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Abstract
[1]   International agreements such as the EU Water Framework Directive (WFD) ask for efficient
sampling methods for monitoring natural resources. In this paper a general methodology for designing 
efficient, statistically sound monitoring schemes is described. An important decision is the choice 
between a design-based and a model-based method, implying the choice between probability (random) 
sampling and purposive sampling. For mapping purposes, model-based methods are more appropriate, 
whereas to obtain valid results for the universe as a whole, such as in testing water quality standards 
against legal standards, we generally prefer a design-based method. Four basic sampling patterns in 
space-time universe are described: static, synchronous, static-synchronous, and rotational. A case study 
is carried out for monitoring the quality of surface water at two farms in western Netherlands, wherein a
synchronous sampling design is applied, with stratified simple random sampling in both space and time.
To reduce laboratory costs the aliquots taken at the locations of a given sampling round are bulked to 
form a composite. To test the spatiotemporal mean N-total concentration during the summer half-year 
against the MAR standard with a power of 80% at a concentration 15% below the MAR standard and 
with a confidence of 95%, six to nine sampling rounds are needed with 50 to 75 locations per sampling 
round. For P-total the required number of sampling rounds differs strongly between the two farms, but is
for both farms much larger than for N-total.
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1. Introduction
[2]   The implementation of international agreements such as the Kyoto Protocol [United Nations, 1992] 
and, at the European level, the Habitats Directive [Council of the European Communities, 1992], the 
Water Framework Directive [Council of the European Communities, 2000; Blöch, 2001], and the Soil 
Thematic Strategy [Commission of the European Communities, 2002] ask for efficient sampling 
methods for monitoring natural resources such as biotic populations, groundwater, surface waters and 
soil. The monitoring aspects of the Water Framework Directive have been worked out in a guidance 
manual [Water Framework Directive Common Implementation Strategy Working Group 2.7 
Monitoring, 2003]. Monitoring can be defined as collecting information on an object through repeated 
or continued observation in order to determine possible changes in the object. The monitoring object 
may or may not involve a spatial extent. If it does, then observations can be collected via sampling in 
space-time, the subject of this paper. An example of monitoring an object without spatial extent is to 
sample repeatedly over time at a particular location of a river where the water quality or level is 
measured.

[3]   de Gruijter et al. [2006]
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present several basic principles and major decisions for designing monitoring schemes. In this paper we 
will briefly summarize some of these principles and decisions in developing efficient strategies for 
natural resource monitoring. In the second part of this paper we will illustrate the proposed 
methodology with a case study in the field of water resources management: the development of a 
strategy to monitor the quality of the surface water at dairy farms in the Dutch peat district. The purpose
is to test at a farm level whether water quality complies with the standards of the European Water 
Directive Framework or not, and to conclude whether farm management required intervention in order 
to obey to these standards. We will explain why we preferred a full design-based approach, involving 
probability sampling both in space and time, for the purpose of testing water quality standards against 
legal standards. To our knowledge the application of a full design based approach in testing surface 
water quality against legal standards, as we illustrate in this paper, is new. The case study demonstrates 
how decisions on the sampling design for monitoring can be based on statistical inference, and how new
information on the variation of the target variable collected in a first monitoring project can be used to 
update the sampling design.

2. Designing a Monitoring Scheme
[4]   When designing a monitoring scheme many decisions must be taken, the most obvious of which
concern the boundaries of the area and the period of time to be monitored (the boundaries of the so 
called universe), the number of sampling locations, the sampling frequency, and where and when to take
samples [Harmancioglu et al., 1999]. However, as will be shown, there is much more to decide on. All 
these decisions can only be taken after a thorough analysis of the objective of the monitoring project at 
hand, and a specification of the constraints. Also, for some decisions prior information is needed. For 
instance, to determine the required number of sampling rounds and number of locations per sampling 
round, prior estimates of components of the variance of the target variable in the universe to be 
monitored are required. A complete monitoring scheme specifies not only the proposed solution to the 
monitoring problem at hand, i.e., the sampling plan, but also the objective, the constraints, and the prior 
information on which the solution is based, together with a description of how the sample data should be
analyzed statistically [de Gruijter et al., 2006].

[5]   Early in the process important decisions need to be taken which have dominant effects on both
costs and quality, and on which most other decisions depend. These major design decisions include the 
choice between a design-based or a model-based monitoring strategy, the choice of sample support 
(volume of water samples), whether and how to use composite sampling, and the choice of an 
observation method. For further details, we refer to [de Gruijter et al., 2006]. Hereafter we will 
elaborate on the choice between a design-based and a model-based method, which implies choosing 
between probability sampling and purposive sampling. In a next subsection we will give some more 
details on the choice of the sampling pattern types in space-time, in space and in time.

[6]   de Gruijter et al. [2006]
give several design principles, one of which is of special importance for monitoring, namely “anticipate
changing conditions during monitoring”. While a survey takes place within a relatively short period of
time, the monitoring period can be so long that not only the universe itself changes (being the
motivation for repeating the survey), but the objectives of the monitoring project and/or the constraints
posed on the monitoring scheme may also change over time. For instance, during the monitoring period
interest may shift to other target variables or other subregions or subperiods, and the budget may have
changed considerably. One condition that is always changing during the monitoring is the amount of
prior data as a result of obtaining more and more information on the variation in space and/or time in a
sequential manner. Any of these changes may provide a basis for fine tuning or for a thorough redesign
of the monitoring scheme. To accommodate these changes Overton and Stehman [1996] recommend a 
simple design structure.

2.1. Design-Based or Model-Based Method

[7]   The choice between a design-based method involving probability sampling and design-based
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inference, or a model-based method involving purposive sampling and model-based inference, is one of 
the major design decisions one must make in designing any monitoring scheme[Brus and de Gruijter, 
1997]. In a design-based method sampling units (locations and/or instants of time) are selected by 
probability sampling according to some well-defined sampling design. This sampling design determines
the probabilities (for infinite populations probability densities) that a sampling unit is included in the 
sample, as well as the inclusion probabilities for pairs of sampling units. All sampling units in the 
universe must have a positive probability of being selected. The inclusion probabilities are used in the 
statistical inference (e.g., estimating the mean and the sampling variance of the estimated mean), so the 
inference is based on the sampling design.

[8]   In a model-based method there are no requirements on the method used for selecting the sampling
units. Typically the sampling units are not selected by probability sampling but purposively, such that 
the prediction error variance is minimized. Commonly used spatial sampling patterns for model-based 
methods are regular grids and spatial coverage samples. A model for spatial and or temporal variation, 
including a random error term, is used for predicting the target quantity (e.g., the values at points in the 
space-time universe, the spatiotemporal mean or the temporal trend), and for estimating the prediction 
error variance of this quantity. The quality of these predictions depends on the quality of the model. In 
design-based methods no model of variation in space and or time is used. This makes that design-based 
methods have better validity properties, i.e the quality of the result is independent of the quality of 
model assumptions.

[9]   The appropriateness of these two approaches is partly determined by the objective of monitoring,
more specific the number of domains. At one extreme there is only one domain being the entire 
universe, at the other extreme there is an infinite number of domains being all points (s,t) in a 
space-time universe, all locations (s) in a spatial universe or all instants of time (t) in a temporal 
universe. For mapping the current values (values at latest sampling time) or the temporal trend at 
locations, model-based methods are the best option, whereas for estimating the spatiotemporal mean, the
current spatial mean, or the spatial mean temporal trend both approaches are appropriate in principle. In 
the latter case the choice between the two approaches should be guided by the relative importance of 
validity and efficiency. Cooper [2004]
discusses the choice between design-based and model-based inference in the context of estimating water
quality in streams.

[10]   In compliance or regulatory monitoring, where for example one tests whether concentrations of
pollutants exceed regulatory standards or not, the validity of the result (conclusion of hypothesis testing)
is of primary interest, it may be argued that design-based methods are more appropriate.

2.2. Types of Sampling Pattern

Figure 1.  Four basic types of sampling pattern for monitoring: static (top left),
synchronous (top right), static-synchronous (bottom left), and rotational (bottom 
right).

[11]   The efficiency (precision and costs) of a sampling pattern for monitoring is partly determined by
the distribution of the sampling units in the space-time universe. A relevant concern then is whether the 
same locations are observed at all sampling times, or whether this restriction is relaxed so that all or part 
of the sampling locations are replaced by new ones. On the basis of this aspect four basic types of 
sampling pattern are distinguished: static, synchronous, static-synchronous and rotational patterns 
(Figure 1). In static sampling all sampling takes place at a fixed set of locations. Sampling at the various 
locations may or may not follow the same pattern in time. In synchronous sampling, also referred to as 
repeated or dynamic sampling, a different set of sampling locations is selected for each sampling time; 
that is, the sampling locations are not revisited. The spatial patterns used at different times may or may 
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not be the same. If they are the same, then they do not coincide spatially, because otherwise the pattern 
would be static-synchronous. When static sampling and synchronous sampling are combined with each 
other, we speak of static-synchronous sampling, also referred to as a pure panel. Rotational sampling is 
a compromise between static sampling and synchronous sampling, in the sense that the locations of the 
previous sampling time are partially replaced by new ones. The choice of a pattern type for monitoring 
should be guided by statistical as well as operational considerations. For instance, if the aim is to 
estimate the (spatial) mean change of the target variable from the previous round to the next sampling 
round, in general a static-synchronous pattern is the best choice because it gives most precise estimates. 
On the other hand, for flexibility reasons, we might prefer a synchronous pattern.

[12]   A more complete design of a sampling pattern for monitoring specifies spatial as well as temporal
patterns describing the distribution of the sampling units in both space and time, respectively. This leads
for instance to the following descriptions: (1) synchronous sampling with random grid sampling in 
space and stratified simple random sampling in time; and (2) static-synchronous sampling with centered
grid sampling in space and systematic sampling in time.

3. Case Study: Compliance Monitoring of Quality of Surface Water
[13]   The process of designing efficient sampling patterns will now be illustrated with a real world case
study on water resource monitoring. Article 8 of the European Water Framework Directive [Council of 
the European Communities, 2000] states that “Member states shall ensure the establishment of
programmes for the monitoring of water status in order to establish a coherent and comprehensive
overview of water status within each river basin district”. For surface waters such programmes shall
cover amongst others the ecological and chemical status. In this study a monitoring scheme is designed
for the surface waters (ditches) in a lowland peat area with dairy farms in the Netherlands. The aim of
the monitoring scheme is to test whether the quality of the surface waters complies with the standard, so
it is an example of compliance monitoring, or in terms of the European WFD: operational monitoring.
Annex 5, section 1.3 of the WFD states that “the level of confidence and precision of the results
provided by the monitoring programme should be given in the plan” [Council of the European 
Communities, 2000], thus demanding a statistical approach to the problem.

Figure 2.  Location of the farms Spruit (bottom left) and Zegveld (top right) for
which a monitoring scheme was designed.

[14]   In the Netherlands one of the questions is whether measures must be taken so that the quality of
the surface water in agricultural areas complies with the WFD standards. The WFD standards are still 
qualitative, and therefore we used the Dutch Maximum Allowable Risk (MAR) standards. Two dairy 
farms, Spruit and Zegveld, both situated in the lowland peat area in the west of the Netherlands (Figure 
2), were selected, and for both farms a monitoring scheme was designed in accordance with the 
guidelines of the WFD [Council of the European Communities, 2000] and the Guidance on Monitoring 
for the Water Framework Directive [Water Framework Directive Common Implementation Strategy 
Working Group 2.7 Monitoring, 2003].

3.1. Aim

[15]   First the aim of the monitoring was further detailed (see Table 1):

[16]   1. In time the universe consists of a single period from 1 April to 30 September (year
unspecified); in geographical space the universe is defined as the surface water in the ditches that are 
bordered on one or two sides by the fields of Spruit or Zegveld.
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[17]   2. Domains: Spruit and Zegveld; that is, a result is required for these two farms separately.

[18]   3. Target variables: concentrations of N-total and P-total in the surface water. For these two
variables, maximum allowable risk (MAR) standards are available in the Netherlands.

[19]   4. Target parameter: the spatiotemporal mean

[20]   5. Type of result: the study seeks an answer (yes or no) to the question “does the spatiotemporal
mean of the N-total and P-total concentrations in the surface water during the summer half-year in 2006
at Spruit (Zegveld) comply with the MAR standards (2.2 mg/l and 0.15 mg/l respectively)?” The
decision is taken by statistical testing of the null hypothesis (H0): c ≥ cMAR against the alternative 
hypothesis, (H1): c < cMAR, where c
is the actual spatiotemporal mean N-total (P-total) concentration, and cMAR is the MAR standard for 
N-total (P-total). The reason for choosing c ≥ cMAR as the “benefit of doubt” hypothesis H0 is that in 
large parts of the Netherlands N-total and P-total concentrations above the MAR standard occur. To 
improve the quality of surface waters, the application of N and P is regulated. Farmers who want to be 
exempted from these general regulations must show that there is strong evidence that the concentrations 
are already below the MAR standard.

[21]   6. Quality measure: two types of error can be made in statistical testing. We may incorrectly
conclude that the concentration complies with the standard (type I error), or incorrectly conclude that 
the concentration does not comply with the standard (type II error). The probabilities of these two errors
are taken as a quality measure.

3.2. Constraints

[22]   The next step is to specify the constraints. First a requirement was specified for the quality of the
result. The probability of a type I error (incorrect conclusion c ≤ cMAR) is set to a maximum of 5%, and 
the probability of the type II error (incorrect conclusion c ≥ cMAR) is set to a maximum of 20% at a 
concentration of the standard minus 15% of the standard. The latter implies a power of 80% at an 
N-total concentration of 2.2 - (0.15 * 2.2) = 1.87 mg/l and a P-total concentration of 0.15 - (0.15 * 0.15) 
= 0.125 mg/l. The yearly costs of monitoring should not exceed euros 1,000. = per farm.

3.3. Prior Information

[23]   In 2004 at Spruit's farm water samples were collected in nine sampling rounds between 23 April
and 28 September, at five locations divided over four ditches. The data were treated as a simple random 
sample. Table 1
shows the estimated spatial variance of observations at locations within a sampling round ( ), and the 
estimated temporal variance of the spatial means ( ).

3.4. Sampling Plan

[24]   We preferred a design-based approach for two reasons: (1) design-based methods are well suited
for global quantities such as the spatial-temporal mean; and (2) design-based methods have in general 
better validity properties, which is of great importance for compliance monitoring.

[25]   We chose a synchronous pattern type mainly because of its flexibility; that is, the sampling design
(number of locations and even the type of sampling design) can easily be adapted during the monitoring 
period. Also, estimation of the sampling variance, needed in statistical hypothesis testing, is simple and 
straightforward compared to a static-synchronous pattern. In space the locations are selected by 
stratified simple random sampling (STSI), with ditches as strata. In time also STSI is selected as a 
design type, with periods of 2 months as strata (which implies that we have three temporal strata).
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Figure 3.  Schematic presentation of the synchronous sampling pattern, with
stratified simple random sampling in space and with stratified simple random 
sampling in time.

[26]   Figure 3 is a schematic presentation of the sampling plan.

Figure 4.  (a) Testing of H0 hypothesis: spatiotemporal mean N-total
concentration ≥ cMAR, for number of sampling rounds (n) = 4 and number of 
sampling locations per sampling round (m) = 10. The maximum probability of 
type I error (α) was set to 5%. For this sample size the probability of type II error 

(β) was 42% (power: 58%). By increasing the sample size, the sampling variance of the estimated 
mean decreases, and consequently, ccrit shifts toward cMAR (for given α), and β decreases. (b) For n
= 4 and m = 32, the power reaches the required level of 80%.

[27]   The prior information was used to determine the required number of sampling locations and
sampling times given the quality requirements. We do not have prior information on the spatial variance
within spatial strata nor on the temporal variance of spatial means within and between temporal strata, 
and therefore we used the prior information of Table 1 to obtain prior estimates of the required sample 
sizes for a synchronous pattern with simple random sampling (SI) in space and SI in time. The temporal 
sections (horizontal lines in Figure 3) can be considered as primary sampling units in two-stage 
sampling, and the locations as secondary units. Therefore, the prior estimate of the sampling variance of
the spatiotemporal mean  equals

where n is the number of sampling times (sampling rounds), m is the number of selected sampling 
locations per sampling round, 
is the prior estimate of the spatial variance of the observations at locations within sampling rounds 
(variance within primary units), and 
is the prior estimate of the temporal variance of the spatial means (variance between primary units). 
This variance was calculated for many combinations of n and m. Given the prior estimate of the 
variance of the spatiotemporal mean, the power of the test can be calculated with

where 1-β is the power (β is the probability of a type II error), ccrit is the critical value of the mean 
concentration beyond which H0 is rejected, cpower is the concentration for which the power is estimated 
(0.85cMAR), and Φ is the cumulative normal distribution. ccrit is given by

with α being the maximum tolerable probability of a type I error, here α = 0.05. Figure 4 illustrates the 
calculation of the power at c = 0.85 cMAR, for α = 0.05.

Figure 5.  Power based on prior data of 2004 for N-total (top) and P-total
(bottom) at a concentration of 1.87 mg/l (N-total) and 0.125 mg/l (P-total). 
Action level (MAR standard) is 2.2 mg/l for N-total, and 0.15 mg/l for P-total. 
Confidence level 95%.
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[28]   The result is shown in Figure 5. Table 2 shows combinations of n and m leading to the required 
power. Table 2
shows that for P-total the required number of sampling rounds is much larger than for N-total. For 
P-total the temporal variance of spatial means is only slightly smaller than the spatial variance of 
observations at locations, whereas for N-total the temporal variance is approximately 5% of the spatial 
variance (Table 1).

[29]   To reduce laboratory costs all water samples (aliquots) taken during a sampling round are bulked
to form composite aliquots (composites). To obtain unbiased estimates of the spatial mean, the volume 
of water of a given spatial stratum in the composite is proportional to the total volume of water in that 
spatial stratum.

[30]   The selection of the ultimate combination of n and m from all combinations that comply with the 
requirement on the power (Table 2) should be based on the costs. As the travel time to the study area is 
a considerable portion of the total time for fieldwork, we decided to take for m the number of locations 
that could be sampled in 1 day. Given this choice of m, the required number of sampling rounds was 
determined.

[31]   The monitoring strategy was tested in the period 1 June to 31 September of 2006. The two farms
have been sampled in five sampling rounds, two in the temporal stratum June-July, and three in the 
temporal stratum August-September. Note that the first temporal stratum April-May was not sampled. 
At Spruit 50 locations were sampled per sampling round, at Zegveld 75 locations. Locations were 
selected by STSI, using ditches as strata. All samples of a given sampling round were bulked.

3.5. Statistical Inference

[32]   After the data have been obtained the spatiotemporal mean was estimated by

where L is the number of temporal strata, wh is the weight of temporal stratum h being equal to the 
number of days of stratum h
divided by number of days of whole monitoring period (relative duration), and  is the estimated 
spatiotemporal mean concentration for temporal stratum h, that can be estimated on his turn by

where nh is the number of sampling rounds in temporal stratum h, and zhi is the concentration of 
composite i in temporal stratum h used as an estimate of the spatial mean for sampling round i. The 
sampling variance of the estimator equation (4) was estimated by

where ,h

is the estimated temporal variance of the estimated spatial means (composite means) for stratum h,
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where h is the unweighted mean of the composites in temporal stratum h. Note that in equation (6) the 
spatial variance of observations at locations within sampling rounds (variance within primary units) of 
equation (1) does not show up. The reason is that ,h is the estimated temporal variance of the 
estimated spatial means, whereas 
is the temporal variance of the true spatial means. The error in the estimated spatial means due to the 
spatial variance within sampling rounds is automatically incorporated in ,h.

[33]   Because of the bulking of the water aliquots taken during a sampling round, and the small number
of sampling rounds, testing with a normal distribution might not be very realistic. We used the 
Satterthwaite approximation [Satterthwaite, 1946; Cochran, 1977], saying that the standardized 
estimated spatiotemporal mean has Student t distribution:

with the degrees of freedom equal to

[34]   Table 3
shows that for both target variables and at both farms the estimated spatiotemporal means were larger 
than the MAR standards. This explains the large p values, from which we can conclude that we certainly
cannot reject the null hypothesis c ≥ cMAR. If we would have chosen as a null hypothesis c ≤ cMAR, then 
this hypothesis would have been rejected (α = 0.10) for N-total at both farms, and for P-total at Spruit.

3.6. Updating the Required Number of Sampling Rounds

Figure 6.  Updated power for N-total (top) and P-total (bottom) for Spruit (left)
and Zegveld (right) at a concentration of 1.87 mg/l (N-total) and 0.125 mg/l 
(P-total). Action level (MAR standard) is 2.2 mg/l for N-total, and 0.15 mg/l for 
P-total. Confidence level 95%.

[35]   We used the monitoring data to update the prior estimate of the temporal variance of spatial
means. Additional prior information on the spatial variance within sampling rounds is not available, 
since all water samples (aliquots) taken during a sampling round were bulked to form composite 
aliquots in order to reduce laboratory costs. Therefore, we were not able to update both the required 
number of sampling rounds and the number of locations per sampling round. Table 4 shows the 
temporal variance of estimated spatial means within strata as estimated from the monitoring data. The 
estimated variances for the two temporal strata have been pooled, using the numbers of sampling times 
as weights. For N-total the temporal variance of spatial means at Zegveld is close to the prior estimate 
of Table 1, but for Spruit it is approximately twice as large. For P-total the temporal variance at Spruit is 
close to the prior estimate, but for Zegveld it is considerably smaller. We used the unweighted average 
of the pooled temporal variances as estimated from the monitoring data and the prior estimates of this 
variance of Table 4
as the updated estimates of the temporal variance within the temporal strata. Given the number of 
sampling locations per sampling round (50 for Spruit and 75 for Zegveld) and the allocation of these 
numbers to the spatial strata, we used this updated temporal variance to update the number of sampling 



Sampling design for compliance monitoring of surface water quality: ... http://www.agu.org/journals/wr/wr0811/2007WR006123/body.shtml

9 of 9 21-1-2009 9:07

rounds nh to achieve the required power of the test (equation (6)). To compute the power, we used the 
Student t distribution. Figure 6
shows the results. For N-total the required number of sampling rounds per 2 months is 3 (Spruit) and 2 
(Zegveld), leading to a total of 9 and 6 sampling rounds for the summer half-year, which is slightly 
more than the prior estimate of 4 sampling rounds (Table 2). For P-total the required number of 
sampling rounds equals 25 per 2 months for Spruit and 15 for Zegveld, leading to a total of 75 and 45 
sampling rounds. For Spruit this is of the same order of magnitude as the prior estimate of Table 2 (77), 
but for Zegveld it is much less. Uncertainty about the variation in time and space of P-total therefore 
remains, and consequently at this stage we cannot be conclusive about the required number of sampling 
rounds and number of locations per sampling round for P-total. As monitoring continues, the 
information on the variation of N-total and P-total increases, so that we gradually become more certain 
about the required sample size. More than ten to twenty sampling rounds per year are unfeasible. If so 
many sampling rounds are required indeed to achieve the quality constraints, then we should think of an
alternative sampling strategy, for instance sampling with automatic samplers at fixed locations (static or 
static-synchronous pattern, see Figure 1).

4. Conclusions
[36]   A sampling plan for monitoring comprises much more than the number of sampling locations, the
sampling frequency, and where and when to take samples. Many other decisions must be taken, for 
instance on the statistical approach (design-based or model-based), sample support, the observation 
method, whether or not to form composite samples et cetera. All these decisions can only be taken after 
a thorough analysis of the objective of monitoring and the constraints such as budgetary constraints and 
quality requirements. For regulatory or compliance monitoring in which a global quantity is to be tested 
against a (legalized) standard, we generally prefer a design-based method because in estimating the 
quantity from the monitoring data no assumptions on the variation in the space-time universe need to be 
made, leading to a valid result.

[37]   For compliance monitoring (or operational monitoring in the context of the WFD) of the quality
of surface waters by means of statistical testing of the spatiotemporal mean concentration of N-total and 
P-total during the summer half-year against WFD standards, synchronous sampling with stratified 
simple random sampling in space and stratified simple random sampling in time, works adequately. To 
reduce laboratory costs we propose to bulk the aliquots taken at the locations of a given sampling round,
i.e., composite sampling. To achieve a power of 80% at a concentration 15% below the WFD standard 
and a confidence of 95%, six to nine sampling rounds are needed with 50 to 75 locations per sampling 
round. For P-total the required number of sampling rounds differs strongly between the two farms, but is
for both farms much larger than for N-total.

[38]   This paper illustrates the usefulness of design-based methods for compliance monitoring of
surface water quality in stagnant waters. We think that a design-based approach may also be worthwhile
for compliance monitoring of streams. However, strong dynamics of the target variable to be monitored,
may have consequences for the sampling design to be applied.
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