- 1 Institute of Systems Biology and Ecology, Academy of Sciences of the Czech Republic
- 2 Institute of Physical Biology, University of South Bohemia
- 3 Centre for Geo-Information, Wageningen University
- 4 Photon Systems Instruments Ltd.

Alexandr Ač¹, Julie Olejníčková^{1, 2}, Kumud Bandhu Mishra^{1, 2}, <u>Zbyněk Malenovský</u>^{3, 1}, Jan Hanuš¹, Martin Trtílek⁴, Ladislav Nedbal^{1, 2}, and Michal V. Marek¹

Towards remote sensing of vegetation processes

OBJECTIVE

To investigate the information content in annual changes of steady-state chlorophyll fluorescence yield (Fs) of evergreen plant species, as being a passively remotely sensed signal.

EXPERIMENT 1

METHODOLOGY

FLUORCAM (CCD fluorescence camera)

OBJECTIVES

- 1 To test sensitivity of the AISA Eagle VNIR imaging spectroradiometer for sensing the grassland and spruce canopy fluorescence signals.
- ② To investigate potential relationships between 'processrelated' vegetation optical indices and eddy-covariance flux parameters.

EXPERIMENT 2

METHODOLOGY i.

Airborne Imaging Spectrometer for Applications (AISA Eagle) => *spatial* and *temporal* distribution of the vegetation optical indices.

EXPERIMENT 2

METHODOLOGY ii.

Eddy-covariance system measures exchange of CO_2 and H_20 between air and ecosystem canopy resulting in following parameters:

- NEE Net Ecosystem Exchange
- **GPP** Gross Primary Production
- **R** Respiration
- RUE Radiation Use Efficiency (= NEE/PPFD)

gRUE – gross Radiation Use Efficiency (= GPP/PPFD)

EXPERIMENT 2 RESULTS i. Vegetation indices used: $\mathsf{PRI} = (\mathsf{R}_{532} - \mathsf{R}_{570}) / (\mathsf{R}_{532} + \mathsf{R}_{570});$ R₆₈₈/R₆₃₀ & R₇₄₀/R₈₀₀ 0.8 0.04 740 532 686 •~5 sec 0.6 0.03 ° 90 sec R₆₈₆/R₆₃₀ 》 입 0.4 • difference 0.02 0.01 0.2 0 0 450 550 650 750 λ [nm]

SENSOR NET

POCKET-SIZE FLUORMETERS

© Photon Systems Instruments

FLUORESCENCE PARAMETERS

(LED light source at 470 nm)

F(t) – fluorescence at any time

Fv/Fm – quantum efficiency of fluorescence

Fs - steady-state fluorescence

REFLECTANCE PARAMETERS

(LED light source at 644 nm & 760 nm) NDVI = $(R_{760} - R_{644})/(R_{760} + R_{644})$

(LED light source at 531 nm & 570 nm) PRI = (R531 - R570)/(R531 + R570)

A wide range of *two chips* light emitting diodes (LED's) as light sources and very sensitive PIN diode sensor allows to construct network of pocket size devices measuring nearly any combination of reflectance and fluorescence parameters.

TAKE HOME MESSAGES

 Chlorophyll steady-state fluorescence is an accurate indicator of the active vegetation season for evergreens.

② Fluorescence related optical indices of canopy reflectance can be related with the vegetation radiation use and productivity.

③ Correct interpretation of the steady-state fluorescence signal needs an appropriate leaf-canopy up scaling approach, based on a joint ground and remote sensing monitoring network.

LAB. EXPERIMENT

PERFORMANCE

