# View metadata, citation and similar papers at <u>core.ac.uk</u>

## Do termites enhance the invasion of southern African savannas by alien plants?



Mhosisi Masocha; Andrew. K. Skidmore; Herbert H.T. Prins; Milena Holmgren; & Jan de Leeuw

1

#### A plant community becomes more prone to alien plant invasions if the amount of unused resources increases



Davis, M.A., Grime, J.P., & Thompson, K. 2000. Journal of Ecology, 88, 528-534.

## Our hypothesis: termites increase the availability of environmental resources and this drives alien plant invasions



• Mean diameter = 19.06 m (± 1.41 s.e., n = 48)

Macrotermes natalensis (Haviland)

#### The study area (Kyle Game reserve) is located in southern Zimbabwe





•20° 13' South, 31° 03' East
• 800 mm mean annual rainfall
•1020 m - 1480 m a.s.l.

## Photographs of two alien plant invaders studied: 'all that glitters is not gold'



Lantana camara (Cheerie-pie)

Duranta erecta (Forget-me-not/Golden dewdrop)

## Field measurements were done to show that fertility and the abundance of aliens are higher at mounds than non-mounds





Layout of an intensive vegetation plot

#### Variables measured:

- Vegetation composition and percentage cover
- Mineral N, available P, K, Ca, Mg, and pH
- The spatial location of mounds and alien plant invaders



## A greenhouse experiment was done to show that alien plants perform better at mounds than non-mounds

| ABL | NML | NMD | NMD | AML | AML | AML | NML | AMD | ABL | NMD | AML | AML | NML | ABD | ABD | AML | AML | NMD | ABL |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| NML | AML | NMD | ABD | ABD | ABL | AMD | NML | NML | AMD | NMD | AMD | ABD | NML | AMD | ABD | ABL | ABD | NMD | ABD |
| NML | ABD | AMD | ABD | AML | AML | ABL | NML | AMD | AMD | NMD | NML | AMD | AMD | ABL | NMD | ABL | ABL | ABL | ABL |

- *L. camara* and *D. erecta* were grown separately in pots filled with soils gathered from 10 active mounds, 10 abandoned/old mounds and 10 non-mound sites
- Each treatment was replicated 10 times





#### Measurements show that mounds are more fertile than nonmound sites



## Also, exchangeable bases (Ca & Mg) were significantly higher at mounds than non-mounds



#### Further, non-mound soils were more acidic than mound soil



The main conclusion from these statistical tests is that the fertility gradient between mounds and non-mounds is quite high

#### The response of alien plant invaders to soil modification by termites did not differ from that of native species



Both native plant species richness and the abundance of aliens relative to that of natives were significantly higher at mounds than non-mounds (Mann-Whitney test, P < 0.01, n=20)

#### Alien shrubs clump around mounds suggesting that conditions at mounds are more favourable for their growth



Plot size = 200 m x 200 m



## Greenhouse measurements show that *L. camara* plants grow faster at mounds than at non-mound sites



After 7 weeks, plants in the control group were significantly shorter than those in the treatment groups

## ۲

## Similarly, *D. erecta* plants perform better at mounds than at non-mound sites



After 5 weeks, plants in the control group were significantly shorter than those in the treatment groups

### Conclusions

• Our results clearly suggest that through creating spatial environmental heterogeneities,

termites (Macrotermes genus) enhance the invadibility of southern African savannas by alien

plants

#### **Acknowledgements**

- Nuffic/ITC for funding the research
- Parks and Wildlife Management Authority of Zimbabwe for logistical support
- Bothwell, Albert, Chris, Jairos, Munyaradzi, and others for field support