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Abstract. Numerical simulation models are frequently ap-
plied to assess the impact of climate change on hydrology
and agriculture. A common hypothesis is that unavoidable
model errors are reflected in the reference situation as well
as in the climate change situation so that by comparing ref-
erence to scenario model errors will level out. For a polder
in The Netherlands an innovative procedure has been intro-
duced, referred to as the Model-Scenario-Ratio (MSR), to
express model inaccuracy on climate change impact assess-
ment studies based on simulation models comparing a ref-
erence situation to a climate change situation. The SWAP
(Soil Water Atmosphere Plant) model was used for the case
study and the reference situation was compared to two cli-
mate change scenarios. MSR values close to 1, indicating
that impact assessment is mainly a function of the scenario
itself rather than of the quality of the model, were found for
most indicators evaluated. A climate change scenario with
enhanced drought conditions and indicators based on thresh-
old values showed lower MSR values, indicating that model
accuracy is an important component of the climate change
impact assessment. It was concluded that the MSR approach
can be applied easily and will lead to more robust impact as-
sessment analyses.

1 Introduction

Numerical simulation models have been used extensively in
climate change research over the last decades. In general
these models have been applied for two types of research: cli-
mate change projections and climate change impact assess-
ment and adaptation. Typical examples of the first are the so-
called General Circulation Models (GCM) which are defined

Correspondence to:P. Droogers
(p.droogers@futurewater.nl)

as “a numerical representation of the climate system based on
the physical, chemical and biological properties of its com-
ponents, their interactions and feedback processes, and ac-
counting for all or some of its known properties” (Baede,
2001). There is an evolution towards more complex mod-
els including oceanography, chemistry and biology (Coupled
Atmosphere Ocean General Circulation Models, AOGCMs).
Extensive literature regarding these AOGCMs can be found
elsewhere (e.g. IPCC, 2007).

The other group of models used in climate change research
are applied to assess the impact of climate change, as pro-
jected by AOGCMs, on mankind and nature. These mod-
els, sometimes referred to as impact assessment models, are
the classical distributed hydrological models, crop growth
models or a mixture of these. The assessment component
of those models is obtained by running the model for a cal-
ibrated/validated reference case, and use this model for an
altered climate obtained from a climate scenario. In this pa-
per the term model refers always to these impact assessment
models. The total number of existing assessment models is
unknown, but a rough estimate indicated to be in the order of
thousands (Droogers and Immerzeel, 2006).

One of the most important issues is the impact of climate
change on the hydrological cycle including impact on crop
production. The generic procedure to undertake such an im-
pact assessment study involves the following steps: (i) se-
lection of an appropriate numerical model, (ii) calibrate and
validate the model for the current situation, (iii) obtain and
downscale climate change projections, (iv) run the calibrated
model with the downscaled climate change projections, and
(v) evaluate impact of climate change (=difference between
current situation and expected future). These five steps might
be followed by an evaluation of potential adaptation strate-
gies.

A typical example of such a study is given by Brouyère et
al. (2004) where a detailed physical hydrological model was
extensively calibrated to mimic reality. Feeding the model
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Figure 1. Location of the study area in Waterboard Rivierenland. 

 
Fig. 1. Location of the study area in Waterboard Rivierenland.

with several climate change scenarios it was concluded that
groundwater levels would decline under climate change. On
a smaller scale Roberto et al. (2006) started with calibrating
the detailed crop growth model DSSAT for two crops. Based
on the calibrated model they evaluated the impact of precipi-
tation, radiation and temperature on crop production. Along
the same lines, a detailed agro-hydrological model was ap-
plied to study the impact of climate change on crop produc-
tion in a basin in Sri Lanka (Droogers, 2004). This research
expanded the impact assessment to an analysis of potential
adaptation strategies to overcome negative impacts of climate
change. This study was part of a seven countries study, where
simulation models were used to assess the impact of cli-
mate change on water, food and nature (Aerts and Droogers,
2004). On a very large scale, Immerzeel (2007) evaluated the
impact of climate change, based on a large-scale hydrologi-
cal model, on downstream water flows in the Brahmaputra
Basin. To assess the impact of climate change on low flows
in the UK, Romanowicz (2007) developed a new modelling
approach, using evaporation as additional information on soil
moisture conditions in addition to commonly used observed
streamflow.

These studies, amongst many others, assume that numeri-
cal models can be used to assess the impact of climate change
without assessing the impact of unavoidable model inaccu-
racy. Despite a wide range of literature on model inaccu-
racy (some more recent examples: O’Connell et al., 2007;
Choi and Beven, 2007; Mantovan and Todini, 2006; Feyen
et al., 2007), there is a common hypothesis that model er-
rors are reflected in the reference situation as well as in the
climate change situation so that relative accuracy (difference
between reference and scenario) is higher than absolute ac-

curacy of the model. So far, no attempts have been made
to develop a common framework to assess the error due to
model inaccuracy during climate change impact assessment
studies. Related to this is the question to which level of de-
tail model calibration and validation should be undertaken to
ensure a reliable impact assessment.

In summary, the objective of this research is to develop an
approach to evaluate and quantify the consequence of model
inaccuracy on climate change impact assessment studies.

2 Methods and materials

2.1 Study area

A polder in The Netherlands managed by the Waterboard of
Rivierenland is selected to evaluate the impact of model in-
accuracy on climate change impact assessment (Fig. 1). The
area is located between the rivers Meuse and Rhine, and
is characterised by low-lying meadows and many drainage
canals. Soils in the study area are loamy clays and are de-
scribed by the Mualem – Van Genuchten (MVG) parameter
set (Van Genuchten, 1980). Meteorological data are taken
from the meteorological station Megen, about 7 kilometers
south-west of the study area. Potential economic returns on
pastures in the area areC1350 per hectare (LEI, 2006). De-
tails about the study area can be found elsewhere (Immerzeel
et al., 2007).

2.2 SWAP model

The Soil-Water-Atmosphere-Plant (SWAP) model was ap-
plied to simulate all the terms of the water balance and to
estimate yields for a reference situation and two climate
change scenarios. SWAP is an integrated physically based
simulation model for water, solute and heat transport in the
saturated-unsaturated zone in relation to crop growth. A
first version of the SWAP model was already developed in
1978 (Feddes et al., 1978) and from then on, a continu-
ous development of the model started. The version used for
this study is SWAP 3.03 and is described by Kroes and Van
Dam (2003).

The core part of the model is the vertical flow of water
in the unsaturated-saturated zone, which can be described by
the well-known Richards’ equation:

∂θ

∂t
=

∂

∂z

[
K(θ)

(
∂h

∂z
+ 1

)
− S(h)

]
(1)

whereθ denotes the soil water content (cm3 cm−3), t is time
(d), h (cm) the soil matric head,z (cm) the vertical coordi-
nate, taken positive upwards, andK the hydraulic conductiv-
ity as a function of water content (cm d−1). S (d−1) repre-
sents the water uptake by plant roots (Feddes et al., 1978),
defined in case of a uniform root distribution as:

S(h) = α(h)
Tpot

|zr |
(2)
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whereTpot is potential transpiration (cm d−1), zr is rooting
depth (cm), andα (-) is a reduction factor as function ofh
and accounts for water and oxygen deficit. Total actual tran-
spiration,Tact, is calculated as the depth integral of the water
uptake functionS.

Crop yields can be computed using a simple crop-growth
algorithm based on Doorenbos and Kassam (1979) or by us-
ing a detailed crop-growth simulation module that partitions
the carbohydrates produced between the different parts of the
plant, as a function of the different phenological stages of the
plant (Van Diepen et al., 1989). For this specific case, the first
method was used as detailed crop parameters were lacking.

The SWAP model has been applied and tested already for
many different conditions and locations and has been proven
to produce reliable and accurate results (e.g. Bastiaanssen et
al., 2007; Heinen, 2006; Varado et al., 2006; Droogers et al.,
2000). A more detailed description of the model and all its
components are beyond the scope of this paper, but can be
found in Kroes and Van Dam (2003).

The SWAP model was applied to the study area in the
Dutch polder using best data available. An automatic calibra-
tion procedure followed using the PEST software (Doherty,
2000), with observed groundwater levels for a six years pe-
riod (1997 to 2003) as references. Details of the entire pro-
cedure for this study area are presented elsewhere (Van Loon
et al., 20071).

2.3 Climate change scenarios

The Fourth Assessment Report (AR4) of the Intergovern-
mental Panel on Climate Change (IPCC) was published re-
cently (IPCC, 2007) and is a condense result from thousands
of scientific publications into a general assessment of the
current knowledge about the climate system and the man-
induced changes to it. Despite this wealth of information,
regional and local climate change predictions are still hard
to make due to the complexity of the climate system. A re-
gional manifestation of climate change is subject to many
interacting processes affecting atmospheric circulation and
region-specific responses of physical processes. Based on
the fourth IPCC assessment report and additional studies
covering Western-Europe, the Dutch Meteorological Insti-
tute (KNMI) derived climate change scenarios to be used by
impact and adaptation studies in The Netherlands.

A total of four scenarios have been developed based on
two sets of two assumptions: global increase of temperatures
by 1 or 2◦C in 2050, and whether or not dominant wind di-
rections will change to more eastern directions during sum-
mer. For this study two scenarios with a global temperature
increase of 2◦C in 2050 have been selected: W (=warm) and
W+ (=warm and changes in wind directions). A summary of

1Van Loon, A., Immerzeel, W. W., and Droogers, P.: Comparing
time series approach and simplified stochastic approach in dealing
with climate change in hydrological modeling, Agr. Water Manage.,
submitted, 2007.

Table 1. Summary of climate change scenarios.

summer winter

W W+ W W+
mean temperature (◦C) +1.7 +2.8 +1.8 +2.3
10% warmest days (◦C) +2.0 +3.6 +1.7 +1.9
mean precipitation (%) +5.5 −19.0 +7.3 +14.2
wet day frequency (%) −3.3 −19.3 +0.2 +1.9
mean precipitation on wet day (%) +9.1 +0.3 +7.1 +12.1
precipitation on wettest days (%) +24.8 +12.3 +8.6 +11.2
potential evaporation (%) +6.8 +15.2 +3.0 +3.0

these scenarios is provided in Table1. Details of the entire
procedure in which way these scenarios are developed can be
found in Van den Hurk et al. (2006).

The W and W+ scenarios were statistically downscaled us-
ing the observed climate data and the KNMI transformation
tool (KNMI, 2006). The basic principle of the downscaling
procedure is the construction of a time series of precipita-
tion that is consistent with the KNMI’06 scenarios, based on
a historical time series of a specific meteorological station,
in this case Megen. The following parameters are used in
the transformation of precipitation: (i) relative change of the
wet day frequency (day with more than 0.05 mm rainfall) (ii)
relative change of the mean precipitation on wet days, and
(iii) relative change of the Q99 of the precipitation on wet
days (Q99=precipitation value that is exceeded on only 1%
of the wet days). The method used for the transformation
of potential evaporation is more straightforward. Historical
time series of daily potential evaporation of meteorological
station De Bilt were multiplied with a transformation factor,
which is dependent on scenario and season (Table1).

2.4 Model inaccuracy

To evaluate the impact of model inaccuracy on impact assess-
ment of climate change the calibrated model has been altered
to reflect the most common parameter uncertainties. This al-
tered model will be referred to as the perturbed model. It
should be emphasized that this approach is different from the
more general parameter uncertainty analysis (e.g. Beven and
Binley, 1992; Beven et al., 2005) as the objective of our per-
turbation is to adjust parameters within their expected range
of potential accuracy. Meyer and Gee (1999) argued that
there are in principle two sources of uncertainty: (i) natu-
ral variability (e.g. in space and time) (ii) a general lack of
knowledge (e.g. presence of inaccurate, unrepresentative, or
limited data). A detailed analysis of the expected parame-
ter uncertainty is beyond the scope of this paper and there-
fore one value of 10% was used, which can be considered
as a realistic value in detailed studies after model calibration
(Mertens et al., 2005; Islam et al., 2006).
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Table 2. Parameters used to represent model inaccuracy.

Parameter Unit Explanation

n – Shape parameter of the MVG
alfa cm−1 Shape parameter of the MVG
Ksat cm d−1 Saturated hydraulic conductivity according to MVG
SINAVE cm d−1 Average value of bottom flux
SINAMP cm d−1 Amplitude of bottom flux
HLIM3 cm Soil matrix pressure below which water uptake reduction by roots starts
HLIM4 cm Wilting point, no water uptake by roots at lower pressure heads

Note: MVG refers to the Mualem–Van Genuchten (MVG) soil hydraulic parameter set (Van Genuchten, 1980).

For the SWAP model the most common parameter uncer-
tainties are: (i) soil characteristics, (ii) bottom boundary con-
dition and (iii) crop characteristics (Van Dam, 2000). For
each of these three cases one sub-case with 10% lower than
calibrated and one with 10% higher than calibrated values
have been used, resulting in a total of six cases of perturbed
models (see Table2 for explanation of the parameters):

– ErrorSoils10% less clayey: all soil parameters of the
MVG set have been altered by 10% from the optimal
value. This was implemented by changing values for
top and sub soils by the following percentages: n +10%;
alfa−10%; log(Ksat) +10%

– ErrorSoils10% more clayey: all soil parameters of the
MVG set have been altered by 10% from the opti-
mal value. This was implemented by changing values
for top and sub soils by the following percentages: n
−10%; alfa +10%; log(Ksat)−10%

– ErrorBottom10% more dynamics in seepage: bottom
boundary condition altered by 10% from the calibrated
value. In SWAP this was implemented by increasing
two values determining the bottom boundary condition
by 10%: SINAVE = average value of bottom flux, and
SINAMP = amplitude of bottom flux sine function.

– ErrorBottom10% less dynamics in seepage: bottom
boundary condition altered by 10% from the calibrated
value. In SWAP this was implemented by decreasing
two values determining the bottom boundary condition
by −10%: SINAVE = average value of bottom flux, and
SINAMP = amplitude of bottom flux sine function.

– ErrorCrop10% more drought resistance. This was im-
plemented by increasing the threshold value were re-
duction in root water uptake occurs by +10%. In SWAP
this is defined by the two parameters: HLIM3 and
HLIM4.

– ErrorCrop10% less drought resistance. This was imple-
mented by decreasing the threshold value were reduc-

tion in root water uptake occurs by−10%. In SWAP
this is defined by the two parameters: HLIM3 and
HLIM4.

Changes were all set at a fixed 10% to mimic uncertainty
in parameters. This 10% reflects a kind of average error,
although substantial differences might occur depending on
the parameter considered, the location and the applied model
(Bastiaanssen et al., 2007). A more rigorous evaluation of
expected parameter uncertainty, or an approach based on
Monte-Carlo runs, is beyond the scope of this paper.

To compare the reference situation to these six cases a set
of indicators was defined that describe key characteristics of
the entire system in one number. Values for the following
seven indicators have been extracted from the daily SWAP
runs over 30 years (1976–2005):

– ETact: average actual annual evapotranspiration (mm
y−1)

– ETshort: average water shortage, defined as the differ-
ence between potential and actual annual evapotranspi-
ration (mm y−1)

– GWLavg: average groundwater depth (cm)

– GWLwet: number of days in 30 years with groundwater
levels within 50 cm of soil surface (d 30 y−1)

– GWLdry: number of days in 30 years with groundwater
levels deeper than 170 cm (d 30 y−1)

– Yield: average yield over 30 years (C ha−1) calculated
as the difference between actual and potential crop tran-
spiration multiplied by the potential economic returns
of C1350 per hectare.

– Crop Fail: number of years, out of 30 years, with com-
plete crop failure defined as yields lower than 80% of
potential. This 80% is an average value when farmers’
profits fall below zero.

Hydrol. Earth Syst. Sci., 12, 669–678, 2008 www.hydrol-earth-syst-sci.net/12/669/2008/
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Table 3. Model-Scenario-Ratio (MSR) calculations for some hypothetical cases.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Calibrated
Reference 100 100 100 100 1000 1
Scenario 50 50 500 500 1001 100
Scenario Impact −0.5 −0.5 4.0 4.0 0.0 99.0
Perturbed
Reference 150 150 150 150 1000 1
Scenario 75 10 600 200 999 200
Scenario Impact −0.5 −0.9 3.0 0.3 0.0 199.0
MSR 1.0 0.6 0.0 −2.7 1.0 −99.0

In summary, the entire approach is based on applying a
well-calibrated model that was altered for six cases to reflect
model inaccuracy. These six models have been run for a pe-
riod of 30 years (1976 to 2005) and daily model output was
summarized by seven indicators.

2.5 Model-Scenario-Ratio

Concepts of parameter uncertainty in hydrological modeling
have been first published by Cuen (1973). However, it took
another 20 years before the topic got substantial attention
and peer-reviewed publications and international research
projects (e.g. PUB, Prediction in Ungauged Basins, and
MOPEX, Model Parameter Estimation Experiment) started
to emerge (Droogers and Immerzeel, 2006).

A benchmark study was published by Beven and Bin-
ley (1992) on parameter uncertainty prediction in hydro-
logical modelling. The paper described a methodology for
calibration and uncertainty estimation of distributed models
based on generalized likelihood measures (GLUE). This pro-
cedure works with multiple sets of parameter values and al-
lows that, within the limitations of a given model structure
and errors in boundary conditions and field observations, dif-
ferent sets of values may be equally likely as simulators of a
catchment. Fifteen years later Beven et al. (2005) concluded
that “. . . for many environmental prediction problems there
are many competing models, which we know are not correct
(there is model structural error), but many of which are de-
clared successful by their parent modellers after some form
of calibration process”. He advocated therefore strongly that
there is a clear need to evaluate the impact of model uncer-
tainty in assessment studies.

A study that went beyond the classical parameter uncer-
tainty analysis was published recently (Winsemius et al.,
2006). Two quite distinct models were built for the Zam-
bezi, both able to simulate observed streamflow quite reli-
able. However, further statistical analysis indicated that for
one model parameter identifiability was much greater than
for the other one.

Bormann (2005) recognized that many scenario impact
studies assumed that model errors were ignored. He pre-
sented therefore the signal-to-noise-ratio (SNRref) defined
as:

SNRref =

 |Xreference−Xscenario|
Xreference

1
n

∑n
i=1

|Xreference−Xi,uncertain|
Xeference

 − 1

where SNR is signal-to-noise ratio, Xreferenceis value of the
reference scenario, Xscenariois value of the scenario, Xobserved
is observed value, Xi,uncertainis value of the n realisations of
the uncertainty analysis, i is control variable.

This approach was applied to a basin in Benin from which
it was concluded that 14 out of 15 scenario cases has a high
SNRref value, indicating that most case studies are reliable.
One of the assumptions of the SNRref approach is that the
reference situation is still considered as the “true” value. It is
however questionable whether this assumption is valid refer-
ring to the arguments made by Beven et al. (2005).

To overcome some of the problems mentioned above the
Model-Scenario-Ratio (MSR) is introduced here to express
the impact of model inaccuracy versus the impact of the sce-
nario itself:

– Model-Scenario-Ratio=1–ABS([Scenario
Impact]calibrated–[Scenario Impact]perturbed)

– Scenario Impact=(Scenario–Reference)/Reference

The value of MSR indicates to what extent the impact of a
scenario contributes to the final findings compared to model
inaccuracy. An MSR value of 1 indicates that the model in-
accuracy doesn’t play a role and results are a function of the
scenario only. An MSR value of 0 indicates that the response
of the impact assessment originates for 50% from the chang-
ing climate scenario, and 50% from an inherent model uncer-
tainty. MSR values lower than zero indicate that responses
are dominated by model inaccuracy rather than by the sce-
nario evaluated.

To demonstrate the features of MSR some hypothetical
calculations are provided in Table3. The six cases demon-
strate the following:
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Table 4. Impact assessment of climate change using a 30 years period.

Difference from reference

Reference W W+ W W+ W (%) W+(%)
ETact (mm/y) 533 557 540 24 8 5% 1%
ETshort (mm/y) 51 66 125 14 74 27% 143%
GWLavg (cm) −112 −112 −118 1 −6 0 % −5%
GWLwet (d/30y) 43 63 62 20 19 47% 44%
GWLdry (d/30y) 123 135 446 12 323 10% 263%
Yield (C/ha) 1258 1237 1124 −21 −134 −2% −11%
Crop Fail (y/30y) 2 3 8 1 6 50% 300%
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Figure 2. Simulated and observed groundwater depths over a period of seven years. 
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Fig. 2. Simulated and observed groundwater depths over a period of seven years.

– Case 1: Model is not very accurate (50% error), but
difference between reference and scenario are for cal-
ibrated and perturbedmodel similar→ MSR=1

– Case 2: Model is not very accurate (50% error), and
quite different on impact assessment→ MSR 0.6

– Case 3: Model is not very accurate (50% error), and
very different on impact assessment→ MSR 0.0

– Case 4: Model is not very accurate (50% error), and
very different on impact assessment→ MSR−2.7

– Case 5: Model is very accurate, impact is very small→

MSR=1.0

– Case 6: Model is very accurate, impact is large and
completely different→ MSR=−99.0

The MSR is comparable to the well-known Nash-Sutcliffe
(Nash and Sutcliffe, 1970) criterion to evaluate model perfor-
mance. Nash-Sutcliffe can range from−∞ to 1. A N-S of 1

corresponds to a perfect match of modeled output to the ob-
served data. A N-S of 0 indicates that the model predictions
are as accurate as the mean of the observed data, whereas a
N-S less than zero occurs when the observed mean is a better
predictor than the model.

3 Results

Simulated and observed groundwater depths have been com-
pared, indicating that the model as developed is able to mimic
reality (Fig. 2). Statistical analysis reveals also that simu-
lated groundwater depths are close to observed ones with:
mean error is 0.2 cm, average mean error is 8.2 cm, root mean
square error is 11.5 cm, andR2 of 0.86. More details of the
complete calibration and validation procedure can be found
in Van Loon et al. (2007)1.

A straightforward climate change impact assessment,
based on indicator comparison as defined before, is shown in
Table4. The overall trend is that climate change will increase

Hydrol. Earth Syst. Sci., 12, 669–678, 2008 www.hydrol-earth-syst-sci.net/12/669/2008/
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Table 5. Impact assessment of climate change assuming a 10% error in soil characteristics (less clayey).

Difference from reference

Reference W W+ W W+ W (%) W+(%)
ETact (mm/y) 550 577 573 27 23 5 4
ETshort (mm/y) 34 46 93 11 58 33 169
GWLavg (cm) −116 −116 −125 0 −10 0 −8
GWLwet (d/30y) 43 60 57 17 14 40 33
GWLdry (d/30y) 1136 1150 2341 14 1205 1 106
Yield (C/ha) 1299 1283 1199 −16 −100 −1 −8
Crop Fail (y/30y) 1 1 2 0 1 0 100
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water shortage, both more wet days and more dry days, a
small reduction in economic returns and a higher chance of
crop failure. Especially the W+ scenario will have a substan-
tial impact on water and agriculture with water shortages in-
creasing by 74 mm per year (+143%), an increase of number
of dry days by 263% and an increase of years with complete
crop failure from 2 to 8 out of 30 years.

These results are based on the assumption that the model
mimics reality. It is however impossible by definition that
models are entirely correct and the question to be asked is
what the impact would be if errors exist in models. Table5
shows an impact assessment similar as presented in Table4
using a model where soils data are less accurate (a less clayey
soil, referred to as ErrorSoils in Sect. 2.4). The overall im-
pact of this model inaccuracy is that water shortages are
somewhat reduced (reference in Table4 and Table5), while
at the same time the number of dry days increased substan-
tially. This apparent contradiction can be explained by soil
water dynamics where the less clayey soil increases capillary
rise which reduces water shortages but lowers groundwater
tables at the same time.

Comparing impact assessment based on the calibrated and
the perturbed model, comparable trends can be observed for

the W scenario (column 4 in Table4 and Table5). In other
words, impact assessment based on this perturbed model
will result in similar conclusions as based on the calibrated
model. For the W+ scenario, however, impact assessment
based on the perturbed model is somewhat deviating from
the one based on the calibrated model (column 5 in Table4
and Table5). So evaluating this W+ climate change scenario
using a perturbed model will yield to less reliable conclu-
sions.

Table6 shows MSR values for the case assuming model
inaccuracy in soil properties (less clayey). For the W sce-
nario MSR values are all above 0.90 indicating that even
with these model inaccuracies most of the scenario impact
assessment is caused by the scenario itself rather than by
model inaccuracies. For example the impact of the W cli-
mate change scenario on ETshort is 27% for the calibrated
model (Table4). For the perturbed model this value is 33%
(Table5). In terms of the defined MSR this means a value of
1–ABS(0.27–0.33)=0.94 (Table6).

The W+ scenario shows a different picture where the im-
pact of the scenario is for most indicators still dominated
by the scenario itself, except for the number of dry days
(GWLdry) and the years with complete crop failure. For
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Table 6. Model-Scenario-Ratio (MSR) assuming a 10% error in
soil characteristics (less clayey).

W W+

ETact 1.00 0.97
ETshort 0.94 0.74
GWLavg 1.00 0.97
GWLwet 0.93 0.88
GWLdry 0.91 −0.57
Yield 1.00 0.97
Crop Fail 0.98 −0.11

Table 7. Model-Scenario-Ratio (MSR) as average for the six cases
of model perturbation.

W W+

ETact 1.00 0.99
ETshort 0.97 0.88
GWLavg 1.00 0.99
GWLwet 0.97 0.94
GWLdry 0.34 −6.34
Yield 1.00 0.99
Crop Fail 0.67 −0.42

these indicators model inaccuracy is the dominant factor
leading to an erroneous impact assessment.

As mentioned in Sect. 2.4 other cases of model inaccu-
racy have been evaluated in the same manner resulting in
MSR values for a total of six cases of model inaccuracy, two
scenarios and seven indicators (total of 84 MSR values). A
graphical display of these 84 MSR values is shown in Fig. 3.
It is clear from the figure that in general MSR values for the
W scenario are higher than for the scenario with enhanced
drought conditions (W+ scenario). For the W scenario only
5, out of the 42 combinations of model cases and indicators,
have a MSR value lower than 0.95. For the W+ scenario this
is 15 out of 42.

These indicators have been combined as well to evaluate
the overall impact of model inaccuracy. Most indicators are
relatively insensitive to model inaccuracy. In general more
than 90% of the impact assessment analysis is a result of
the scenario considered (Table7). However, two indicators
are very sensitive to model inaccuracy and if these incorrect
models are used for impact assessment erroneous conclu-
sions might be drawn. These two indicators are number of
dry days (GWLdry) and number of years with crop failure
(Crop Fail). The latter is based on a threshold value where –
for a small number of years – a large change in results (like
from 2 to 3 times in 30 years) can be triggered by a relative
small model errors. The GWLdry indicator is also based on

Table 8. Model-Scenario-Ratio (MSR) as average for the seven and
five indicators. For the five indicators the GWLdry and Crop Fail
indicators were excluded.

7 indicators 5 indicators

W W+ W (%) W+(%)
ErrorSoils (Less Clayey) 0.90 0.42 0.97 0.91
ErrorSoils (More Clayey) 0.90 0.64 0.98 0.97
ErrorBottom (More Seepage) 0.91 0.87 1.00 0.97
ErrorBottom (Less Seepage) 0.98 0.66 0.99 0.97
ErrorCrop (More Drought resistance) 0.92 0.76 1.00 0.98
ErrorCrop (Less Drought resistance) 0.47−5.05 0.99 0.96

a threshold value and is also very sensitive to small model
errors.

Finally, the average MSR for the indicators for each model
perturbation experiment can be seen in Table8. This has
been done for the full set of seven indicators as well as for
a reduced set of five by leaving out the most erroneous ones
(GWLdry and Crop Fail). The overall result, for the five indi-
cators, is that of the evaluated climate change impact assess-
ment more than 90% can be attributed to the scenario itself
rather than to model inaccuracy. In cases where an indicator
is required that is sensitive to model inaccuracy more empha-
sis should be put on model calibration and validation.

4 Conclusions and recommendations

A common assumption in climate change impact assessment
studies is that unavoidable model errors are reflected in the
reference situation as well as in the climate change situation.
The SWAP model was applied for an area in The Nether-
lands to assess the impact of model inaccuracy on this cli-
mate change impact assessment. Based on this research the
main conclusions are:

– The calibrated model can be considered as state-of-the-
art and has been applied successfully over a wide range
of applications. In this case the model is performing
very well in simulating groundwater levels.

– In terms of climate change impact assessment for the
two scenarios (W and W+) an increase in water short-
age, more extremes in wet and dry periods, and a small
reduction in agriculture production can be expected.

– The derived Model-Scenario-Ratio shows that for the
W scenario model inaccuracy is for most indicators not
relevant.

– The derived Model-Scenario-Ratio shows that for the
W+ scenario (enhanced drought conditions) model in-
accuracy plays a role for some indicators. However,
still more than 90% of the assessed impact can still be
attributed to the scenario itself and not to model inaccu-
racy.
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The overall conclusion based on the results is that model
uncertainty becomes more important in areas where the
model is generating a greater impact by being more sensi-
tive to changes in environmental conditions. In this particular
case where the system is sensitive to drought, the model rep-
resentation of drought conditions stands out as an important
contributor to impact uncertainty.

The overall recommendation from this study is that the cli-
mate change impact assessment study as presented is quite
robust and model inaccuracy is for most cases a less relevant
issue. However, for some indicators and for the scenario with
enhanced drought conditions model inaccuracy can play an
important role. It would therefore be recommended for fu-
ture climate change impact assessment studies to explore the
relevance of model inaccuracy using an impact model accu-
racy assessment, such as the Model-Scenario-Ratio as de-
fined in this research. MSR values close to 1 indicate that
the model used for the impact assessment is robust and re-
sults are mainly a function of the scenario itself rather than
of the quality of the model. Low MSR values indicate that
the quality of the model is an important factor in determining
the indicator value and it is therefore essential that the model
should be calibrated and validated at a very detailed level.

Finally, this research should be considered as a starting
point to pay more attention to the importance of model ac-
curacy in climate change impact assessment studies. More
research is required to answer a range of questions such as:
(i) how much physics should be included in the model, (ii)
what other criteria than the MSR introduced here could be
developed, (iii) what is effect of a scenario with even more
enhanced drought conditions, and (iv) is this approach sup-
porting policy makers.
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