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Abstract
[1]   There is increasing consensus in the hydrologic literature that an appropriate framework for
streamflow forecasting and simulation should include explicit recognition of forcing and parameter and 
model structural error. This paper presents a novel Markov chain Monte Carlo (MCMC) sampler, 
entitled differential evolution adaptive Metropolis (DREAM), that is especially designed to efficiently 
estimate the posterior probability density function of hydrologic model parameters in complex, 
high-dimensional sampling problems. This MCMC scheme adaptively updates the scale and orientation 
of the proposal distribution during sampling and maintains detailed balance and ergodicity. It is then 
demonstrated how DREAM can be used to analyze forcing data error during watershed model 
calibration using a five-parameter rainfall-runoff model with streamflow data from two different 
catchments. Explicit treatment of precipitation error during hydrologic model calibration not only results
in prediction uncertainty bounds that are more appropriate but also significantly alters the posterior 
distribution of the watershed model parameters. This has significant implications for regionalization 
studies. The approach also provides important new ways to estimate areal average watershed 
precipitation, information that is of utmost importance for testing hydrologic theory, diagnosing 
structural errors in models, and appropriately benchmarking rainfall measurement devices.
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1. Introduction and Scope
[2]   Hydrologic models, no matter how sophisticated and spatially explicit, aggregate at some level of
detail complex, spatially distributed vegetation and subsurface properties into much simpler 
homogeneous storages with transfer functions that describe the flow of water within and between these 
different compartments. These conceptual storages correspond to physically identifiable control 
volumes in real space, even though the boundaries of these control volumes are generally not known. A 
consequence of this aggregation process is that most of the parameters in these models cannot be 
inferred through direct observation in the field, but can only be meaningfully derived by calibration 
against an input-output record of the catchment response. In this process the parameters are adjusted in 
such a way that the model approximates as closely and consistently as possible the response of the 
catchment over some historical period of time. The parameters estimated in this manner represent 
effective conceptual representations of spatially and temporally heterogeneous watershed properties.

[3]   The traditional approach to watershed model calibration assumes that the uncertainty in the
input-output representation of the model is attributable primarily to uncertainty associated with the 
parameter values. This approach effectively neglects errors in forcing data, and assumes that model 
structural inadequacies can be described with relatively simple additive error structures. This is not 
realistic for real world applications, and it is therefore highly desirable to develop an inference 
methodology that treats all sources of error separately and appropriately. Such a method would help to 
better understand what is and what is not well understood about the catchments under study, and help 
provide meaningful uncertainty estimates on model predictions, state variables and parameters. Such an 
approach should also enhance the prospects of finding useful regionalization relationships between 
catchment properties and optimized model parameters, something that is desirable, especially within the 
context of the Predictions in Ungauged Basins (PUB) initiative [Sivapalan, 2003].

[4]   In recent years, significant progress has been made toward the development of a systematic
framework for uncertainty treatment. While initial methodologies have focused on methods to quantify 
parameter uncertainty only [Beven and Binley, 1992; Freer et al., 1996; Gupta et al., 1998; Vrugt et al., 
2003], recent emerging approaches include state space filtering [Vrugt et al., 2005; Moradkhani et al., 
2005a, 2005b; Slater and Clark, 2006; Vrugt et al., 2006a], multimodel averaging [Butts et al., 2004; 
Georgakakos et al., 2004; Vrugt et al., 2006b; Marshall et al., 2006; Ajami et al., 2007; Vrugt and 
Robinson, 2007b] and Bayesian approaches [Kavetski et al., 2006a, 2006b; Kuczera et al., 2006; P. 
Reichert and J. Mieleitner, Analyzing input and structural uncertainty of a hydrological model with 
stochastic, time-dependent parameters, unpublished manuscript, 2008] to explicitly treat individual error
sources, and assess predictive uncertainty distributions. Much progress has also been made in the 
description of forcing data error [Clark and Slater, 2006], development of a formal hierarchical 
framework to formulate, build and test conceptual watershed models [Clark et al., 2008], and algorithms 
for efficient sampling of complex distributions [Vrugt et al., 2003; Vrugt and Robinson, 2007a; Vrugt et 
al., 2008a] to derive uncertainty estimates of state variables, parameters and model output predictions.

[5]   This paper has two main contributions. First, a novel adaptive Markov chain Monte Carlo (MCMC)
algorithm is introduced for efficiently estimating the posterior probability density function of parameters
within a Bayesian framework. This method, entitled differential evolution adaptive Metropolis 
(DREAM), runs multiple chains simultaneously for global exploration, and automatically tunes the scale
and orientation of the proposal distribution during the evolution to the posterior distribution. The 
DREAM scheme is an adaptation of the shuffled complex evolution Metropolis (SCEM-UA) [Vrugt et 
al., 2003] global optimization algorithm that has the advantage of maintaining detailed balance and 
ergodicity while showing good efficiency on complex, highly nonlinear, and multimodal target 
distributions [Vrugt et al., 2008a]. Second, the applicability of DREAM is demonstrated for analyzing 
forcing error during watershed model calibration. Vrugt et al. [2008b] extended the work presented in 
this paper to include model structural error as well through the use of a first-order autoregressive scheme
of the error residuals.
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[6]   The framework presented herein has various elements in common with the Bayesian total error
analysis (BATEA) approach of Kavetski et al. [2006a, 2006b], but uses a different inference
methodology to estimate the model parameters and rainfall multipliers that characterize and describe
forcing data error. In addition, this method generalizes the “do hydrology backward” approach
introduced by Kirchner [2008]
to second- and higher-order nonlinear dynamical catchment systems, and simultaneously provides 
uncertainty estimates of rainfall, model parameters and streamflow predictions. This approach is key to 
understanding how much information can be extracted from the observed discharge data, and 
quantifying the uncertainty associated with the inferred records of whole-catchment precipitation.

[7]   The paper is organized as follows. Section 2 briefly discusses the general model calibration 
problem, and highlights the need for explicit treatment of forcing data error. Section 3 describes a 
parsimonious framework for describing forcing data error that is very similar to the methodology 
described by Kavetski et al. [2002]. Successful implementation of this method requires the availability 
of an efficient and robust parameter estimation method. Section 4 introduces the differential evolution 
adaptive Metropolis (DREAM) algorithm, which satisfies this requirement. Then section 5 demonstrates
how DREAM can help to provide fundamental insights into rainfall uncertainty, and its effect on 
streamflow prediction uncertainty and the optimized values of the hydrologic model parameters. A 
summary with conclusions is presented in section 6.

2. General Model Calibration Problem

Figure 1.  Schematic overview of the model calibration problem. The model
parameters are iteratively adjusted so that the predictions of the model, f
(represented with the solid line), approximate as closely and consistently as 
possible the observed response (indicated with the dotted line).

[8]   For a model to be useful in prediction, the values of the parameters need to accurately reflect the
invariant properties of the components of the underlying system they represent. Unfortunately, in 
watershed hydrology many of the parameters can generally not be measured directly, but can only be 
meaningfully derived through calibration against a historical record of streamflow data. Figure 1
provides a schematic overview of the resulting model calibration problem. In this plot, the symbol t
denotes time, and the circled plus represents observations of the forcing (rainfall) and streamflow 
response that are subject to measurement errors and uncertainty, and therefore may be different than the 
true values. Similarly, the boxed f
represents the watershed model with functional response to indicate that the model is at best only an
approximation of the underlying catchment. The label “output” on the y axis of the plot on the right 
hand side can represent any time series of data; here this is considered to be the streamflow response.

[9]   Using a priori values of the parameters derived through either regionalization relationships,
pedotransfer functions or some independent in situ or remote sensing data, the predictions of the model 
(indicated with grey line) are behaviorally consistent with the observations (dotted line), but 
demonstrate a significant bias toward lower streamflow values. The common approach is to ascribe this 
mismatch between model and data to parameter uncertainty, without considering forcing and structural 
model uncertainty as potential sources of error. The goal of model calibration then becomes one of 
finding those values of the parameters that provide the best possible fit to the observed behavior using 
either manual or computerized methods. A model calibrated by such means can be used for the 
simulation or prediction of hydrologic events outside of the historical record used for model calibration, 
provided that it can be reasonably assumed that the physical characteristics of the watershed and the 
hydrologic/climate conditions remain similar.

[10]   Mathematically, the model calibration problem depicted in Figure 1 can be formulated as follows. 
Let  = f( , P) denote the streamflow predictions  = { 1, …, n} of the model f with observed forcing P
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(rainfall, and potential evapotranspiration), and watershed model parameters . Let S = {s1, …, sn} 
represent a vector with n
observed streamflow values. The difference between the model-predicted streamflow and measured 
discharge can be represented by the residual vector or objective function E:

Traditionally, we are seeking to have a minimal discrepancy between our model predictions and 
observations. This can be done by minimizing the following additive simple least squares (SLS) 
objective function with respect to :

Significant advances have been made in the last few decades by posing the hydrologic model calibration
problem within this SLS framework.

[11]   Recent contributions to the literature have questioned the validity of this classical model
calibration paradigm when confronted with significant errors and uncertainty in model forcing, P and 
model structure, f. These error sources need to be explicitly considered to be able to advance the field of 
watershed hydrology, and to help draw appropriate conclusions about parameter, model predictive and 
state uncertainty. In principle, one could hypothesize more appropriate statistical error models for 
forcing data and model structural inadequacies, and estimate the unknowns in these models 
simultaneously with the hydrologic model parameters during model calibration. However, this approach 
will significantly increase the number of parameters to be estimated. To successfully resolve this 
problem, we use recent advances in Markov chain Monte Carlo (MCMC) simulation for sampling of 
high-dimensional posterior distributions. Specifically, we use a new algorithm called DREAM and 
exploit the advantages that this algorithm possesses when implemented on a distributed computer 
network.

[12]   This paper focuses on rainfall forcing error only, because these errors typically dominate in many
catchments because of the significant spatial and temporal variability of rainfall fields. However, the 
inference methodology presented herein can easily be extended to include additional errors such as 
potential evapotranspiration or temperature. These quantities will primarily affect the streamflow 
response during drying conditions of the watershed.

3. Description of Rainfall Forcing Data Error
[13]   There are various ways in which rainfall forcing error can be included in the parameter estimation
problem in watershed model calibration. In principle, one could make every rainfall observation an 
independent, latent variable, and augment the vector of watershed model parameters with these 
additional variables. Unfortunately, this approach is infeasible, as the dimensionality of the parameter 
estimation problem would grow manifold, and the statistical significance of the inferred parameters 
would be subject to question. For instance, if daily rainfall observations are used for simulation 
purposes, about 1,100 additional latent variables would be necessary if using 3 years of streamflow data 
for calibration purposes. With so many latent variables, the predictive value of the hydrologic model 
would become very low. Moreover, this approach is also susceptible to overparameterization, 
deteriorating the forecasting capabilities of the watershed model.

[14]   An alternative implementation used in this paper is to use a single rainfall multiplier for each
storm event. This is an attractive and parsimonious alternative that has been successfully applied by 
Kavetski et al. [2002, 2006b]. By allowing these multipliers to vary between hydrologically reasonable 
ranges, systematic errors in rainfall forcing can be corrected, and parameter inference and streamflow 
predictions can be improved. This method is computationally feasible and has the advantage of being 
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somewhat scale-independent. The only limitation is that observed rainfall depths of zero are not 
corrected.

Figure 2.  Illustrative example of how rainfall multipliers are assigned to
individual storm events. The values of these multipliers are estimated 
simultaneously with the hydrologic model parameters by minimizing the 

mismatch between observed and simulated catchment response.

[15]   Prior to calibration, individual storm events are identified from the measured hyetograph and
hydrograph. A simple example of this approach is illustrated in Figure 2. Each storm, j = 1,…,ζ is 
assigned a different rainfall multiplier βj, and these values are added to the vector of model parameters 
to be optimized; hence  = [ ; β]. Note that the individual storms are clearly separated in time in the 
hypothetical example considered in Figure 2. This makes the assignment of the multipliers 
straightforward. In practice, the distinction between different storms is typically not that simple, and 
therefore information from the measured hyetograph and discharge data must be combined to identify 
different rainfall events.

[16]   It is desirable to develop an inference method that not only estimates the most likely value of , 
but simultaneously also estimates its underlying posterior probability distribution. This approach should 
provide useful information about the uncertainty associated with the model parameters and storm 
multipliers, and help generate predictive uncertainty distributions. The next section discusses the 
Bayesian approach used in this study to estimate 
using observations of catchment streamflow response and rainfall data.

4. Bayesian Statistics and Markov Chain Monte Carlo Simulation
[17]   In the last decade, Bayesian statistics have increasingly found use in the field of hydrology for
statistical inference of parameters, state variables, and model output prediction [Kuczera and Parent, 
1998; Bates and Campbell, 2001; Engeland and Gottschalk, 2002; Vrugt et al., 2003; Marshall et al., 
2004; Liu and Gupta, 2007]. The Bayesian paradigm provides a simple way to combine multiple 
probability distributions using Bayes theorem. In a hydrologic context, this method is suited to 
systematically address and quantify the various error sources within a single cohesive, integrated, and 
hierarchical method.

[18]   To successfully implement the Bayesian paradigm, sampling methods are needed that can
efficiently summarize the posterior probability density function (pdf). This distribution combines the 
data likelihood with a prior distribution using Bayes theorem, and contains all the desired information to
make statistically sound inferences about the uncertainty of the individual components in the model. 
Unfortunately, for most practical hydrologic problems this posterior distribution cannot be obtained by 
analytical means or by analytical approximation. We therefore resort to iterative approximation methods
such as Markov chain Monte Carlo (MCMC) sampling to generate a sample from the posterior pdf.

4.1. Random Walk Metropolis Algorithm

[19]   The basis of the MCMC method is a Markov chain that generates a random walk through the
search space with stable frequency stemming from a fixed probability distribution. To visit
configurations with a stable frequency, an MCMC algorithm generates trial moves from the current
(“old”) position of the Markov chain t−1 to a new state . The earliest and most general MCMC 
approach is the random walk Metropolis (RWM) algorithm. Assuming that a random walk has already 
sampled points { 0, …, t−1}, this algorithm proceeds in the following three steps. First, a candidate point 

 is sampled from a proposal distribution q that is symmetric, q( t−1, ) = q( , t−1) and may depend on 
the present location, t−1. Next, the candidate point is either accepted or rejected using the Metropolis 
acceptance probability:
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where π(·) denotes the density of the target distribution. Finally, if the proposal is accepted, the chain
moves to &thetav; otherwise the chain remains at its current location t−1.

[20]   The original RWM scheme was constructed to maintain detailed balance with respect to π(·) at
each step in the chain:

where p( t−1) (p( )) denotes the probability of finding the system in state t−1( ), and p( t−1 → ) (p(  →
t−1)) denotes the conditional probability of performing a trial move from t−1 to  (  to t−1). The result is 

a Markov chain which, under certain regularity conditions, has a unique stationary distribution with pdf 
π(·). In practice, this means that if one looks at the values of  generated by the RWM that are 
sufficiently far from the starting value, the successively generated parameter combinations will be 
distributed with stable frequencies stemming from the underlying posterior pdf of , π(·). Hastings
extended equation (4) to include nonsymmetrical proposal distributions, i.e., q( t−1, ) ≠ q( , t−1), in 
which a proposal jump to 
and the reverse jump do not have equal probability. This extension is called the Metropolis Hastings 
algorithm (MH), and has become the basic building block of many existing MCMC sampling schemes.

[21]   Existing theory and experiments prove convergence of well-constructed MCMC schemes to the
appropriate limiting distribution under a variety of different conditions. In practice, this convergence is 
often observed to be impractically slow. This deficiency is frequently caused by an inappropriate 
selection of the proposal distribution used to generate trial moves in the Markov chain. To improve the 
search efficiency of MCMC methods, it seems natural to tune the orientation and scale of the proposal 
distribution during the evolution of the sampler to the posterior target distribution, using the information
from past states. This information is stored in the sample paths of the Markov chain.

[22]   An adaptive MCMC algorithm that has become popular in the field of hydrology is the shuffled
complex evolution Metropolis (SCEM-UA) global optimization algorithm developed by Vrugt et al.
[2003]. This method is a modified version of the original SCE-UA global optimization algorithm [Duan 
et al., 1992] and runs multiple chains in parallel to provide a robust exploration of the search space. 
These chains communicate with each other through an external population of points, which are used to 
continuously update the size and shape of the proposal distribution in each chain. The MCMC evolution 
is repeated until the  statistic of Gelman and Rubin [1992] indicates convergence to a stationary 
posterior distribution. This statistic compares the between and within variance of the different parallel 
chains.

[23]   Numerous studies have demonstrated the usefulness of the SCEM-UA algorithm for estimating
(nonlinear) parameter uncertainty. However, the method does not maintain detailed balance at every 
single step in the chain, casting doubt on whether the algorithm will appropriately sample the underlying
pdf. Although various benchmark studies have reported very good sampling efficiencies and 
convergence properties of the SCEM-UA algorithm, violating detailed balance is a reason for at least 
some researchers and practitioners not to use this method for posterior inference. An adaptive MCMC 
algorithm that is efficient in hydrologic applications, and maintains detailed balance and ergodicity 
therefore remains desirable.

4.2. Differential Evolution Adaptive Metropolis (DREAM)

[24]   Vrugt et al. [2008a]
recently introduced the differential evolution adaptive Metropolis (DREAM) algorithm. This algorithm 
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uses differential evolution as genetic algorithm for population evolution, with a Metropolis selection 
rule to decide whether candidate points should replace their respective parents or not. DREAM is a 
follow up on the DE-MC method of ter Braak [2006], but contains several extensions to increase search 
efficiency and acceptance rate for complex and multimodal response surfaces with numerous local 
optimal solutions. Such surfaces are frequently encountered in hydrologic modeling. The method is 
presented below.

[25]   1. Draw an initial population Θ of size N, typically N = d or 2d, using the specified prior 
distribution.

[26]   2. Compute the density π( i) of each point of Θ, i = 1,…,N.

[27]   3. Generate a candidate point, i in chain i,

where δ signifies the number of pairs used to generate the proposal, and r1(j), r2(n)  {1,…,N}; r1(j) ≠
r2(n) ≠ i for j = 1,…,δ, and n = 1,…δ. The value of e ~ Nd(0, b) is drawn from a symmetric distribution 
with small b, and the value of γ
depends on the number of pairs used to create the proposal. By comparison with RWM, a good choice 
for γ = 2.38/  [Roberts and Rosenthal, 2001; Ter Braak, 2006], with deff = d, but potentially 
decreased in the next step. This choice is expected to yield an acceptance probability of 0.44 for d = 1, 
0.28 for d = 5 and 0.23 for large d.

[28]   4. Replace each element, j = 1, …, d of the proposal j
i with j

i using a binomial scheme with 
crossover probability CR,

where U  [0, 1] is a draw from a uniform distribution.

[29]   5. Compute π( i) and accept the candidate point with Metropolis acceptance probability, α( i, i),

[30]   6. If the candidate point is accepted, move the chain, i = i; otherwise remain at the old location, 
i.

[31]   7. Remove potential outlier chains using the interquartile range (IQR) statistic.

[32]   8. Compute the Gelman and Rubin [1992],  convergence diagnostic for each dimension j =
1,…,d using the last 50% of the samples in each chain.

[33]   9. If  ≤ 1.2 for all j, stop, otherwise go to CHAIN EVOLUTION.
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[34]   The DREAM algorithm adaptively updates the scale and orientation of the proposal distribution
during the evolution of the individual chains to a limiting distribution. The method starts with an initial 
population of points to strategically sample the space of potential solutions. The use of a number of 
individual chains with different starting points enables dealing with multiple regions of highest 
attraction, and facilitates the use of a powerful array of heuristic tests to judge whether convergence of 
DREAM has been achieved. If the state of a single chain is given by a single d-dimensional vector , 
then at each generation t, the N chains in DREAM define a population Θ, which corresponds to an N × d
matrix, with each chain as a row. Jumps in each chain are generated by taking a fixed multiple of the
difference of randomly other chosen chains. The Metropolis ratio is used to decide whether to accept
candidate points or not. At every step, the points in Θ contain the most relevant information about the
search, and this population of points is used to globally share information about the progress of the
search of the individual chains. This information exchange enhances the survivability of individual
chains, and facilitates adaptive updating of the scale and orientation of the proposal distribution. This
series of operations results in a MCMC sampler that conducts a robust and efficient search of the
parameter space. Because the joint pdf of the N chains factorizes to π( 1) × … × π( N), the states 1… N

of the individual chains are independent at any generation after DREAM has become independent of its 
initial value. After this so-called burn-in period, the convergence of a DREAM run can thus be 
monitored with the  statistic of Gelman and Rubin [1992].

[35]   Outlier chains can significantly deteriorate the performance of MCMC samplers, and need to be
removed to facilitate convergence to a limiting distribution. To detect aberrant trajectories, DREAM
stores in Ω the mean of the logarithm of the posterior densities of the last 50% of the samples in each
chain. From these, the interquartile range statistic, IQR = Q3 − Q1 is computed, in which Q1 and Q3

denote the lower and upper quartile of the N different chains. Chains with Ω < Q1 − 2 IQR are
considered outliers, and are moved to the current best member of Θ. This step does not maintain detailed
balance and can therefore only be used during burn in. If an outlier chain is being detected we apply
another burn-in period before summarizing the posterior moments.

[36]   To speed up convergence to the target distribution, DREAM estimates a distribution of CR values 
during burn in that maximizes the squared distance,  = ( j,t

i − j,t−1
i)2 between two 

subsequent samples, t and t−1 of the N
chains. The position of the chains is normalized (hence the bar) with the prior distribution so that all d
dimensions contribute equally to . A detailed description of this adaptation strategy appears in Vrugt et 
al. [2008a]
and so will not be repeated here. Note that self-adaptation within the context of multiple different search
algorithms is presented by Vrugt and Robinson [2007a], and has shown to significantly enhance the 
efficiency of population-based evolutionary optimization.

[37]   The DREAM scheme is different from the DE-MC method in three important ways. First,
DREAM implements a randomized subspace sampling strategy, and only modifies selected dimensions 
with crossover probability CR
each time a candidate point is generated. This significantly enhances efficiency for higher-dimensional 
problems, because with increasing dimensions it is often not optimal to change all d elements of i

simultaneously. During the burn-in phase, DREAM adaptively chooses the CR values that yield the best 
mixing properties of the chains. Second, DREAM incorporates a Differential Evolution offspring 
strategy that also includes higher-order pairs. This increases the diversity of the proposals and thus 
variability in the population. Third, DREAM explicitly handles and removes chains that are stuck in 
nonproductive parts of the parameter space. Such outlier chains prohibit convergence to a limiting 
distribution, and thus significantly deteriorate the performance of MCMC samplers.

4.3. Theorem

[38]   The theorem is that DREAM yields a Markov chain that is ergodic with unique stationary
distribution with pdf π(·)N.
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[39]   The proof consists of three parts and was presented by Vrugt et al. [2008a].

[40]   1. Chains are updated sequentially and conditionally on the other chains. Therefore DREAM is an
N-component Metropolis-within-Gibbs algorithm that defines a single Markov chain on the state space 
[Robert and Casella, 2004]. The conditional pdf of each component is π(·).

[41]   2. The update of the ith chain uses a mixture of kernels. For δ = 1, there are  such 

kernels. This mixture kernel maintains detailed balance with respect to π(·), if each of its components
does [Robert and Casella, 2004], as we show now. For the ith chain, the conditional probability to jump 
from t−1

i to i, p( t−1
i → i) is equal to the reverse jump, p( i → t−1

i) as the distribution of e is 
symmetric and the pair ( t−1

r1, t−1
r2) is as likely as ( t−1

r2, t−1
r1). This also holds true for δ > 1, when more

than two members of Θt−1

are selected to generate a proposal point. Detailed balance is thus achieved point wise by accepting the 
proposal with probability min(π( i)/π( t−1

i), 1). Detailed balance also holds in terms of arbitrary 
measurable sets, as the Jacobian of the transformation of equation (5) is 1 in absolute value.

[42]   3. As each update maintains conditional detailed balance, the joint stationary distribution
associated with DREAM is π( 1, …, N) = π( 1) × … × π( N) [Mengersen and Robert, 2003]. This 
distribution is unique and must be the limiting distribution, because the chains are aperiodic, positive 
recurrent (not transient) and irreducible [Robert and Casella, 2004]. The first two conditions are 
satisfied, except for trivial exceptions. The unbounded support of the distribution of e in equation (5)
guarantees the third condition. This concludes the ergodicity proof.

[43]   Case studies presented by Vrugt et al. [2008a] have demonstrated that DREAM is generally 
superior to existing MCMC schemes, and can efficiently handle multimodality, high dimensionality and 
nonlinearity. In that same paper, recommendations have also been given for some of the values of the 
algorithmic parameters. The only parameter that remains to be specified by the user before the sampler 
can be used for statistical inference is the population size N. We generally recommend using N ≥ d, 
although the subspace sampling strategy allows taking N  d. In each of the case studies presented in 
this paper, we report the values of N used in DREAM.

5. Case Studies
[44]   To illustrate the insights that the approach developed in this study can offer with respect to forcing
error, we apply our methodology to streamflow forecasting using the parsimonious, five-parameter 
Hydrologic Model (HYMOD). This model, originally developed by Boyle [2000], consists of a 
relatively simple rainfall excess model, described in detail by Moore [1985], connected with two series 
of linear reservoirs (three identical quick reservoirs, and a single reservoir for the slow response). The 
model has five parameters: the maximum storage capacity in the catchment Cmax (L), the degree of 
spatial variability of soil moisture capacity within the catchment bexp, the factor distributing the flow 
between the two series of reservoirs Alpha, and the residence times of the linear slow and quick flow 
reservoirs, Rs (days) and Rq (days), respectively.

[45]   In our studies, we use historical data from the Leaf River (1950 km2) and French Broad (767 km2) 
watersheds in the USA. The data consists of mean areal precipitation (mm/d), potential 
evapotranspiration (mm/d), and streamflow (m3/s). To illustrate the approach, a period of 5 years of 
streamflow data was used for model calibration, whereas the remainder of the data was used for 
evaluation purposes. Various contributions to the hydrologic literature have recommended to use longer 
time series of streamflow for calibration purposes. Because of computational reasons, however a period 
of 5 years was deemed appropriate to illustrate our methodology. In this 5 year calibration time series, a 
total of ζ = 57 and ζ
= 59 storm events were identified for the Leaf River (1 October 1953 to 30 September 1958) and French
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Broad (1 October 1954 to 30 September 1959) watersheds, respectively.

[46]   The upper and lower bounds that define the prior uncertainty ranges of the HYMOD model
parameters and rainfall multipliers are given in Table 1. A uniform prior distribution is assumed over 
this multidimensional hypercube, which implies that the storm events are independent, and that the 
information content of the observed rainfall is limited to pattern only, without useful information about 
storm depths. Kavetski et al. [2006a]
do not recommend using uniform priors for the rainfall multipliers, as this might result in ill posedness 
of the resulting parameter estimation problem. Yet, the results with DREAM presented below do not 
seem to support that conjecture. To reduce sensitivity to state value initialization, we used a 365-day 
warm up period prior to the calibration data time series, during which no updating of the posterior 
density was performed.

5.1. Case Study 1: Estimation of HYMOD Parameters

[47]   This first case study focuses on estimation of the HYMOD parameters without explicit assessment
of forcing data error. The results of this analysis serve as benchmark for the next studies that explicitly 
incorporate rainfall data error in the model calibration process. In this first study, we use the following 
classical density function:

where c is a normalizing contact, and π( ) signifies the prior distribution of . This distribution combines
the data likelihood with a prior distribution using Bayes theorem. Vrugt et al. [2008b] extend the 
formulation of this density function to explicitly include structural error through the use of a first-order 
autoregressive scheme of the error residuals. The resulting inference problem is solved with DREAM.

Figure 3.  Classical (without explicit assessment of forcing data error) hydrologic
model calibration: marginal posterior probability distributions of the HYMOD 
model parameters Cmax, bexp, Alpha, Rs, and Rq for the (top) Leaf River and 
(bottom) French Broad watersheds in the United States. The histograms were 

constructed using the last 10,000 samples generated with DREAM after convergence to a limiting 
distribution.

[48]   Figure 3
presents the posterior marginal probability density distributions for each of the HYMOD model 
parameters for the Leaf River and French Broad watersheds using the samples generated with the 
DREAM algorithm. For both data sets, we used a population size of N = 2d with a maximum total of 
25,000 model evaluations. The first 60% of the samples in each of the 10 chains were discarded and 
used as burn in. No outlier chains were reported with DREAM during burn in.

[49]   The marginal posterior pdfs of most of the individual parameters are well defined and occupy only
a relatively small region interior to the uniform prior distributions (e.g., Table 1) of the individual 
dimensions. This shows that the observed streamflow data contains sufficient information to estimate 
these parameters. This is further confirmed with relatively small (linear) correlation values between the 
5 parameters. Note that most histograms appear approximately Gaussian with the exception of the 
marginal pdfs of Alpha and Rs

for the Leaf River, which significantly depart from normality and tend to concentrate most of the 
probability mass at their upper and lower bounds, respectively. The ranges for these parameters cannot 
be further relaxed without resulting in physically unrealistic behavior of the model. This raises the 
question of whether these two parameters are actually representing invariant behavior of the underlying 
catchment, or whether they are compensating for structural deficiencies in the model, or systematic 
errors in the forcing data. Greater insight into this issue requires a more explicit treatment of these two 
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error sources. The next case study contrasts the results of this classical model calibration approach 
against those obtained when using an explicit treatment of forcing data error through a comparison of 
parameter estimates and streamflow prediction uncertainty bounds.

Figure 4.  Classical hydrologic model calibration: 95% streamflow prediction
uncertainty ranges for the (left) Leaf River and (right) French Broad watersheds. 
A distinction is made between the (top) calibration and (bottom) evaluation 
periods. The uncertainty bounds represent HYMOD parameter uncertainty only. 

Observed streamflows are indicated with solid circles.

[50]   To understand how the uncertainty in the model parameters translates into HYMOD predictive
uncertainty, consider Figure 4, which presents the 95% streamflow uncertainty bounds for a selected 
period of the calibration (top plots) and evaluation (bottom plots) period for the Leaf River (left) and 
French Broad (right) watersheds. The observed discharge data are separately indicated with solid circles.
The model seems to be unable to match large portions of the hydrograph. This is indicated by large 
sections where the darkly shaded region does not bracket the observed streamflow data. These findings 
are consistent with other results presented in the literature, and stimulate the development of an 
inference framework that takes explicit consideration of the role of forcing and model error.

5.2. Case Study 2: Estimation of HYMOD Parameters and Storm Multipliers Using Streamflow 
Data

[51]   The second case study involves simultaneous estimation of the HYMOD model parameters and
rainfall multipliers using observed streamflow data. To verify whether this approach is computationally 
feasible, synthetically generated streamflow data are used first, followed by real-world observations of 
discharge.

5.2.1. Synthetic Streamflow Data

[52]   To generate the synthetic discharge observations, a total of ζ = 57 and ζ = 59 different rainfall 
multipliers were first drawn using Latin hypercube sampling within [0.25, 2.50]ζ (see Table 1). These 
two vectors of multipliers are then combined with the observed rainfall depths of both watersheds to 
generate two rainfall hyetographs. These rainfall records are subsequently used with randomly sampled 
values of the HYMOD parameters (within the bounds specified in Table 1) to create a 5-year time series 
of synthetic daily discharge data for the Leaf River and French Broad watersheds. Then, DREAM is 
executed with equation (8)
to back out the posterior pdf of the HYMOD model parameters and storm multipliers. This is done for 
both catchments using a maximum total of 1,500,000 model evaluations. We used a uniform initial 
sampling distribution of the model parameters and rainfall multipliers with ranges specified in Table 1
to test the robustness of DREAM when confronted with relative poor prior information on the location 
of the posterior pdf in the parameter space. In lieu of sampling variability and model nonlinearity, we 
repeated this experiment 25 different times using different values of the multipliers and model 
parameters. The results of this analysis are reported in Table 2.

[53]   Table 2
summarizes the average Euclidean distance between the true HYMOD parameter values and rainfall 
multipliers used to generate the synthetic streamflow data, and the maximum likelihood estimates of 
these parameters derived with DREAM. The listed statistics represent averages over the 25 different 
calibration time series, and were obtained using a population size of N = 2d. Two main conclusions can 
be drawn from this analysis. First, the estimates of the multipliers and model parameters derived with 
DREAM are very close to their values used to generate the synthetic streamflow data. This highlights 
the robustness of DREAM, being able to consistently solve d = 62 (Leaf River) and d = 64 (French 
Broad) dimensional parameter estimation problems. Second, streamflow data contain sufficient 
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information to warrant the simultaneous identification of the HYMOD model parameters and rainfall 
multipliers. Hence, DREAM has converged to the appropriate values of the parameters. These findings 
inspire confidence that this inference methodology can be successfully applied to real-world streamflow 
data.

5.2.2. Observed Streamflow Data

Figure 5.  Simultaneous estimation of HYMOD model parameters and rainfall
multipliers: marginal posterior probability distributions of the HYMOD model 
parameters Cmax, bexp, Alpha, Rs, and Rq for the (top) Leaf River and (bottom) 
French Broad watersheds. The histograms were constructed using the last 150,000 

samples generated with DREAM after convergence to the posterior distribution.

[54]   Using measured discharge data, a total of 28 (Leaf River) and 53 (French Broad) different outlier
chains were detected with DREAM during burn in using the IQR statistic. Figure 5 presents histograms 
of the HYMOD model parameters using observed streamflow data of the Leaf River and French Broad 
catchments in the US. These marginal distributions were created using the last 150,000 samples 
generated with DREAM after convergence to a limiting distribution.

[55]   The histograms of the HYMOD model parameters are quite different than those obtained
previously in case study 1. Simultaneous estimation of watershed model parameters and rainfall 
multipliers not only increases the uncertainty for most of the HYMOD parameters, but also results in 
significantly different values for the mode of the distribution. The only exception is the residence time 
of the linear quick flow reservoir, Rq, which maintains a similar distribution. It is interesting to observe 
that the distribution of Alpha for the Leaf River data set (Figure 5c) has now become approximately 
normal, with a value of the mode that appears physically more reasonable. In contrast, for the French 
Broad River system, the spatial variability of soil moisture storage, bexp changed from a normal 
distribution in Figure 3g
to a truncated distribution with highest probability mass at the upper bound. To closely match the 
observed streamflow with overall reduced rainfall amounts (as will be shown later) HYMOD needs to 
increase the spatial variability in soil moisture storage.

Figure 6.  Simultaneous estimation of HYMOD model parameters and rainfall
multipliers: box plots of the marginal posterior distributions of the rainfall 
multipliers for the (top) Leaf River and (bottom) French Broad watersheds.

[56]   To provide more insights into the values of the rainfall multipliers, consider Figure 6, which 
presents box plots of the sampled rainfall multipliers for the Leaf River (top plot) and French Broad 
(bottom plot) catchments. These box plots were created using the last 150,000 samples generated with 
DREAM in the N = 2d
parallel chains. The marginal pdfs of the multipliers vary widely between individual storm events. Some
events are very well defined, while others show considerable uncertainty. For instance, compare the box 
plots of β27 and β28 for the Leaf River, and β26 and β27 for the French Broad watershed. These adjacent 
storms differ substantially in their posterior width, but exhibit approximately similar mean values. The 
overall mean posterior values of the storm multipliers is  = 0.95 for the Leaf River and  = 0.94 for the 
French Broad watershed. This shows that, on average our inferred rainfall from the streamflow data is in
close correspondence with the observed rainfall depths from the rain gauge data. Detailed analysis 
further demonstrates that the rainfall multipliers exhibit small temporal autocorrelation, and show no 
obvious time or seasonality pattern. Furthermore, the d-dimensional correlation matrix of the posterior 
demonstrates that correlation among the multipliers is small. This confirms our earlier finding that 
observed daily streamflow data contain sufficient information to warrant the identification of an 
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additional ζ = 57 and ζ = 59 storm multipliers, simultaneous with the five HYMOD model parameters.

Figure 7.  Simultaneous estimation of HYMOD model parameters and rainfall
multipliers. (top) Histograms of all storm multipliers combined for the (a) Leaf 
River and (b) French Broad watersheds. These marginal posterior pdfs were 
derived by pooling the individual multipliers together using the information 
depicted in Figure 6. (bottom) Two-dimensional scatterplots of observed 
precipitation against the deviation between DREAM-optimized and measured 

rainfall for the (c) Leaf River and (d) French Broad watersheds.

[57]   It is interesting to observe that most of the storm multipliers are clustered in the vicinity of 1 for
both catchments. This illustrates that the measured rainfall is not significantly over or underestimating 
the actual precipitation, but is generally consistent in pattern and depth with the estimated rainfall record
derived from the discharge data. This is an important diagnostic and provides support for the claim that 
the rain gauge data, albeit having a very small spatial support provide, on average, a good proxy of 
whole-catchment precipitation for both watersheds. This is further demonstrated in Figure 7, which 
presents a histogram of all precipitation multipliers combined for the Leaf River (Figure 7a) and French 
Broad (Figure 7b) watersheds. These histograms exhibit an approximate Gaussian distribution, with 
mean values centered around 1.0 and truncated lower and upper bounds. These bounds force the 
DREAM estimated multipliers to remain hydrologically realistic.

[58]   The marginal posterior pdf of the multipliers presented here can be used to explicitly consider
rainfall uncertainty during streamflow prediction. An easy way to do this is to sample a single multiplier
for each individual storm event from the histograms presented in Figures 7a and 7b. By combining this 
vector of multipliers with the observed rainfall record, it is possible to generate different realizations of 
rainfall hyetographs for both watersheds during the evaluation period. This ensemble of rainfall records 
can be combined with posterior values of the HYMOD model parameters to generate streamflow 
hydrographs outside the calibration period that include explicit representation of model parameter and 
forcing data error. The results of this analysis will be presented later.

[59]   Figures 7c and 7d
quantify the difference between measured and inferred precipitation amounts for the Leaf River and 
French Broad watersheds, respectively. The proposed inference method suggests that the actual rainfall 
is, on average, about 10% lower than the measured rainfall for both watersheds. This difference is small,
but nevertheless important as this bias explains the observed differences in optimized distributions of the
HYMOD model parameters between case studies 1 and 2 (compare Figures 3 and 5). These results 
establish the need for appropriate characterization and inference of forcing data error during watershed 
model calibration. Not only to appropriately capture and quantify uncertainty, but also for better testing 
of hydrologic theory, diagnosis of structural error, and to maximize chances of finding useful 
regionalization relationships between rainfall-runoff model parameter values and catchment properties. 
The inference method developed herein is especially designed to minimize the impact of rainfall error 
on hydrologic parameter estimates, and thus to enable getting the right answers for the right reasons. 
This latter is important, especially within the context of the PUB initiative.

[60]   The validity of the inferred rainfall record can be checked by comparison against the observed
spatial variation in rain gauge measurements, and estimates of precipitation from other methods such as 
rainfall radar. This analysis would help establish how reasonable the inferred rainfall records are, but is 
beyond the scope of the current paper. Note also, that the results presented here are contingent on 
HYMOD being a reasonable approximation of the underlying heterogeneous catchment it is trying to 
represent. This assumption is inappropriate at best, and will at least partially cause the 
DREAM-estimated rainfall to diverge from the measured precipitation depths. To further reduce 
ambiguity about the inferred record of whole-catchment rainfall, future analysis should include multiple 
conceptual watershed models using emerging (Bayesian) model averaging approaches in surface water 
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hydrology [Ajami et al., 2007; Vrugt and Robinson, 2007b]. Combining the proxy records of multiple 
different watershed models provides an explicit way to handle structural uncertainty when doing 
hydrology backward.

Figure 8.  Simultaneous estimation of HYMOD model parameters and rainfall
multipliers: 95% streamflow prediction uncertainty ranges for the (left) Leaf 
River and (right) French Broad watersheds. A distinction is made between the 
(top) calibration and (bottom) evaluation periods. Observed streamflows are 

indicated with solid circles.

[61]   To understand how the uncertainty in the HYMOD model parameters and storm multipliers
translates into predictive uncertainty, Figure 8 presents 95% streamflow uncertainty ranges for the Leaf 
River (left), and French Broad river (right) data sets for a selected portion of the calibration and 
evaluation period. In each plot, the observed streamflow observations are indicated with dots. The 
calibration results presented here for both catchments are very similar to those presented previously in 
Figure 4
for case study 1. Even though forcing error is explicitly considered, the multipliers are conditioned for
each individual storm to maximize the posterior density and minimize HYMOD prediction uncertainty.
However, for the evaluation period, the width of the prediction uncertainty intervals have significantly
increased, with streamflow bounds that show a much better coverage of the discharge observations. This
is clearly visible in both plots, and particularly evident for two storm events around days 180–220 for
the Leaf River watershed. While the classical model calibration with DREAM (Figure 4c) significantly 
underestimates the actual streamflow observations during these two rainfall events, explicit treatment of 
rainfall error provides an improved coverage of the data. Further improvements can be made by 
explicitly considering error in potential evapotranspiration during drying conditions of the watershed, 
and by including a more formal treatment of model error. Vrugt et al. [2008b] performed a similar 
analysis as done here, but explicitly treat model structural error through the use of a first-order 
autoregressive scheme of the error residuals.

[62]   Table 3
compares DREAM estimates of the posterior mean and standard deviation of the HYMOD model 
parameters and rainfall multipliers for case studies 1 and 2 for the Leaf River and French Broad 
watersheds. The results presented in Table 3
highlight that (1) explicit consideration of forcing error changes the mode of the posterior pdf of the 
HYMOD model parameters. This is most evident for the parameters Cmax, bexp and Alpha and has 
significant implications for regionalization studies; (2) the uncertainty of the HYMOD parameters 
increases when rainfall estimates are directly inferred from the observed discharge data; and (3) the 
rainfall multipliers are relatively well defined by calibration against streamflow data, with an average 
standard deviation of about 0.20 for both watersheds.

[63]   Finally, Table 4
presents summary statistics of the one-day-ahead streamflow forecasts of the HYMOD model for the 
Leaf River and French Broad River watersheds using the two different calibration studies considered in 
this paper. The listed numbers correspond to the mean ensemble discharge simulation of the posterior 
pdf derived with DREAM using the 5-year calibration period. As discussed previously, to simulate 
streamflow during the evaluation period, a precipitation ensemble was generated for each individual 
storm using different values of the rainfall multipliers randomly drawn from the respective marginal 
distributions presented in Figures 7a and 7b. These precipitation records were then combined with the 
posterior pdf of the HYMOD model parameters derived from the calibration period, and used for 
prediction.

[64]   The results presented in Table 4
illustrate that the best performance (RMSE, CORR and BIAS) during the calibration period is obtained 
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in case study 2, when rainfall depths are simultaneously inferred with the HYMOD model parameters. 
This result is not surprising, because modifications to the observed rainfall data allow the HYMOD 
model to more closely track the streamflow observations. The improvement in fit is most significant for 
the Leaf River (RMSE: 20.06 
13.95), whereas only a 10% reduction in RMSE is observed in case study 2 for the French Broad 
watershed (RMSE: 7.06 
6.18). The observed rainfall record for the French Broad catchment is quite consistent in depth with the 
observed streamflow data, and cannot be improved much through consideration of forcing error. Indeed,
the marginal posterior pdf of many of the storm multipliers reside in the vicinity of 1 for the French 
Broad river system, indicating generally small modifications to the measured precipitation depths with 
the rain gauges.

[65]   A quite similar performance of HYMOD is observed during the evaluation period for case studies
1 and 2. Whereas, a 10% deterioration in RMSE is visible when rainfall uncertainty is explicitly 
considered during streamflow simulation for the Leaf River (RMSE: 33.46  36.66), a slight 
improvement in performance (RMSE: 8.00 
7.74) is seen for the French Broad watershed. This is a very interesting result, and provides support for 
the claim that the treatment of rainfall error presented herein, is useful and meaningful and structurally 
consistent with the observed discharge data outside the calibration period. Furthermore, a much better 
coverage of the streamflow observations is obtained when the rainfall depths are allowed to vary on the 
basis of the statistical distribution of the multipliers derived after calibration. We therefore conclude that 
the presented inference method provides important insights into the issue of forcing data error and 
inspires new thinking into how to disentangle input, parameter and model structural error. Further 
support for this is given by Vrugt et al. [2008b].

6. Summary and Conclusions
[66]   Efficient and robust MCMC algorithms are indispensable for estimating and summarizing the
posterior probability density function of input, parameter and model structural error in hydrologic 
modeling. In this paper, an adaptive MCMC algorithm was developed that can efficiently estimate the 
posterior pdf of model parameters in the presence of high-dimensional and complex response surfaces 
with multiple local optima. The method, entitled differential evolution adaptive Metropolis (DREAM), 
runs multiple chains in parallel and adaptively updates the scale and orientation of the proposal 
distribution during sampling. Candidate points are generated by using a fixed multiple of the difference 
of randomly chosen members of the population. The DREAM scheme is an extension to the SCEM-UA 
global optimization algorithm [Vrugt et al., 2003], but has the advantage of maintaining detailed balance
and ergodicity while showing good efficiency on complex, highly nonlinear, and multimodal target 
distributions [Vrugt et al., 2008a].

[67]   The usefulness and applicability of DREAM was demonstrated in the second part of this paper by
application to streamflow forecasting using a five-parameter conceptual watershed model and daily data 
from the Leaf River and French Broad catchments in the USA. In particular, this study demonstrated 
how DREAM can be used to analyze forcing data error during watershed model calibration. The most 
important conclusions are as follows:

[68]   1. Explicit treatment of forcing error during hydrologic model calibration significantly alters the
posterior distribution of watershed model parameters. This finding has significant implications for 
regionalization studies that attempt to relate optimized rainfall-runoff model parameters to invariant 
properties of the underlying catchment.

[69]   2. The DREAM algorithm provides an accurate estimate of the posterior probability density
function of hydrologic model parameters, and was demonstrated to successfully solve d = 62 and d = 64 
dimensional parameter estimation problems. This facilitates estimating proxy records of 
whole-catchment rainfall from observed discharge data, including the underlying uncertainty in inferred 
rainfall depths.
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[70]   3. The rainfall multipliers are grouped around 1 for both the Leaf River and French Broad
watersheds. The estimated rainfall from the observed discharge data is, on average, about 10% lower 
than the measured rainfall for both watersheds. These findings are contingent on HYMOD being an 
accurate representation of the hydrologic functioning of both catchments.

[71]   4. Rainfall multipliers provide important diagnostic information to quantify rainfall error, better
test hydrologic theory, and diagnose model structural errors.

[72]   It would be desirable to use multiple different watershed models for posterior inference to
explicitly consider structural uncertainty, and reduce ambiguity about the inferred proxy records of 
whole-catchment rainfall. Moreover, there is a urgent need to compare our estimates of precipitation 
against other available rainfall information. This might require selecting another catchment for which 
multiple types of precipitation data are available and for which spatially distributed models can be run. 
Future work should also focus on extending the method presented in this paper to consider potential 
evapotranspiration during drying conditions of the watershed as well. An initial step in that direction is 
presented by Vrugt et al. [2008b]. Work presented in that paper shows that low precipitation amounts 
are generally associated with relatively high uncertainty, whereas higher rainfall amounts appear to be 
better defined with smaller variation among the multipliers. That finding is consistent with recent work 
by Villarini and Krajewski [2008]
who, for the Brue catchment in Southwest England have shown that the standard deviation of the spatial 
sampling error decreases with increasing rainfall intensity.

[73]   The source code of DREAM is written in MATLAB and can be obtained from the first author
(vrugt@lanl.gov) upon request.
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