivera et al. 1998). 
We visualize the thickness variations by illuminating the fi lm with monochromatic light of a 
sodium lamp (SOX, wavelength 590 nm,) and fi lm the refl ected interference fringes at high speed 
(Fig.10). Th e intensity of the refl ected light changes from light to dark and vise versa for thickness 
variations that approach a quarter of the wavelength of the light source (Fig. 10). To acquire both 
a high spatial and temporal resolution a RedLake ® high speed digital camera is used to record the 
interference fringes in the soap fi lm. Th e camera settings are: resolution of 1280 by 1024 pixels 
at 500 frames per second. To eliminate intensity fl uctuations in the recordings we used a special 
30 kHz SOX lamp (Philips) (Palmer and Beach 1995). We further improved the image quality 
by reducing the background refl ections (noise) viewed by the camera through the translucent 
soap fi lm. Th e light refl ected by the mechanism formed the main source of noise in the images. 
After trying several alternative solutions (e.g. spray painting the mechanism black, shielding it 
with black paper, etc.) we found that putting mirrors (at an angle of approx. 45°) between the 
mechanism and fi lm worked best (Fig. 4). Th ese mirrors refl ect the little light from the distant, 
out of focus, black laboratory wall into the camera, which resulted in negligible image noise. 
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Figure 9 | Th e normalized (plug-like) 
velocity profi les as measured in the soap 
tunnel. We chose velocities at which no 
fl ow separation would occur in the test sec-
tion; on average we obtained our slowest 
fi lms without separation at 0.25 ms-1.



3.2  Wake visualization of a heaving and pitching foil in a soap fi lm 66

Results

Vortex wake symmetry of a fl apping foil
Th e heave and pitch variables of our fl apping foil setup can be set as follows; A* = 0-6, Aα,geo = 0°-90°, 
λ* = 3-18 and the phase diff erence between heave and pitch can be set between 0°-360°. Th e 
Reynolds number of the foil in our soap tunnel is of order thousand. Th e ranges of these param-
eters are representative for thunniform swimmers (including the Reynolds number; Webb and 
Weihs 1986). Th e caudal fi n and its beat are approximated with a fl at plate and harmonic kine-
matics. We focus our experimental study on how foil kinematics aff ects vortex wake symmetry. 
Several CFD studies have shown that the vortex wake and the corresponding forces generated by 
a symmetrically fl apping foil can be asymmetric (e.g. Lewin and Haj-Hariri 2003; Lentink and 
Gerritsma 2003). Symmetry is relevant for thun-
niform swimmers because force asymmetries can 
result in net turning moments, which complicate 
straight swimming in fi sh. Here we show how a     
soap tunnel could potentially be used to eff ectively 
explore the parametric space of a fl apping foil to 
identify asymmetric vortical wakes. For this study 
we focus on the infl uence of pitch amplitude on 
wake symmetry for a fi xed amplitude A* = 3 and 
dimensionless wavelength λ*  = 11 at a Reynolds 
number of order 1000 while varying the geo-
metric angle of attack Aα,geo = [0°,15°,25°,45°]. 
Recently we have made a much broader paramet-
ric study with our soap tunnel that will be pub-
lished elsewhere. 
 We assess the wake symmetry by mak-
ing series of 99 triggered photos at a fi xed fl ap 
phase. We then high-pass fi lter the individual 
images and subsequently calculate the average 
fi ltered image (Fig. 11) for four phases; 0°, 90°, 
180° and 270°. If the vortex wake is symmetric, 
then the vortical fi elds must be anti-symmetric 
for 180°-out-of-phase triggered images (Fig. 11). 
We developed a simple procedure that enables a 
graphical check for wake symmetry: we add two 
180°-out-of-phase locked images using diff erent 
RGB channels. Th e fi rst phase is represented by an 
orange image and the second by a mirrored pink 
image. If the two wakes overlap they produce a 
red image (Fig. 11) and one can assess wake sym-
metry by eye. We did this for all four pitch angles 
and found that wake symmetry strongly depends 
on pitch angle for the heave amplitude and 
dimensionless wave lengthconsidered (Fig. 11).
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Figure 10 | Interference fringes refl ect-
ed by a soap fi lm that is illuminated 
with a monochromatic light source. 
We capture these fringes with digital 
high speed video.



3  A journey through fl atland 67

  Our experiments show that high eff ective angles of attack result in large vortices and 
wakes. When the eff ective angle of attack becomes small, an array of small vortices are generated 
along the foils path, similar to (but larger than) the wake shed by the non fl apping foil at the 
same speed (Fig. 8). Th e vortex wake asymmetry is most likely due to non-linear near-vortex-
wake interactions, as found by Williamson and Roshko (1988) for vibrating cylinders. How the 
vortex interactions in the wake and the interactions with the foil induce the wake asymmetry 
is largely unclear. In some cases the asymmetry is due to vortex merging or tearing (Lentink 
et al. 2007), but not for the foil kinematics considered here as we did not observe such vortex 
interactions. Th ere are two sources of imperfections in the experimental setup that could poten-
tially result in wake asymmetry: First fl ow asymmetry, because our plug like velocity profi les are 
slightly asymmetric. We do not expect this to result in the wake asymmetry, because wake asym-
metry also occurs in close to perfectly symmetrical CFD simulations (e.g. Lewin and Haj-Hariri 
2003). Th e infl uence of fl ow asymmetry could, however, be tested in future CFD studies. Second 
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Figure 11 | Wake visualiza-
tion of a fl apping foil in 
a soap fi lm. We fi rst fi lter 
the raw images (Ia) using 
the Matlab 7.0 gradient and 
median ( 3 × 3 ) fi lter (Ib) 
and than average 99 subse-
quent fi ltered frames (Ic), 
these 99 images were all shot 
at the same fl apping phase. 
We then assess the symmetry 
of the wake as a function of 
the geometric angle of attack 
(Aα,geo); note that the result-
ing eff ective angle of attack 
is also indicated (Aα,eff ): II-V. 
Th e symmetry of the wake 
can be assessed qualitatively 
by comparing the average 
images at the start of the up- 
and down stroke (indicated 
with a, b). We subsequently 
refl ect the upstroke wake “b” 
with respect to the horizontal 
centerline, in orange, and add 
it to the downstroke wake “a” 
in pink. Hence the overlap-
ping parts of the wake become 
red (c). 
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asymmetries in the kinematics generated by the mechanism, these are however small, we again 
note that wake asymmetry also occurs for close to perfectly symmetrical kinematics in CFD 
simulations (e.g. Lewin and Haj-Hariri 2003). Note, however, that the symmetry of the tail beat 
kinematics of fi sh and the background fl ow in which they swim in their habitat is not perfectly 
symmetric either (a detailed study of the level of symmetry of both swimming kinematics and 
background fl ow does not exist to our knowledge). Finally despite small asymmetries in our 
setup we found both symmetric and asymmetric wake patters while varying the geometric angle 
of attack amplitude in our experiment. Hence we conclude that we found experimental evidence 
for vortex wake asymmetry generated by a (to good approximation) symmetrically fl apping foil 
in a soap tunnel. Th is fi nding is similar to fi ndings by others in three-dimensional water tun-
nels (e.g. Jones et al. 1996) and two-dimensional CFD simulations (e.g. Lewin and Haj-Hariri 
2003). 

Discussion

We presented a novel soap tunnel setup to eff ectively study the vortex dynamics of a pitching and 
heaving foil. Th e visualization of the vortex dynamics is based on the strong correlation between 
the vorticity fi eld and thickness variations in the soap fi lm. A high-frequency monochromatic 
SOX lamp enabled us to fi lm the resulting interference fringes (due to thickness variations) of the 
soap fi lm at high speed ⎯ time and space resolved. 
 Th e soap fi lm can fl ow as slow as 0.25 ms-1 in our setup, 50% slower than previously 
published setups (Georgiev and Vorobieff  2002), which is essential for operating at both high 
and low stride lengths. Low stride lengths are obtained when the mechanism fl aps at maximum 
frequency. Th e mechanism itself generates accurate and symmetric harmonic kinematics at all fre-
quencies. We can preset the parameters of the harmonics (the heave amplitude, pitch amplitude, 
phase diff erence and fl ap frequency) with an error close to 5% or less. 
 To analyze the fl ow, we fi ltered and subsequently averaged a large series of images (n = 99). 
We then compared the average fi ltered images shot at a constant-phase with similar images shot 
at a 180°-phase-diff erence. We demonstrated the usefulness of such an approach for assessing 
the wake symmetry qualitatively. We could not fi nd any reliable numerical method to assess the 
wakes asymmetry quantitatively; to our knowledge this is an open question. 
 Th e main advantage of our setup is that it facilitates a detailed and effi  cient study of the 
vortex wakes generated by fl apping foils. Th e experiments are time-effi  cient ⎯ they only take 
10 minutes per run, which is much faster than numerical simulations of similar fl ows on a high-
end PC, which can take up to 30 days. Hence our experimental approach is ideally suited for a 
time-effi  cient study of the diff erent vortex wake modes in the large parametric space of a fl apping 
foil. 
 Th e main restrictions of our method are: it is limited to low Reynolds numbers, has a sim-
plistic foil geometry and a fi xed kinematics pattern (harmonic, two-dimensional), and the fl ow 
fi elds in the soap fi lm are intrinsically two-dimensional. Within these constraints one can, how-
ever, use the results obtained with our setup as an effi  cient fi rst order approximation of the more 
complicated three-dimensional fl ows generated by swimming animals such as thunniform swim-
mers. Interestingly we found, like others, asymmetric wakes for symmetric foil kinematics. Th e 
question emerges if thunniform swimmers encounter such wake modes during straight swimming.



3  A journey through fl atland 69

Acknowledgements
We thank Johan van Leeuwen for supporting both D.L. and F.T.M.; Mees Muller and Ulrike 
Müller for their help; Jos van den Boogaard, Eric Karruppannan, Evert Janssen and Henk Schipper 
for helping us with the design and construction of the soap tunnel and fl apping mechanism; Bas 
van Oudheusden for co-supervising F.T.M. at the TU Delft. We thank Marc van Geest for help 
with some of the preliminary experiments. Finally we would like to thank Maarten Rutgers for 
advice and great soap (Dawn from the USA rocks).

References
Chomaz J.M., Costa, M. (1998) Th in fi lm dynamics. In ‘Free surface fl ows’ (ed. Kuhlmann, 

H.C. and Rath, H.J.). CISM courses & lectures 391:44–99
Couder Y., Chomaz J.M., Rabaud M. (1989) On the hydrodynamics of soap fi lms. Physica D 

37:384–405
David, C.T. (1978) Th e relationship between body angle and fl ight speed in free-fl ying Dro-

sophila. Physiological Entomological 3:191–195
Georgiev D., Vorobieff  P. (2002) Th e slowest soap-fi lm tunnel in the Southwest. Rev. of Scien-

tifi c Instruments 73:1177–1184
Gharib M., Derango. P. (1989) A liquid fi lm (soap fi lm) tunnel to study two-dimensional lami-

nar and turbulent fl ows. Physica D 37:406–416.
Jones K.D., Dohring C.M., Platzer M.F. (1996) Wake structures behind plunging airfoils: A 

comparison of numerical and experimental results. AIAA 1996–0078:1–9
Lentink D., Gerritsma M. (2003) Infl uence of Airfoil Shape on Performance in Insect Flight. 

AIAA 2003–3447:1–17
Lentink D., Muijres F.T., Donker-Duyvis F.J., van Leeuwen J.L. (2007) Vortex-wake interac-

tions of a fl apping foil that models animal swimming and fl ight. J Exp Biol (submitted)
Lewin G.C. and Haj-Hariri H. (2003) Modelling thrust generation of a two-dimensional heav-

ing airfoil in a viscous fl ow. J. Fluid Mech 492:339–362
Martin B., Wu X.L. (1995) Shear fl ow in a two-dimensional couette cell: a technique for meas-

uring the viscosity of free-standing liquid fi lms. Rev Sc Instr 66:5603–5608
Palmer G.T., Beach A.D. (1995) Sodium vapour discharge lamps with high-frequency elec-

tronic ballast for machine vision systems illumination. Meas Sci Technol 6:1634–1635
Read D.A., Hover F.S., Triantafyllou M.S. (2003) Forces on oscillating foils for propulsion and 

maneuvering. J Fluid Struct 17:163–183
Rivera M., Vorobieff  P., Ecke R.E. (1998) Turbulence in fl owing soap fi lms: Velocity, vorticity, 

and thickness fi elds. Phys Rev Lett 81: 1417–1420
Rutgers M.A., Wu X-I., Bhagavatula R., Petersen A.A., Goldburg W.I. (1996). Two-dimen-

sional velocity profi les and laminar boundary layers in fl owing soap fi lms. Phys Fluids 8: 
2847–2854

Rutgers M. A. (1999) Flowing soap fi lms: a platform for 2D non-linear dynamics experiments, 
Department of Physics, Th e Ohio State University, Columbus.

Rutgers M.A., Wu X.L., Daniel, W.B. (2001) Conducting fl uid dynamics experiments with 
vertically falling soap fi lms. Rev Sc Instr 72:3025–3037

Sfakiotakis M, Lane D.M., Davies J.B.C. (1999) Review of fi sh swimming modes for aquatic 
locomotion. J of Oceanic Engin 24:237–252

Triantafyllou G.S., Triantafyllou M.S., Grosenbaugh M.A. (1993) Optimal thrust 



3.2  Wake visualization of a heaving and pitching foil in a soap fi lm 70

development in oscillating foils with application to fi sh propulsion. J Fluids and Structures 
7:205–224

Webb P.W, Weihs D. (1986) Functional locomotor morphology of early-life-history stages of 
fi shes. Trans Am Fisher Soc 115: 115–127

Wen C.Y., Lai J.Y. (2003) Analogy between soap fi lm and gas dynamics. I Equations and shock 
jump conditions. Exp in Fluids 34:107–114

Wen C.Y., Chang-Jian S.K., Chuang M.C. (2003) Analogy between soap fi lm and gas dynam-
ics. II Experiments on one-dimensional motion of shock waves in soap fi lms. Exp in Fluids 
34:173–180

Williamson C.H.K., Roshko A. (1988) Vortex formation in the wake of an oscillating cylinder. 
J Fluid Struc 2:355–381

Zhang J., Childress S., Libchaber A., Shelley M. (2000) Flexible laments in a fl owing soap fi lm 
as a model for one-dimensional fl ags in a two-dimensional wind. Nature 408:835–839.



3.3
SYMMETRICALLY AND PERIODICALLY FLAPPING FOILS MEDIATE CHAOTIC VORTEX-WAKE INTERACTIONS 
David Lentink*, GertJan F. van Heijst, Florian T. Muijres and Johan L. van Leeuwen

Submitted

We found abundant chaotic vortex-wake interactions mediated by a symmetrically and 
periodically pitching and heaving foil in a two-dimensional soap fi lm tunnel. Th e 

phase-locked movie sequences reveal that chaotic vortex-wake interactions occur at high 
Strouhal numbers. Th ese numbers are representative for the fi ns and wings of near-hover-
ing animals. Th e chaotic wake limits the forecast horizon of the corresponding force and 
moment integrals. We fi nd periodic vortex wakes with an unlimited forecast horizon for 
lower Strouhal numbers (0.2 – 0.4) at which animals cruise. Our two-dimensional model 
predicts that animals cope with chaos when they transition between cruising and hovering. 
 
Many swimming and fl ying animals create large vortices with their fi ns and wings. Th ese vortices 
are shed, and together they form the footprint of the animal in the fl uid: the wake. In the wake 
vortices arrange in shapes and patterns that not only refl ect the motion of animals, but also 
refl ect the dynamics of vortex-vortex and vortex-animal interactions. Two well known examples 
of intense vortex-vortex interactions are vortex merging (Cerretelli and Williamson, 2003) and 
tearing (Legras and Dritschel, 1993; Trieling et al., 1998). In some cases vortex-animal interac-
tions are known to be benefi cial to an animal’s locomotory performance. Insects, for example, 
can recapture their vortex wake and thus generate extra lift (Dickinson et al., 1999) while birds 
fl y in formation to capture energy from each other’s wake (Lissaman and Schollenberg, 1970). 
Th e dynamics of wake vortices might, however, not always be as easy to tune into. 
 Vortex wakes of animals are typically interpreted and drawn as a periodic row of alternat-
ing vortices. Th is is contrasted by several computational fl uid dynamic studies of two-dimensional 
pitching and heaving (fl apping) foils that model swimming and fl ight. Lewin and Haj-Hariri 
(2003) found aperiodic vortex fl ows generated by a heaving foil at low amplitude. At a higher 
heave amplitude representative of forward insect fl ight, Lentink and Gerritsma (2003) found 
chaotic vortex wake-interactions. Th e corresponding strange attractor in the phase plot of fl uid 
lift and thrust is accompanied by a broad frequency spectrum and sensitivity to initial conditions. 
Th is fi nding has been confi rmed for hovering insect fl ight by similar simulations in which the 
foil also pitched (Blondeaux et al., 2005). In a more realistic simulation, in which the forward 
motion of the heaving foil results from the thrust generated by the heaving foil, also chaotic 
forward motion was found in a few cases (Alben and Chelley, 2005). For an even more realistic 
simulation in which the foil also pitched, Iima (2007) found a chaotic mode for free vertical 
motion, which corresponds to near-hovering fl ight. Chaos signifi cantly limits the forecast horizon 
of the vortex dynamics and corresponding fl uid forces (Lorenz, 1963). If animals actually need 
to cope with chaotic vortices and forces, it might well constrain their neural control of body 
motion. Th ere exists, however, no experimental confi rmation of chaotic vortex wake interactions 
generated by pitching and heaving foils. 
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 We experimentally determined to what extent chaotic vortex-wake interactions are mediated 
by a two-dimensional foil as a function of its kinematics. Our foil pitches and heaves periodi-
cally and symmetrically, 90° out of phase, in a nearly horizontal, gravity driven, soap fi lm tunnel 
that fl ows at approximately 0.25 m / s, Fig. 1(a). We explicitly chose symmetric and periodic 
foil kinematics to ensure that measured asymmetric and aperiodic vortex-wake interactions can 
be linked explicitly to vortex dynamics. Th e foil is made out of a thin 4 mm long and 0.2 mm 
thick steel wire. It is attached to a custom designed and built fl apping mechanism that accurately 
produces sinusoidal pitch and heave kinematics. Th rough pilot experiments we found that the 
stability of the soap fi lm is unaff ected by high fl ap frequencies of the foil (Lentink et al., 2008), 
as found for vibrating cylinders (Couder et al., 1989). We fl apped the foil at 4-25 Hz and fi lmed 
its quasi two-dimensional vortex wake time- (500 Hz) and space- (1024×1280 pixels) resolved. 
For this we made use of the strong correlation between the vorticity fi eld and minute thickness 
variations in the soap fi lm (Rivera et al., 1998). Th ese thickness variations were visualized by 
illuminating the fi lm with a monochromatic SOX lamp, which results in interference fringes 
that reveal the vortex wake (Rutgers et al., 2001). A full description of the setup can be found in 
Muijres and Lentink (2007). 
 Th e vortex wake of vibrating cylinders is known (Williamson and Roshko, 1988) to syn-
chronize with the cylinder when it vibrates with a wavelength λ close to multiples of the natural, 
von Kármán, vortex shedding wavelength λ0. For vibrating cylinders two synchronization bands, 
starting at λ0 and 3λ0, have been found. Th ese two bands consist of periodic wakes and are sepa-
rated by a region of aperiodic wakes. To determine if the vortex wake generated by the fl apping 
foil synchronizes with fl apping frequency, we fi rst measured the dimensionless natural wavelength 
λ0* = λ0 / c of the wake behind the foil, in which c is chord length. We made peak to peak measure-
ments and averaged them over 5 periods for 
eff ective angles of attack αeff  = 0°, 2.5° ,..., 90°, 
Fig. 1(b). Like others (Katz, 1981; Dickinson 
and Gotz, 1993) we fi nd that λ0* is constant 
for a foil when calculated using the vertical 
projection of chord length, i.e. c⋅sin(αeff ), for 
αeff   ≥ 45°. On average we fi nd λ0*⋅ sin(αeff ) = 5.5 
with std = 0.2. 
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Fig. 1 | Foil kinematics and vortex shed-
ding. (a) Defi nition of fl apping kinematics 
of the foil (see text). Th e four heave phases 
for which we fi lmed the vortex wake are indi-
cated with ‘convected’ foils along the foils 
path in the soap fi lm. (b) Natural wavelength 
λ0* band of a foil as function of its angle of 
attack αeff , indicated with black dots. At low 
angles we fi nd a wavy shear layer in the wake, 
at high angles a von Kármán vortex wake 
shed by the foil. Th e blue dots indicate λ0* 
divided by sin(αeff ), which is approximately 
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Th e fl apping foil in our soap tunnel can generate thrust when the angle of attack amplitude 
induced by the foil’s sinusoidal motion αind is larger than the pitch amplitude α0, such that the 
eff ective angle of attack amplitude , Fig. 1(a). Th e induced angle of attack 
amplitude is calculated as , in which A* = A / c is the dimensionless heave 
amplitude and λ* = U∞ / fc is the dimensionless heave length, where A is the heave amplitude, U∞ 
the free stream velocity and f the fl ap frequency (Lentink et al., 2008), Fig. 1(a). Th e combina-
tions of (A*, λ*, α0) of the foil studied here are all combinations of (A* = 0, 1, ..., 4; λ* = 3, 5, ..., 13; 
α0 = 0°, 15°, ..., 90°) resulting in αeff  ≥ 0°, such that thrust is positive. Th ese values of 
(A*, λ*, α0) are most relevant for slender fl apping wings and caudal fi ns of animals. Th e average 
Reynolds number Re of the fl apping foil in our soap tunnel is , in which 

 is the free stream Reynolds number (Lentink et al., 2008), with kinematic 
viscosity ν ≈ 1⋅10-6 m2 / s (Martin and Wu, 1995; Muijres and Lentink, 2007). We fi lmed the vortices 
shed by the fl apping foil as a function of (A*, λ*, α0) phase locked over 99 periods; at stroke 
reversal and midstroke, Fig. 1(a). Of every single image we fi rst calculated the absolute gradient 
fi eld and median fi ltered it (Matlab 2007; medfi lt2, 5 × 5 pixels) to eliminate background fringes 
(Muijres and Lentink, 2007). Next small pollutants where automatically removed (Matlab; 
bwareaopen), after which we normalized and averaged all 99 image intensity fi elds. For periodic 
fl ows the average vortex wake at a constant phase is identical to the vortex wake of all individual 
images. For chaotic fl ow, the vortex wake at constant phase is erratic over the 99 frames and the 
average image is therefore blurred or even unrecognizable, Fig. 2. We enhanced the dynamic range 
of all average images and colored them using identical Photoshop image adjustments (auto levels, 
shadow / highlight, tri-tone coloring). Several standard periodic wake types can be found at A* = 1, 
such as ‘two vortex pairs’ at (λ* = 5, α0 = 15°, 30°) and ‘two single vortices’ at (λ* = 5, α0 = 0°) per 
fl ap period. Th ese periodic vortex confi gurations are typical for vortex-wake synchronization and 
have been found earlier for fl apping foils and vibrating cylinders (Williamson and Roshko, 1988). 
Additionally we fi nd, however, many other topologically more complicated patterns. By visual 
inspection of Fig. 2, it can be seen that many vortex wakes are chaotic, ranging from partially 
chaotic in the far-fi eld e.g. (A* = 4, λ* = 11, α0 = 30°) to fully chaotic e.g. (A* = 4, λ* = 3, α0 = 0°). In 
an earlier study we described the detailed transition from a periodic to an aperiodic vortex wake 
as a function of leading and trailing edge vortices shed, and vortex merging and tearing in the 
wake (Lentink et al., 2008). Here we also fi nd that vortex wake interactions such as merging and 
tearing can alter wake topology. At higher Reynolds numbers we also observe that the shear layer 
rolling up at the leading edge can become unstable, such that the leading edge vortex consists of 
a number of smaller vortices (Wang et al., 1999), especially at high αeff  . At high αind we also fi nd 
that the foil fl aps through its previously shed vortices, which it shears and tears. Th rough visual 
inspection of the movie sequences, both phase locked over 99 fl ap periods and continuously over 
three periods, we observed that the vortex wakes are more chaotic for more intense vortex-wake 
interactions. 
 To quantify the signifi cance of chaotic vortex wakes we calculated the standard deviation 
of the moment of area integrals of the 99 normalized image intensity fi elds we fi lmed phase 

Fig. 2 | Abundant chaotic vortex-wake interactions in the parametric space of fl apping foil 
kinematics; dimensionless heave amplitude A* and wave length λ*, and pitch amplitude α0. 
Shown are phase locked averages of 99 fi ltered wake images. Th e more blurry an average image is 
the more chaotic the vortex wake, white bright areas are periodic. Th e dark grey areas correspond 
with αeff   < 0, negative thrust, for which we made no measurements. 
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locked. Before integrating the intensity fi elds I we simplifi ed every image into a black and white 
image with an intensity of 1 where we visualized vortices and 0 elsewhere (cut-off  value 0.17) 
(Muijres and Lentink, 2007). We next determined the fi rst three polar moments of area of these 
image intensity fi elds: area, ; fi rst polar moment, ; 
and second polar moment . A theoretical analysis of Wu (1981) shows that 
if we would calculate these moments of area for the vorticity fi eld instead of the fi ltered image 
intensity fi eld, I0 would represent circulation, whereas I1,r and I2rwould be part of the integrals 
for calculating net force and moment, respectively (Wu, 1981). Here we assume that if the image 
intensity integrals of the vortex wake are chaotic that the corresponding integrals for calculating 
circulation, force and moment will be chaotic too. Hence we calculate the three intensity moments 
of area sequences for the 99 images of all four fl ap phases (area of integration starts c / 4 behind 
the foil with width 8c and height 16c). Because we are primarily interested in short term varia-
tion, we subtract the period-16 Butterworth fi ltered moment of area sequence from the original 
sequence per phase (Matlab, 4th order butter). We next determine the standard deviation, which 
we average over all four fl ap phases. Th ese standard deviations are plotted for I0, I1r and I2r 
as a function of foil kinematics and we fi nd their relative magnitude to correlate well; when 
standard deviation of one moment of area is high, others are too, Fig. 3(a). Th e standard devia-
tion peaks for maximal heave amplitude, minimal heave wavelength and zero pitch amplitude. 
Further, the standard deviation of all three moments of area correlates well with the blurriness of 
the average wake images in Fig. 2. A gradual boundary exists between the periodic and chaotic 
vortex wakes. Th is boundary appears not to be connected through a ‘synchronization band’ with 
the λ0* band of Fig. 1(b) for A* = 0, which we indicated in yellow in Fig. 3(a). Th e wake amplitude, 
however, increases as λ* approaches the λ0* band for (A* = 0, λ* = 3-13, α0 = 0°); see panel A* = 0 in 
Fig. 2. Both this amplifi ed wave and the many periodic vortex wakes suggest that synchroniza-
tion phenomena do occur. Th e synchronization between the vortex wake and a fl apping foil is 
probably more complex due to the band width of λ0* of a foil, compared to the single valued λ0* 
of a cylinder (Lentink et al., 2008). And perhaps more importantly, a fi ner resolution in the 
(A*, λ*, α0) space is needed to clearly distinguish synchronization bands.
 By plotting the standard deviation of the moment of area integrals as a function of the 
induced and eff ective angle of attack we fi nd that the standard deviation is maximal at high angles, 
corresponding with the area delineated by the dashed line in Fig. 3(b). In this graph we observe a gra-
dient between two diff erent regimes; a periodic regime at low αind and a chaotic regime at high αind. 
Th e most-chaotic wakes occur at high αind along the line αeff  = αind, which corresponds with plung-
ing motion. Plunging foils have zero pitch amplitude, and therefore minimal thrust, which makes 
them ineffi  cient (Lentink and Gerritsma, 2003). Triantafyllou et al. (1993) found that pitching 
and heaving foils are most effi  cient for Strouhal numbers St = tan(αind) / π in the range 0.2–0.4. 
Many swimming and fl ying animals actually cruise in this St range (Triantafyllou et al., 1993, 
Taylor et al., 2003), for which we fi nd solely periodic vortex-wake interactions, Fig. 3(b). When 
animals transition from cruising to hovering their St increases and, approaches infi nity as αind 
approaches 90°. For such high St–values we fi nd abundant chaotic vortex-wake interactions, sug-
gesting therefore that animals cope with chaos at high St-values. 
 Our measured standard deviations of the moment of area integrals of the non-zero vorticity 
fi eld are high for high St-values, for which we fi nd chaotic vortex-wake interactions. Existing 
numerical simulations confi rm that the net forces and moments can indeed become chaotic in 
two dimensions (Lewin and Haj-Hariri, 2003; Lentink and Gerritsma, 2003; Blondeaux et al., 
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2005). Simulations in which forward or upward motion is unconstrained show that chaotic 
forces result in erratic motion due to chaotic vortex-body interactions (Alben and Chelley, 2005; 
Iima, 2007). A free fl ight model of a butterfl y, based on potential vortex fl ow, further shows that 
there is also a tight coupling between vortex-wake dynamics and fl ight path in three dimensions 
(Senda et al., 2008). In fact, it has been found that relatively subtle changes in the wing kine-
matics of red admirals can radically changes the aerodynamic mechanism they use to fl y, which 
includes vortex-wake capture (Srygley and Th omas, 2002). Many insects, in particular butter-
fl ies and moths, are known to fl y erratically to presumably confound predators (Dudley, 2000). 
How insects generate these erratic fl ight paths is unknown. Insects could simply fl ap erratically, 
but this is contrasted by the relatively subtle kinematic changes found in butterfl ies (Srygley 
and Th omas, 2002). An alternative explanation could be that these insects exploit the chaotic 
vortex-wake interactions similar to the ones we found for a two-dimensional symmetrically and 
periodically fl apping foil. Perhaps butterfl ies tune into such chaotic vortex-wake interactions to 
exploit the ‘butterfl y eff ect’ themselves and limit the forecast horizon of their fl ight path, making 
them hard to catch. Th is could be tested using three-dimensional fl uid dynamic simulations or 
robot models to determine to which extent three-dimensional fl apping wings mediate chaotic 
vortex-wake interactions.
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4 Take-off into the third dimension



4.1
ROTATIONAL ACCELERATIONS STABILIZE LEADING EDGE VORTICES ON REVOLVING FLY WINGS

David Lentink* and Michael H. Dickinson

Submitted

Summary

The aerodynamic performance of hovering insects is largely explained by the presence of 
a stably attached leading edge vortex (LEV) on top of their wings. Although LEVs have 

been visualized on real, physically-modelled, and simulated insects, the physical mecha-
nisms responsible for their stability are poorly understood. To gain fundamental insight 
into LEV stability on fl apping fl y wings we express the Navier-Stokes equations in a rotating 
frame of reference attached to the wing’s surface. Using these equations we show that LEV 
dynamics on fl apping wings are governed by three terms: angular, centripetal, and Coriolis 
acceleration. Our analysis for hovering conditions shows that angular acceleration is pro-
portional to the inverse of dimensionless stroke amplitude, whereas Coriolis and centripetal 
acceleration are proportional to the inverse of the Rossby number. Using a dynamically-
scaled robot-model of a fl apping fruit fl y wing to systematically vary these dimensionless 
numbers, we determine which of the three accelerations mediate LEV stability. 
 Our force measurements and fl ow visualizations indicate that the LEV is stabilized 
by the ‘quasi-steady’ centripetal and Coriolis accelerations that are present at low Rossby 
number and result from the propeller-like sweep of the wing. In contrast, the unsteady 
angular acceleration that results from the back and forth motion of a fl apping wing does not 
appear to play a role in the stable attachment of the LEV. Angular acceleration is, however, 
critical for LEV integrity as we found it can mediate LEV spiral bursting, a high Reynolds 
number eff ect. 
 Our analysis and experiments further suggest that the mechanism responsible for 
LEV stability is not dependent on Reynolds number, at least over the range most relevant 
for insect fl ight (100 < Re < 14,000). LEVs are stable and continue to augment force even 
when they burst. Th ese and similar fi ndings for propellers and wind turbines at much high-
er Reynolds numbers suggest that even large fl ying animals could potentially exploit LEV-
based force augmentation during slow hovering fl ight, take-off s, or landing. We calculated 
the Rossby number from single-wing aspect ratios of over 300 insects, birds, bats, autorotat-
ing seeds, and pectoral fi ns of fi sh. We found that, on average, wings and fi ns have a Rossby 
number close to that of fl ies (Ro = 3). Th eoretically, many of these animals should therefore 
be able to generate a stable LEV, a prediction that is supported by recent fi ndings for several 
insects, one bat, one bird, and one fi sh. Th is suggests that force augmentation through sta-
bly attached (leading edge) vortices could represent a convergent solution for the generation 
of high fl uid forces over a quite large range in size.
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Introduction 

Th e presence of a stable leading edge vortex (LEV) is a key feature in the unexpectedly high 
performance of insect wings during hovering fl ight (Maxworthy, 1979; Ellington et al., 1996; 
Dickinson et al. 1999; Srygley and Th omas, 2002). Whereas a LEV is shed after a few chord 
lengths of travel on a translating 2D model of an insect wing (Dickinson and Götz, 1993; 
Dickinson,1994; Miller and Peskin 2004; Lentink et al. 2008), it remains stably attached on a 
3D model wing that revolves about its base (Dickinson et al., 1999; Usherwood and Ellington, 
2002; Birch et al., 2004). Van Den Berg and Ellington (1997) note that the spiral LEV generated 
by their mechanical model of a hawkmoth wing is remarkably similar to the spiral LEV generated 
by delta and swept wings (Ellington et al., 1996; Van Den Berg and Ellington, 1997). Th e spiral 
LEVs on such swept wings are stabilized by spanwise fl ow induced by wing sweep, suggesting 
that spanwise fl ow is similarly cridigtical to the stability of LEVs on insect wings (Ellington et al., 
1996; Van Den Berg and Ellington, 1997). Specifi cally, the growth of the LEV on insect wings 
might be stabilized by spanwise fl ow in the core of the LEV, driven either by the dynamic pres-
sure gradient associated with the velocity gradient along the fl apping wing, by ‘centrifugal’ accel-
eration in the boundary layer, or by the induced velocity fi eld of the spiral vortex lines (Ellington 
et al., 1996). An additional hypothesis is that the fl ow induced by the strong tip vortices of low 
aspect ratio insect wings stabilizes the LEV by greatly lowering the eff ective angle of attack (Birch 
and Dickinson, 2001). An attempt to block spanwise fl ow using a variety of baffl  e found little 
or no eff ect on LEV strength or stability (Birch and Dickinson, 2001), but these experiments do 
not clearly identify a unique explanation for LEV stability. 
 We start with showing experimentally that neither the swept-wing analogy or induced 
fl ow due to the tip vortex can fully explain LEV stability on fl y wings. Based on the notion that 
revolving insect wings also stabilize LEVs (Dickinson et al., 1999; Usherwood and Ellington, 
2002; Birch et al., 2004) we then derive the Navier-Stokes equations for fl apping wings using a 
coordinate transformation that attaches the frame of reference to the surface of the fl apping wing 
(Lentink and Dickinson, 2008). Th is analysis shows how wing kinematics can potentially stabi-
lize the LEV on a revolving wing. Based on the two governing dimensionless numbers, Rossby 
number (Ro) and dimensionless stroke amplitude (A*), we then carry out a set of experiments 
to determine whether any of these dimensionless numbers mediate LEV stability through their 
corresponding accelerations. Using both fl ow visualization and force measurements we show that 
Ro, and not A*, appears to explain LEV stability. We then compare our theoretical and experi-
mental fi ndings to literature on other wings and fi ns in nature and technology. 

Materials and Methods

Th e basic methods used for dynamically scaling an insect wing have been described previously 
(Dickson and Dickinson, 2004). We constructed a model Drosophila melanogaster wing from 
2.0-mm thick clear acrylic plate with a (single) wingspan bs of 0.187 m and surface area S of 
0.0167 m2 . Mean chord width c is defi ned as S / bs. Here and elsewhere our wing parameters 
(bs, S, and c) refer to single wings, not a bilateral wing pair. Th e force sensor connects the robot 
arm with the wing base which results in a wingtip radius R of 0.254 m. Th e wing was attached 
to a force transducer in series with a 3 degree of freedom actuator which was connected to a 
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translating robot arm immersed in a 1x1x2 m tank fi lled with either oil or water. Th e Reynolds 
number was calculated as  in which c is average chord length, Ug the average velocity  
at the radius of gyration Rg (Ellington, 1984) and ν the kinematic viscosity. Th e tank was fi lled 
with thick mineral oil (density ρ = 840 kg m-3; ν = 140⋅10-6 m2 s-1) to obtain Re = 110, thin 
mineral oil (ρ = 830 kg m-3; ν = 11.0⋅10-6 m2 s-1) to obtain Re = 1400 and water (ρ = 998 kg m-3; 
ν = 1.004⋅10-6 m2 s-1) to obtain Re = 14,000. 
 In our experiments we use the following kinematic patterns for fl apping: sinusoidal 
motion for stroke position and smoothed trapezoidal for angle of attack motion (Dickinson et al., 
1999). We based the stroke amplitude of 70° in our experiments on the free fl ight kinematics of 
six slowly hovering fruit fl ies (Fry et al., 2003). Note that we use amplitude in the mathematical 
sense, which is equal to half the total wing amplitude as defi ned by Ellington (1984). In each 
fl apping trial, the robot fl apped for six complete periods. Th e geometric angle of attack ampli-
tude α0 was varied from 0° to 90° with steps of 4.5° (for defi nitions of fl apping kinematics see 
Sane and Dickinson, 2001; Lentink and Dickinson, 2008). Th e unidirectional revolving and 
translating wing kinematics consisted of a constant velocity stroke with constant acceleration 
and deceleration to begin and end the stroke. Th e duration of the acceleration was 10% of the 
stroke for both revolving and translating wings. As with fl apping trials, α0 was varied from 
0° to 90° in steps of 4.5°. Th e revolving wing swept over an arc of 320°; the travel distance of the 
translating wing was calculated such that it moved over a similar distance as the revolving wing 
at its radius of gyration. 
 We generated a range of Rossby numbers (Ro) for a particular Reynolds number 
(Re = 1400) by elongating the robot arm by factors of 1.27 and 1.53, which increased Ro at the 
radius of gyration to 3.6 and 4.4, respectively. Th e unidirectionally- and reciprocally-translat-
ing wing kinematics (Ro = ∞) were obtained by setting the stroke amplitude of the robot arm to 
zero and translating the stage to which it was fi xed. Th e stroke amplitudes for the Ro = 3.6, 4.4, 
and ∞ cases were calculated under the condition that the actuator disk area (Stepniewski and 
Keys, 1984), swept by the wing during the stroke was identical to within a precision of < 0.1%. 
Th e average Reynolds number at Rg varies < 0.5% for unidirectional and < 5% reciprocating 
kinematics.

Flow visualization using air bubbles. 
We released small air bubbles at the leading edge (∼25 mm apart) and trailing edge (∼30 mm 
apart) of the wing into the oil (at Re = 110 and 1400). Air was transported to the leading and 
trailing edges using a 2 mm thin tube glued fl ush to the edge of the 2 mm thick wing such that 
the fl ow was minimally disturbed by the tube. We made holes in the tube, marked with a white 
dot of paint, using insect pins. Th e air bubbles released through these holes rise upward because 
they are not neutrally buoyant and thus do not form perfect streak lines. Th is method is, however, 
particularly suited for LEV visualization because the bubbles will be drawn into strong vortices 
with low pressure cores resulting in tight spirals while weaker and wider vortices will result in 
wider spirals of bubbles. In addition, the bubbles will be driven preferentially inward (from 
wingtip to base) under centrifugal loading, because of their low density. Th us, bubbles that fl ow 
outward reliably indicate outward fl ow. 
 We visualized the fl ow around translating and revolving wings with either unidirectional 
or reciprocating stroke kinematics for α0 = 0°, 18°, 36°, 45°, 54°, 72° and 90°. For image record-
ing we used a digital monochrome Basler camera: 656 x 491, sampling at 100 frames per second. 
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For fl apping wings we obtained visualizations for 6 fl ap periods. We excluded the fi rst cycle and 
determined the time of bursting for the subsequent 5 periods at Re = 1400. Th e images have been 
enhanced with the Auto Contrast function of Photoshop (8.0, Adobe) and the online movies are 
compressed with VirtualDub (1.5.10, www.cole2k.net).   

Lift and drag measurements 
Th e lift and drag forces acting on the wing were measured with a custom-built force sensor as 
previously described (Dickinson et al., 1999; Birch and Dickinson, 2001; Birch et al., 2004; 
Dickson and Dickinson, 2004). For post processing we down-sampled the measurements at 
300Hz, which is still approximately 1400 times the fl apping frequency. Th e force signals were 
fi ltered offl  ine using a zero phase delay low-pass 4-pole digital Butterworth fi lter. Th e cut-off  fre-
quency was determined such that it corresponded with an average distance travelled of 0.3 chord 
lengths at Rg. Th is distance is at least ten times lower than the distance over which an LEV is 
known to shed (Dickinson, 1994; Dickinson and Götz, 1993). Th e forces of the wing with recip-
rocating kinematics (6 fl aps) were averaged over 4 cycles (2nd-5th) whereas they were averaged 
between 70% and 90% of the stroke period for wings with unidirectional kinematics (to exclude 
the start and stop transient). Th e fi nal values were obtained as an average of 3 trials, except for the 
unidirectionally-translating case at Re = 110 and the swept wing polars for which n = 1. 
 For a fair comparison among experiments we calculated how eff ective a wing generates 
force for equal dynamic pressures, which is the standard approach in engineering and animal fl ight 
literature. Th ese force coeffi  cients were calculated based on the mean dynamic pressure  
which we calculated using a blade element method (Ellington, 1984; Dickinson et al., 1999; 
Sane and Dickinson, 2001; Dickson and Dickinson, 2004). Th e lift coeffi  cient was calculated as 

 whereas the drag coeffi  cient 
was calculated as   in 
which Vg is the velocity at the radius of 
gyration, ρ the density, and S the wing 
surface area. According to this defi nition, 
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Fig. 1 | Th e leading edge vortex (LEV) 
sheds from a translating model insect 
wing, regardless of its sweep angle, 
whereas it remains stably attached when 
the wing revolves. Th e LEV is visualized 
at Re = 110 and 1400 with small air bub-
bles released at the leading and trailing 
edges of the wing. Th e distance traveled 
by the wing s is given in chord lengths 
c at the radius of gyration Rg. (A) LEVs 
are unstable on swept wings, shown for 
40° sweep at α = 36° and Re = 1400. (B) 
Th e LEV is also unstable on the same 
wing without sweep. (C) Revolving the 
same wing results in a LEV that remains 
stably attached, shown for clarity at 
Re = 110 and s = 8c. 
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CD reduces to the classic drag coeffi  cient for the translational kinematics. For revolving wing 
kinematics, CD is the mean drag coeffi  cient, which is equal to the power coeffi  cient in the case 
that the local drag coeffi  cient does not change along the wing’s radius.

Results

Test of existing hypotheses
Using the dynamically-scaled fl y wing (Drosophila melanogaster) (Dickson et al., 1999; Dickson 
and Dickinson, 2004) to measure forces and visualize fl ows, we fi rst tested whether wing sweep 
and tip eff ects alone could stabilize a LEV on a fl y wing that was translating (but not revolv-
ing) at fi xed velocity. We systematically varied sweep angle from 0° to 60° over a large range of 
angles of attack (0° and 90°). Th e results, performed at Re = 110 and 1400, show that wing sweep 
cannot stabilize the LEV (Fig. 1A, supplementary movie 1). Further, the results at zero sweep 
angle indicate that the presence of a tip vortex is also insuffi  cient to stabilize the LEV (Fig. 1B, 

supplementary movie 2). It is impor-
tant to note that the same wing gener-
ates a stable LEV and elevated forces 
when revolved at constant angular 
velocity around its base (Fig. 1C 
and supplementary movie 3), as found 
by others (Dickinson et al., 1999; 
Usherwood and Ellington, 2002; 
Birch et al., 2004). Th e translating 
swept fl y wing did not only rapidly 
shed its LEV it actually generates 
less lift than the unswept wings at 
Reynolds numbers of 110 and 1400 
(Fig. 2). Th us, a strict analogy of the 
mechanisms that operates to stabilize 
LEVs on swept wing aircraft does 
not appear to hold for insect wings.
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Fig. 2 | Sweep does not increase the 
lift created by a translating fruit fl y 
wing at Re = 110 and 1400. (A) Th e 
lift (CL) – drag (CD) polar shown for 
Re = 110 (B) and Re = 1400 (C), rep-
resents the dimensionless lift (L) 
and chordwise drag (Dchord) forces 
obtained by varying the angle of attack 
from 0°-90° in steps of 4.5°. We 
tested this for wing sweeps from 0°; 
indicated with black, to 60°; indicated 
with red, in increments of 10° sweep.
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In addition, the shed LEV and low performance of an unswept, translating wing indicates that 
tip eff ects alone cannot generate a stable LEV, at least not at the aspect ratio of our model fl y 
wing. Tip eff ects, however, do appear to explain LEV stability on wings with very low aspect 
ratios close to one and less (Winter, 1936; Ringuette, 2007). 
 Th ese preliminary experiments motivated us to explicitly examine the role of revolving, 
propeller-like, motion in LEV stability. When hovering, most insects fl ap their wings back and 
forth in a roughly horizontal stroke plane. At each stroke reversal, the wings rapidly fl ip over and 
change direction, during which time the forces and fl ows are highly unsteady. Th e LEV created 
at the start of one stroke sheds, and a new counter-rotating LEV forms as the wing fl ips over and 
reverses direction (Poelma, et al., 2006). However, during each half-stroke (i.e the upstroke and 
the downstroke), the motion is ‘propeller-like’ in that the wing revolves around its base at roughly 
constant angle of attack (UsherwoodandEllington, 2002). Our working hypothesis is that some 
feature of the fl uid dynamics intrinsic to this revolving, propeller-like motion is responsible for 
the stability of the LEV. We explore this hypothesis by fi rst identifying a complete list of rotation-
based fl uid accelerations that theoretically could be responsible for LEV stability, which we then 
test experimentally. 

Navier-Stokes equations for fl ow near a fl apping wing
We developed a simple theoretical framework to identify the dimensionless numbers that might 
infl uence fl ow near wings undergoing both unidirectional (propeller-like) and reciprocating 
(insect-like) motion during hovering conditions. A key feature of our analysis is that it accommo-
dates a continuous range of stroke kinematics from pure revolving to pure translational motion. 
Th e analysis is continuous because translation represents the limiting case of a wing revolving 
over an infi nitesimal angle about an infi nite radius (Fig. 3A), in this sense a translating wing 
performs hovering fl ight around an infi nite turning radius. For a consistent comparison among 
experiments, three key conditions are met with good approximation. First, the area swept by the 
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due to stroke, and  is the angular 
acceleration due to stroke.
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revolving wing is kept constant, thereby maintaining constant Froude effi  ciency (Stepniewski 
and Keys, 1984). Second, the dimensionless stroke amplitude (A*) at the radius of gyration 
(Ellington, 1984) is kept constant to ensure that wing-wake interactions (Birch and Dickinson, 
2003) are similar. Finally, Re at the radius of gyration is kept constant as well (Fig. 3A). Th e most 
convenient theoretical framework for such an analysis is a dimensionless form of the Navier-
Stokes equations, expressed in a non-inertial frame of reference fi xed to the revolving wing in hov-
ering fl ight (for derivation see Lentink and Dickinson, 2008, see also Vanyo, 1993; Greitzer et al., 
2004). Th e dimensionless fl uid acceleration due to net viscous and pressure forces acting on a 
fl uid ‘particle’ in an inertial frame ainert is related to that in the rotating frame aloc by (Baruh, 
1999): 

, where (1)

, (2)

, and  (3)

.  (4)

Here,  is the angular velocity and  is the angular acceleration of the rotating frame, and r and 
uloc are the position and velocity of a fl uid volume in the rotating frame, respectively (Fig. 3B). 
Th e angular acceleration is inversely proportional to A*, which is a measure of dimensionless 
stroke amplitude:

A* = Φ0R / c,   (5)

where Φ0 is the stroke amplitude in radians, R is wing length, and c is the average chord. Th is 
term expresses the amplitude as the number of chord lengths traveled.
 Th e three terms enclosed in brackets in Eqn. 1 are the angular (aang), centripetal (acen) and 
Coriolis (acor) accelerations. Physically, these three accelerations result from the wing’s kinematics 
and are enforced on the air close to the wing’s surface, which can neither fl ow though, nor slip 
with respect to the wing at its surface (Vanyo, 1993; Greitzer et al., 2004). We illustrate the three 
rotational accelerations that result from the dominant angular velocity due to stroke (Lentink and 
Dickinson, 2008) in Fig. 3B. Th e fi rst component aang, is the manifestation of the angular accel-
eration of the wing around its base, which results locally in a chord-wise acceleration (Fig. 2B). 
Th is term is absent on a wing that revolves unidirectionally at constant angular speed, but will 
be present if the angular velocity changes, as with reciprocating back and forth motion (Fig. 2A). 
Th e second term acen represents the centripetal acceleration, which is directed spanwise towards 
the wing’s base (Fig. 2B). Th e third term acor represents the Coriolis acceleration, its direction 
depends on the direction of local fl uid velocity uloc (Fig. 2B). Both the centripetal and Coriolis 
accelerations (acen and acor) are ‘quasi-steady’ in that they depend on the instantaneous value of 
the angular velocity , of the wing. Th is is in contrast to the angular acceleration (aang), which 
depends on changes in angular velocity; . Note that we consider accelerations (Eqns. 2-4, 
Fig. 2B) instead of the analogous “fi ctitious forces”, which point in the opposite direction (Vanyo, 
1993; Greitzer et al., 2004). 
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 Th e magnitude of the three acceleration terms aang, acen and acor are scaled with respect 
to the fl uid’s convective acceleration (in the local frame), which results in the three independent 
dimensionless numbers in Eqns. 2-4. In the special case of hovering fl ight, both the centripetal 
and Coriolis accelerations are inversely proportional to the Rossby number Ro (Rossby, 1936) 
(Lentink and Dickinson, 2008). From now on we will use the dimensionless length scales A* 
and Ro to quantify the angular centripetal, and Coriolis accelerations. For a revolving wing, 
Ro is equal to Rg / c, the ratio of the radius of gyration divided by the mean chord length. Ro is 
infi nite for wings that translate, because the radius of gyration is infi nitely large (Fig. 3A). It is 
convenient to calculate the Rossby number with respect to wingtip radius, R, rather than radius 
of gyration:

Ro = R / c,   (6)

because this value is equivalent to the aspect ratio of a single wing ARs and is easily extracted from 
the biological literature (details in Lentink and Dickinson, 2008). Typical values of Ro (based 
on wingtip radius) for insect wings cluster near 3 (Fig. 12C), which immediately suggests that 
rotational accelerations may be signifi cant (note Rg / c ≈ 1.5 because Rg ≈ 0.5R for insects). For a 
reciprocating wing, A* is equal to A / c; the ratio of stroke amplitude A to mean chord length c. 
Again, we consider the stroke amplitude at the wing’s tip instead of the radius of gyration, for 
simplicity. Note that for a unidirectional revolving wing A, and therefore A*, is infi nite.
 What is the relative importance of aang, acen and acor for insect wings? In hovering fl ight, 
the ratio of A* to Ro (the quotient of Eqs. 5 and 6) is Φ0, where Φ0 is the amplitude (in radians) 
of the harmonic function that defi nes the reciprocating motion of the wing (see defi nitions A* 
and Ro in Eqn. 5, 6) Φ0 ranges from about 0.6 to 1.5 for insects (Ellington, 1984). Th erefore A* 
is of the same order of magnitude as Ro across insects, order one, which suggests that the aang, acen 
and acor have similar magnitudes as well. Th is holds true not just for insects, but also larger ani-
mals under continuous or transient hovering conditions. Further insight can be gained by coarse-
ly evaluating the rotational accelerations at the start, middle, and end of each stroke assuming 
that the back and forth motion is roughly harmonic, a reasonable assumption for many insects 
(Ellington, 1984). At the end and start of the stroke both acen and acor are minimal because  
is zero, whereas  and thus aang is maximal and scaled by 1 / A*. However, these conditions are 
probably of little importance in LEV stability, because the LEV sheds and reforms (with opposite 
sense) during stroke reversal (e.g. see Poelma et al., 2006). At midstroke, when LEV stability is at 
issue, acen and acor are maximal and scaled by 1 / Ro, whereas aang is near zero. Th is simple analysis 
suggests that LEV stability might be mediated by the rotational accelerations acen and acor and 
not by the unsteady acceleration aang. Th e primary goal of the following experimental analysis is 
to explicitly test this theoretical prediction.

Dependence of LEV dynamics on dimensionless numbers
We performed a series of fl ow visualizations and force measurements on revolving (Ro = 2.9) 
and translating (Ro = ∞) fl y wings undergoing unidirectional (A* = ∞) and reciprocating (A* = 3.5) 
motion for angles of attack amplitudes between 0° and 90°. Th e fi nite values of Ro and A* are 
representative of slowly hovering fruit fl ies in free fl ight (Fry et al., 2003) and are close to the 
mean value found for many insects. (Note that Ro = ∞ corresponds with 1 / Ro = 0, i.e. Coriolis 
and centripetal accelerations are zero. Similarly, A* = ∞ indicates zero angular acceleration). 
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 Th e LEV is stable on an unidirectionally revolving wing (Ro = 2.9, A* = ∞; Fig. 1C and 
supplementary movie 3), as found in prior studies (Dickinson et al., 1999; Usherwood and 
Ellington, 2002; Birch et al., 2004), but not on a unidirectionally-translating wing (Ro = ∞, A* = ∞; 
Fig. 1B  and supplementary movie 2). Th e LEV is also stable on a reciprocally-revolving wing (Ro  = 2.9; 
A* = 3.5), but not on a reciprocally translating wing (Ro = ∞; A* = 3.5) (Fig. 4A and the supple-
mentary movie 4, 5). Th ese results are similar at Re 110 (fruit fl y scale) and 1400 (house fl y or bee 
scale). In summary, reciprocating motion (fi nite A*) is not suffi  cient to stabilize a LEV. Rather, 
LEV stability appears only to require the low Ro resulting from revolving propeller-like motion. 
 Although we observed a stable LEV at both Re 110 and 1400 on both unidirectionally- 
and reciprocally-revolving wings, the fl ow structure was not identical for these Re numbers, as 
found previously (Birch et al., 2004). In particular, the LEVs generated in experiments at Re 1400 
exhibited spiral bursting under both unidirectional and reciprocating motion (Fig. 3B). Th e 
‘bursting’ of a spiral vortex is a phenomenon that is thought to be initiated by deceleration of the 
core fl ow (Greenwell, 2002) and has been described for delta wings operating above a Re of about 
1000. For a unidirectional revolving wing, the LEV bursts immediately after startup at angles of 
attack above 18°, whereas for the reciprocating case the LEV bursts after the wing almost reached 
the mid-stroke position when the wing starts to decelerate (Fig. 4C). On our model insect wing, 
the LEV remained coherent after it bursts, resulting in a ‘turbulent’ volume of rotating fl uid 
whose position remained stable with respect to the wing. Examples of spiral bursting are shown 
in Fig. 3A for the end of a stroke at an angle of attack α = 36° at midstroke and in Fig. 4B for 
midstroke at α = 45° (note α = 90°− α0 for fl apping wings; Sane and Dickinson, 2001). Similar 

Fig. 4 | Infl uence of Ro on 
LEV stability. (A) LEV visu-
alized on wing undergoing 
revolving reciprocating motion 
(Ro = 2.9, A*  = 3.5) or trans-
lational reciprocal motion 
(Ro = ∞) at α = 36°. Th e visu-
alizations were made at s = 4c 
at the radius of gyration, near 
the end of the stroke (4.4c). 
At Re = 1400 and Ro = 2.9, the 
LEV bursts (b) halfway along 
the wing, but remains stably 
attached. (B) Top panel: close 
up of a LEV exhibiting spi-
ral bursting (sb) at Re = 1400 
midway through the stroke at 
α = 45°. Bottom-panel: at the 
end of the stroke for α = 18° at 
midstroke we observed that the 

burst LEV was λ-shaped; it splitted up into two ‘dual vortices’ near the tip, of which the bottom 
one, below the red line, burst spiral-like (b). (C) Observations of the occurrence of a stable LEV and 
the onset of spiral bursting within a stroke of a reciprocally-revolving wing (Ro = 2.9) at Re = 1400. 
Th e LEVs are stable for all angles of attack and exhibit spiral bursting midstroke for α > 18°, of which 
the start is indicated with a circle (diameter is larger than the S.D. calculated over 5 strokes). 
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to Lu et al. (2006), we observed in a few cases a double leading edge vortex structure with a small 
LEV in front of a larger burst LEV (Fig. 4B). 
 We summarize our fl ow visualizations in Fig. 5 using cartoons to indicate the basic fl ow 
structure at diff erent values of A* , Ro, and Re. It shows that revolving wings (Ro = 2.9) mediate 
compact and stable spiral LEVs, whereas the LEV is unstable for translating wings (Ro = ∞). 
Reciprocating motion (A*) does not modify LEV stability, but does at small stroke amplitudes, 
however, keep the LEV close to the wing as it sheds the unstable LEV in time and forms a new 
one (with opposite sense) during every stroke reversal (A* = 3.5). For higher stroke amplitudes 
this does not work because the LEV sheds before stroke reversal; unidirectional translational 
motion being the limiting case (A* = ∞). Reynolds number does not seem to aff ect LEV stability 
within the range examined. An increasing Reynolds number does, however, modify LEV integ-
rity as it induces vortex bursting on revolving wings. On translating wings we did not observe 
vortex bursting but the fl ow did become more erratic after a tight vortex was formed and started 
to separate from the wing, suggesting a transition to turbulent fl ow. 
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Fig. 5 | Flow cartoons that summarize our fl ow visualization experiments as a function of Re, 
Ro and A*. Low Ro (2.9) results in stable LEVs, A* (3.5, ∞) does not modify this and higher Re 
(110 →1400) induces vortex bursting, but does not aff ect the stable attachment of the LEV with 
respect to the wing. Re = 110 represents fruit fl ies and Re = 1400 house fl ies. Triangles represent 
unidirectional stroke kinematics, circles represent reciprocating stroke kinematics. Ro is indicated 
by color: yellow (Ro = 2.9), blue (Ro = ∞), as used in Fig. 6.
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Dependence force coeffi  cients on dimensionless numbers
One critical question in assessing effi  cacy of LEVs at diff erent Re is whether a burst LEV still aug-
ments the force generated by the wing. To address this, we measured the forces generated by the 
model fl y wing under diff erent kinematics conditions. Comparing the lift and drag coeffi  cients 
(CD and CL) generated at Re = 110 and 1400 under the four kinematic conditions discussed 
above (the four combinations of Ro and A* in Fig. 5) indicates that bursting does not result in a 
loss of force augmentation (Fig. 6A-C and Fig. 7). To the contrary, force coeffi  cients are actually 
elevated at higher Re, as has been reported previously (Birch et al., 2004). Th e presence of a stably 
attached LEV at low Ro (revolving motion) was in all cases accompanied by an increase of the lift 
and drag coeffi  cients relative to the Ro = ∞ case (translational motion). 
 To test if LEV stability and force augmentation depend directly on Ro, we varied Ro for 
both a unidirectionally- and reciprocally-revolving wing. Th is was achieved experimentally by 
extending the wing away from its rotational axis to create Ro values of 3.6 and 4.4 (Re = 1400). 
Force augmentation decreased with increasing Ro (Fig. 6A,B), consistent with the general predic-
tion that the LEV is stabilized at low Ro. However, we saw no evidence for LEV shedding in our 
force or video records under these conditions. We speculate that within the permissive range of 
low Ro the precise magnitude of rotational accelerations may infl uence equilibrium conditions 
and determine the strength and effi  cacy of the LEV. 
 Th e observation that the LEV was stable even after it bursts encouraged us to test whether 
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LEV force augmentation might extend to 
even higher Re. At Re 14,000 (humming-
bird scale) we continued to fi nd force 
augmentation (Fig. 6D). In Fig. 7 it can 
be seen that aerodynamic force polars of 
fl apping, spinning and translating wings 
depend only weekly on Re. Important 
Re eff ects do, however, still exist as the 
minimum drag coeffi  cient at zero lift, 
CD0, decreases with increasing Reynolds 
number. 

Effi  cacy of fl apping, spinning and translating fl y wings 
In the past, performance analyses of insect wings were focused primarily on maximum lift produc-
tion, which is augmented by the LEV, but how effi  cient is this high-lift mechanism? To assess one 
measure of aerodynamic effi  cacy, we constructed ‘performance polars’ using two relevant indices: 
glide number, CL / CD, and power factor, CL3/2 / CD (e.g. Ruijgrok, 1994; Wang, 2008). Th e 
required power for a certain amount of lift decreases with increasing power factor. Figure 8 shows 
how both force and performance polars are related. We further illustrate the eff ect of decreasing CD0, 

Fig. 7 | Lift and drag augmentation of 
the LEV varies little with Reynolds 
number. (A) Unidirectionally-translat-
ing wing. (B) Unidirectionally-revolving 
wing. (C) reciprocally-revolving wing, 
star represents fruit fl y kinematics. Th e 
force polars at Reynolds 1,400 and 14,000 
overlap for angle of attacks lower than 45 
degrees. Th e main eff ect of a low Reynolds 
number (110) is that it damps both lift 
and drag force.
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which increases performance, the corresponding performance maxima occur at lower angles of 
attack for lower CD0. Th e power factor is maximal (circle) at an angle of attack that is slightly 
higher than the one for which the glide number is maximal (square) (Ruijgrok, 1994). 
 Insects use reciprocally-revolving wings to generate lift, whereas helicopters use spinning 
blades and airplanes simply translate their wings through air. Based on Fig. 7 we can readily 
infer that fl apping and spinning fl y wings generate easily up to twice as much lift and drag 
force compared to translating fl y wings for 110 < Re < 14,000. But which kinematics generates 

lift most effi  ciently? For Re = 110-14,000 
we fi nd that the spinning fl y wings per-
form up to 100% better than fl apping fl y 
wings and up to 50% better than translat-
ing fl y wings, as measured by power factor 
(Fig. 9). Further, for 1,400 < Re < 14,000 
we fi nd that translating wings also outper-
form fl apping wings, whereas fl apping fl y 
wings slightly outperform translating wings at 
Re = 110 (fruit fl y scale). Our measurements 
show that fruit fl ies actually fl ap their wings 
with kinematics that are near optimal with 
respect to power factor; their wing kinematics 
results in a hovering performance that match-
es well the peak performance for our simpli-
fi ed robot kinematics at Re = 110 (Fig. 9). 
As Reynolds number increases, the angle of 
attack corresponding with minimum power 
decreases, indicating that less prominent 
LEVs result in maximal hover effi  ciency. Th is 
analysis, however, assumes that power factor 
is the most appropriate measure of general 
performance. If maximum lift were limiting, 
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one would reach quite diff erent conclusions as maximum lift occurs at roughly α = 45°, quite 
independent of Re.

Discussion

Using a dynamically scaled robot fl y wing we visualized the fl ow and measured the corresponding 
lift and drag forces that result from a range of wing kinematics at Reynolds 110 < Re < 1400. We 
tested swept wings and revolving and translating wings undergoing unidirectional and recipro-
cating motion. Th is allowed us to determine which kinematics results in stable LEVs, maximum 
lift augmentation, and maximum aerodynamic performance. Ultimately this test allowed us to 
determine which dimensionless number and corresponding rotational accelerations best predict 
LEV stability. 

Rossby numbers of order one mediate stabile LEVs 
Our results suggest that the centripetal acen and Coriolis acor accelerations mediate the stabil-
ity of a LEV on a unidirectional and reciprocally revolving insect wing (Fig. 5), and that these 
rotational accelerations are inversely proportional to Rossby number (Ro). Th e decrease in force 
augmentation from Ro = 2.9, 3.6 to 4.4 (Fig. 6A,B) suggests that LEV stability is confi ned to Ro 
of order 1 or lower. However, high aspect ratio revolving wings still experience signifi cant rota-
tional accelerations near the root were the radial position r is small compared to chord length c 
and thus could locally support a stable LEV. Th is eff ect is likely responsible for the higher than 
expected forces found near the hub of high aspect ratio wind turbine blades where local Ro = r / c 
is less than 3 (Tangler, 2004), a phenomenon that has been confi rmed by computational fl uid 
dynamic (CFD) simulations (Beom-Seok et al., 2002). Th e LEV visualizations of Lu et al. (2006) 
on fl apping high aspect ratio wings (Ro = 1.3-10) suggest that the most prominent LEV (they fi nd 
dual vortices for Re > 640) is indeed confi ned to the base-region where local Ro is approximately 
lower than 3. 
 Our theoretical prediction and experimental confi rmation suggest that rotational accel-
erations mediate LEV stability, but how are acen and acor physically involved? On wind turbines, 
operating at Re of order 106, acen has been attributed to centrifugal pumping (e.g. Lindenburg, 
2004; Vanyo, 1993; Greitzer et al., 2004), which results in an outward spanwise fl ow near the 
hub. At the hub the blade undergoes so-called ‘3D stall’ and generates elevated lift forces result-
ing in local lift coeffi  cients well above 2 (Tangler, 2004). Th e fl ow pattern in the hub region of a 
wind turbine, where local Ro is similar to that of insect wings, is distinct from the pattern more 
distally, where the slender blades are said to undergo ‘2D stall’ (Beom-Seok et al., 2002; Tangler, 
2004; Lindenburg, 2004). 
 For simple rotating disks, the outward radial fl uid fl ow mediated by centripetal accel-
eration of the disk is well known (e.g. Vanyo, 1993). Th e radial fl ow is limited to a boundary 
region known as the Ekman layer (Fig 10). Th e corresponding Ekman number, , is a 
measure of the ratio of viscous forces to Coriolis accelerations in this boundary layer. In the case 
of revolving disks and wings, Ek is equal to Ro / Re, hence one can independently choose any pair-
wise combination of Ek, Ro, and Re as the set of characteristic dimensionless numbers (Vanyo, 
1993; Greitzer et al., 2004). Th e fi rst set, Re and Ro, is preferable for analyses of biological fl ight, 
because Re is more widely reported in the literature. In the Ekman layer, the fl uid at the surface 
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Fig. 10 | Boundary layer on a spinning disk 
(after Vanyo, 1993). A rotating boundary layer 
is commonly referred to as the Ekman layer and 
the axial fl ow towards the wing, needed to balance 
the radial fl ow is referred to as Ekman pumping. 
Th e boundary layer velocity profi le is self-similar 
in that it scales with angular velocity times radial 
distance. Th erefore, the velocity profi les shown 
depict the whole velocity fi eld. Th e pressure fi eld 
is rotationally symmetric and does not vary with 
radius; it only varies with the axial distance from 
the disk. Th e forces needed to support Coriolis 
and centrifugal accelerations are therefore solely 
due to friction, which is proportional to velocity 
gradient. Whereas solving the NS-equations on 
revolving wings is practically impossible in the 

inertial (lab) reference frame, because of the surface tracking needed, in the special case of spinning 
disks it is easiest to solve the equations in the inertial (lab) frame. Th e reason being that the disks 
surface fi lls an infi nite plane and does not need to be tracked, which simplifi es the math dramati-
cally. Note that  is the angular velocity of the disk and the fl uid particle that sticks to it, ’ < ; 
r, radial vector; urad, radial velocity; acen, centripetal acceleration; acor , Coriolis acceleration; 
fcor, normalized coriolis force; fcen, normalized centripetal force.

of the spinning disk has the same angular velocity as the disk (due to the no-slip condition at 
the surface) and therefore undergoes a centripetal acceleration acen equal to that of the spinning 
disk, supported by a radial friction force fcen. A bit higher above the surface of the disk, the fl uid 
is pulled along in a tangential direction due to friction, but at the same time it slips outward 
radially. It slips because there is not a large enough friction force (from the gradient of radial 
velocity) to support the full centripetal acceleration acquired by the fl uid at the disk’s surface. 
While slipping radially outward the fl uid particle undergoes Coriolis acceleration acor in tangen-
tial direction, because it speeds up to match the higher tangential velocity outward and changes 
direction (it rotates while pulled along by the disk). Th is Coriolis acceleration is supported by a 
tangential friction force fcor that results from the tangential fl ow gradient in axial direction. Even 
higher above the disk’s surface the boundary layer seizes to exist. Because mass is conserved, the 
outward radial fl ow of fl uid must be supplied with ‘fresh’ fl uid that fl ows towards the disk in axial 
direction. Th is process is called Ekman pumping. 
 Th e region of outward radial fl ow on top of a spinning disk is also a conspicuous feature 
found on top of insect wings (Maxworthy, 1979; Ellington et al., 1996; Birch and Dickinson, 
2001; Birch et al., 2004; Poelma et al., 2006) and near the hub of both propellers (Himmelskamp, 
1947) and wind turbines (Tangler, 2004; Lindenburg, 2004) were Ro is low locally. In fact, 
Ekman-like boundary layer profi les have been calculated for wind turbine blades (Dumitrescu 
and Cardos, 2003). Important historic evidence for spanwise fl ow on a propeller at low Ro can 
be found in Himmelskamp (1947), a classic reference in wind turbine literature. In Fig. 11, we 
reproduce his visualizations of spanwise fl ow on a low-aspect ratio propeller. Early spanwise fl ow 
visualizations and measurements on insect wings suggested that spanwise fl ow is confi ned pri-
marily to the fl uid region occupied by the core of the LEV (Maxworthy, 1979; Ellington et al., 
1996). Later Digital Particle Image Velocimetry (DPIV) measurements of unidirectional and 
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J=0.124 J=0.306

J=0.382

J=0.459

J=0.162

J=0.229

Fig. 11 | Elevated forces and spanwise fl ow on a stubby propeller operating at Ro ≈ 2 and 
Re = 280.000. (A) Th ese unique tuft-based fl ow visualizations made by Himmelskamp (1947) 
have never been published in a journal and are therefore reproduced here. Th e advance ratio J of 
the propeller is calculated as the ratio of forward speed and wing tip speed, it varies from 0.124, 
almost hovering conditions, to 0.459, forward fl ight conditions. Th e tufts indicate increasingly 
strong spanwise fl ow at low advance ratios approaching hover conditions. Th is spanwise fl ow corre-
sponds with elevated lift. (B) For completeness we also reproduced a sketch of the propeller and the 
measured section lift coeffi  cients, based on pressure measurements at radial stations, published in 
Schlichting (1979). Note that R is the wing tip radius, r the local radius, α the angle of attack, and 
Ca is the section lift coeffi  cient. Th e maximum section lift coeffi  cient of 3 is well above maximum 
lift coeffi  cient generated by the same airfoil in a wind tunnel (dashed line). Inboard sections, where 
Ro is lowest, correspond with maximum lift, which is also due to the twist in the propeller blade. 
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Fig. 12 | Proposed 3D fl ow structure of a stable LEV and feasibility of its general use by fl y-
ing animals. (A) Sketch of the local fl ow fi eld on a revolving fruit fl y wing at Re 110 and 1400 
based on previously published PIV data (Birch et al., 2004) and Fig. 1, 4 and 5. Spanwise fl ow is 
present in the whole region on top of the wing and convects the accumulating vorticity in the LEV 
towards the tip vortex. (B) Th e large spanwise fl ow region of the wing is mediated by the rotational 
accelerations, acen and acor , which results in an Ekman-like boundary layer, similar to that on spin-
ning disks and wind turbine blades. Th e accelerations are balanced by the corresponding normal-
ized centripetal (fcen) and Coriolis (fCor) forces in the fl ow that can be composed out pressure and 
friction forces. (C) Rossby number of animal wings assuming zero advance ratio as a function of 
body mass (n = 319 in total). Th e average values are close to those found for fruit fl ies (2.9): insects 
Ro = 3.1 (std 1.1, n = 98), hummingbirds Ro = 3.7 (std 0.3, n = 65), bats Ro = 3.3 (std 0.4, n = 39) and 
birds Ro = 3.2 (std 1.18, n = 117). Th e circles with a black outline represent values that are directly 
based on the aspect ratio of one wing. Circles without a black outline represent values for which 
we corrected the aspect ratio of the tip-to-tip distance between paired wings and total wing surface 
such that we obtained the single-wing aspect ratio comparable to the calculation of the wingtip 
Rossby number. Th is amounted to subtracting the distance contributed by the body width between 
the wing bases. Information on this and all the insect, bat, hummingbird and bat wing morphology 
references can be found in Appendix I. Th e constant-Reynolds number lines are calculated assum-
ing an average CL of 1.5 and represent the Reynolds numbers of our experiments and the one of 
Himmelskamp (1947), details are given in Appendix II. 
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reciprocating revolving model fruit fl y wings have show that spanwise fl ow is not primarily con-
fi ned to the LEV, but extends all the way to the trailing edge (Birch and Dickinson, 2001; Birch 
et al., 2004; Poelma et al., 2006). Concurrently to the spanwise fl ow there is signifi cant fl ow in 
an orthogonal direction, parallel to the axis of rotation, which suggests Ekman-like pumping 
Th is fl ow is even visible quite far from the wing’s surface (Birch et al., 2004; Poelma et al., 2006). 
Th e region of radial fl ow and the orthogonal fl ow towards the ‘hub’ of the wing on inclined 
reciprocating and unidirectional revolving insect wings indicate the presence of an Ekman-like 
boundary layer, although due to ‘fl ow separation’ its spatial extent is much larger, Fig. 12A 
(Vanyo, 1993). 
 Our measurements and the observations for spinning disks, wind turbines and a propel-
ler suggest that the spanwise fl ow results from ‘centrifugal pumping’ as the fl uid near the wing’s 
surface slips radially outward. Th e fl uid slips, because there is not enough friction to support the 
full centrifugal acceleration acen that the fl uid requires at the wing’s surface, (Fig. 12 A, B). In 
these cases, the centripetal acceleration also results from a net specifi c force directed towards the 
wing base (fcen in Fig. 12B) that is presumably composed of both a pressure component as well 
as the friction component that would be present on a spinning disk, (Fig. 10). All these fi ndings 
strongly suggests that centrifugal pumping due to wing rotation at low Ro can be found for both 
low and high Re - from insect wings to wind turbine blades. 
 Th e observation that the region of separated spanwise fl ow (which includes the LEV, Fig. 5) 
stays stably attached to a revolving wing implies that it is not only subject to a centripetal accel-
eration acen but also to a continuous acceleration in the chord wise direction. Th e required accel-
eration for this kinematic condition is precisely the Coriolis term acor (similar to the fl ow on 
spinning disks). Th is implies that the spanwise fl ow driven by acen is stabilized with respect to 
the wing through acor, which must be supplied by a net specifi c chordwise force that points in 
the direction of travel (fcor in Fig. 12B). Lindenburg (2004) showed that if acor is supported by 
a fore-aft pressure gradient acting across the region of spanwise fl ow it could account for the 
elevated forces generated close to the hub of a wind turbine. Whether this force augmentation 
model works quantitatively for fl apping insect wings is unknown, but could be examined in 
future research.
 Our qualitative analysis of centripetal and Coriolis acceleration holds globally for the 
whole region of spanwise fl ow, but perhaps not in detail. For calculating the detailed accelera-
tion distribution, and corresponding local directions, the velocity fi eld is needed. Sun and Wu 
(Sun and Wu, 2004) calculated this velocity fi eld around an unidirectional revolving insect wing 
at Re = 480 using CFD. Based on the velocity fi eld they computed the “fi ctitious forces”, which 
point in the opposite direction of the corresponding rotational accelerations (Vanyo, 1993; 
Greitzer et al., 2004). Th eir computation of the spanwise components of the ‘Coriolis force’ and 
‘Centrifugal force’ in the boundary layer fl ow for an angle of attack of 40° confi rms that Coriolis 
and centrifugal accelerations are indeed signifi cant. Th ey further found that the radial pressure 
gradient force, due to the linear spanwise velocity distribution, is even larger and concentrated 
in the LEV, which can therefore explain spanwise fl ow in the whole LEV at Re = 480. But the 
pressure-gradient force is also signifi cant in other regions where there is no spanwise fl ow. In light 
of this, we note that the DPIV measurements of (Birch et al., 2004) at Re = 110 and 1400, show 
signifi cant chordwise velocity in extended regions below, in front, and above a fl y wing, without 
spanwise fl ow. Th is is signifi cant, because in this region viscous eff ects from the wing’s surface are 
negligible, so the viscous ‘centrifugal pumping’ mechanism cannot work. Th e pressure-gradient 



4  Take-off into the third dimension 99

force in this region is, however, non-zero because chordwise fl ow varies radially from wing root 
to tip, which again should drive a spanwise fl ow if such gradients were eff ective, but this does 
not seem to be the case. Th us, there appears to be no one-to-one link between spanwise fl ow and 
pressure gradient force throughout the fl ow fi eld around a fl y wing at both low and high Re. Most 
likely spanwise fl ow due to pressure gradient is primarily confi ned to the core of the LEV. Aono 
and co-workers (Aono et al., 2008) further show that little spanwise fl ow and pressure-gradient 
exists in the LEV of a fruit fl y at Re = 134, while they do fi nd signifi cant spanwise fl ow behind the 
LEV. For a Hawkmoth at Re = 6300 they did fi nd strong spanwise fl ow and pressure-gradient in 
the LEV. Th ese fi ndings of spanwise fl ow agree with our fi ndings as well as those of Birch et al. 
(Birch et al., 2004). Aono and co-workers further suggest that Coriolis and centripetal accelera-
tions are the likely candidates for explaining the spanwise fl ow they found behind the LEV on 
fruit fl y wings. 
 Integrating all these observations, including our theoretical predictions and experimental 
confi rmation we conclude that: 1) the spanwise fl ow in the core of the LEV of an insect, when 
present, is most likely to be driven by the spanwise pressure gradient; 2) the spanwise fl ow in 
the extended viscous fl ow region behind the LEV can be explained best by centrifugal pumping, 
directly analogous to that found on spinning disks, propeller blades, and wind turbine blades. 

LEV integrity is mediated by Re and A* 
Similar to fi ndings of vortex-breakdown by van den Berg and Ellington (1997) and Lu et al. 
(2006) we found that the LEV on a fl y wing exhibits spiral bursting at Re 1400. Spiral bursting 
is a phenomenon that has been described for delta wings operating above a critical Re of about 
1000, and is thought to be initiated by core fl ow deceleration (Greenwell, 2002). If we assume 
that the fl ow around an insect wing, including the core of the LEV, accelerates when the wing 
accelerates, we can qualitatively understand why the LEV starts to bursts near mid-stroke when 
the wing, and therefore the LEV’s core, starts to decelerate. Th is shows that, although A* does not 
aff ect LEV stability, the corresponding angular acceleration can mediate LEV integrity. Vortex 
bursting may explain the erratic velocity vectors in the LEV found during previous quantitative 
fl ow measurements under similar conditions (Birch et al., 2004). Finally, our measurements 
show that the force coeffi  cients do not decrease as a result from vortex bursting, Fig. 5 and 6. Th is 
suggest that LEV based force augmentation is robust to high Re number eff ects. 

Comparing old and new LEV stability hypotheses
How do our fi ndings relate to the previous ones that resulted in the swept wing analogy and tip 
vortex hypothesis? We found that LEV stability induced by the tip-vortex does not seem to work 
for fl y wings at Re = 110 and 1400 (Fig. 1, 2), although there is evidence for higher Reynolds 
numbers that translating stubbier wings with an aspect ratio of roughly one (and less) do gener-
ate stable LEVs (Winter, 1936; Ringuette, 2007). Ellington and co-workers (Ellington, et al., 
1996) suggested that three mechanisms could potentially explain how spanwise fl ow could be 
generated. Our theoretical analysis, experimental test and literature survey show that ‘centrifugal’ 
acceleration in the boundary layer is the likely mechanism at the low Re of fruit fl ies. At high 
Re, the pressure gradient force can explain spanwise fl ow in the LEV core, whereas centrifugal 
pumping can explain spanwise fl ow behind the LEV. Th e region of spanwise fl ow is clearly not 
confi ned to the LEV core alone, at low and high Reynolds numbers, and its spatial distribution 
above an inclined wing depends strongly on Reynolds number (Birch et al., 2004; Aona, et al., 
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2008). Our analysis further indicates that Coriolis acceleration is equally important in the stable 
attachment of the LEV, because this acceleration is an indispensible kinematic condition for 
the stable attachment of spanwise fl ow with respect to a revolving wing. All these experiments 
support, however, the hypothesis that spanwise fl ow balances the formation of vorticity at the 
leading edge and drains it into the tip vortex (Maxworthy, 1979; Ellington et al., 1996). Th e 
importance of Ro, and not Re, in determining LEV stability suggests further that vorticity trans-
port in the large ‘Ekman-like’ separated fl ow region behind the LEV could be equally critical in 
maintaining this balance at low Re, compared to vorticity transport found in the LEV at high Re. 
We infer this from a prior study that suggests that the outward spiral fl ow within the core is Re 
dependent (Birch et al., 2004), whereas those results as well as our own suggest that LEV stability 
is not. Further, a direct analogy between LEVs on swept and revolving wings does not seem to 
hold for equally shaped wings operating at equally low Reynolds numbers, because we did not 
observe stable LEVs nor force augmentation for swept fruit fl y wings (Fig. 1, 2). In other experi-
ments with high aspect ratio swept bird wings (Apus apus) a stable LEV was found (Videler et al., 
2004; Lentink et al., 2007), but no signifi cant force augmentation (lift coeffi  cients lower than 
one) for 12,000 < Re < 77,000 (Lentink et al., 2007). Th is suggests that a direct analogy between 
LEVs on swept and revolving wings does not hold at higher Reynolds numbers either.

Link between Rossby number and ‘quasi-steady’ lift theory
Th is study supports an earlier notion that the aerodynamic force generation of insects might 
be considered ‘quasi-steady’, excluding the complications that occur during stroke reversal 
(Dickinson et al., 1999; Sane and Dickinson, 2001; Usherwood and Ellington, 2002). Quasi-
steadiness implies that the instantaneous value of the fl ow velocity is more important than its 
instantaneous rate of change for understanding and predicting the aerodynamic forces, in par-
ticular wing lift (Sane and Dickinson, 2001). Our theoretical framework supports this idea, 
since the ‘quasi-steady’ rotational accelerations, acen and acor, are responsible for LEV stability, 
whereas the unsteady angular acceleration, aang, is not. Th is is not to say that unsteadiness is not 
signifi cant in insect fl ight. Th e translational reciprocating case resulted in an unstable LEV that 
still signifi cantly augmented force, as found by Wang et al. (2004), but this force is less than that 
found for revolving wings (Fig. 6). Further, LEV stability is less important for insects that employ 
considerable smaller stroke amplitude than fruit fl ies. For example, unloaded hovering bees use 
a narrow stroke amplitude (Φ0 = 0.78 rad, compared to 1.2 for a fruit fl y) resulting in a lower 
dimensionless stroke amplitude. Recent experiments indicate that bees depend more strongly on 
unsteady force augmentation at the start and end of the stroke (Altshuler et al., 2005), at which 
point angular acceleration is maximal and the rotational accelerations are minimal. Th is implies 
that unsteady lift mechanisms such as added mass eff ects and wake capture (Dickinson et al., 
1999) become increasingly more signifi cant, compared with ‘quasi-steady’ forces based on the 
stable LEV, when the dimensionless stroke amplitude decreases. 

Lift augmentation at Reynolds numbers higher than 14,000
Our experiments (110 < Re < 14,000) and experiments of others on a propeller (Re = 280.000) 
and wind turbines (Re of order 106) suggests that lift augmentation is continuous in the inertial 
fl ow regime for Rossby numbers of order one. Ellington and Usherwood (2001) found, however, 
that revolving model hawk moth wings operating at 10,000 < Re < 50,000 failed to produce high 
lift. Th e reason for this is unclear, and their fi ndings for Re = 10,000 contrast ours at Re = 14,000 
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and the high force coeffi  cients found for quail wings at Re = 26,000 by Usherwood and Ellington 
(2002). It could well be that airfoil shape plays a critical role in the apparent lift crisis for the 
thin and sharp model hawk moth-like wings at 10,000 < Re < 50,000. Schmitz (1942) found such 
phenomenon for airfoils through wind tunnel experiments within this same range. He found 
that thin and sharp airfoils outperformed blunt and thick airfoils at low Re and vice versa at high 
Re. For these airfoils there exists a critical Re below which its lift decreases and its drag increases 
drastically. Th is is due to the presence of laminar separation bubbles and transitions to turbu-
lent boundary layer fl ow that dominate airfoil performance at intermediate Re. Th is is relevant 
because the spinning wings tested by Ellington and Usherwood (2001) (at intermediate Re) fea-
tured thin and sharp, sub-critical, airfoils whereas the propeller (Himmelskamp, 1947) and wind 
turbine blades at high Re (Tangler, 2004) featured thick and blunt, super-critical airfoils, airfoils. 
Ellington and Usherwood (2001) tentatively conclude that the LEV is unstable on revolving 
wings at Re >= 10,000 due to a lack of spanwise fl ow that stabilizes the LEV. Spanwise fl ow visu-
alization of Himmelskamp (1947) on a propeller at Re = 280,000 (Fig. 11) and visualizations of 
stable LEVs on wind turbine blades (Beom-Seok et al., 2002), propeller fans (e.g. Simonich et al., 
1992) and ship screws (e.g. Kerwin, 1986) operating at similar angles of attack and Ro, but 
at higher Re, contradict this idea. Work of Hubel and co-workers (Hubel, 2006) shows that a 
model goose fl apping in the intermediate Reynolds number regime can, indeed, generate a stable 
LEV during forward fl ight. We conclude therefore that there is signifi cant evidence that LEV-
based force augmentation could exist continuously from revolving fruit fl y wings to wind turbine 
blades at low Ro, but more research on the infl uence of airfoil shape on LEV generation, stability 
and force augmentation in the intermediate 10,000 < Re < 100,000 is needed. 

Force augmentation of revolving wings in nature and technology
In summary, the single condition for LEV stability and maximal force augmentation appears to 
be a suffi  ciently low Ro. Th us, the use of LEVs to augment forces may be more widely distrib-
uted among swimming and fl ying animals than previously appreciated. In Fig. 12C, we show 
the results of a literature survey plotting Ro for hovering wings as a function of body mass. Th e 
distribution indicates that many large animals possess wings with a suffi  ciently low Ro to create 
stable LEVs (note that Ro at the all-important radius of gyration is roughly 50% lower than Ro 
calculated at the wing tip in Fig. 12C). Th is is not to suggest that all animals larger than insects 
can hover or create LEVs when fl ying at cruising speed, but that there is no aerodynamic reason 
why they could not make use of this mechanism during slow hovering fl ight or short-take off  and 
landing when their advance ratio is small and Ro is of order one (E.g. see Fig. 10, spanwise fl ow 
decreases for higher advance ratios). LEVs, under low Ro conditions have indeed been found on 
the wings of bats during hovering fl ight (Muijres et al., 2008). Th e elevated forces we measured 
at Re = 14,000, a value appropriate for hummingbirds, is consistent with the putative observation 
of LEVs on hummingbird (Altshuler et al., 2004; Warrick et al., 2005) and quail (Usherwood 
and Ellington, 2002) wings. Finally, Hubel and co-workers found a stable LEV near the base of 
a fl apping goose model in forward fl ight (Hubel, 2006). Th e local Rossby number is much lower 
near the wing base, like on wind turbine blades (see also Lentink and Dickinson, 2008) and can 
therefore locally support a stable LEV, even at relatively high advance ratios. 
 Because Reynolds number and stroke amplitude are not critical features in LEV stability, 
we think that a LEV could be an effi  cient high-lift mechanism for slow hovering animals, small 
and big. Our experiments suggest that aerodynamic effi  ciency is maximal for smaller LEVs gen-
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erated at lower angles of attack, at increasingly higher Reynolds number (Figs. 8, 9). Total hover-
ing effi  ciency, however, depends not only on aerodynamic effi  ciency, but also on the effi  ciency of 
the muscles that drive the wing. During hovering, animal weight is balanced by vertical thrust, 
which is proportional to the product of lift coeffi  cient, (fl apping frequency)2, and (stroke ampli-
tude)2. Noting that fl apping frequency is confi ned to a narrow band for high muscle effi  ciency 
(McMahon, 1984), and that stroke amplitude is limited to 180° or less, a high maximum lift 
coeffi  cient clearly helps to accommodate both the high vertical thrust needed to balance weight 
during hovering and the much lower thrust needed during cruising. 
 Our theoretical frame work represents air and water equally well. Th e pectoral fi ns of 
many swimming animals fl ap similar to the wings of fl ying animals, but not only for generat-
ing lift, also for generating drag to maneuver. Fig. 6 shows that revolving wings (unidirectional 
and reciprocating) not only generate more lift for their surface area, they also generate much 
more drag at very high angles of attack, well beyond 45°. For angles of attack above 45°, the 
attached leading and trailing edge vortex (LEV and TEV) on the model fl y wings are surprisingly 
similar to the ones recently observed on the pectoral fi n of a sun fi sh (Lauder and Madden in: 
Bandyopadhyay et al., 2008). Th e Rossby number based on the single-wing aspect ratio of fi sh 
pectoral fi ns is often low. For 7 species described in literature we found Ro = 2.5 on average with 
std. 0.7 (references in appendix I), low enough values of Ro for stable LEVs. For completeness 
we also estimated an average Ro value of 3.7 for autorotating seeds (std 1.14 n = 26, references 
in appendix I). Th is suggests that a stable LEV could also explain the elevated lift forces found 
for these botanical structures (Azuma and Yasuda, 1989), We have recently tested this using 
three-dimensional DPIV and will report the results elsewhere. With respect to technology, we 
envision that micro air vehicles could more easily mimic nature and generate a stable LEV by 
simply adopting the only constraint for a stable LEV and force augmentation ⎯ revolving a wing 
continuously at low Rossby number, which is more effi  cient than fl apping the same wing. 
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Symbols
α wing angle of attack
α0  wing angle of attack amplitude
Φ0  wing stroke amplitude (half the total stroke amplitude Φ)
ν kinematic viscosity
ρ fl uid density

 angular velocity of the rotating frame
 angular velocity of the rotating frame

  angular acceleration due to wing stroke
  angular acceleration due to wing stroke

’ angular velocity of the fl uid separated from the fl y wing

aang angular acceleration
acen  centripetal acceleration
aCor  Coriolis acceleration
ainert acceleration with respect to inertial coordinate system
aloc acceleration with respect to local coordinate system
A* stroke amplitude
ARs single wing aspect ratio
AR tip to tip wing aspect ratio
b burst vortex, Fig. 4
bs single wing span
c average wing chord length
C correction factor wing aspect ratio data
CL lift coeffi  cient
CD drag coeffi  cient
CD0 drag coeffi  cient at zero lift
Dchord chordwise drag force
Ek Ekman number
fcen specifi c centripetal force (per unit of volume) 
fCor specifi c Coriolis force (per unit of volume) 
J advance ratio
L lift force
m  mass
n  number of experiments
r magnitude of radius vector
r  position of a fl uid particle in the rotating frame
R wing radius
Rg  wing radius of gyration
Re  Reynolds number
Reg  Reynolds number at the radius of gyration
Ro Rossby number
s distance traveled in chord lengths
sb spiral burst vortex, Fig. 4
std standard deviation
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S single wing area
uloc velocity in local coordinate system
Ug average velocity at the radius of gyration
V velocity along wing radius
W Weight
(x, y, z)  local coordinate system

Appendix I: Rossby numbers of animal wings from insects to birds. 
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Fig. A1 | Rossby numbers had only to be corrected for insects and birds. For insects we made 
use of photos of insects with extended wings, which resulted in an accurate correction (yellow 
circles without outline in Fig. 12C). For the corrected bird values (blue circles without outline in 
Fig. 12C) we could not obtain such accurate photos and proceeded as follows: First, we obtained 
a large data set of aspect ratios based on the full wing span (Tennekes, 1997). Subsequently, we 
compared these values with the ones for which we also obtained an accurate value of the single-
wing aspect ratio (Slater Museum, 2005-2006) and determined the required correction factor C. 
We correlated the correction factor C to the aspect ratio of the full wing divided by two, AR / 2. 
Th is factor was used to estimate the single-wing aspect ratio of the remaining bird wings with a 
conservative extrapolation r value for albatrosses (AR / 2 ≈ 7.5) that is close to one. 

Insect wing data: 
Azuma A. (2006). Th e biokinetics of fl ying and swimming, AIAA Education series.
Ellington C. P. (1984). Th e aerodynamics of insect fl ight. I-VI. Phil. Trans. R. Soc. Lond. B 305, 

1-181.
Lehmann F. -O. and Dickinson M. H. (1998). Th e control of wing kinematics and fl ight forces 

in fruit fl ies (Drosophila spp.). J. Exp. Biol. 201, 385-401.
Marden H.J. (1987). Maximum lift production during takeoff  in fl ying animals. J. Exp. Biol. 

130, 235-258.

Hummingbird wing data: 
Altshuler D. L. (2001). Ecophysiology of hummingbird fl ight along elevational gradients: An 

integrated approach. PhD. thesis Univ. of Texas at Austin.
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Chai P. and Millard D. (1997). Flight and size constraints: hovering performance of large 
hummingbirds under maximal loading. J. Exp. Biol. 200, 2757-2763.

Stiles F. G. Altshuler D. L. and Dudley R. (2005). Wing morphology and fl ight behaviour of 
some north american hummingbird species. Th e Auk 122, 872-886.

Bat wing data:
Hartman F. A. (1963). Some fl ight mechanics of bats. Ohio J. of Sc. 53, 59-65.
Jones G. Webb P. I. Sedgeley J. A. and O’Donnell C. F. J. (2003) Mysterious Mystacina: how 

the New Zealand short-tailed bat (Mystacina tuberculata) locates insect prey. J. Exp. Biol. 206, 
4209-4216.

Norberg U. M. Brooke A. P. and Trewhella W. J. (2000). Soaring and non-soaring bats of the 
family pteropodidae (fl ying foxes, Pteropus spp.): wing morphology and fl ight performance. 
J. Exp. Biol. 203, 651-664.

Vaughan N. Parsons S. Barlow K. E. and Gannon M. R. (2004). Echolocation calls and wing 
morphology of bats from the west indies. Acta Chiropterogica 6, 75-90.

Bird wing data:
Slater Museum (2005-2006). Online Wing collection of the Slater Museum of Natural History, 

Univ. of Puget Sound, http://www.ups.edu/x5662.xml (2005-2006).
Tennekes H. (1997). Th e simple science of fl ight, Th e MIT Press, Cambridge.

Fish pectoral fi n data:
Hove J. R., O’Bryan L. M., Gordon, M. S., Webb, P. W. and Weihs D. (2001). Boxfi shes 

(Teleostei: Ostraciidae) as a model system for fi shes swimming with many fi ns: kinematics. 
J. Exp. Biol. 204, 1459-1471.

Combes, S. A. and Daniel, T. L. (2001). Shape, fl apping and fl exion: wing and fi n design for 
forward fl ight. J. Exp. Biol. 204, 2073-2085.

Walker, J. A. and Westneat, M. W. (2002). Performance limits of labriform propulsion and cor-
relates with fi n shape and motion. J. Exp. Biol. 205, 177-187.

Walker J.A. (2004). Dynamics of pectoral fi n rowing in a fi sh with an extreme rowing stroke: the 
threespine stickleback (Gasterosteus aculeatus) J. Exp. Biol. 207, 1925-1939.

Autorotating seed wing data:
Azuma, A. and Yasuda, K. (1989). Flight performance of rotary seeds. J.Th eor. Biol. 138, 

23-53.
Yamada, T. and Suzuki, E. (1999). Comparative morphology and allometry of winged diaspores 

among the Asian Sterculiaceae. J. Trop. Eco. 15, 619-635.

Appendix II: Th e relation between Ro, mass and Re 

Th e Reynolds and Rossby number (based on wing radius; single-wing span) in hovering fl ight 
are given by:

, and  (II.1)
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.  (II.2)

Note that b is the wing span, S the wings surface area and ARs the single-wing aspect ratio. Force 
equilibrium in hovering fl ight requires that the following relation holds:

,  (II.3)

where W is the weight,  the time-averaged lift,  the time-averaged lift coeffi  cient, m the mass 
and g the gravitational constant. We now approximate the time-averaged velocity with the r.m.s. 
time-averaged velocity which results in:

.  (II.4)

Combining eqs. II.1, II.2 and II.4, we obtain the Reynolds number as a function of the total 
mass and the wingtip Rossby number for hovering fl ight:

.  (II.5)

We plotted Reynolds number isolines of hovering animal wings in fi gure 12C of the paper by 
assuming a time averaged lift coeffi  cient of 1.5 for the full weight range from insects to birds. In 
doing so, we assume the animal is making use of a LEV and operates at a high lift coeffi  cient of 
CL = 1.5. Th is approximation suffi  ces for the Reynolds number of which the exact value is less 
relevant.
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5 Swirling down to earth



5.1
A LEADING EDGE VORTEX PROLONGS DESCENT OF MAPLE SEEDS

David Lentink*, William B. Dickson, Johan L. van Leeuwen and Michael H. Dickinson

Submitted

Like other autorotating seeds, swirling maple seeds descend slowly to the ground and can 
thus make more eff ective use of wind for dispersal1-5. As they descend, the autorotating 

seeds of maples and other trees generate exceptionally high lift forces for their wing area6,7, 
but the mechanisms by which they attain this elevated performance is largely unknown. To 
fi nd out how they achieve this aerodynamically, we measured the three-dimensional fl ow 
around dynamically scaled models of maple and hornbeam seeds. We show that maple seeds 
attain high lift because they generate a stable leading edge vortex (LEV), whereas the fl ow 
around the hornbeam seed is partially separated. Taking both seed weight and wing area 
into account for a wide range of gliding and spinning seeds3,7-9, we fi nd that maple seeds 
remain in the air more eff ectively than do both hornbeam and a variety of non-autorotating 
seeds. LEVs also explain the high lift generated by hovering insects10-13, bats14 and possibly, 
hummingbirds15. Th is suggests that the ability to generate LEVs represents a convergent 
aerodynamic solution in the evolution of fl ight performance in both animals and plants. 
Th e high performance aerodynamics of maple seeds could inspire the design of future tur-
bine blades and autorotating vehicles16,17. 
 Maples (Acer) are primary succession trees adapted to nutrient-poor habitats in temper-
ate climates18. Like many other pioneer trees, maples rely on wind, updrafts and turbulent gusts 
to disperse their seeds over distances ranging from several meters to, on occasion, kilometers4,5. 
Maple seeds typically disperse under windy conditions and start to autorotate within one meter 
of detaching from the tree (Fig. 1a, c). Autorotation results from the heavy nut, and hence the 
seed’s center of gravity, being located at the wing base1-3,6,7. Th e stable autorotation of maple and 
other rotary seeds depends on an intricate, non-linear, interplay between their three-dimensional 
inertial and aerodynamic properties, which is not fully understood6,16,19. Th e presumed func-
tion of autorotation is that it creates lift to prolong the descent of the seed. Detailed performance 
studies by Norberg6 and Azuma and Yasuda3,7 revealed that autorotating seeds are able to gen-
erate exceptionally high lift forces with their small, slow wings. Th e seed’s capacity to generate 
lift is quantifi ed by its mean lift coeffi  cient which is typically well above one3,7. How autorotat-
ing seeds are able to attain such high lift coeffi  cients is unknown3. Usherwood and Ellington20 
noted that both autorotating seeds and steadily revolving insect wings generate exceptional high 
lift. Insect wings and autorotating seeds operate at high angles of attack, well beyond the point 
(roughly beyond 15-20°) at which aircraft wings and helicopter blades abruptly loose lift or ‘stall’ 
during fl ight (Fig. 1d). Instead of stalling, insect wings generate a prominent leading edge vortex 
(LEV), which is known to be responsible for elevating both lift and drag10-13,20,21. Building 
upon these observations we hypothesized that autorotating seeds generate a LEV that enables 
them to generate high lift at high angles of attack during their descent. 
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 To test if autorotating seeds generate a LEV we built a dynamically scaled model actuated 
by a robotic arm in a tank of mineral oil22 (methods). We based the shape and kinematics of the 
model seeds on the shape (n = 1) and average free fl ight parameters (n = 20) of seeds from three 
species of maple (Acer diabolicum Blume; m1, Acer palmatum Th unb. var. matsumurae Makino; 
m2, Acer palmatum Th unb; m3) and one species of hornbeam (Carpinus ischonoskii Maxim; h) 
(Fig. 1b). All four of these seeds are known to generate exceptionally high lift7,23. Th e fl ight 
parameters and the ratio of inertial to viscous stress in the surrounding fl ow of the model seeds 
in oil were scaled such that they are identical to real seeds descending in air. Th is stress-ratio is 
measured by the Reynolds number and is of order 1000 for autorotating seeds7. We used stereo 
digital particle image velocimetry (DPIV) to measure the three-dimensional velocity fi eld at 
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Figure 1 | Kinematics and morphology of all four autorotating seeds studied. a, Free fl ight 
parameters of autorotating seeds after Azuma and Yasuda7; local wing radius, r; local chord length, c; 
pitch angle, θ; cone angle, β; angular velocity, ω. One of up to 26 planes in which we measured the 
velocity fi eld along the span using DPIV is indicated in blue. b, Planform and Latin names of the 
three maple seeds (m1, m2, m3) and hornbeam seed (h) studied, the brown area indicates the region 
for which we performed DPIV around the wing Th e plus sign indicates the center of gravity, which 
corresponds closely to the center of rotation3,7,23. c, Free fl ight sequence of an autorotating seed 
showing both the vertical (red) and horizontal, circular translation (blue) of a wing section dur-
ing a full period. d, Due to the diff erent horizontal path lengths travelled by subsequent spanwise 
wing sections (c), the wing’s local geometric angle of attack is defi ned as the arctangent of descend 
speed, Vd , divided by horizontal speed, Vh. Th e eff ective aerodynamic angle of attack, α, is equal 
to geometric angle of attack minus the absolute value of the pitch angle (m1: -1.17°, m2: -1.39°; 
m3: -0.90°, h: -2.16° measured at 75% span and approximately constant along span (Azuma and 
Yasuda7)); α starts at its minimum value at the tip and increases towards the base where it is 90°. 
(Note V is velocity and ‘(r)’ indicates dependence of a variable on radius.) 
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h

a

b

c

d

Figure 2 | Stereo imag-
es of the large lead-
ing edge vortex (LEV) 
measured for all four 
model seeds. a-d, Flow 
visualization of absolute 
(in lab frame) stream-
lines (shown in blue); 
calculated from the 
three-dimensional veloc-
ity fi eld measured using 
DPIV. Th e models of the 
three maple seeds (a, m1; 
b, m2; c, m3) and the 
hornbeam seed (d, h) 
generate a LEV with 
signifi cant spanwise fl ow 
that is connected to the 
tip vortex. Th e angle 
of attack of the seed 
increases from (a) to 
(d). Note that the seed 
spins clockwise (in all 
fi gures).
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26 equally spaced spanwise slices start-
ing at roughly 25% span (indicated in 
brown in Fig. 1b) and extending well 
beyond the wing tip so that we would 
captured the structure of the tip vortex 
as well. We combined all these slices 
to reconstruct the three-dimensional 
velocity fi eld around the model seeds24 
(Fig. 2 and methods). 
 Our measurements show that 
all four model seeds generate a promi-
nent LEV near the base, which is strik-
ingly similar to LEVs generated by 
insect wings. Th e structure of the LEV 
depends not only on the wing shape 
and Reynolds number, but also on 
the wing’s angle of attack. Th e angle 
of attack is maximal at the wing root 
(approx. 90°) and minimal at the wing 
tip due to the seeds radial velocity dis-
tribution (Fig. 1d). Based on prior free 
fl ight measurements7,23 we calculated 
the angle of attack at the wing tip of 
all four seeds. It is lowest for maple 
seed m1 (14°), highest for hornbeam
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Figure 3 | Th e vorticity concentra-
tion that builds-up the LEV at the 
wing’s base is drained by concentrat-
ed spanwise fl ow. a-d, Measured fl ow 
fi elds of seeds m1 (a), m2 (b), m3 (c) 
and h (d) subsequently shown in the 
three columns of every block for three 
spanwise sections; 25%, 50% and 75% 
span. First row shows spanwise vortic-
ity (ωr,) which builds up into a sig-
nifi cant LEV at 25% span for all four 
seeds (color bar a-d: ±70; ±50; ±30; 
±30 [s-1]). Second row shows spanwise 
fl ow speed (w) which peaks at 25% 
span (color bar a-d: ±0.5; ±0.4; ±0.2; 
±0.2 [m s-1]). Th ird row shows span-
wise transport of vorticity (ωr, ⋅ w), 
which peaks at 25% span (color bar 
a-d: ±13; ±8; ±3; ±3 [m s-2]). 
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h (28°), with the other two maples 
seeds, m2 (22°) and m3 (25°), falling 
in between (methods). Th is qualitative 
trend can explain in part why the LEV 
of all three maple seeds (Fig. 2a-c) is 
relatively compact and well attached 
to the seed’s surface, whereas the LEV 
generated by the hornbeam seed looks 
more separated (Fig. 2d). Th e LEV is 
most prominent near the base of the 
seed, at roughly 25% span, where there 
is a strong concentration of vorticity 
(fi rst row Fig. 3a-d). Towards the tip 
(at 75% span), the LEV merges with 
the tip vortex, resulting in a long trail 
of vorticity in the seed’s wake. Th e fl ow 
around the maple seeds re-attaches 
behind the LEV near the trailing edge, 
whereas the fl ow around the hornbeam 
seed is more separated at the wing tip 
and fails to re-attach. Th is diff erence 
in fl ow structure is also apparent in 
images of the three- and two-dimen-
sional streamlines (Fig. 2 and last row 
Fig. 3a-d) and the vorticity plots (fi rst 
row Fig. 3a-d). 
 How well does the fl ow struc-
ture around the seeds compare to those 
of insect wings? For insects operating at 
Reynolds numbers of order 1000, the 
stable attachment of the LEV depends 
partly on strong span-wise fl ow on top 
of the wing that drains vorticity from 
the LEV towards the wing tip vor-
tex11,25. Th is process is a key feature, 
because it prevents the LEV from grow-
ing so large that it becomes unstable 
and separates. For all four seeds we fi nd 
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Figure 4 | Th e LEV induces exceptional high local lift coeffi  cients near the wings base. a, 
Spanwise lift distribution. Th e wing’s sectional lift is particularly low near the wing tip due to the 
presence of the tip vortex (r, local radius; R, wingtip radius; seed code, Fig. 1b). b, Product of sec-
tional dynamic pressure and chord length. c, Th e wing’s lift sectional coeffi  cient (a divided by b), 
peaks near the wing’s base (where a LEV is present) and it is minimal at the tip. d, Th e distribution 
of angle of attack with span. Th e high lift coeffi  cients near the base of the wing (c) and the corre-
sponding LEV result from the extremely high local angles of attack, well beyond 30°. 
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strong spanwise fl ow on top of the wing (second row Fig. 3a-d). Th e spanwise fl ow is concentrat-
ed in the LEV at 25% span, whereas it is smeared out towards the trailing edge at 50% span and 
convected into the wake and tip-vortex at 75% span. To test if the spanwise fl ow is suffi  cient to 
drain vorticity from the LEV of these model seeds, as found for insects LEVs, we computed the 
spanwise transport of vorticity (vorticity × spanwise fl ow speed) towards the wing tip (third row 
Fig. 3a-d). Vorticity transport is strong at 25% span, it is less prominently concentrated at 50% 
span and it is absent for m2, m3 and h at 75% span where the LEV connects to the tip vortex. 
Th is suggests that the LEV structure of all four seeds is quite similar to that of insects11,25. 
 We computed the seed’s spanwise lift distribution using the area integral of measured 
vorticity around each wing section (methods, Fig. 4a). Sectional lift peaks near 40-60% span for 
maple seeds m1 and m2, whereas it forms a wide plateau for maple seed m3 and hornbeam seed h. 
Th e lift distribution is equal to the product of local chord length times sectional dynamic pres-
sure and sectional lift coeffi  cient (methods, Fig. 4b, c). We fi nd that the spanwise lift variation of 
the maple seeds is signifi cantly smaller than expected, because the product of sectional dynamic 
pressure and chord length peaks near the wing’s tip (Fig. 4b), whereas the sectional lift coeffi  cient 
peaks near the base (Fig. 4c), thus compensating each other. Th e sectional lift coeffi  cient reaches 
values ranging from 2 for hornbeam to 4.5 for maple seeds. Th is increase in lift coeffi  cient at the 
base is explained in part by the variation in angle of attack, which ranges from 30° to 70° at the 
base (Fig. 4d). Th e fl ow visualization in Fig. 2 and 3 indicates that the LEV is stably attached at 
the 25% span location where the sectional lift coeffi  cients are greatest. Th is stability is notewor-
thy, given that the local angles of attack are well beyond the stall point for conventional aircraft 
wings and helicopter blades. Near the wing’s base, the section lift coeffi  cients are lowest for the 
hornbeam seed, which is operating at the highest local angles of attack off  all four seeds. Th is high 
angle of attack at the base may explain why the hornbeam seed appears partially stalled (Fig. 4d). 
Our results (Fig. 4c, d) further suggest that previous estimates of local stall angle based on theoret-
ical aerodynamic models7 (20o) substantially underestimate actual wing performance. Th e result-
ing average lift coeffi  cient of the four seeds increases with angle of attack: m1; 1.15, m2; 1.38, 
m3; 1.43, h; 1.67, which is computed using the blade element method and free fl ight data of 
Azuma and Yasuda7. Th e corresponding measured average lift coeffi  cients, averaged over the 
brown areas in Fig. 1b, are 1.19, 1.17, 1.39 and 1.71. Although we fi nd that the hornbeam seed 
is locally stalled, it generates the highest average lift coeffi  cient.
 How eff ectively do these autorotating seeds descend and how do they perform compared 
to other autorotating and gliding seeds? Assuming that the descent speed and nut mass of fl ying 
seeds are good choices for their local weather conditions and habitat, the tree can minimize the 
surface area of its seeds through optimizing aerodynamic effi  cacy. Minimizing surface area results 
in maximizing wing loading (weight divided by surface area). Th e lower surface area saves the tree 
both material and energy spent on seed dispersal, or alternatively it allows the tree to make and 
disperse more seeds. To compare aerodynamic performance across specimens, we computed for 
each seed a dimensionless descent factor, defi ned as seed weight divided by the product of wing 
area and the dynamic pressure due to descent speed (methods) (Fig. 5). A high descent factor 
indicates that for a seed’s measured descent speed, mass, and wing area it exhibits a high aerody-
namic effi  cacy, allowing it to use a relatively small wing operating at high loading. Descent factor 
is highest for maple m1 and is subsequently lower for m2, m3 and hornbeam h. Th e compact 
and well-attached LEV generated by the maple seeds corresponds to better aerodynamic effi  cacy 
than that of the partially stalled hornbeam seed (neglecting Reynolds number and morphology 
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eff ects). On average, the descent factor of autorotating seeds is 100% higher than that of gliding 
seeds, enabling them to descend only 50% faster at wing loadings (seed weight / wing area) that 
are 400% higher than those of gliding seeds. Although the success of wind dispersal depends 
critically on fl ight performance, it is unclear how these performance diff erences relate to possible 
diff erences in evolutionary success. We expect that diff erences in fl ight performance interact with 
various ecological and meteorological factors resulting in diff erent niches for diff erent descent 
strategies. 
 Th e high lift of LEVs is not only exploited by autorotating seeds during their descent, 
hovering insects10-13,20,21, bats14 and probably hummingbirds15 utilize the same mechanism. 
Th is suggests that the use of LEVs represents a convergent aerodynamic solution in the evolution 
of high performance fl ight of both animals and plant seeds. Our fi ndings further suggest that 
animals might generate a leading edge vortex not only during hovering fl ight, but also during 
forward fl ight, which closely resembles the fl ow conditions of autorotating seeds during their 
descent. Th e aerodynamics of autorotating seeds is also quite similar to that of wind turbines. 
Although turbine blades are more slender and operate at much higher Reynolds numbers than 
the wings of autorotating seeds, both extract energy from the incoming fl ow, and both generate 
exceptionally high lift near their base (hub) at similar normalized local radii (roughly at local radii / 
chord length ≤ 3). For wind turbines, Tangler26 hypothesized that a large standing vortex might 
be responsible for lift augmentation near the hub. Th is is supported by computational fl uid 
dynamic simulations27. Our experiments on seeds readily support this hypothesis for a Reynolds 
number of order 1000. Our fi nding of a strong LEV that is responsible for the high lift generated 
by autorotating seeds could therefore inspire the design of future turbine blades and autorotating 
vehicles16,17.

Figure 5 | Comparison of descent performance for 
various seeds. A dimensionless descent factor (see text) is 
plotted as a function of wing loading. Th e width of each 
point indicates descent speed. Autorotating seeds are 
shown in black; S is a four winged Santalaceae seed. Th e 
three maple seeds perform better than hornbeam seed. 
Ash and tulip tree seeds (plotted in grey) also autorotate, 
but spin along two major axes. Both descend similarly 
well as gliding seeds, plotted in blue. Th e gliding seed, 
Alsomitra macrocarpa (Am) has a fragile sail wing that 
enables it to descent particularly well at relatively high 
Reynolds numbers (c. 5000, roughly fi ve times higher 
than maple and hornbeam seeds). Th e average descent 
factor of gliding seeds is, however, much lower than that 
of autorotating seeds (that spin along one axis). Average 
performance is indicated with open circles. (Based on 
fl ight data of Azuma and co-workers3,7-9.) 
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Methods
Dynamically-scaled robot seed. Using a translating robotic arm immerged in a tank fi lled with 
mineral oil22 (density = 830 kg m-3; kinematic viscosity = 11.0×10-6 m2 s-1) we dynamically-scaled 
the kinematics of four model autorotating seeds (Fig. 1b) such that their planer shape, Reynolds 
number, and fl ight parameters (e.g. descent speed and angle of attack) matched those of freely 
fl ying seeds. Th e free fl ight parameters of the seeds are described in Azuma and Yasuda7 and their 
morphology in Azuma and Yasuda7 and Yasuda and Azuma23. Th e angle of attack of the seeds 
is calculated based on the free fl ight data and by adding the negative pitch angle (close to -1° 
at 75% radius) to the positive local geometric angle of attack, see Fig. 1. In matching the mor-
phology of the fl at seeds, the model wings had no twist. Th e model wings were made from 
1.5 mm thick transparent acrylic; such simple wing models have proven accurate in representing 
moderately cambered and corrugated insect wings at Reynolds numbers12,20,22,25 similar to that 
used here for the four seeds (Fig. 1b). Th e distance between the wing’s center of rotation and its 
tip was 130 mm for all model seeds to minimize wall eff ects, which we estimated to be within 1% 
of an infi nite volume (Dickinson, et al., 1999). We tilted the fl ight path 90° (horizontal) to 
enable the robot22 to correctly translate and spin the seeds at their natural pitch and cone angle 
(Fig. 1a, Supplementary Fig.1). 
Stereo DPIV fl ow measurement. We measured fl ow fi elds after two whole revolutions when the 
fl ow was steady and repeatable using the LaVision stereo DPIV software and hardware described 
in Poelma et al.24. Th e pitch of the resulting spiraling tip vortex is large, such that interactions 
with tip vortices shed beyond one revolution are small (e.g. see Fig. 9 in Azuma and Yasuda7). 
By repeating the DPIV measurements 10 times per spanwise section we were able to perform 
standard stereo ensemble correlation for every section (multipass: 1 × (64 × 64) and 2× (32 × 32) 
each with 50% overlap) using DaVis 7.0, LaVision GmbH (Poelma et al.24). We measured fl ow 
fi elds at 24 to 26 spanwise sections that were separated by 5 mm. Using custom Matlab R2007a 
software and Tecplot 360 we processed data and build up the three dimensional velocity fi eld. 
Th e spanwise velocity fi eld sampling proved to be smooth enough for plotting the absolute (in 
lab frame) streamlines in Fig. 2 (view point & angle are identical in Fig. a-d, stereo angle off set is 
±3.5 degrees). To obtain high-quality vorticity fi elds we calculated the gradient of the fl ow fi eld 
in the spanwise sections for which we have good resolution measurements. Th rough integration 
of the vorticity fi eld in every spanwise section we obtained the corresponding spanwise circula-
tion. For this we used a vorticity cut-off  value 5% higher than the highest vorticity noise found 
in the upstream fl ow fi eld at the particular spanwise section. We then used circulation to calcu-
late section lift = fl uid density × section wing speed × net section circulation. Finally we calcu-
lated the wing section lift coeffi  cient by dividing section lift by the product of dynamic pressure 
(½ × fl uid density × section wing speed squared) and section chord length. 
Calculation seed fl ight performance. Average lift coeffi  cients were calculated using a blade ele-
ment method similar to the one used for calculating the average lift coeffi  cients of insect wings in 
forward fl ight22, which takes into account that the seed’s descent direction is parallel to its angu-
lar velocity vector. Finally, we calculated the aerodynamic descent performance of various seeds 
using a basic point mass performance analysis. Th is analysis provided a dimensionless descent 
factor, which was calculated as seed weight divided by the product of dynamic pressure (based on 
descent speed) and wing area, see supplementary equations (1).
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Supplementary Figure 1. Robot model of a descending autorotating seed. 

acrylic seed model
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Robot. Th e robot seed consists of an acrylic seed model driven by a translating robot arm1. Our 
robot can only translate horizontally, thus to simulate the descending fl ight of the hornbeam and 
maple we tilted the fl ight path by 90°. Th e acrylic seed models were fi xed to the shaft at their 
measured cone and pitch angle2. We revolved (ω; angular velocity) and translated (Vd; descent 
speed) the model seeds in oil such that they followed the same path at the same Reynolds number 
as seeds in air2. Th e model seed moves from left to right such that it fl ies in undisturbed oil; the 
wake of the seed hits the arm (and not vice versa). 
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DPIV. We measured the three-dimensional fl ow fi eld using a stereo Digital Particle Image 
Velocimetry setup described previously3. Th e laser light sheet was oriented parallel to chord 
length, (close to the one shown) and was activated using an automated trigger. To minimize laser 
light refl ections in our DPIV image, both the shaft and edges of the wings were painted black. 
In addition, we placed a black circular sheet in front to shield the robots knuckle, wrapped the 
sensor cable in black panty hose (Sheer Energy, Leggs), and wrapped a black sheet around the 
shaft of the robot arm.
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Supplementary Equations 1. Derivation of the descent factor of seeds.

We derive the descent factor of a seed, which measures its aerodynamic effi  cacy, using a basic 
point performance analysis1 and the blade element method. Th e blade element method is applied 
similarly to the one used in calculating forward insect fl ight performance2. Th e vertical aerody-
namic force generated by a seed counteracts its weight W. Th e vertical force distribution over 
the wing can be integrated along the span using small chord wise surface segments of chord wise 
length c and width dr at radial distance r (Fig. 1). Th e total vertical force FV can be calculated 
as follows: 

, (1)

in which CV the vertical force coeffi  cient, ρ the density, Vd the descent speed and ω the angular 
velocity and, fi nally, ‘(r)’ indicates that the particular variable depends on radius. Noting that FV 
is equal (in magnitude) to the seeds weight W, which is equal to mass m times gravity constant 
g, we can now defi ne the average vertical force coeffi  cient as follows:

, (2)

in which Rg is the radius of gyration of the seeds wing. We now fi nd the following expression 
for the surface area needed for a seed of given mass and descent rate in air (ρ ≈ 1.23) on earth 
(g ≈ 9.81): 

, (3)

with the advance ratio kg at the radius of gyration being:
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. (4)

Based on Eq. 4 we can now infer the factors through which a seed can minimize its wing area. First 
it can increase its average vertical force coeffi  cient CV,ave through optimizing wing morphology 
and the angle of attack of the wing (Ruijgrok, 1994). Angle of attack depends, however, directly 
on advance ratio kg. (Fig. 1d) which therefore determines CV,ave. We therefore include both CV,ave 
and kg simultaneously in the descent factor DF: 

, (5)

which needs to be maximized for minimizing wing surface area at given mass m and descend 
speed Vd (Eq. 3.). To evaluate the aerodynamic effi  cacy of a seed we can now simply calculate its 
descent factor based on readily available fi eld and lab data as: 

. (6)

Th is formula is derived from Equations 3 and 5. It also works for seeds that spin along two axes or 
simply glide; our analysis yields the same formula (Eq. 6.). For gliding seeds we consider the aver-
age descent speed and absolute average of forward speed. We then again fi nd that aerodynamic 
effi  cacy is measured by a product of the average vertical force coeffi  cient times a factor that cap-
tures the descent kinematics like the advance ratio does for autorotating seeds; the average glide 
ratio. Although one could think of extracting subtleties from the descent factor, such as the eff ect 
of cone angle and other kinematic parameters on needed wing surface area, we choose not to do 
so because here we are interested in the total aerodynamic effi  cacy of the seed. We therefore use 
Equation 6 to calculate and compare the total aerodynamic descent effi  cacy of several spinning 
and gliding seeds (see Fig. 5).
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6.1
TURNING ON A DIME

Ulrike K. Müller* and David Lentink

Science 306, 1899 – 1900 (2004).

Scientists may think that insects are the masters of unconventional lift (1–4), but it seems that 
birds have caught on to the same trick, using it to outsmart their insect prey. On page 1960 

of this issue, Videler et al. (5) report how swifts—agile aerial hunters that catch insects on the 
wing—produce unconventional lift: Th ey use their wings to generate a so-called leading-edge 
vortex. Biologists fi rst caught on to this vortex in 1996 when trying to explain how insects fl y (1). 
Since then, this vortex has been observed again and again in fl ying insects (2–4). Th e new study 
reveals that a bird’s wing also can generate this type of vortex (5). 
 A leading-edge vortex forms on the top of a wing when the angle between the wing and 
the oncoming air fl ow is large. Th e fl ow then separates from the wing at the leading edge and 
rolls up into a vortex. To form a leading-edge vortex at lower angles of attack, some wings have 
a sharp rather than blunt leading edge. To exploit this vortex, the fl ying animal needs to keep 
the vortex close to its wing. Insects and swifts have found diff erent solutions to this problem. To 
stabilize the vortex, fl ying insects beat their wings rapidly (1), whereas gliding swifts sweep their 
wings backward (5). Th e leading-edge vortex spirals out toward the tip of the wing, adopting the 
shape of a tornado. Like a tornado, the air pressure in the core of the vortex is low, sucking the 
wing upward and sometimes forward (during fl apping).
 Swifts have scythe-shaped wings that consist of a long curved hand-wing, which is attached 
to the body by a short arm-wing. Th e hand-wing is composed of primary feathers, which form 
a sharp and swept-back leading edge. Both features help to generate and stabilize a leading-edge 
vortex. Videler et al. cast a model of a single swift wing in fast gliding posture and recorded the 
fl ow fi elds around the wing in a water tunnel using digital particle image velocimetry. (Flow pat-
terns in water are the same as in air as long as the same Reynolds number is used.) Th ey observed 
that a vortex forms on top of the wing close behind the wing’s leading edge. Th is leading-edge 
vortex is robust against changes in fl ow speed and angle of attack—observations that agree well 
with those of other biologists studying the leading-edge vortices of insects. However, surprisingly, 
the swift wing produces such a vortex at angles of attack as small as 5°, compared with 25° to 45° 
typical for insects (6, 7). 
 Th e achievements of aerospace engineers have inspired biologists to study the aerodynam-
ics of fl ying animals. Engineers fi rst discovered the extraordinary amount of lift that leading-edge 
vortices produce when they solved the problem of how to land supersonic fi ghter jets and pas-
senger aircraft like the Concorde. Swept-back wings not only make supersonic fl ight possible, but 
also generate stable leading-edge vortices at high angles of attack. Th e resulting extra lift enables 
delta-wing aircraft to land safely despite their small wings, which are much smaller than those of 
conventional aircraft. 
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Th e swept wing of a swift generates a stable leading-edge vortex. Yet the exact role of this vortex 
in the swift’s fl ight performance can only be inferred from observations of their fl ight. Swifts in 
fl ight turn on a dime while catching insects, a spectacular aerobatic display. Anybody observing 
swifts circling in a yard will notice that the birds hold their wings swept back during fast fl ight 
and swiftly change the wing sweep to execute tight turns (see the fi gure). Aerospace engineers 
converged on the same solution for their military aircraft, which have to perform optimally both 
during supersonic and subsonic fl ight (8). Pilots of fi ghter jets such as the F-14 Tomcat and the 
Tornado can choose between diff erent wing sweeps for maximal dogfi ght and cruise performance 
(see fi gure 1).
 Th e gliding fl ight of storks inspired the fi rst airplane designs of Otto Lilienthal in the late 
19th century. Th e benevolent fl ight characteristics of these slow and stately gliders invested airplane 
pioneers with the confi dence to take to the skies. Swifts are radically diff erent gliders from storks: 
Th ey are nimble and fast. Th ese attributes require the ability not only to generate large aerody-
namic forces from unsteady lift mechanisms, but also to exercise exquisite control over these forces. 

Figure 1 | On the wing. Swifts are aerial hunters, catching fl ying insects on the wing. To out-
maneuver their agile prey, swifts are able to fl y fast and to make very tight turns.To maximize fl ight 
speed as well as maneuverability, evolution and aeronautic engineering converged on the same solu-
tion—variable wing sweep. Swifts (top) and the Tomcat jet fi ghter (bottom) keep their wings swept 
back to reach high fl ight speeds. To execute tight turns, both fl yers reduce their wing sweep.
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Th e next challenge for Videler and his team is to elucidate how swifts use their variable wing 
sweep to gain direct control over leading-edge vortices in order to increase their fl ight perform-
ance. In the future, the swift’s fl ight control might inspire a new generation of engineers to 
develop morphing microrobotic vehicles that can fl y with the agility, effi  ciency, and short take-off  
and landing capabilities of insects and birds.
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6.2
HOW SWIFTS CONTROL THEIR GLIDE PERFORMANCE WITH MORPHING WINGS

David Lentink*, Ulrike K. Müller, Eize J. Stamhuis, Roeland. de Kat, Wouter van Gestel, Leo L.M. Veldhuis, Per Henningsson, 
Anders Hedenström, John J. Videler and Johan L. van Leeuwen

Nature 446, 1082 – 1085 (2007).

Gliding birds continually change the shape and size of their wings1-6, presumably to 
exploit the profound eff ect of wing morphology on aerodynamic performance7-9. Th at 

birds should adjust wing sweep to suit glide speed has been predicted qualitatively by ana-
lytical glide models2,10, which extrapolated the wing’s performance envelope from aerody-
namic theory. Here, we describe the aerodynamic and structural performance of actual swift 
wings, as measured in a wind tunnel, and on this basis build a semi-empirical glide model. By 
measuring inside and outside swifts’ behavioural envelope, we show that choosing the most 
suitable sweep can halve sink speed or triple turning rate. Extended wings are superior for 
slow glides and turns; swept wings are superior for fast glides and turns. Th is superiority is 
due to better aerodynamic performance — with the exception of fast turns. Swept wings are 
less eff ective at generating lift while turning at high speeds, but can bear the extreme loads. 
Finally, our glide model predicts that cost-eff ective gliding occurs at speeds of 8-10 m s-1, 
whereas agility-related fi gures of merit peak at 15 to 25 m s-1. Swifts in fact roost at 8-10 m s-1 11, 
thus our model can explain this choice for a resting behaviour11,12. Morphing not only 
adjusts birds’ wing performance to the task at hand, but could also control the fl ight of 
future aircraft7.
 Bird wings lend themselves to morphing because they have an articulated skeleton under 
muscular control, and because the changing overlap between feathers allows continuous changes 
in wing shape and wing size. Gliding birds sweep their hand wings back at high fl ight speeds1-

5,13, and spread their wings in turns4. To test whether a bird’s chosen wing geometry maximises 
its fl ight performance, biologists have focused on gliding fl ight1-5,13, during which changes in 
wing geometry are not related to wing beat. Aerodynamic forces have been inferred from the 
behaviour of freely gliding birds1,2,5,13; lift and drag have also been measured directly on single 
bird wings fi xed in one shape14,15. Th ese approaches provide no information on morphing out-
side the bird’s behavioural envelope and must be supplemented with aerodynamic theory in 
order to predict wing aerodynamic performance and bird glide performance2,16,17.
 Rather than estimating how wing geometry aff ects wing performance, we measured it 
in a wind tunnel. We chose the common swift (Apus apus), which spends most of its life on the 
wing, foraging, courting, migrating, and even roosting11,12,18,19, and has a gliding repertoire 
to suit: soaring, gliding and ‘fl ap-gliding’. Flap-gliding birds alternate fl apping and gliding at 
1-2 second intervals11,19, matching the speeds of fl apping and gliding episodes20. With speed 
approximately constant, glides can be approximated as ‘equilibrium gliding’, which encompasses 
turns and straight glides (turns with infi nite radius) (Fig. 1; Methods). During this steady state, 
fl ight performance can be deduced from four readily measured parameters: aerodynamic lift, 
drag, body mass, and fl ight velocity (Fig. 1b). Th ese determine the swift’s glide path, convention-
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ally described by glide angle, turning radius, 
and bank angle21. Glide path and velocity 
determine bird glide performance.
 Aerodynamic force is proportional 
to force coeffi  cient × wing area × square of 
glide speed21. Swifts control force coeffi  cient 
by altering wing shape, angle of attack, and 
speed. Increasing sweep angle from 5° (fully 
extended) to 50° (Fig. 2a) decreases wing 
area and shape (i.e. aspect ratio) by roughly a 
third (Fig. 2b,c). We quantifi ed how variable 
sweep aff ects wing aerodynamics by measur-
ing lift and drag on 15 wing pairs in the Delft Low Turbulence wind tunnel (see Methods).
 Our experiments show that variable sweep enlarges the aerodynamic performance enve-
lope of swift wings. At a given glide speed, the polars of lift vs. drag coeffi  cient (Fig. 2d) for indi-
vidual sweep angles build up to a much wider enveloping polar: swept wings contribute low drag 
coeffi  cients at low angles of attack; extended wings contribute high lift coeffi  cients at high angles 
of attack. Th e eff ects of wing shape are “amplifi ed” by wing area (Fig. 2e plots the same data as 
polars of speed-specifi c lift and drag22, i.e. lift coeffi  cient × wing area vs. drag coeffi  cient × wing 
area). Th e decrease in wing area with increasing sweep further enlarges the enveloping polar for 
a given glide speed, further widening the performance gap between fi xed-shape and morphing 
wings.
 Th e enveloping polar changes with glide speed (Fig. 2f ). With increasing speed, the polar 
at fi rst maintains its shape and shifts to lower drag values10,23 because drag coeffi  cient scales with 
speed to a power less than two at low angles of attack, when fl ow separation is minimal24. Beyond 
15 m s-1, the enveloping polar breaks off  at lower and lower speed-specifi c lift values because less 
swept wings break under the extreme loads; only the more swept wings are left to build up the 
enveloping polar.
 To demonstrate how morphing wings can aff ect gliding, we translated the above measures 
of wings’ aerodynamics into swift’s fl ight-dynamics — our six fi gures of merit (see Supplementary 
Equations 1). Th ree fl ight-cost related indices are: (1) glide distance (expressed as max. glide 
ratio21), (2) glide duration21, (3) turn angle for a given height loss. By maximising distance or 
time spent gliding, birds reduce energy expenditure while foraging and roosting. Th ree indices 
are agility-related: pursuits and escapes require (4) fast turns (high angular velocity21) with (5) a 
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Figure 1 | Equilibrium gliding along a heli-
cal path. (a) Turning swifts glide at a constant 
glide speed, whereas glide velocity V changes 
direction along a helical path (grey ribbon) 
inclined downward at glide angle γ. To turn 
without sideslip, swifts incline sideways at 
bank angle μ. Glide angle is determined by 
cos μ component of lift/drag; the sin μ com-
ponent of lift provides the centripetal force 
required for turning. (b) Main forces acting 
on a swift gliding at a given velocity.
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high path curvature21; while (6) high horizontal speed (horizontal component of glide velocity) 
helps to avoid drift in strong winds. Our discussion of performance maxima ignores combina-
tions of sweep and glide speed that cause diving (glide angles > 45°, Fig 1.).
 Extended wings provide the best glide performance. Five of the six indices (Fig. 3a,b,d-
f ) reach an absolute maximum with extended wings — characteristic of gliders in general. Th e 
cost-related maxima occur between 8 and 15 m s-1. At 10 m s-1, within this optimal speed range, 
choosing extended over swept wings triples all three turning indices (Supplementary Figure 2). 
Nevertheless, swifts sometimes choose higher glide speeds11,18.
 During straight glides at higher-than-optimal speeds, high sweep improves aerodynam-
ic wing performance. Consider Figure 3a: at lower-than-optimal speeds (left of highest peak), 
extended wings deliver superior glide ratios. As speed increases beyond the optimum, the lines of 
constant sweep cross, and glide ratio is higher for swept wings. At 20 m s-1, for example, a sweep 
angle of 50° yields a 70% improvement over extended wings, whereas at speeds below 10 m s-1, 
extended wings improve glide ratio by as much as 50%. Th e second cost-related index, glide 
duration, behaves similarly (Fig. 3b). Unsurprisingly, ‘horizontal speed’ is the only index that 
peaks at high glide speeds (Fig. 3c). Although not sensitive to sweep angle at low glide speeds, 
horizontal speed increases with increasing sweep above 20 m s-1. Th ese results confi rm predic-
tions that swept wings improve glide performance at high speed2,6.
  Swept wings can bear higher loads during fast turns. Whereas, during straight gliding 
at constant speed, the wings bear a load necessarily equal to the bird’s mass × 1g, centripetal 

acceleration increases the load during 
equilibrium turns. If the bird were to 
maximise aerodynamic wing perfor-
mance, it should choose low sweep 
and low speed: the superior lift force 
of extended wings is desirable at 
any speed, in theory16. Consistent 
with this prediction, our measure-
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ment-based turning indices show no clear cross-overs from low to high sweeps at glide angles 
below 45º (Fig. 3d-f ). Dive performance (glide angle > 45º) is severely limited during high-
speed turns due to high loads. We measured loads of up to six times the bird’s weight (Fig. 4 
bottom), and observed two types of structur-
al failure: one extended-wing specimen bent 
to the point of breaking at 15 m s-1; another 
started vibrating violently at 15 and 20 m s-1, 
which ultimately led to failure at the bone. 
Swept wings don’t “fl utter”, and they avoid 
static failure by bending and twisting under lift-
loads (Fig. 4 top), which reduces eff ective angle 
of attack at the handwing and thereby caps 
aerodynamic load. Such phenomena are not 
captured by theoretical or experimental studies 
using rigid wing models25.
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 High sweep maximises high-speed glide performance, but not by creating strong leading 
edge vortices (LEVs). LEVs have been observed over model swift wings, and have been proposed 
to boost lift25. Our fl ow visualisations on real wings confi rm the presence of LEVs at high sweep 
angles (≥ 30°) (Supplementary Table 1). However, our force measurements at speeds of 5 to 30 m s-1 
show that swept wings always generated less lift than extended wings. Extra lift from LEVs does 
not compensate for lift lost to the concomitant drop in wing area and aspect ratio (Fig. 2d,e), 
and to load-induced wing deformations at high speeds (Fig. 4 top). Rather than by increasing lift, 
sweep improves gliding by decreasing drag.
 Our glide model predicts performance-maximising glide speeds that agree with observa-
tions of swift behavioural choices. Glide speeds are readily observable in the fi eld and therefore 
serve well to validate our semi-empirical glide model. Our model predicts diff erent optimal 
gliding speeds for maximising agility (15 to 25 m s-1) vs. cost-eff ectiveness (8-10 m s-1). Th e only 
glide behaviour on which free-fl ight data have been published is roosting11,12,18, for which we 
expect that fl ight-cost considerations outweigh agility11,12. Radar measurements11 show that 
roosting swifts indeed fl ap-glide at speeds centred around 8-10 m s-1 (Fig. 5). Th is agreement of 
model predictions and fi eld observations validates the analytical step from wing aerodynamic to 
bird glide performance.
 Th e modifi cation of glide performance achieved by morphing is comparable to the dif-
ferences between bird species with widely diff erent wing shapes and fl ight behaviours15. Swifts 
can adjust their wings’ maximum lift coeffi  cients between 0.8 and 1.1, which is similar to the full 
range from thrush (0.8) to nighthawk (1.15) found by Withers15 for extended wings. Th erefore, 
extended wing geometry alone might not be enough to justly evaluate bird gliding perfor-
mance8,15. Birds with an aerial life style, such as swifts, face a wide range of tasks with sometimes 
confl icting performance goals. To match wing shape to the task at hand, morphing provides birds 
with a suite of wing geometries to choose from.

Supplementary Information and a Full Protocol accompany the paper.
Supplementary Figure 1: body drag measurements. Supplementary Figure 2: statistics for per-
formance indices. Supplementary Table 1: results of tuft fl ow visualisation. Supplementary 
Equations 1: derivation of equations of motion and construction of Figure 3. 
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Methods / Full protocol

To determine how morphing wings aff ect bird fl ight, we built a semi-empirical model that trans-
lates wing performance into swift glide performance. Glide performance is determined by the 
lift- and drag contributions of wings, body, and tail, and by the bird’s weight.
Animals. In spring 2005, we received from eight Dutch bird sanctuaries 35 adult swifts that had 
died after having been brought in. We selected 15 swifts based on their wings and general state, 
neglecting a 2% sex-specifi c variation in wing length1.
Wing preparation. To study the infl uence of morphing on wing aerodynamic and structural 
performance, we separated 15 wing pairs from the body at the shoulder joint and manually 
extended them onto templates for 5 fi xed sweep angles (5°, 15°, 30°, 40°, 50°; between wrist 
and proximal half of leading edge) (Fig. 2a). Manually extending wings reliably reproduces wing 
shape during gliding2. Wing pairs were frozen, freeze-dried, then glued together to form a con-
tinuous wing surface. Freeze-drying changes the mechanical properties of biological tissues, yet 
yields better specimens than freshly dead material4.
Wing mounting. Th e wings were mounted onto the sting of the balance system and placed in a 
wind tunnel. By measuring aerodynamic forces with the body removed, we were able to reduce 
the dimensionality of the parameter space by excluding body posture, body angle of incidence, 
tail spread, tail angle of incidence, amongst others. Th is enabled us to gather a uniquely large 
data set on the aerodynamics of bird wings, which is focused on accurately determining the infl u-
ence on wing morphing on the wings aerodynamic performance. With this approach we likely 
overestimate induced drag5 because the wings are closer together by 34 mm (body diameter). We 
also ignore any eff ect of wing dihedral angle and we ignore the eff ect of the body on the wings’ 
lift and drag, which has been shown to be small6. 
Wind tunnel tests. We used the Delft Low Turbulence Wind Tunnel7 with an octogonal test sec-
tion of 1.80 × 1.25 m (turbulence levels ≤ 0.025% until 40 m s-1). We designed a balance system 
with a resolution of 40,000 steps to measure lift and drag at air speeds between 5 and 30 m s-1 
(Reynolds number 12,000-77,000) with an accuracy of at least 3% (Ohaus SP402). Th is speed 
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range encompasses loads up to six times the swift’s body weight. We calibrated the balance with 
a 5 × 5 matrix of weights over the full lift and drag range to account for the system’s small non-
linearity. Each force value was sampled at 5 Hz for 10 s at each angle of attack α (0° → +30° 
→ -6° → 0°; step size 1.5°, precision < 0.5°). Data from up- and down-leg of the α cycle were 
pooled because hysteresis was negligible below stall. Measurements were corrected for aerody-
namic forces of the sting, and for changes in the wings’ centre of mass with α. To confi rm that a 
leading edge vortex is present not only on model, but also on our real swift wings, we used tuft 
visualisation, a simple and established method in aeronautic engineering8.
Lift-drag polar of swifts. We built the total lift-drag polar of the swift from the wing lift and 
drag and body drag, measured in the Lund windtunnel9 (see Supplementary Figure 1). Wing 
polars were built up from force measurements across a range of glide speeds (5-30 m s-1), sweeps 
(5°-50°) and angles of attack α (-6° to 30°), excluding high αs at which the wing stalls — stall 
was assumed to have occurred when mean lift fl attened off  and instantaneous lift suddenly 
became variable. We calculated lift and drag coeffi  cients to quantify the eff ect of changes in wing 
shape. To account for the eff ects of wing area, we further calculated so-called speed-specifi c lift 
and drag10, which are strictly speaking dynamic-pressure-specifi c lift and drag and better known 
in aeronautic engineering as lift- and drag area. We measured an average body drag coeffi  cient5 
of 0.26 for a frontal area of 913 mm2 (Supplementary Figure 1).
Calculation of glide path. To evaluate the correct part of the total polar that the bird can use, 
we used a body weight of 43 g1 to calculate glide paths. By solving for the unknown glide path 
parameters glide angle γ, bank angle μ, and turn radius R (Fig. 1), we obtained equations of 
motion that contain only measurable quantities - body mass m and weight W, fl ight speed V, lift 
L and drag D (supplementary Equations 1):

 (1)

We then determined all possible helicoidal glide paths5 (assuming a constant glide speed and 
no side slip). Note that straight gliding fl ight is a special case of turning with infi nite turning 
radius.
Calculation of performance maxima. We assessed how morphing wings aff ect swift glide per-
formance using three straight-glide and three turning-related fi gures of merit (Fig. 3):
(1) max. glide distance5: max(1 / tan(γ)) (= maximal glide ratio), (2) max. glide duration5: 
max(1 / (V sinγ)), (3) max. turning angle for a given height loss: max (1 / (R tanγ)), (4) max. 
angular velocity in a turn5: max (V cosγ / R), (5) max. curvature of the turn path5: max(1 / R), (6) 
max. horizontal component of the fl ight speed): max(V cosγ) (see also Supplementary Equations 
1). We limited the performance analysis by two criteria. First, our calculations were only valid for 
non-zero turning radii, when the swift does not purely roll around its body axis. Second, values 
were calculated, but ignored in the search for performance maxima, when the swift dives (glide 
angle γ > 45°). We linearly interpolated the force coeffi  cients of the two adjacent polars to cal-
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culate the 45° dive-angle cut-off  speed, straight fl ight performance maxima, and minimum and 
maximum fl ight speeds. Finally, we averaged performance indices per sweep angle to construct 
Figure 3 (Supplementary Figure 2).
Sensitivity analysis. We tested the sensitivity of the optimal sweep confi guration (for a given 
performance maximum) to weight, drag, and lift. Changing body weight (±23%), body drag 
coeffi  cient (−100%,+200%), or tail lift coeffi  cient (± 20% tail contribution of wing lift) did not 
shift the performance maximum to a diff erent sweep increment. Our experiments resolves sweep 
in discrete increments of 10-15º.
Accuracy of roost speed prediction. Air density at the average roosting height11,12 (1700 m) 
is unknown. We therefore used air density at sea level (1.201 ± 0.005 kg m-3, measured in the 
Delft wind tunnel), leading to a maximum underestimate of 9% in the predicted optimal speed. 
However, roosting fl ight speed does not correlate strongly with altitude (Anders Hedenström, 
unpublished observation).
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Supplementary table 1. Leading edge vortex visualisation.

sweep [°] speed [m s-1] angle of attack 
15 10 no LEV
15 20 no LEV
30 10 ≥14°
30 20 no LEV 
40 10 ≥14°
40 20 ≥13°
50 10 ≥11°
50 20 ≥14°

We performed tuft-based fl ow visualisation (see Methods) to determine whether a leading edge 
vortex (LEV) is present on swift wings. We found LEVs at sweep angles of 30° and greater at 
suffi  ciently high angles of attack of 11, 13 or 14° or greater, depending on sweep angle and air 
speed. Note that the geometric angle of attack at which lift is zero1 is defi ned as ‘zero aerody-
namic angle of attack’.

Reference
1. Ruijgrok, G.J.J. Elements of airplane performance. Delft University Press Delft (1994). 
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Body drag measurements in the Lund wind tunnel.
Th e body drag measurements were performed in the wind tunnel at Lund University. We aver-
aged body drag (•) over the speed range of 6-18 m s-1 and used the mean (0.26) in our swift glide 
model (bars indicate standard error of the mean and the line the mean drag coeffi  cient). Th e gray 
area shows the body-drag range of our sensitivity analysis (−100%,+200% mean value).
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Supplementary Figure 2. 
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Statistical independence of glide performance diff erences due to morphing
To test statistical independence between the diff erences in performance due to diff erent sweeps, 
we performed a Rank analysis. We calculated average performance for each sweep angle and glide 
speed (n = 3, or n = 2 if a wing broke), as shown in Figure 3. Here (a-f ) we present the correspond-
ing Rank test to check for all six performance indices that the performance values for diff erent 
sweep angles at a given glide speed are mutually independent. Note that we performed a Rank 
test for the speeds for which we obtained polars within the fl ight range of swifts (10, 15, 20, 25 
and 30 m s-1). Red represents the probability (p) that maximum performance at optimal sweep is 
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statistically diff erent from performances at sub-optimal sweep angles. Blue represents the proba-
bility (p) that minimum performance at the least-suitable sweep is statistically diff erent from per-
formances at other sweep angles. (Note for n = 3, pmin = 1/10 for independent data and for n = 2, 
pmin = 1/3). For the maxima and minima the probability is 1.0 because the value is compared 
with itself. Th e maximum percentage drop in performance (min-max) / max × 100% is indicated 
by the number in the red squares, maximum performance increase (max-min)/min × 100% is 
indicated in the blue squares. Note that glide distance and duration peak below 10 m s-1 and that 
duration already shows a cross-over at 10 m s-1 (Fig. 3b). White boxed areas represent glide angles 
> 45° and sweep-speed combinations for which we could not obtain measurements due to wing 
failure (Fig. 4).

Supplementary Equations 1. 

Equations of motion of a swift gliding along a helicoidal path.
Based on Newton’s second law of motion, and assuming a constant glide speed and no slip turn, 
the helicoidal glide path of a swift (Fig. 1) is described by1:

. (1)

A turning swift experiences gravitational attraction, represented by its weight W, and centripetal 
acceleration, represented by the non-zero right-hand term in equation 1. By solving equation 1 
for the unknown glide path parameters (glide angle γ, bank angle μ, and turn radius R) we obtain 
equations of motion that contain only measurable quantities – body mass m and weight W, fl ight 
speed V, lift L and drag D:

. (2)

Plotting fi gures of merit. 
We defi ned six fi gures of merit (see methods and full protocol) that measure agility vs. energy 
effi  ciency during helicoidal gliding. Four of these indices are used in aircraft performance and 
design studies1-6: max. glide distance1, max. glide duration1, max. angular velocity1 and max. 
curvature1. Max. duration and max. curvature are the inverse of the more commonly used indi-
ces1-6 min. sink speed and min. turning radius. Th e latter is inconveniently infi nite at minimum 
glide speed. Inversion facilitates graphic representation of the turning indices, identifi cation of 
cross-over regions for the straight glides, and comparison of the indices — all six reach a maxi-
mum, and none a minimum, at maximum performance.
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7 Synthesis



7.1
BIOFLUIDDYNAMICS AS AN INSPIRATION FOR DESIGN

David Lentink

Based on a submitted manuscript

The locomotion of many macroscopic organisms that swim or fl y depends on fi ns or 
wings. Th e swimming and fl ying animals and plant seeds that I study here create vorti-

ces with their fi ns and wings that are shed in a wake. Th ese vortices have their own dynam-
ics, which the organisms have to cope with to move eff ectively through their surrounding 
fl uid. Th e aim of this thesis is, therefore, to explore how the swimming and fl ight apparatus 
of organisms is constrained by vortex dynamics. I focus on how principal morphologi-
cal and kinematic parameters of fi ns and wings co-determine leading edge vortex stability 
and vortex wake periodicity, which mediate fl uid force augmentation and forecast horizon 
respectively. Th e principal fi ndings of this exploration will serve as an inspiration for the 
design of new micro air vehicles. Th ese studies were carried out using a number of increas-
ingly realistic swimming and fl ight models that represent swimming fi sh and fl ying insects, 
autorotating seeds and swifts: From a two-dimensional fl apping foil in a soap fi lm tunnel to 
freeze-dried swift wings in a wind tunnel.
 In the following sections I will fi rst synthesize our fi ndings into fi ve main biofl uiddy-
namic conclusions: (1) Symmetric and periodic fl apping mediates asymmetric and chaotic 
vortex wakes. (2) Rotational accelerations stabilize leading edge vortices on revolving wings. 
(3) Leading edge vortices augment lift in both animal and plant fl ight. (4) Wing morphing 
drastically improves glide performance. (5) Flapping wings are less effi  cient than spinning 
and translating wings. 
 Subsequently I will synthesize conclusions 2 and 4 in the bio-inspired design of 
two new micro air vehicles: (1) RoboSwift, which can morph its wings like a swift, and (2) 
DelFly, which can fl ap its wing like an insect (Fig. 1). 
 Finally, I will present an outlook in which I describe the design of a new experi-
ment based on conclusion 2 and 5: Is wing slenderness optimized for power effi  ciency in 
hummingbirds? Th e results of this experiment can provide new insight in the functional 
morphology of hummingbirds, and will serve as inspiration for designing more effi  cient 
hovering micro air vehicles. 

Biofl uiddynamic conclusions

Conclusion 1 | Symmetric and periodic fl apping mediates asymmetric and chaotic vortex wakes.
Th e wings and fi ns of swimming and fl ying animals are commonly modeled as two-dimen-
sional fl apping foils. In several computer simulations the vortex wakes of these fl apping foils have 
been found to become asymmetric and even chaotic (Lewin and Haj-Hariri, 2003; Lentink and 



7.1  Biofl uiddynamics as an inspiration for design 146

Gerritsma, 2003; Blondeaux et al., 2005; Alben and Chelley, 2005; Iima, 2007). Th e vortex wake 
interacts with the foil and can therefore infl uence the force it generates. Vortex wake asymmetries 
induce asymmetric angles of attack of the foil, which can result in a non-zero time-averaged lift 
force on the foil. Similarly, chaotic vortex wakes can induce chaotic forces, which have a limited 
forecast horizon (Lorenz, 1963). It is, however, unclear to which extent chaotic vortex wakes 
exist, and how asymmetric and chaotic vortex wakes could be relevant for animals.
 Our extensive experiments with a two-dimensional fl apping foil in a soap fi lm tunnel 
confi rm earlier fi ndings of asymmetric vortex wakes (e.g. Lewin and Haj-Hariri, 2003). More 
signifi cantly, we show for the fi rst time experimentally that chaotic vortex wakes exist and that 
they occur in abundance. Th ese chaotic wakes occur predominantly under close-to-hover condi-
tions, whereas the vortex wakes are periodic under conditions at which animals prefer to cruise 
and obtain high effi  ciency (0.2 < Strouhal number < 0.4) (Triantafyllou et al., 1993, Taylor et al., 
2003). Our two-dimensional model predicts therefore that swimming and fl ying animals cope 
with chaotic vortex-wake interactions when they transition between cruising and hovering. 
Swimming and fl ying animals could potentially either avoid or exploit asymmetric and chaotic 
vortex-wake interactions by tuning their morphology and kinematics. Based on the present fi nd-
ings we formulated two new hypotheses: (1) Fish that primarily depend on their caudal fi n for 
propulsion might try to avoid asymmetric vortex wake interactions that could induce net turning 
moments that complicate swimming straight-on. (2) Butterfl ies and moths might exploit chaotic 
vortex-wake interactions that result in chaotic forces that can make their fl ight path erratic, mak-
ing them hard to catch. [Chapter 3]
 A three-dimensional analysis using 
more realistic animal models is needed 
to determine to what degree fi sh fi ns and 
insect wings can actually generate asym-
metric and chaotic vortex wakes and fl uid 
forces. One important diff erence between 
two- and three-dimensional fl apping foils 
that could aff ect vortex wake periodicity is 
leading edge vortex stability. Th e stability of 
the leading edge vortex determines when it 
is shed in the wake during the stroke cycle, 
which infl uences vortex wake interactions. 
Our experiments confi rm that the leading 
edge vortex is unstable on two-dimensional 
fl apping foils (Dickinson and Götz, 1993; 
Dickinson, 1994), whereas it is known 
to be stably attached to three-dimen-
sional fl apping foils such as insect wings 
(Maxworthy, 1979; Ellington et al., 1996; 
Dickinson et al., 1999). 

Fig. 1 | Artist impression of the bio-
inspired design of DelFly, a micro air 
vehicle with fl apping wings. 
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Conclusion 2 | Rotational accelerations stabilize leading edge vortices on revolving wings.
Hovering insects can generate exceptionally high lift with a leading edge vortex that rests stably 
on their wings (Maxworthy, 1979; Ellington et al., 1996; Dickinson et al., 1999). Why and 
under which conditions this vortex is stable is still unclear. One hypothesis is that the mechanism 
that stabilizes the leading edge vortex on fl apping insect wings is analogous to the mechanism 
that stabilizes similar vortices on the swept wings of aircraft (Ellington et al., 1996). Another 
hypothesis is that the tip vortex generated by stubby insect wings stabilizes the leading edge vor-
tex (Birch and Dickinson, 2001). 
 Our experiments with a robotic fruit fl y wing show that the leading edge vortex is unsta-
ble on translating fl y wings, irrespective of wing sweep and the tip vortex it generates. Th is result 
contradicts both existing hypotheses. We further observed, like others (Dickinson et al., 1999; 
Usherwood and Ellington, 2002), that the leading edge vortex is stable on both fl apping and 
spinning fl y wings. Our subsequent theoretical analysis of leading edge vortex stability shows that 
not the reciprocating motion, but the revolving motion of fl apping insect wings, their propel-
ler-like swing, stabilizes the leading edge vortex. Th e analysis further shows that this stabilization 
should continue to exist at larger scales. Our experiments confi rm this for fruit fl y, house fl y and 
hummingbird scale. For these scales we compared leading edge vortex stability on a reciprocat-
ing translating fl y wing, which generated an unstable vortex, versus a reciprocating revolving fl y 
wing, which generated a stable vortex. 
 Our theory and experiments show that the stability of the leading edge vortex is mediated 
by the centripetal and Coriolis acceleration in the fl ow close to the wing’s surface. Th e vortex 
is stabilized when the convective fl ow acceleration, induced by the velocity of the wing, has the 
same order of magnitude as the centripetal and Coriolis accelerations, induced by the angular 
velocity of the wing. For hovering fl ight, the relative magnitude of these accelerations is repre-
sented by the Rossby number at the wingtip Ro, which must be of order one, ‘close to one’, for 
leading edge vortex stability. Th e Rossby number was fi rst derived for studying geophysical fl ows 
under the infl uence of the earth’s rotation by Rossby (1936). 
 For hovering fl ight, the Rossby number is calculated as the radial distance between the 
tip of the wing and its center of rotation R, divided by the average width of the wing, the chord 
length c; Ro = R /c. Th is radial distance R is fi nite and equal to the radius of animal wings that 
revolve around the joint that connects them to the body. For such fi ns and wings the Rossby 
number is equivalent to single wing aspect ratio, R /c, a measure of wing slenderness. Wing 
slenderness should therefore be low, of order one, to sustain a stable leading edge vortex over 
the whole wing and maximize lift augmentation. Low wing aspect ratio not only increases lift 
augmentation, through a prominent stable leading edge vortex, it also increases the drag associ-
ated with the prominent wingtip vortex. Th e drag associated with the wingtip vortex is dispro-
portionally high for very stubby wings with aspect ratios below one (e.g. Winter, 1936), which 
diminishes effi  ciency. In summary, we fi nd that the single condition for LEV stability resulting in 
maximal force augmentation at reasonable effi  ciency appears to be a Rossby number between 1 
and 5. Th e Rossby number of the stubby fruit fl y wing in our experiments is comfortably in the 
middle of this range at 2.9.
 To determine if other animals can potentially also exploit the lift augmentation of stable 
leading edge vortices we calculated their Rossby number. We found data on more than 300 
animal species. For these species we found an average Rossby number of 3.1 for insects, 3.7 for 
hummingbirds, 3.2 for other birds, 3.3 for bats and 2.5 for the pectoral fi ns of fi sh (which also 
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revolve around their base), which all fall close to the 2.9 of fruit fl ies. Th is suggests that many ani-
mals could potentially generate a stable leading edge vortex during near hover conditions (such 
as vertical take-off  and landing). Th is prediction is confi rmed by fi ndings of stable leading edge 
vortices in insects (Maxworthy, 1979; Ellington et al., 1996), birds (Hubel, 2006), bats (Muijres 
et al., 2008) and sun fi sh (Lauder and Madden in: Bandyopadhyay et al., 2008). [Chapter 2 & 4] 
 Interestingly the average Rossby number of autorotating ‘helicopter’ seeds is 3.7, which 
suggests that even plant seeds might generate a stable leading edge vortex during wind dispersal.

Conclusion 3 | Leading edge vortices augment lift in both animal and plant fl ight.
During wind dispersal, autorotating seeds generate much higher lift than predicted by theory 
(Azuma and Yasuda, 1989). Our analysis of leading edge vortex stability on fl y wings suggests 
that autorotating seeds augment their lift with a stable leading edge vortex that rests on their 
wing. 
 To test this prediction, we measured the three-dimensional fl ow fi eld generated by 
dynamically scaled models of maple and hornbeam seeds that are actuated by a robot arm. Th e 
measured fl ow fi elds revealed that these autorotating seeds indeed generate a large stable leading 
edge vortex and corresponding exceptionally high lift. Th e lift augmentation of the leading edge 
vortex allows autorotating seeds to obtain longer airtimes for their relatively small wings. Smaller 
wings save material and energy spend on seed dispersal, or alternatively, it allows a tree to disperse 
more seeds. Th e fi nding of a stable leading edge vortex on autorotating seeds suggests that this 
vortex represents a convergent aerodynamic solution in the evolution of fl ight performance in 
both plants and animals. [Chapter 5] 
 Not all wings of organisms that are known to generate stable leading edge vortices revolve 
around their base as do autorotating seeds and insects. Th e common swift can also generate a 
stable leading edge vortex on its hand wing by sweeping its wing backwards during gliding, 
which is thought to boost lift (Videler et al., 2004). Actual lift measurements have, however, not 
been carried out. 

Conclusion 4 | Wing morphing drastically improves glide performance.
Like many other birds common swifts continually change the shape and size of their wings 
while gliding (Newman, 1958; Pennycuick, 1960; Pennycuick, 1968; Tucker, 1987; Rosén and 
Hedenström, 2001). Th eir morphing wing consists of an arm and hand wing that can be seen 
in action whenever they change the sweep of their wings from fully extended to swept back and 
vice versa. To what degree wing morphing improves the glide performance of birds has not yet 
been quantifi ed through aerodynamic measurements inside and outside the behavioral envelope 
of birds (Tucker, 1987; Azuma, 2006). 
 Our measurements on freeze-dried swift wings show that the main function of wing mor-
phing during gliding fl ight is not the generation of a stable leading edge vortex to boost lift. Th e 
swept back wings with a stably attached leading edge vortex (on the hand wing) actually generate 
less lift than the fully extended wings without a leading edge vortex. Instead we found that the 
function of wing sweep is to match wing shape and surface area to suit glide speed such that glide 
performance is maximized. Morphing can increase glide distance by 60%, glide duration by 100% 
and turning performance up to 300%. Minimal energy expenditure is obtained with fully 
extended wings at low speeds, but at higher speeds swept wings outperform extended wings. Th e 
measurements on morphing swift wings show that wing morphing can signifi cantly broaden the 



7  Synthesis 149

5°
30°
50°

0.6

0.2

1.0

0.1 0.20

lif
t c

oe
ffi

ci
en

t

drag coefficient

sweep

1.5

15

5
3.0

25

0

sp
ee

d 
sp

ec
ifi

c 
lif

t  
[1

0-
3  

m
2 ]

speed specific drag [10-3 m2]

video
receiver

radio control

computer

virtual reality 
headset

control loop

Specs RoboSwift
feathers 8
span 50 cm
length 25 cm
mass 100 gram
flight time 10 min

first

second

third

fourth

feather stack

 3 servo’s
 LiPo battery

 motor controller
 brushless motor

2 colour camera’s 
2 video transmitters

5 channel RC receiver

four carbon fibre feathers 
with balsa wood core

arm wing
hand wing

30° sweep

D

E

A B C

RC receiver

camera
transmitter

foldable
propeller

Tailerons

morphing wing

parallel
mechanism

α

α



7.1  Biofl uiddynamics as an inspiration for design 150

fl ight performance envelope of gliding birds. Th is fi nding supports the idea that wing morphing 
could also broaden the performance envelope of fl apping birds (discussed in Tobalske, 2007). 
 Th e extended performance envelope of morphing wings has been recognized by aerospace 
engineers who attempt to design more effi  cient aircraft inspired by bird fl ight. Our quantifi ca-
tion of the increased glide performance of swifts through the use of morphing wings supports 
this bio-inspired design idea. However, the morphological complexity of bird wings is beyond 
reach of current engineering design capabilities, especially at the much larger scale of commercial 
airplanes. Th erefore we need simpler morphing mechanisms for airplanes. Perhaps the best scale 
for development of such technology is the scale of birds, at which it is a proven concept and we 
can study it in detail to fi nd inspiration for design. [Chapter 6] 
 Our extensive glide performance analysis of swift wings illustrates that a simple analysis, 
based on lift and drag alone, is not suffi  cient for evaluating the effi  cacy of generating a leading 
edge vortex. Th is raises the question how effi  cient translating versus spinning versus fl apping 
wings generate lift.

Conclusion 5 | Flapping wings are less effi  cient than spinning and translating wings. 
Surprisingly, the effi  ciency of fl apping, spinning and translating wings has never been compared 
before in a single experiment. A strong motivation for many engineers to develop fl apping mil-
limeter sized air vehicles (Fearing et al., 2000), is the idea that fl apping wings might be more 
eff ective than translating and spinning wings at the scale of insects. 
 We tested this idea for hovering fl y wings from hummingbird scale to fruit fl y scale. In 
our experiments we determined how eff ective fl y wings generate lift by measuring the drag they 
produce and the power they consume to generate this lift. Our experiments show that fl apping 
fl y wings are less effi  cient aerodynamically than translating fl y wings, only at fruit fl y scale do they 
perform equally poorly. Spinning fl y wings are up to a factor two more effi  cient than fl apping 

Fig. 2 | RoboSwift, a morphing micro air vehicle inspired by the common swift. (A) In fl ight 
demonstration of wing morphing of the hand wing at wind force 5-6 (Photo: Johan van Leeuwen). 
(B) Carbon fi ber wind tunnel model with wing sweeps of 5°, 30° and 50° (wing sweep is measured 
at the leading edge of the hand wing). (C) Th ese (preliminary) lift-drag polars are made by measur-
ing lift and drag at 10 m / s at angles of attack α that range roughly from 0°-30° and subsequently 
connecting the lift-drag values. Top, the lift-drag coeffi  cient polars show that RoboSwift can indeed 
decrease drag with swept wings at low angles of attack and increases lift with extended wings at high 
angles of attack, but not as much as found for swifts. Top, the speed specifi c lift and drag polar is 
obtained by multiplying the lift-drag coeffi  cient polars by the actual wing area of the wings when 
it is swept versus un-swept. Th is shows that the diff erence in wing area signifi cantly broadens the 
lift-drag envelope of RoboSwift, as found for swifts. (D) Th e morphing wing is built up with four 
artifi cial ‘primary feathers’ built from carbon fi ber and balsa wood. Th ese feathers rest on top of 
each other, form a feather stack, and can slide controlled with respect to each other using a coupled 
parallel mechanism. (E) System overview of RoboSwift. Most of the components are enclosed in 
the fuselage, made out of carbon fi ber, like the wing. Th ese components form a control loop, which 
includes a pilot, with equipment on the ground. Th e morphing mechanism is enclosed in the arm 
wing, except for the parallel mechanism. Th e parallel mechanism simplifi es the actuation of the 
wing; only the fi rst feather is actuated by a servo motor, the others follow. Th e current in-fl ight 
control variables of RoboSwift are; (1) the sweep of its morphing wings, (2) excursion of the two 
fl aps that build up the taileron, (3) the number of revolutions per minute of the propeller. (Photo 
RoboSwift: Eddy van der Weijden.)
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and translating fl y wings. Flapping wings do generate much more lift than translating wings, 
but spinning wings generate similar high lift most effi  ciently. Th e reason for similar lift between 
fl apping and spinning fl y wings is that both revolve and can, therefore, sustain a stable leading 
edge vortex at a Rossby number close to one. Th e lower aerodynamic effi  ciency of fl apping versus 
spinning wings is due to energy losses that correspond with accelerating and decelerating the fl ow 
continuously. Another explanation is that a spinning wing can operate continuously at an opti-
mal angle of attack, whereas the angle of attack of a fl apping wing necessarily varies. [Chapter 4]
 Currently engineers try to copy the fl apping motion of insect wings to augment the lift of 
their micro air vehicles with a leading edge vortex. To maximize effi  ciency such micro air vehicles 
should only copy the low Rossby numbers of insect wings, and revolve wings continuously. In 
practice this implies designing stubbier rotor blades such that they can operate at much higher 
angles of attack, and sustain a stable leading edge vortex that augments lift, at the cost of drag. 
Which blade aspect ratio results in maximal hover performance is, however, unknown. 

From biofl uiddynamics to bio-inspired design

Synthesis 1 | Bio-inspired design of a morphing micro air vehicle
Th e extended performance and control envelope of morphing bird wings is an attractive design 
concept for effi  cient and agile micro air vehicles (Lind et al., 2004). Morphing wings not only 
have the potential to make micro air vehicles more eff ective, they also have the potential to make 
a micro air vehicle less conspicuous during surveillance missions in combination with a bird-like 
silhouette. Th is mission perspective and the aerodynamic analysis of morphing swift wings pro-
vided the inspiration for me to initiate the RoboSwift project. Roboswift fl ies passively stable and 
has a fi xed arm wing to which a morphing hand wing is attached, Fig. 2A. 
 Th e morphing hand wing of RoboSwift consists of four feathers that can slide over each 
other like real feathers. Th is allows the hand wing to be swept back and forth. Th e hand wing 
area is maximal when fully extended and roughly 25% less fully swept back, with a maximal 
feather overlap, shown for the wind tunnel model in Fig. 2B. Lift and drag measurements in the 
wind tunnel show that the morphing wings of Roboswift indeed widen the lift-drag envelope 
signifi cantly, similar to swifts, Fig. 2C. Swifts possess, however, more shape-eff ective morphing 
wings than RoboSwift, because they can generate even higher lift coeffi  cients and lower drag 

Fig. 3 | DelFly, a fl apping micro air vehicle inspired by insect fl ight. (A) DelFly in fl ight in 
Garmisch-Partenkirchen (the Bavarian Alps, Germany). Note the considerable wing deformation 
of the slack wings. (B) Th e wing deformation of DelFly at stroke reversal when wing speed is mini-
mal and wing acceleration maximal. Shown is wing deformation in air (left) versus near-vacuum 
(right). (C) Combined video frames of DelFly demonstrate its vertical take-off  and landing capa-
bilities. Th e bright square is the Lithium-Polymer battery pack. (Based on a movie made by Bart 
Remes.) (D) System overview of DelFly, which is constructed mostly out of carbon fi ber compo-
nents covered with transparent Mylar foil. Th e on-board components are fi xed unprotected to the 
carbon fuselage. Th e on-board components form a control loop, which includes a pilot and equip-
ment on the ground. Th e current in-fl ight control variables of DelFly are (1) the fl apping frequency 
of the wings, (2) the elevator excursion of the horizontal stabilizer, (3) the rudder excursion of the 
vertical stabilizer. (E) Symmetric fl ap mechanism driven by an electric brushless motor. (F) Rapid 
prototype hinge. 
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coeffi  cients with their morphing wings. Roboswift is nevertheless an impressive fl yer with its 
simple morphing wings. It uses only four primary feathers to morph its hand wing compared to 
eleven in the swift, Fig. 2D. Th e morphing capabilities of RoboSwift have been demonstrated 
during free fl ight tests in turbulent weather at wind force 5-6. 
 Th ere are two reasons why the feathers that build up the morphing wing remain stably 
packed together during fl ight (1) Th e spar (shaft) of every feather is placed near the leading edge 
of the feather, which prevents individual feathers from fl uttering, and (2), Every feather rests on 
top of the feather in front of it, which enables the feathers to push against each other such that 
the wing closes under positive loading. Th e feather design is based on a real swift wing, as is the 
sharp leading edge of the fi rst primary feather of the hand wing. Surprisingly this sharp leading 
edge turned out to be essential for good stall characteristics of RoboSwift’s fully extended wing; 
it could not fl y without it. Th is shows how fl ight tests with a mechanical swift model can also 
provide new insight into the aerodynamics of real swifts. 
 An overview of the RoboSwift system design and a short specifi cation are given in Fig. 2E. 
Roboswift is powered by a quiet electric motor that drives a foldable propeller. Th e foldable pro-
peller allows roboswift to glide effi  ciently in between powered fl ights. Th e RoboSwift design and 
its rationale are further described in Lentink et al. (2008a). 

Synthesis 2 | Bio-inspired design of a fl apping micro air vehicle
Insects are inspirational ‘fl ight machines’; they can take off  and land vertically, fl y both fast and 
hover, are agile, maneuverable and they accomplish this at an impressively small scale. One 
reason why I studied the aerodynamics of insect fl ight is to better understand how the design 
of micro air vehicles can be inspired by insect fl ight (Pornsin-Sirirak et al., 2001; Wood, 2008). 
Our experiments show that the lift and drag generated by fl apping fl y wings is scalable from fruit 
fl y scale to hummingbird scale. Th is scalability implies that, once we know the lift and drag of 
a fl apping wing, we can easily obtain values for other scales. Th ese values can be obtained using 
scaling laws for aerodynamic force and power, using the assumption that the shape of the wing 
tip path and the fl ight path remains unchanged during scaling. Th e structural design of micro air 
vehicles can also be scaled using scaling laws. Using all these scaling laws iteratively, the smallest 
possible fl apping micro air vehicle can be sized based on commercially available components 
such as motors, batteries, radio receivers and actuators. 
 Based on the insight that insect fl ight is scalable, I initiated the DelFly project. DelFly is 
a passively stable, camera-equipped, fl apping micro air vehicle that can fl y fast and hover. Th e 
design is inspired both by an existing rubber-powered toy with fl apping wings, the Luna, and 
the scalability of fl apping wing aerodynamics as found for insects, Fig. 1. Th e single wing aspect 
ratio of DelFly was kept low (1.6) inspired by the low Rossby number condition for leading edge 
vortex stability on fl y wings. DelFly is extremely lightweight for its size (low wing loading), which 
makes it susceptible for gusts, it fl ies therefore primarily indoors. Th e DelFly was demonstrated 
in 2005 at a micro air vehicle conference in Garmisch-Partenkirchen, Fig. 3A. Th e aero elastic 
wings were made from thin Mylar fi lm and carbon fi ber stiff eners. 
 In a follow-up design project, DelFly was scaled down from 35 cm to 28 cm wingspan 
and its motor and drive train where improved, which resulted in DelFly II. To determine to what 
extent aerodynamic and inertial forces deform the slack fl apping wings, we compared the wings 
deformation for hover conditions in both air and vacuum. Th e high-speed video images reveal 
that inertial force is dominated by aerodynamic force, which deforms the wing throughout the 
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stroke cycle. We further determined that the deformable wings of DelFly II can indeed generate 
up to twice as much lift as translating wings, as found for insects. Power measurements, under 
near-vacuum conditions, further show that roughly half of DelFly II’s power is needed just to 
accelerate the drive train and wings; DelFly II is therefore not very effi  cient. DelFly II is neverthe-
less an impressive fl yer as it can take-off  and land vertically many times in a row, like insects can, 
Fig. 3C. DelFly II has two onboard cameras that can be used to fl y it beyond line of sight using 
a virtual reality headset, Fig. 3D. Th e design details are shown in Figure 3D-F and include fl ight 
performance specifi cations. 
 Th e initial DelFly design has been scaled down further to 10 cm wing span in the lab 
of Yoshiyuki Kawamura (Kawamura et al., 2008). Th is tiny design is the fi rst successfully fl y-
ing insect-sized fl apping micro air vehicle. Th e design of DelFly and its rationale are further 
described in Lentink et al. (2008b). 

Outlook | Is wing slenderness optimized for power effi  ciency in hummingbirds? 
In order to design a really effi  cient hovering micro air vehicle with spinning wings, we still need to 
know which wing slenderness (aspect ratio) will result in the highest effi  ciency. For the currently 
commercially available components, hummingbird scale is the smallest feasible scale for such a 
vehicle. Not only do hummingbirds fl y at the smallest feasible scale, they are perhaps also the 
most impressive and effi  cient hovering animals that exist. To test how effi  ciently hummingbird 
wings actually generate lift, we would need to measure their lift and drag. Fortunately Douglas 
Altshuler (UC Riverside) shares my interest and through his contacts we obtained over 40 
Colombian hummingbird wings of various sizes, illustrated in Fig. 4A. For these experiments we 
developed a spinner to measure both lift and drag (Usherwood and Ellington, 2002), Fig. 4B, C. 
Spinning and fl apping wings mediate leading edge vortex stability through the same mechanism. 
Th is makes tests with spinning wings the simplest relevant experiment for our aims. In a future 
experiment we want to test the available range of real hummingbird wings and compare these 
with tests of model hummingbird wings with various aspect ratios, Fig. 4D. Th ese new experi-
ments can give us insight in the aerodynamic adaptations of hummingbird wings and hopefully 
inspiration for the future design of more effi  cient hovering micro air vehicles
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8 Back to the future



8.1
QUANTIFYING THE DEVELOPMENT OF ZEBRA FISH SWIMMING PERFORMANCE

David Lentink*, Gijs de Rue, Ebraheem Fontaine and Johan L. van Leeuwen

Based on published work and an accepted proposal

What is the hydrodynamic effi  ciency of swimming fi sh, and how does it develop from the 
larval to adult stage? We developed a whole array of improved techniques and experimental 
facilities that can provide an answer to this question if they are used in gear: a fi sh wheel, an 
automated fi sh tracker and a dynamically scaled robot fi sh. Here we will illustrate the design 
of these three newly developed techniques for NWO-ALW grant 817.02.012: Lentink, D., 
Müller, U.K., Dickson, W.B., Breedveld, P., Liu, H., van Heijst, G.J.F., Dickinson, M.H. 
and van Leeuwen, J.L. (2007). Vortex dynamic strategies in animal swimming and fl ight. 

Filming fi sh in a bend 
To determine how effi  cient zebra fi sh swim as a function of speed and age, we fi rst need to study 
how they swim. For this we need a swimming facility with high quality fl ow of which the speed 
can be manipulated accurately. Th e size range of zebra fi sh is roughly 4 - 40 mm from the larval 
to adult stage (Reynolds number 30 to 30000), Fig. 1A. Th e main challenge for designing a zebra 
fi sh swimming facility is that zebra fi sh swim at speeds for which the velocity profi le in small 
water tunnels (pipes) can be almost parabolic. Such a velocity profi le corresponds with signifi cant 
background vorticity that infers with the fl ow measurements (particle image velocimetry), Fig. 
1B. Further, at the low speed and small diameters of water tunnels that best suit experiments with 
small fi sh, the laminar velocity profi le is unstable and can transition from laminar to turbulent 
fl ow, which is undesirable. To resolve both problems, we designed a fi sh wheel consisting of a 
spinning, wheel-shaped, horizontal fi sh tank, Fig. 1C: First there is no laminar-turbulent fl ow 
transition as soon as the tank has spun-up and is in rest. Second there is almost no velocity gradi-
ent over the tank width if the wheel radius is large enough, Fig. 1B. Further, the small remain-
ing velocity gradient can be calculated analytically and subtracted from the measurements. We 
designed the wheel such that its Rossby number (wheel radius divided by fi sh length) is of order 
100 (larvae) to 10 (adult). Th ese high values ensure that the centripetal and Coriolis accelerations 
in the spinning tank are negligible compared to convective accelerations. 
 Th e fi sh wheel consists of a narrow transparent tank for larvae and juvenile zebra fi sh 
(shown) and a wider tank for adults (not shown). Th e high-speed camera and laser sheet for 
particle image velocimetry are fi xed with respect to each other and can be translated vertically as 
a whole. Th e fi sh wheel itself can be translated horizontally with respect to the camera using a 
X-Y table, and the angle of the fi sh wheel can be controlled using a servo motor. In this way we 
can always get the fi sh in focus. In a water tunnel fi sh like to swim in the boundary layer close 
to the wall to save energy. In a fi sh wheel it actually costs more energy to swim close to the wall, 
which will motivate fi sh to swim close to the center line. Th e ‘test section’ of the fi sh wheel with 
the laser and camera is shown in Fig. 1D. 
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 Fish start swimming automatically in a fi sh wheel because of an optomotor response that 
enables them to stabilize their position relatively to a stationary background in a running fl ow. 
To make use of this optomotor response we have made the fi sh tank transparent. Th e fi sh wheel 
designed by Bainbridge (1958) shows that fi sh wheels work well, and that we have actually rein-
vented the fi sh wheel. [Bainbridge, R. and Brown, R. H. J. (1958). An Apparatus for the Study 
of the Locomotion of Fish. J. Exp. Biol. 35, 134-137.]

Automated fi sh tracking 
 To obtain a statistically sound data set on zebra fi sh swimming kinematics as a function of speed 
and age we need to fi lm and track many zebra fi sh. For this we developed an automated, high-
throughput, fi sh tracker that can extract the body wave kinematics time-effi  ciently. Th e tracker 
is robust to partial occlusions and can track both larvae and adults reliably. Th e tracker consists 
of a fi sh model which is derived semi-automatically from an individual image of the swimming 
sequence. In the subsequent image this model is fi rst translated and then bended such that the 
overlap between fi sh and model is again maximal, which yields both displacements and body 
wave data, Fig. 2A. Th e automatically derived body wave kinematics, the midlines, can then be 
plotted and analyzed, Fig. 2B (white line, midlines; blue line, tail path; yellow line, snout path). 
Using the midlines we can not only calculate the angular velocity distribution of the body, but 
also how body curvature varies along the body in time, Fig. 2C. Th e magnitude of curvature 
Fourier transform gives us the distributed body-wave frequency of the fi sh, Fig. 2D. Further 
information can be found in Fontaine, E., Lentink, D., Kranenbarg, S., Müller, U. K. van 
Leeuwen, J. L., Barr, A. H. and Burdick, J. W. (2008). Automated visual tracking for studying 
the ontogeny of zebrafi sh swimming. J. Exp. Biol. 211, 1305-1316.

Ω3 the fatty fi sh robot
To determine the hydrodynamic effi  ciency of swimming fi sh we need to integrate the hydro-
dynamic power distribution along the body. Th e power distribution is calculated as bending 
moment times angular velocity distribution. We can obtain the angular velocity distribution 
along the body with the automated fi sh tracker, but measuring the bending moment distribu-
tion in vivo is an open challenge. Th erefore we designed a dynamically scaled robotic model of a 
zebra fi sh in an oil tank facility instead. Th is robot fi sh, Ω 3, allows us to replay the swimming 
kinematics of actual zebra fi sh and measure the corresponding bending moments along its body 
simultaneously. For this we use strain gauges between the servomotors that actuate the robot. Th e 
drive train of the robot is designed such that it can accommodate plastic shells that represent the 
body shape of both adult and larval zebra fi sh, Fig. 3. 

Th ree times is out
In summary we will use our equipment in three subsequent steps to determine the hydrodynamic 
effi  ciency of zebra fi sh. First the fi sh wheel will yield high quality fl ow fi elds and movies of body 
kinematics of zebra fi sh as a function of both speed and age. Second the automated fi sh tracker 
will effi  ciently yield a dataset with a high enough number of samples to be statistically sound. 
And fi nally the fi sh robot will yield the bending moment distributions and hence the net hydro-
dynamic power needed to evaluate zebra fi sh swimming effi  ciency as a function of both speed 
and age. In subsequent steps we hope to vary the kinematics of the robot fi sh to determine to 
which degree zebra fi sh maximize their hydrodynamic swimming performance.
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Vele organismen moeten zich voortbewegen door water en lucht (aangeduid met ‘vloeistof ’ in 
de stromingsleer) om te overleven en zich voort te planten. De ontwikkeling van individuele 

organismen en de evolutie van hun soort wordt vormgegeven door de fysische interactie tus-
sen het organisme en de vloeistof. Een karakteristieke eigenschap van vele macroscopisch grote 
dieren die zich voortbewegen door vloeistof is het ontstaan van wervels; draaikolken in water en 
lucht. Deze wervels worden vlak langs het lichaam gecreëerd terwijl het lichaam wordt voort-
bewogen met behulp van spier- of zwaartekracht. Nadat deze wervels zijn afgeschud vormen 
zij tezamen een zog; een spoor van wervels achtergelaten in de vloeistof. Het bestuderen van de 
dynamica van vloeistoff en door de dynamica van deze wervels te beschouwen wordt bemoeilijkt 
door de inherente complexiteit van de mogelijke wervelinteracties. Wervels kunnen zich niet 
alleen zelfstandig voortbewegen in een vloeistof, vaak interacteren zij onderling en met het organ-
isme waardoor complexe stromingsfenomenen kunnen ontstaan die cruciaal zijn voor ons begrip 
van zwemmen en vliegen. 
 Dit onderzoek richt zich op twee stromingsfenomen die van belang zijn voor de voort-
bewegingsprestatie van een aantal organismen. Het eerste fenomeen is de stabiliteit van voor-
randwervels. Deze tornado-achtige wervels zijn geobserveerd boven fl apperende insectenvleugels, 
waarop zij parallel aan de voorrand stabiel blijven liggen. Deze stabiele voorrandwervel versterkt 
de lift dusdanig dat zij een belangrijke verklaring vormen voor de uitzonderlijke vliegpresta-
ties van insecten. Hier onderzoek ik waarom deze voorrandwervels stabiel aan insectenvleugels 
blijven plakken. Het tweede fenomeen is de periodiciteit van het wervelzog. Afhankelijk van 
de condities, kan het wervelzog, afgeschud door een organisme, gestructureerd en voorspelbaar 
zijn of chaotisch. Ondanks dat de stroming van vloeistoff en deterministisch is, wordt deze als 
zij chaotisch is ultragevoelig voor minuscule verstoringen. Deze chaos kan er voor zorgen dat 
de vloeistofkrachten slecht voorspelbaar worden. Hier beschrijf ik het optreden van chaotische 
wervelinteracties in biologische relevante modellen in het licht van de mogelijke consequenties 
van deze chaos voor de neurale controle van de voortbeweging.
 Deze studies zijn uitgevoerd met behulp van modellen van zwemmende vissen, vliegende 
insecten, autoroterende plantenzaden en vogels. De stromingspatronen en krachten zijn bepaald 
met behulp van de volgende modellen die in toenemende mate een realistische benadering geven 
van het organisme: Een fl apperende vin/vleugel in een zeepfi lm tunnel, een dynamisch geschaalde 
driedimensionale robot die zowel de vleugelmodellen van vliegen als autoroterende planten zaden 
kan voortbewegen in een tank met olie, en ten slotte gevriesdroogde vleugels van gierzwaluwen 
in een windtunnel. De metingen werden ontworpen en geïnterpreteerd met behulp van dimen-
sie-analyse: dimensieloze parameters die aangeven welke versnellingen en schuif- en drukspan-
ningen in de vloeistof de stroming domineren, als functie van de morfologische en kinematische 
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variabelen die de stroming induceren. Deze analyse heeft geresulteerd in een overzicht van de 
relevante parameterruimte van deze biologische stromingen rondom translerende, roterende en 
fl apperende vleugels en vinnen. Op basis van deze aanpak is het ons gelukt om aan te tonen dat: 
(1) Symmetrisch en periodiek fl apperende vleugels zowel asymmetrische als chaotische wervel-
zoggen kunnen voortbrengen. (2) Acceleraties geïnduceerd door rotatie er voor zorgen dat de 
voorrandwervel stabiel blijft liggen op de draaiende vleugels, zowel continue als fl apperend, van 
insecten en andere organismen. (3) Stabiele voorrandwervels de lift sterk verhogen van zowel 
vliegende dieren als autoroterende planten zaden. (4) De actieve vleugelvervorming ‘morphing’ 
van vogels tijdens de zweefvlucht de vliegprestaties drastisch verhogen. (5) Flapperende insecten-
vleugels minder effi  ciënt zijn dan spinnende en translerende insectenvleugels. 
 Deze inverse ontwerpanalyse van de voortbeweging van organismen in vloeistoff en heeft 
ons geholpen om twee nieuwe microvliegtuigjes te ontwerpen, te bouwen en uiteindelijke te laten 
vliegen. We hebben een fl apperend vliegtuigje (DelFly) en een vliegtuigje met actief vervormende 
vleugels (RoboSwift) uitontwikkeld tot daadwerkelijk functionerende demonstratiemodellen. Dit 
illustreert dat de methodes en vondsten die hier worden gepresenteerd direct kunnen resulteren 
in vernieuwende technologische producten. 
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