

Deliverable D01.02.02 Fragmentation and other landscape metrics at European Scales

Part I: Fragmentation and other landscape metrics at European Scales. Prepared by CR03 WSL.

Part II: Refined classifications" Modelling the actual spatial distribution for specific Natura 2000 habitat types. Prepared by CR21 ALTERRA.

ECOCHANGE -Challenges in assessing and forecasting biodiversity and ecosystem

> Integrated Project EU Funded Project FP6 2006 GOCE 036866

Contract Start Date : 01-01-2007 **Duration:** 60 months **Project Applicant:** CNRS – Centre National de la Recherche Scientifique

Document Classification

Title	Fragmentation and	d other landscape	metrics at E	luropean
	Scales	Ĩ		1
Deliverable	D01.02.02			
Reporting Period:	2			
Contractual Date of Delivery	Project Month 24,	, 31.12.2008		
Actual Date of Delivery	05.01.2009			
Authors	C.A. Mücher, F. k			
	S.M.Hennekens, H	,		
	Janssen, C. Schuil	0	it and N.E.	Zimmerman
	Alterra (CR21), W	, ,	1 /	
Work package	WP01.02, Remote RE - Restricted to a g	Ŭ		
Dissemination	Services)]	Toup specified by the	Consortium	Including EC
	Organisation	Person	Copies	Softcopy
	Alterra (CR21)	A. de Wit		1
		G. Hazeu		1
		C.A. Mücher		1
		S. Hennekens		1
	WSL (CR3)	Niklaus Zimmerman		1
		Felix Kienast		1
	SERI (CR4)	Ines Oman		1
		Tim Farley		
	The University of Edinburgh (CR22)	Mark Rounsevell		1
		Nicolas Dendoncker		1
	Wageningen University (CR17)	Michael Schaepman		1
	IBRC (CR10)	Ursu Tudor		1
		Gheorghe Coldea		1
		Sorina Farcas		1
Nature	Report	1	I	
Version	V1.00			
Doc ID Code	ALTERRACR21_D0	01.02.02_05JAN09_V	01.00	
Keywords	Metrics, Europe, C refined classificat environmental dat vegetation releves	ions, habitat spatia a sets, knowledge	al distributio	on modelling,

Document History

Name	Remark	Version	Date
Felix Kienast	Final version	V1	24 12. 2008
	Part I		
Sander Mücher	Final version	V1	30 12 2008
	Part II		

Document Abstract

Part I

The main objectives of deliverable 1.2.2 "Fragmentation and other landscape metrics at European Scales" is to calculate landscape metrics across Europe using the datasets assembled in Deliverable 1.2.1. In this report we describe calculations suited for the purpose of ECOCHANGE. The calculations employ the software FRAGSTATS and yield metric data for the entire continent at 2 resolutions (100m/500m pixel resolution) and 2 extents. At the 100m-pixel resolution discrete (not moving!) windows of 50x50km have been used. At the 500-m pixel resolution the calculations were performed for the extent of the entire continent. More than 20 metrics have been calculated. The metrics fulfill the following criteria: (a) quantify landscape structure for both local and regional scales, (b) likely correlation to species occurrence, (c) sensitivity to scenario-induced changes of landscape structure.

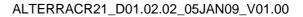
All calculations are available as ArcGIS coverage files (center points of the 50x50km windows) for the 100-m pixel resolution and as Tables for the 500-m pixel resolution.

Part II

The major objective here was to develop a refinement of land cover information into relevant ecological classes, see page 97 of the ECOCHANGE proposal task 01.02.03 "refined classifications". This task can be considered as part II of the deliverable report D01.02.02. The ecological refinement concerns the land cover information as produced within task T01.02.02, the pan-European Land Cover Mosaics (PLCM's), see also deliverable report D01.02.01 and http://www.synbiosys.alterra.nl/ecochange/plcm.aspx. The methodology developped is based on the experience from the PEENHAB project (Mücher et al., 2004, 2005). Land cover information next to environmental data sets with a European coverage and a high spatial resolution have a crucial role in this methodology. Since it became clear that in-situ information is often crucial next to information derived from remotely sensed information much effort was put in the collection of vegetation relevés across Europe. The modeling of the spatial distribution focussed especially on the forest and grassland ecosystems, since they are the major focus of the ECOCHANGE project. 14 Annex I habitat types (read Natura 2000) were selected as case studies to model their spatial distribution across Europe. All resulting habitat maps have a spatial resolution of 100 m which is very high for European application, but needed since most of these habitats are quite fragmented and scattered across Europe. The developed methodology seems quite successful in the spatial identification of these habitats as is shown by the detail figures. Much effort was made on the establishment of the knowledge rules for the relationship between CORINE land cover classes (CEC, 1994; Bossard et al, 2000; Büttner et al, 2004) and the Annex 1 Habitats (European Commission, 2007). also the website see http://www.synbiosys.alterra.nl/ecochange/singleclasses.aspx. The knowledge rules were largly based on the ecological knowledge of Dr R.G.H. Bunce who was responsible for that specific part in this report. Knowledge rules can be improved in the future by more in-depth exploitation of the in-situ data and use of more European expert knowledge which will definitely improved the developed spatial models, although some habitats are so locally distributed or weakly described that their spatial identification identification at the European scale is hardly possible.

ALTERRACR21_D01.02.02_05JAN09_V01.00

The information contained in this report is subject to change without notice and should not be construed as a commitment by any members of the ECOCHANGE Consortium. The ECOCHANGE Consortium assumes no responsibility for the use or inability to use any procedure or protocol which might be described in this report. The information is provided without any warranty of any kind and the ECOCHANGE Consortium expressly disclaims all implied warranties, including but not limited to the implied warranties of merchantability and fitness for a particular use.


Table of ContentsPart I: Fragmentation and other landscape metrics at European
Scales. Prepared by CR03 WSL.

1. Introduction	2
2. Methods	2
2.1 Selected metrics	2
2.2 Selected computer program	
2.3 Selected land-use covers and metric calculation	
3. Results	
3.1 Metrics for full extents	6
3.2 Metrics for discrete windows	7
3.2.1 Overview of all calculations	
3.2.2 Examples	9
4. Conclusions	
5. References	

Appendix 1: GIS and FRAGSTATS procedures to generate 50x50 km window calculations of landscape metrics

Appendix 2: ArcGIS coverage files Landscape metrics Europe

Appendix 3: Command files (.frg) and output for FRAGSTATS runs with covers at 500-m pixel resolution

1. Introduction

Landscape metrics have been widely used to quantify landscape or individual patch properties and are standard tools to analyze landscape composition and spatial configuration (Turner et al., 2001; McGarigal et al., 2002). There are many widely used metrics available which are easy to calculate. Limitations, however, include that some metrics may be highly correlated (Riitters et al., 1995; Gustafson, 1998) and interpretation problems may arise for some metrics if used across spatial scales (Thompson et al., 2002; Wu et al., 2002; Wu, 2004).

Previous studies showed that landscape metrics measuring either patch complexity or diversity of landscape images can be successfully correlated with species occurrence (see e.g. Hamazaki (1996)). It is yet unknown whether metric calculations can be successfully linked with genetic patterns. A search in the Web of Science with the keywords listed below yielded the following results (as of Nov. 4, 2008): Keywords: landscape metrics & species: 222 hits; Keywords: landscape metrics & species distribution: 48 hits; Keywords: landscape metrics & species dispersal: 24 hits; Keywords: landscape metrics & genetic: 9 hits.

Landscape metrics either measure composition (e.g. how much, how many?) or configuration (e.g. how arranged?) and can be grouped into the following groups: (1) Area, density, and edge metrics; (2) Shape metrics; (3) Core area metrics; (4) Isolation and proximity metrics; (5) Contagion and interspersion metrics; (6) Connectivity metrics; (7) Diversity metrics.

The goal of the presented calculations is to derive a set of landscape metrics at 2 resolutions and 2 extents to be used as predictor variables in ECOCHANGE-related SDMs (species distribution models) or in landscape-genetic analyses.

2. Methods

2.1 Selected metrics

The landscape metrics used for ECOCHANGE (Table 1) fulfill the following criteria: (a) quantify landscape structure for both local and regional scales, (b) likely correlation to species occurrence, (c) sensitivity to scenario-induced changes of landscape structure. Most of the metrics that were calculated (Table 1) fulfill the 3 criteria as reported in the literature.

Metric	Definition ¹	Examples of postulated, associated landscape function/processes
Landscape	composition	
PD NP %Area	Patch density Number of patches Percentage of landscape occupied by each patch type	Number/density of habitat patches = surrogate of fragmentation Number/density of habitat patches = surrogate of fragmentation Habitat availability has strong influence on species populations.
mPS LPI	Mean Patch Size (ha) Largest patch index	Patch size is a key feature representing suitable habitat. Measures the largest contiguous patch which might be important for interior species
PR	Patch richness	Number of land-use classes
Landscape	configuration	
SHAPE_MN	Mean Shape Index: measures shape complexity of a patch compared to a standard shape (square for raster format)	The number of organisms can be a function of patch shape (Hamazaki 1996).
SHAPE_AM	Area-weighted Mean Shape Index: measures shape complexity of a patch compared to a standard shape (square for raster format)	The number of organisms can be a function of patch shape (Hamazaki 1996).
LSI	Landscape shape index	The number of organisms can be a function of patch shape (Hamazaki 1996).

Table 1. Selected landscape metrics for the ECOCHANGE land-use analysis (highlighted in grey are those metrics that are of special interest to ECOCHANGE).

¹ For details see (McGarigal and Marks 1995)

Metric	Definition ²	Examples of postulated, associated landscape
		function/processes
FRAC_AM	Area-weighted mean fractal dimension	Fractal dimension is a good surrogate for the complexity of edge
FRAC_MN	Mean fractal dimension	Fractal dimension is a good surrogate for the complexity of edge
ENN_MN	Mean Nearest Neighbor: measures the distance from a patch to the nearest neighboring patch of the same type, based on edge-to-edge distance (m)	Dispersal and thus species colonization and the conservation of metapopulations are determined by the distance between suitable habitats.
ENN_AM	Area-weighted mean Nearest Neighbor: measures the distance from a patch to the nearest neighboring patch of the same type, based on edge-to-edge distance (m) weighted with patch size	Dispersal and thus species colonization and the conservation of metapopulations are determined by the distance between suitable habitats.
PROX_MN	Mean Proximity Index: measures the degree of isolation and fragmentation. MPI uses the nearest neighbor statistics.	Do.
PROX_AM	Area-weighted mean Proximity Index: measures the degree of isolation and fragmentation. MPI uses the nearest neighbor statistics and considers additionally the size of neighboring patches.	Do.
IJ	Interspersion and Juxtaposition Index: measure of patch adjacency. IJI = 100 if all patch types are equally adjacent to all other patch types	The suitability as habitat for species with multiple habitat requirements depends on interspersion and juxtaposition of different habitat types.
ED	Edge Density: standardizes total edge length to a per unit area basis (m/ha)	Some species are more related to the amount of edge than to the total amount of habitat (Browder and others 1989).
TE	Total Edge (m)	Some species are more related to the amount of edge than to the total amount of habitat (Browder and others 1989).
CLUMP	Clumpyness: Degree to which patches of the same type and adjacent	Dispersal and thus species colonization depend on adjacencies of suitable habitats.
COHESION	Physical connectedness of patches of the same patch type	Dispersal and thus species colonization depend on adjacencies of suitable habitats.
CONNECT	Connectance index is defined as the number of functional joinings between all patches of the corresponding patch type. Threshold distance is 10000m in the present study	
CONTAGION	Measures the degree patches of the same class are adjacent to each other	Dispersal and thus species colonization depend on adjacencies of suitable habitats.
SHDI, SIDI	Shannon / Simpson Diversity Index	The more diverse the more niche potential

2.2 Selected computer program

We used the metric calculation program FRAGSTATS (McGarigal et al., 2002) PC version (FRAGSTATS 3.3)³. FRAGSTATS is able to process grid data as well as vector data, whereas the alternative program V-late⁴ processes vector data only. Since most of the land-use products elaborated within the EU-ECOCHANGE project are grid-based we used FRAGSTATS version 3.3. All calculations are partially script-based (see Appendix 1).

2.3 Selected land-use covers and metric calculation

Out of the many land use products elaborated in D01.02.01 we generated 6 products along the lines described in Table 2a,b. The products are available as (a) Tables for full-extent (i.e. Europe, Fig. 1) for calculations at 500m resolution or (b) as maps (coverage files) for the *discrete* window analysis (100m resolution, excerpts in *discrete* windows of 50x50km allover Europe; see below, Figure 1 & Appendix 1, 2). The calculations at the 500-m resolution are performed with the HISLU classes, i.e. urban, arable land, grassland, forest, non-agricultural land, inland water, sea. Since the 500m resolution is rather coarse, we concentrated on the 100m resolution with three thematic classes, i.e. (1) the HISLU classes, (2) detailed grassland and forests classes and (3) classes related to intensive urban and agricultural use and non-vegetated areas. The next paragraphs yield detailed information about the calculation procedures for both the 100m and 500m resolution.

³ downloads: http://www.umass.edu/landeco/research/fragstats/downloads/fragstats_downloads.html

² For details see (McGarigal and Marks 1995)

⁴ download: <u>http://arcscripts.esri.com/details.asp?dbid=13898</u>

At the 500-m pixel resolution a reduced set of metrics (see Table 8) was calculated for the entire area of Europe at both the landscape level and the level of individual classes. Appendix 3 yields detailed information about the calculations and available data.

At the 100-m resolution calculation time and memory allocation increases considerably, hence limiting the analyses to discrete window analysis. Thus we calculated tiles (windows) with a size of 50x50km all across Europe. For each tile (50x50km quadrat) all metrics described in Table 1 have been calculated for both the landscape level and the level of individual classes. The classes are as follows: (1) the HISLU classes (Table 2a), (2) classes related to grassland, forest and other vegetated areas extracted from CLC level3 (grassland classes: 231, 321; forest classes: 311, 312, 313; other "green" classes: 141, 322, 323, 324) (Table 2b), and (3) classes related to intensive urban and agricultural use and non-vegetated areas (Table 2b). The data sets (2) & (3) are available for 1990 and 2000, dataset (1) for 1960, 1990, and 2000.

In addition to the detailed classes mentioned under (2) runs were carried out with lumped classes, i.e. a run where all grassland, forest and other vegetated areas (231, 321, 311, 312, 313, 141, 322, 323, 324) were grouped to one class and a run where all urban, all intensively used arable areas and all bare areas were grouped to one class.

Calculations for 50x50km discrete windows were applied for all covers at a 100m resolution. Depending on the class types, two (1990, 2000) or three time steps (1960, 1990, 2000) have been calculated – three time steps for the HISLU classes, and two time steps for the remaining classes. Technically all pixels of a 50x50km window are considered as an independent excerpt of the landscape and FRAGSTATS was calculated for this extent. Later the calculations were assigned to the center coordinate of each 50x50km window, yielding a point cover with points at 50km distance. In Appendix 1 a log of one calculation procedure is given. Metrics calculated for the 50x50km extents can be COMPARED over the entire continent since extent and resolution among the windows are constant. Average calculations for a subset of windows (= greater extent or subregion) is allowed but will not yield the same results as if the measure was calculated for the entire greater extent or subregion in an independent FRAGSTATS calculation. Furthermore each average from two or more 50x50km windows must be accompanied by standard deviation and number of averaged points.

Year	19	60	19	90	20	00
Resolution: File name: Classes:	100mhislu60_100m7 HISLU	 500m hislu60_500m 7 HISLU	 100m lc1990_hislu60_100m 7 HISLU 	 500m lc1990_hislu60_500m 7 HISLU 	100mlc2000_hislu60_100m7 HISLU	 500m lc2000_hislu60_500m 7 HISLU
Full-extent metrics m: metrics I: level		 m: see Table 8, I: landscape & all 7 HISLU classes 		m: see Table 8 I: landscape & all 7 HISLU classes		 m: see Table 8 I: landscape & all 7 HISLU classes
Discrete window analysis m: metrics I: level w: window	 m: all from Table 8, l: landscape & all 7 HISLU classes w: 50x50km 		 m: all from Table 8, l: landscape & all 7 HISLU classes w: 50x50km 		 m: all from Table 8, l: landscape & all 7 HISLU classes w: 50x50km 	•

Table 2a: Metric calculations with the "HISLU" classes.

Year	1960	1990)	2000	
Resolution: File name:		 100m lc_1990_level3_100m_v2 	•	100mlc_1990_level3_100m_v2	•
Discrete window analysis m: metrics I: level w: window		 m: all from Table 8, l: landscape & 10 classes related to grassland, forest & other vegetated areas; 1 class out of the 10 consists of the lumped remaining classes)* w: 50x50km 	•	 m: all from Table 8, l: landscape & 10 classes related to grassland, forest & other vegetated areas; 1 class out of the 10 consists of the lumped remaining classes)* w: 50x50km 	•
Discrete window analysis m: metrics I: level w: window		 m: all from Table 8, I: landscape & 2 classes (lumped grassland, forest & other vegetated area classes vs lumped remaining classes)** w: 50x50km 	•	 m: all from Table 8, l: landscape & 2 classes (lumped grassland, forest & other vegetated area classes vs lumped remaining classes)** w: 50x50km 	•
Discrete window analysis m: metrics I: level w: window		 m: all from Table 8, I: landscape & 2 classes (lumped intensive urban, agricultural use and non- vegetated areas vs lumped remaining classes)*** w: 50x50km 	•	 m: all from Table 8, l: landscape & 2 classes (lumped intensive urban, agricultural use and non- vegetated areas vs lumped remaining classes)*** w: 50x50km 	•

Table 2b: Metric calculations with subclasses of the CLC of grassland, forest and other biodiversity-relevant CLC

* 10 classes are: grassland (units 231, 321): forest (311, 312, 313), other vegetated (141, 322, 323, 324), lumped remaining classes ** 2 classes are: lumped unit 231, 321, 311, 312, 313, 141, 322, 323, 324 versus all other CLC classes *** 2 classes are: lumped unit 111 through 213 and 331 through 335 versus all other CLC classes

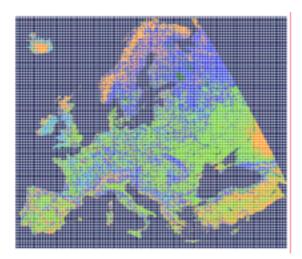


Figure 1: Tiles of 50x50km over the whole study area. Background: land cover 2000, resolution 100m. The whole area accounts for 7708 tiles (windows). 4336 tiles contain at least 1 pixel of terrestrial habitat. Coastal tiles should be eliminated for certain metrics. In the database they can be found by adding the area of the terrestrial land use classes including inland waters. If the resulting area is less than 250 km^2 the tile is a coastal or border tile.

3. Results

3.1 Metrics for full extents

We present selected metrics for the time steps 1960, 1990, and 2000 for the 500m resolution using the HISLU classes. Results are displayed in Table 3 and 4 for the three core metrics "Number of patches", "Mean shape index" and "Mean fractal dimension". The full set of metrics can be obtained both as FRAGSTATS output files or Excel files (see Appendix 3 for full file names). Note that the 1960 map has a different data source compared to the 1990 (PLCM1990) and the 2000 (PLCM2000) land cover database. Between-year comparisons of the metrics should thus be handled with caution. As highlighted in Table 4 we found an increase from 1960 to 1990 in arable area followed by a decrease from 1990 to 2000. Forested and urban area is increasing consistently, and a clear decrease in grasslands can be observed. Fractal dimension and mean shape index suggest that the perimeters of the patches were more complex in the 1960's than in the 1990's. This is most likely a bias caused by the rather coarse map resolution of the 1960 map (HISLU60). Between 1990 and 2000 we observed steady conditions in both fractal dimension and mean shape index. However, the resolution of 500m is definitely too coarse and the extent too large for the purpose of species distribution modeling. Thus we concentrated all work efforts to the 100m resolution in 50km x 50km windows (see paragraph 3.2)

Table 3: Selected metrics at the landscape level (no classes distinguished) for three time steps. Note that the 1960 map is taken from an analog map while the 1990 and 2000 maps are based on the CORINE land classification.

Cover / year	Number of patches	Mean shape index (no dimension)	Mean fractal dimension (no dimension)
hislu60_500m; 1960	76060	1.4876	1.0428
lc1990_hislu60_500m; 1990	1593391	1.1293	1.0175
lc2000_hislu60_500m; 2000	1605689	1.1294	1.0175

Table 4: Selected metrics at the class level for three time steps. Note that the 1960 map is taken from an analog
map while the 1990 and 2000 maps are based on the CORINE land classification.

Cover&Class type & year	Area (km²)	Number of patches	Mean shape index (no dimension)	Mean fractal dimension (no
				dimension)
hislu60_500m; arable-1960	3463368.75	8212	1.6545	1.0512
lc1990_hislu60_500m; arable-1990	3504935.50	305961	1.1663	1.0202
lc2000_hislu60_500m; arable-2000	3497342.75	307401	1.1669	1.0202
	r			
hislu60_500m; forest-1960	2277674.00	16061	1.6848	1.0548
lc1990_hislu60_500m; forest-1990	2876751.00	327721	1.1563	1.0189
lc2000_hislu60_500m; forest-2000	2877165.75	329292	1.1564	1.0189
	1700000000	10050	1 7000	1.05/0
hislu60_500m; grass-1960	1722380.00	10352	1.7332	1.0569
lc1990_hislu60_500m; grass-1990	698470.25	366644	1.1147	1.0175
lc2000_hislu60_500m; grass-2000	694959.25	367268	1.1149	1.0175
	10/010 75	4474	4 555 /	1 0510
hislu60_500m; inlandwaters-1960	196018.75	4174	1.5556	1.0512
lc1990_hislu60_500m; inlandwaters-1990	232788.75	75422	1.1049	1.0153
lc2000_hislu60_500m; inlandwaters-2000	233703.75	76237	1.1047	1.0153
	1010100.05	10001	4 4774	1.0.107
hislu60_500m; non-agricultural-1960	1213102.25	12801	1.4774	1.0436
lc1990_hislu60_500m; non-agricultural-1990	1470658.75	362244	1.1197	1.0166
lc2000_hislu60_500m; non-agricultural-2000	1471359.50	365387	1.1194	1.0166
	011/5 05	1710	1 45 47	1.0007
hislu60_500m; urban-1960	21165.25	4748	1.1547	1.0236
lc1990_hislu60_500m; urban-1990	180827.25	153889	1.0677	1.0122
lc2000_hislu60_500m; urban-2000	189816.75	158587	1.0692	1.0123

3.2 Metrics for discrete windows

3.2.1 Overview of all calculations

A total of 57 class or landscape metric calculations have been performed for the 50x50km discrete windows covering all Europe. Table 5 through 7 yield detailed information about the calculations and the metrics used. Appendix 1 gives a log of the calculation procedure.

Table 5: Complete list of metric calculations for the 7 HISLU classes (CLC<year-100> = Corine land cover 100m resolution). Each metric calculation for the class and the landscape-level involved the metrics displayed in Table 8. "Class level" means that the metrics were calculated for one and only this class vs. a matrix of all other remaining classes. "Landscape level" means that all classes mentioned under "class-level" were merged in a composite land cover for which metrics were calculated.

HISLU classes	
Year	Class description
1960 (HISLU 60, digitized analog map)	Class-level metrics: grassland, arable, Non-agricultural land, urban, forest, Inland water, sea
	Landscape-level metrics: all hislu classes (7)
1990 (PLCM1990, CLC 1990-100)	Class-level metrics: grassland, arable, Non-agricultural land, urban, forest, Inland water, sea
	Landscape-level metrics: all hislu classes (7)
2000 (PLCM, 2000, CLC 2000-100)	Class-level metrics: grassland, arable, Non-agricultural land, urban, forest, Inland water, sea
	Landscape-level metrics: all hislu classes (7)

Table 6: Complete list of metric calculations for 10 grassland, forest and other vegetated classes (CLC<year-100> = Corine land cover 100m resolution). Each metric calculation for the class and the landscape-level involved the metrics displayed in Table 8. "Class level" means that the metrics were calculated for one and only this class vs. a matrix of all other remaining classes. "Landscape level" means that all classes mentioned under "class-level" were merged in a composite land cover for which metrics were calculated.

Year	Class description
1990 (CLC 1990-100)	Class-level metrics: Green urban areas (231), Pastures (321), Broad leaved forest
	(311), Coniferous forest (312), Mixed forest (313), Natural grasslands (141), Moors and
	heathland (322), Sclerophyllous vegetation (323), Transitional woodland-shrub
	(324),lumped remaining classes
	Landscape-level metrics: all grassland, forest & other vegetated area classes (231, 321, 311, 312, 313, 141, 322, 323, 324) + the lumped remaining classes (=10 classes)
2000 (CLC 2000-100)	Class-level metrics: Green urban areas (231), Pastures (321), Broad leaved forest
	(311), Coniferous forest (312), Mixed forest (313), Natural grasslands (141), Moors and
	heathland (322), Sclerophyllous vegetation (323), Transitional woodland-shrub
	(324),lumped remaining classes
	Landscape-level metrics: all grassland, forest & other vegetated area classes (231, 321,
	311, 312, 313, 141, 322, 323, 324) + the lumped remaining classes (=10 classes)
2 classes lumped Grass	land, forest, other vegetated vs. matrix
Year	Class description
1990 (CLC 1990-100)	Class-level metrics: lumped class consisting of units 231, 321, 311, 312, 313, 141, 322,
	323, 324 (grassland, forest and other vegetated areas)
	Class level metrics, lumned class consisting of all classes not consisting units 221, 221
	Class-level metrics: lumped class consisting of all classes not consisting units 231, 321,
	<u>Class-level metrics:</u> lumped class consisting of all classes not consisting units 231, 321, 311, 312, 313, 141, 322, 323, 324
2000 (CLC 2000-100)	311, 312, 313, 141, 322, 323, 324 Landscape-level metrics: 2 above classes Class-level metrics: lumped class consisting of units 231, 321, 311, 312, 313, 141, 322,
2000 (CLC 2000-100)	311, 312, 313, 141, 322, 323, 324 Landscape-level metrics: 2 above classes Class-level metrics: lumped class consisting of units 231, 321, 311, 312, 313, 141, 322, 323, 324 (grassland, forest and other vegetated areas)
2000 (CLC 2000-100)	311, 312, 313, 141, 322, 323, 324 Landscape-level metrics: 2 above classes Class-level metrics: lumped class consisting of units 231, 321, 311, 312, 313, 141, 322, 323, 324 (grassland, forest and other vegetated areas) Class-level metrics: lumped class consisting of all classes not consisting units 231, 321, 321, 321, 321, 321, 321, 321,
2000 (CLC 2000-100)	311, 312, 313, 141, 322, 323, 324 Landscape-level metrics: 2 above classes Class-level metrics: lumped class consisting of units 231, 321, 311, 312, 313, 141, 322, 323, 324 (grassland, forest and other vegetated areas)

Table 7: Complete list of metric calculations for 2 lumped classes consisting of intensive, urban, agricultural use and non-vegetated classes (CLC<year-100> = Corine land cover 100m resolution). Each metric calculation for the class and the landscape-level involved the metrics displayed in Table 8. "Class level" means that the metrics were calculated for one and only this class vs. a matrix of all other remaining classes. "Landscape level" means that all classes mentioned under "class-level" were merged in a composite land cover for which metrics were calculated.

Lumped intensive urban, agricultural use and non-vegetated areas vs matrix				
Year	Class description			
1990 (CLC 1990-100)	<u>Class-level metrics:</u> lumped class consisting of units 111 through 213 and 331 through 335			
	<u>Class-level metrics:</u> lumped class consisting of all classes not consisting units 111 through 213 and 331 through 335			
	Landscape-level metrics: 2 above classes			
2000 (CLC 2000-100)	Class-level metrics: lumped class consisting of units 111 through 213 and 331 through 335			
	<u>Class-level metrics:</u> lumped class consisting of all classes not consisting units 111 through 213 and 331 through 335			
	Landscape-level metrics: 2 above classes			

Table 8: Complete list of metric calculated for each class selection and landscape composite mentioned in Tables 5 through 7. Note that some metrics (*) were not calculated for the 500-m resolution. Further some metrics (e.g. patch richness, PR) were calculated at the landscape-level only, and some metrics (e.g. Percentage of the class on the total landscape excerpt, PLAND) were calculated at the class-level only. The header "Class level Metrics" means that the metrics were calculated for one and only this class vs. a matrix of all other remaining classes. The header "Landscape-level Metrics" means that all classes were merged in a composite land cover for which metrics were calculated.

Landscape-level	Class-level	Description
Metrics	Metrics	
	TYPE	Class
TA	CA	Total Area
	PLAND	Percentage of the class on the total landscape excerpt
NP	NP	Number of patches
PD	PD	Patch density
LPI	LPI	Largest patch index
TE	TE	Total edge
ED	ED	Edge density
LSI	LSI	Landscape Shape Index
SHAPE_MN	SHAPE_MN	Mean Shape Index
SHAPE_AM	SHAPE_AM	Area Weighted Mean Shape Index
FRAC_MN	FRAC_MN	Mean Fractal Dimension
FRAC_AM	FRAC_AM	Area Weighted Mean Fractal Dimension
PROX_MN*	PROX_MN*	Mean Proximity Index (with search radius 10000m)
PROX_AM*	PROX_AM*	Area Weighted Mean Proximity Index (with search radius 10000m)
ENN_MN*	ENN_MN*	Mean Euclidian Nearest Neighbor
ENN_AM*	ENN_AM*	Area Weighted Mean Euclidian Nearest Neighbor
CONTAG		Contagion
	CLUMPY	Clumpiness
IJ	IJ	Interspersion Juxtaposition Index
CONNECT*	CONNECT*	Connectance Index (threshold: 10000m)
COHESION	COHESION	Patch Cohesion Index (threshold: 10000m)
PR		Patch Richness
SHDI		Shannon's Diversity Index
SIDI		Simpson's Diversity Index

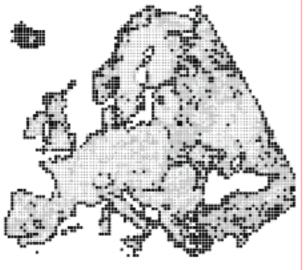
* not calculated for the 500-m resolution

3.2.2 Examples

a) Landscape metrics of one state

We present metrics for the year 2000 calculated on the basis of a variety of land-use classifications. Since metrics related to connectivity are of primary interest to ECOCHANGE, the <u>connectance index</u> and the <u>patch cohesion index</u> have been selected as examples (for a description of the metrics, see Tables 1&8). Both metrics are indicators for connectivity (fragmentation), e.g., high values in connectance and patch cohesion may be interpreted as low fragmentation, whereas low values may be viewed as high fragmentation. Although the visual analysis of metrics was restricted to a few metrics, <u>the full set of metrics</u> (Table 8) is available as ArcGIS coverage files. Appendix 2 yields detailed information about the nomenclature of these files. The maps do not contain country borders to avoid graphical blurring. The classifications "Low", "intermediate" and "High" are not identical throughout all metrics. Symbols for the value ranges are individually selected to highlight spatial patterns in each map. Be aware that the values are dependent on the number of classes involved and should be compared with care

At the landscape level⁵ we present connectance and patch cohesion of the 7 HISLU classes (grassland, arable, non-agricultural land, urban, forest, inland water, sea, Fig. 2a,b), as well as for the 10 grasslands, forests and other vegetated area classes (Fig. 2c,d). For individual land use classes (class level metrics)⁶ results were mapped for the lumped HISLU class "arable" (Fig. 3a, b), the lumped HISLU class "grassland" (Fig. 3c, d), the level-3 CORINE class "pastures (231)" (Fig. 3e, f) and the level-3 CORINE class "natural grasslands (321)" (Fig. 3g, h).

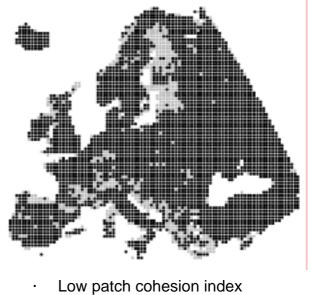

For the state calculations at the landscape level (Fig. 2) we observe low connectance and very high patch cohesion for the HISLU classification. There is a strong boundary effect. Connectance of the 10-class cover containing grassland, forests and vegetated areas has a very even distribution throughout Europe at a medium to high level.

⁵ "Landscape level" means that all classes were merged in a composite land cover for which metrics were calculated.

⁶ "Class level" means that the metrics were calculated for one and only this class vs. a matrix of all other lumped remaining classes.

a) Connectance of 7 HISLU classes

c) Connectance of 10 grass, forest & other vegetated classes



- Low connectance
- Intermediate connectance
- High connectance

b) Patch cohesion of 7 HISLU classes

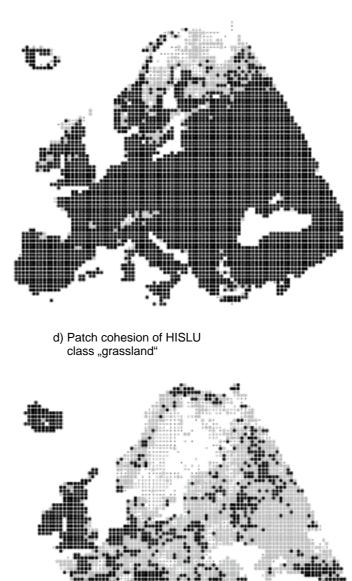
 d) Patch cohesion of 10 grass, forest & other vegetated classes

- Intermediate patch cohesion index
- High patch cohesion index

FFigure 2: Connectance and patch cohesion at the <u>landscape level</u> for <u>year 2000</u> and two sets of land-use classes (a, b: 7 HISLU classes, landscape level, cover "r00_50_011"; c, d: 10 grassland, forests and other vegetated area classes, landscape level, cover "r00_50_gfl"). "Low", "intermediate" and "High" is not identical throughout all metrics. Symbols for the value ranges are individually selected to highlight spatial patterns in each map. Be aware that the values are dependent on the number of classes involved and should be compared with care (e.g. Fig. 2a has the following classes: Low: 0.0-15.0; Intermediate: 15.1-19.0; High: 19.1-100.0, Fig. 2b has the following classes: Low: 0.0-30.0; Intermediate: 30.1-97.0; High: 97.1-100.0, Fig. 2c has the following classes: Low: 0.0-6.0; Intermediate: 6.1-14.0; High: 14.1-19.0 and Fig. 2d has the following classes: Low: 0.0-30.0; Intermediate: 30.1-97.0; High: 97.1-100.0).


As for individual land-use classes (Fig. 3a-h), the HISLU class "arable" (Fig. 3a, b) exhibits a very low connectance, which is contrasted by high patch cohesion. For the HISLU class "grassland" (Fig. 3c, d) connectance is low throughout Europe, whereas patch cohesion is particularly low in Northern Europe. Both connectance maps exhibit strong boundary effects. A more pronounced pattern is observed for the level-3 CORINE class "pastures (231)" (Fig. 3e, f) and "natural grasslands (321)" (Fig. 3g, h). First, pastures are not reported in the lower Mediterranean area. Consequently no metrics can be generated. In those 50x50km tiles, where pastures are reported, we observe high connectance in the Northern Mediterranean area, Iceland and Northern Europe. Patch cohesion is high throughout Western and Central Europe. For those regions where natural grasslands are reported, connectance values are low across Europe except for a belt ranging from Great Britain to South-Eastern Europe. The pattern of patch cohesion is quite heterogeneous. Low values are observed in Western and Central Europe. For the remaining regions, patch cohesion is generally higher.

a) Connectance of HISLU class "arable"


c) Connectance of HISLU class "grassland"

- Low connectance
- Intermediate connectance
- High connectance

ALTERRACR21_D01.02.02_05JAN09_V01.00

b) Patch cohesion of HISLU class "arable"

- · Low patch cohesion index
- Intermediate patch cohesion index
- High patch cohesion index

Figure 3a-d: Connectance and patch cohesion at the <u>class level</u> for <u>year 2000</u> and individual HISLU classes (a, b: HISLU class "arable", class level, cover "r00_50_01ca"; c, d: HISLU class "grassland", class level, cover "r00_50_01cg"). "Low", "intermediate" and "High" is not identical throughout all metrics. Symbols for the value ranges are individually selected to highlight spatial patterns in each map. Be aware that the values are dependent on the number of classes involved and should be compared with care (e.g. Fig. 3a has the following classes: Low: 0.0-16.0; Intermediate: 16.1-24.0; High: 24.1-100.0, Fig. 3b has the following classes: Low: 0.0-14.0; Intermediate: 86.1-92.0; High: 92.1-100.0 or Fig. 3c has the following classes: Low: 0.0-14.0; Intermediate: 14.1-21.0; High: 21.1-100.0).

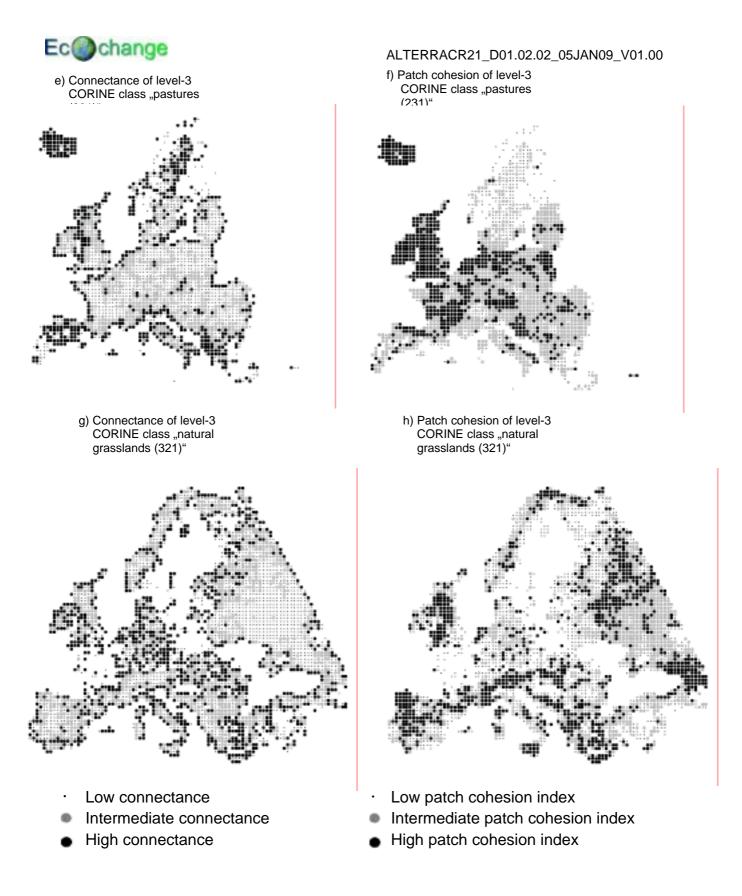


Figure 3e-h: Connectance and patch cohesion at the <u>class level</u> for <u>year 2000</u> and the level-3 CORINE class "pastures" and the level-3 CORINE class "natural grasslands" (e, f: level-3 CORINE class "pastures", class level, cover "r00_50_gf231"; g, h: level-3 CORINE class "natural grasslands", class level, cover r00_50_gf321). "Low", "intermediate" and "High" is not identical throughout all metrics. Symbols for the value ranges are individually selected to highlight spatial patterns in each map. Be aware that the values are dependent on the number of classes involved and should be compared with care (e.g. Fig. 3e has the following classes: Low: 0.0-14.0; Intermediate: 14.1-22.0; High: 22.1-100.0, Fig. 3g has the following classes: Low: 0.0-15.0; Intermediate: 15.1-28.0; High: 28.1-100.0 or Fig. 3h has the following classes: Low: 0.0-90.0; Intermediate: 90.1-93.0; High: 93.1-100.0).

b) Comparison of landscape metrics between two states

In order to characterize the temporal development of fragmentation, we calculated differences between the metric calculations for two consecutive time steps, i.e. 1990 and 2000. Technically this can be done in ArcGIS by joining the attribute files of two consecutive time steps. We restricted the graphical analysis in this report to a few connectivity measures relevant for the ECOCHANGE project. Data are, however, available for all metrics listed in Table 1&8. The following metrics were selected: connectance index, mean number of patches, Euclidian distance, patch cohesion index and mean shape index (for a description of the metrics, see Table 8). Appendix 2 yields detailed information about the nomenclature of the files.

Available maps in this report: For the metric <u>"number of patches</u>" we present <u>difference</u> <u>maps</u> at the <u>landscape level</u>⁷ for (1) the 10 grasslands, forests and other vegetated areas (Fig. 4a), (2) the lumped grasslands, forests, and other vegetated area classes versus the matrix (2 classes) (Fig. 4b), (3) the lumped intensive urban, agricultural use, and non-vegetated areas versus the matrix (2 classes) (Fig. 4c), and (4) the 7 HISLU classes (grassland, arable, non-agricultural land, urban, forest, inland water, sea) (Fig. 4d). In addition we present difference maps at the <u>class-level</u>⁸ for the metric <u>"number of patches</u>" for (1) the lumped 10 grasslands, forests and other vegetated areas vs. the matrix (Fig. 5a), (2) the lumped agricultural classes vs. the matrix (Fig. 5b), (3) the lumped HISLU class "arable" (Fig. 6a), (4) the HISLU class "grassland" (Fig. 6b), (5) the level-3 CORINE class "pastures (231)" (Fig. 6c) and (6) the level-3 CORINE class "natural grasslands (321)" (Fig. 6d).

For the metrics <u>"connectance</u>" and <u>"patch cohesion</u>" we present <u>difference maps</u> at the <u>landscape level</u> for (1) the 7 HISLU classes (grassland, arable, non-agricultural land, urban, forest, inland water, sea) (Fig. 7a, b), (2) the 10 grasslands, forests and other vegetated area classes (Fig. 7c, d). In addition we present for the metrics <u>"connectance</u>" and <u>"patch cohesion</u>" difference maps at the <u>class-level</u> for (1) the lumped HISLU class <u>"arable"</u> (Fig. 8a, b), (2) the HISLU class <u>"grassland"</u> (Fig. 8c, d), (3) the level-3 CORINE class <u>"pastures</u> (231)" (Fig. 9a, b) and (4) the level-3 CORINE class <u>"natural grasslands</u> (321)" (Fig. 9c, d).

Finally we present (Fig. 10) a difference map (1990 vs. 2000) for Euclidian distance for the HISLU class forest (class-level metric) and a map (Fig. 11) exhibiting the differences between the shape index for all HISLU classes in year 1990 and in 2000. This is a landscape-level metric).

The Nordic countries Sweden, Finland, Norway and Iceland as well as Serbia, Montenegro, Croatia, Albania, and Bosnia-Herzegovina were not displayed (but included in the dataset), since they do not have a CLC 1990 cover. Thus no difference maps could be generated for these areas.

In the following sections, we discuss selected results for the metric number of patches, connectance, patch cohesion, mean Euclidean distance and shape index. All metrics are indicators for connectivity (fragmentation). An increase in number of patches may be interpreted as increasing fragmentation, whereas a decrease may be viewed as decreasing fragmentation between 1990 and 2000. Contrary, an increase in connectance and patch cohesion may be interpreted as de-fragmentation, whereas a decrease may be viewed as increasing fragmentation.

Visual interpretation of the maps representing the number of patches: At the landscape level distinct changes in the number of patches are visible for many land-use classifications (Fig. 4a-d). For grasslands and forests (lumped or 10 classes, Fig. 4a,b) or the 7 HISLU classes

⁷ "Landscape level" means that all classes are merged in a composite land cover for which metrics are calculated.

⁸ "Class level" means that the metrics are calculated for one and only this class vs. a matrix of all other lumped remaining classes.

(Fig. 4d), we observe a consistent increase in number of patches for e.g. Western Spain and Portugal, Ireland, Southern Greece, and several Eastern European regions.

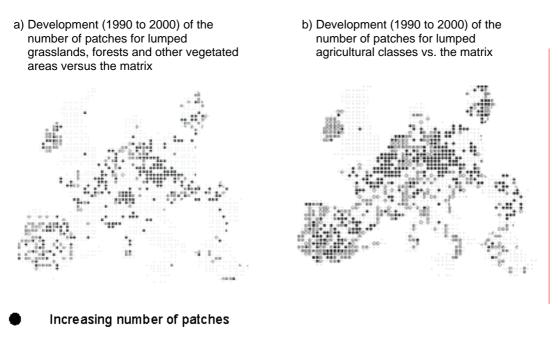
a) Development (1990 to 2000) of the number of patches for 10 grass, forest and other vegetated area classes

- c) Development (1990 to 2000) of the number of patches for lumped intensive, urban, agricultural use, and non-vegetated areas versus the matrix (2 classes)

 b) Development (1990 to 2000) of the number of patches for lumped grasslands, forests, and other vegetated areas versus the matrix (2 classes)

d) Development (1990 to 2000) of the number of patches for 7 HISLU classes (grassland, arable, non-agricultural land, urban, forest, inland water, sea)

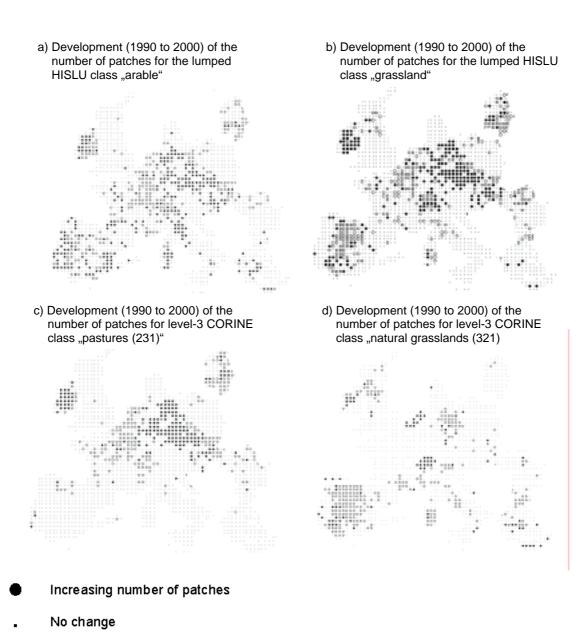
- Increasing number of patches
- . No change
- O Decreasing number of patches


Figure 4a-d: Changes in the number of patches at the <u>landscape level</u> between <u>1990 and 2000</u>. (a: 10 grasslands, forests and other vegetated area classes, landscape level, covers "r00_50_gfl" minus "r90_50_gfl"; b: lumped grasslands, forests, and other vegetated areas versus the matrix (2 classes), landscape level, covers "r00_50_ynl"; c: lumped intensive urban, agricultural use, and non-vegetated areas versus the matrix (2 classes), landscape level, covers "r00_50_ynl"; c: lumped intensive urban, agricultural use, and non-vegetated areas versus the matrix (2 classes), landscape level, covers "r00_50_iel" minus "r90_50_iel"; d: 7 HISLU classes (grassland, arable, non-agricultural land, urban, forest, inland water, sea), landscape level, covers "r00_50_011" minus "r90_50_011". "Increasing" means value 2000 minus 1990 >0; "No change" means value 2000 minus 1990 = 0; "Decreasing" means value 2000 minus 1990 <0.

An overall decrease in number of patches is consistently observed for grasslands and forests (lumped or 10 classes, Fig. 4a,b) in Western Central Europe (Germany), parts of Eastern

Europe, and Eastern Great Britain, as well as Eastern Spain. The 7 HISLU classes (Fig. 4d) generally support these trends, although much less pronounced. The difference map of intensive, urban, agricultural use and non-vegetated (Fig. 4c) is rather insensitive.

At the class level the aggregated classifications exhibiting vegetated classes versus the matrix (Fig. 5a, b) indicate, that an increase in patch numbers is observed in Northern and Eastern Europe (Germany, Poland), and southern Spain. The trend is more pronounced for the lumped agricultural classes (Fig. 5b). Decreases in patch numbers are consistently found for both classifications in Southern and Western Spain and Ireland.



- . No change
- Decreasing number of patches

Figure 5a-b: Changes in the number of patches at the <u>class level</u> between <u>1990 and 2000</u>. (a: lumped grasslands, forests and other vegetated areas versus the matrix, class level, covers ",r00_50_yngre" minus ",r90_50_yngre"; b: lumped agricultural classes vs. the matrix, class level, covers ",r00_50_iemat" minus ",r90_50_iemat"). "Increasing" means value 2000 minus 1990 >0; "No change" means value 2000 minus 1990 = 0; "Decreasing" means value 2000 minus 1990 <0.

Changes in patch numbers between 1990 and 2000 for individual classes are shown in Fig. 6a-d. The HISLU grasslands (Fig. 6b) show strong increases in the number of patches in Ireland and in Eastern Europe and decreases in Spain, Western Germany, and Lithuania/Latvia. CORINE level-3 natural grasslands (Fig. 6d) exhibit decreases in the number of patches all-across Europe, particularly across Spain, Southern France, and parts of Eastern Europe. Increases in the number of natural grassland patches are observed in Central Europe, across the Alps and in northern Germany. Increasing number of patches is reported for CORINE level-3 pastures (Fig. 6c) in Ireland and parts of Eastern Europe with strong increases across northern Germany. For the HISLU class arable land (Fig. 6a), increases in patch numbers are observed for Eastern Europe, whereas losses are observed for Germany. Spain shows a mix between losses and gains between 1990 and 2000.

O Decreasing number of patches

r igure oa-a: Changes in the number of patches at the class level between <u>1990 and 2000</u>. (a: lumped HISLU class "arable", class level, covers "r00_50_01ca" minus "r90_50_01ca"; b: lumped HISLU class "grassland", class level, covers "r00_50_01cg" minus "r90_50_01cg"; c: level-3 CORINE class "pastures (231)", class level, covers "r00_50_gf231" minus "r90_50_gf231"; d: level-3 CORINE class "natural grasslands (321)", class level, covers "r00_50_gf321" minus "r90_50_gf321"). "Increasing" means value 2000 minus 1990 >0; "No change" means value 2000 minus 1990 = 0; "Decreasing" means value 2000 minus 1990 <0.

Visual interpretation of the maps representing Connectance and patch cohesion index: As for connectance and cohesion, the landscape-level metrics of the HISLU and the grassland & forest classes (Fig. 7) do not show clear distinct patterns between 1990 and 2000.

a) Development (1990 to 2000) of the connectance for 7 HISLU classes

b) Development (1990 to 2000) of the patch cohesion for 7 HISLU classes

c) Development (1990 to 2000) of the connectance for 10 grasslands, forests and other vegetated area classes

- Increasing connectance
- No change
- Decreasing connectance

 d) Development (1990 to 2000) of the patch cohesion for 10 grasslands, forests and other vegetated area classes

- Increasing patch cohesion
- No change
- Decreasing patch cohesion

Figure 7a-d: Changes in connectance and patch cohesion at the <u>landscape level</u> between <u>1990 and 2000</u>. (a, b: 7 HISLU classes (grassland, arable, non-agricultural land, urban, forest, inland water, sea), landscape level, covers ",r00_50_011" minus ",r90_50_011"; c, d: 10 grasslands, forests and other vegetated area classes, landscape level, covers ",r00_50_gfl" minus ",r90_50_gfl"). "Increasing" means value 2000 minus 1990 >0; "No change" means value 2000 minus 1990 = 0; "Decreasing" means value 2000 minus 1990 <0.

b) Development (1990 to 2000) of the

patch cohesion for the lumped HISLU

a) Development (1990 to 2000) of the connectance for the lumped HISLU class "arable"

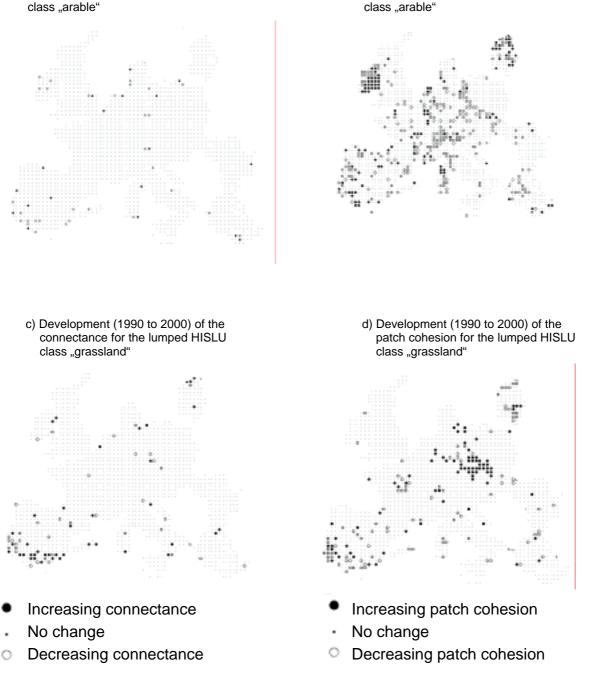
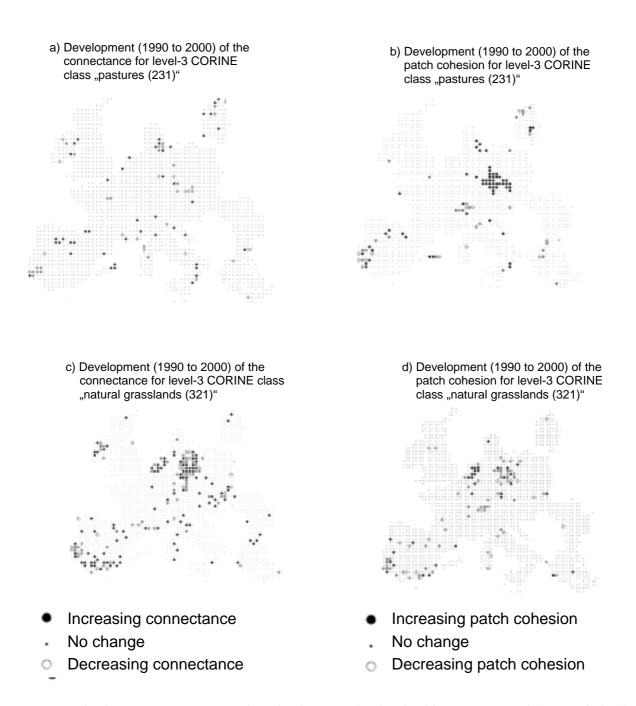



Figure 8a-d: Changes in connectance and patch cohesion at the <u>class level</u> between <u>1990 and 2000</u>. (a, b: lumped HISLU class "arable", class level, covers "r00_50_01ca" minus "r90_50_01ca"; c, d: HISLU class "grassland", class level, covers "r00_50_01cg" minus "r90_50_01cg"). "Increasing" means value 2000 minus 1990 >0; "No change" means value 2000 minus 1990 = 0; "Decreasing" means value 2000 minus 1990 <0.

Change of connectance and patch cohesion for individual land-use classes between 1990 and 2000 are shown in Figs. 8 and 9. Changes for arable land (Fig. 8a, b) and grasslands (Fig. 8c, d) are relatively marginal for the connectance index. The changes are more pronounced, however,

for the patch cohesion index, which suggests increases for Ireland for arable land, and increases in parts of Eastern Europe for grasslands. Scattered decreases for grasslands are observed throughout western Spain, whereas patch cohesion for arable land appears to decrease throughout most of Europe.

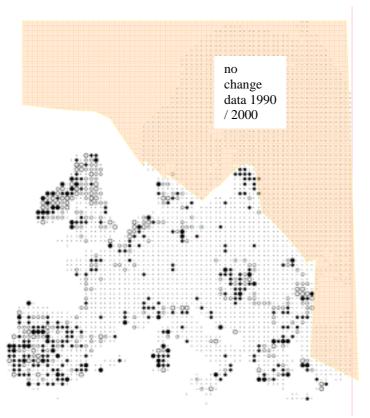


Figure 9a-d: Changes in connectance and patch cohesion at the <u>class level</u> between <u>1990 and 2000</u>. (<i>a, b: level-3 CORINE class "pastures (231)", class level, covers "r00_50_gf231" minus "r90_50_gf231"; c, d: level-3 CORINE class "natural grasslands (321)", class level, covers "r00_50_gf321" minus "r90_50_gf321"). "Increasing" means value 2000 minus 1990 >0; "No change" means value 2000 minus 1990 = 0; "Decreasing" means value 2000 minus 1990 <0.

Changes for pastures and natural grasslands are shown in Fig. 9a-d. No major changes are observed for connectance between 1990 and 2000 for pastures (Fig. 9a), whereas patch cohesion indicates a strong increase in patch cohesion for parts of Eastern Europe (Fig. 9b). For natural grasslands, a heterogeneous mix of increases and decreases of connectance is observed for parts of Eastern Europe and Southwestern Spain (Fig. 9c). It appears that decreasing connectance prevails in these regions. The trend observed for natural grasslands in some East European regions and Southwestern Spain is supported by patch cohesion, which decreases in these areas (Fig. 9d).

We restrict the graphical representation of changes in the Euclidean distance to one map exhibiting the changes in the HISLU class forest between 1990 and 2000 (Fig. 10). Decreasing distances mean higher connectivity and lower fragmentation. We conclude from the map that Ireland and the Iberian Peninsula as well as some regions in Eastern and Southern Europe are clearly identified as areas where in growth of forest into a mosaic of open land/forest patches may eventually increase connectivity and finally lead to more homogeneous forest landscapes.

- -6330.569824 -75.000000
 -74.999999 -10.000000
 -9.999999 10.000000
 Increasing distance between forest patches between 1990 and 2000
 No significant change
 10.000001 75.000000
 Decreasing distance between forest patches between 1990 and 2000
 - 75.000001 4194.399902 Strongly decreasing distance between forest patches between 1990 and 2000

Figure 10: Average change of the Euclidean distance between forest patches (class level metric), 1990 versus 2000 in 50x50km windows.

Finally we show the changes of the landscape-level metric "mean shape index" for all HISLU classes (Fig. 11). As a matter of fact, this map has close affinities with the map exhibited in Fig. 10. It seems that Ireland and the Iberian Peninsula as well as some regions in Eastern and Southern Europe experience a simplification of landscape structures, whereas vast parts of Central Europe remain stable.

- -0.170400 -0.010000
- -0.009999 -0.005000

Strongly increasing complexity of all land use patches between 1990 and 2000 Increasing complexity of all land use patches between 1990 and 2000 No significant change

- -0.004999 0.005000
 0.005001 0.010000
- 0.010001 0.138700

Decreasing complexity of all land use patches between 1990 and 2000

Strongly decreasing complexity of all land use patches between 1990 and 2000

Figure 11: Average change of the mean shape index of all land use classes (landscape scale), 1990 versus 2000 in 50x50km windows. The shape index measures to what degree the perimeter of a patch deviates from the minimum perimeter required accommodating the area of the patch. A value of 1 is reached when the patch is maximally compact (i.e., square or almost square) and the value increases without limit as patch shape becomes more irregular.

4. Conclusions

We have shown that fragmentation and other landscape metrics can be calculated over 2 resolutions (100m/500m) and 2 extents over the whole European continent. In this report we describe calculations suited for the purpose of ECOCHANGE. The calculations employ the software FRAGSTATS and yield metric data for the entire continent. At the 100m-pixel resolution discrete (not moving!) windows of 50x50km have been used. The values of the tiles are directly comparable since they use the same extents. At the 500m resolution the calculations are performed for the extent of the entire continent. More than 20 metrics have been calculated for both resolutions. The metrics fulfill the following criteria: (a) quantify landscape structure for both local and regional scales, (b) likely correlation to species occurrence, (c) sensitive to scenario-induced changes of landscape structure. Visual judgment of the patterns yields plausible results over Europe. We detected more sensitive and less sensitive metrics. E.g. Euclidean distance and number of patches is very sensitive to randomly placed new patches in a landscape whereas patch cohesion is rather insensitive to such alterations. All calculations are available as ArcGIS coverage files (center points of the 50x50km windows) for the 100-m pixel resolution and as Tables for the 500-m pixel resolution.

5. References

- Browder, J. A., May, L. N., Rosenthal, A., Gosselink, J. G. and Baumann, R. H. 1989. Modeling futuretrends in wetland loss and brown shrimp production in Louisiana using thematic mapper imagery. Remote sensing of environment 28: 45-52.
- Hamazaki, T. 1996. Effects of patch shape on the number of organisms. Landscape Ecology 11: 299-306.
- Herzog, F., Lausch, A., Müller, E., Thulke, H.-H., Steinhard, U. and Lehmann, S. 2001. Landscape Metrics for Assessment of Landscape Destruction and Rehabilitation. Environmental Management 27: 91-107.
- McGarigal, K. and Marks, B. 1995. FRAGSTATS: spatial pattern analysis program for quantifying landscape
- structure., U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 122.
- Mladenoff, D. J., Sickley, T. A., Haight, R. G. and Wydeven, A. P. 1995. A regional landscape analysis and prediction of favorable gray wolf habitat in the Northern Great Lakes Region. Conservation Biology 9: 279-294.
- Gustafson, E. J., 1998. Quantifying landscape spatial pattern: what is the state of the art? Ecosystems 1, 143-156.
- McGarigal, K., Cushman, S. A., Neel, M. C., Ene, E., 2002. FRAGSTATS: Spatial pattern analysis program for categorial maps. Computer software program produced by the authors at the University of Massachusetts, Amherst, MA, USA.
 - http://www.umass.edu/landeco/research/fragstats/fragstats.html.
- Riitters, K. H., O'Neill, R. V., Hunsaker, C. T., Wickham, J. D., Yankee, D. H., Timmins, S. P., Jones, K. B., Jackson, B. L., 1995. A factor analysis of landscape pattern and strucutre metrics. Landscape Ecology 10, 23-39.
- Thompson, C. M., McGarigal, K., 2002. The influence of research scale on bald eagle habitat selection along the lower Hudson River, New York (USA). Landscape Ecology 17, 569-586.
- Turner, M. G., Gardner, R. H., O'Neill, R. V., 2001. Landscape ecology in theory and practice: pattern and process. New York, USA, Springer Verlag.
- Wu, J., 2004. Effects of changing scale on landscape pattern analysis: scaling relations. Landscape Ecology 19, 125-138.
- Wu, J., Shen, W., Sun, W., Tueller, P. T., 2002. Empirical patterns of the effects of changing scale on landscape metrics. Landscape Ecology 17, 761-782.

Appendix 1: GIS and FRAGSTATS procedures to generate 50x50 km window calculations of landscape metrics

1. Create 50x50km fishnet for the extent of I1990_hI0_1km

Arc: kill fish50 Killed fish50 with the ARC option Arc: generate fish50 Copyright (C) 1982-2006 Environmental Systems Research Institute, Inc. All rights reserved. GENERATE 9.2 (Sun Sep 17 16:05:34 PDT 2006) Generate: fishnet Fishnet Origin Coordinate (X,Y): 2575600, 1350900 Y-Axis Coordinate (X,Y): 2575600, 4000000 Cell Size (Width,Height): 50000,50000 Number of Rows, Columns: 100,100 Generate: Generate: q Externalling BND and TIC... Arc: clean fish50 fish50c 0.001 0.001 poly Cleaning D:\ARC_GIS_PROJECTS\ECOCHANGE_LAND_USE_COUERS\FISH50 Sorting... Intersecting... The specified tolerance 0.00100000 is below the minimum resolution for this data - intersections will be detected with a tolerance of 1.51153092 instead. Arc: kill fish50 all Killed fish50 with the ALL option Arc:

in fish50c: additems: ns_transec, ew_transec calculate: ew_transec = Int (([FISH50C-ID] -1)/100.)+1 calculate ns_transec [FISH50C-ID] -([EW_TRANSEC]-1)*100

2. Reclassify land-use grid

grid axt = reclass (hislu60_100m,recl_1960.txt,NODATA) L1960_HL0_1rc = con (isnull (axt),8, axt) Quit Kill axt all

grid axt = reclass (L1990_HL0_1KM,recl.txt,NODATA) L1990_HL0_1rc = con (isnull (axt),8, axt) Quit Kill axt all

grid axt = reclass (L2000_HL0_1KM,recl.txt,NODATA) L2000_HL0_1rc = con (isnull (axt),8, axt) Quit Kill axt all

Recl.txt:

0:8

1:1

2:2 3:3

- 4:4
- 5 : 5

6:6 7:7

Recl_1960.txt: 0:8 1:2 2:3 3:4 4:5 5:6 6:1 7:7

99:8

3. Clip 50x50 window from L1990_HL0_1rc and store

&do ax = 1 &to 82 &sv ax = %ax% * 1

&do ay = 1 &to 94 &sv ay = %ay% * 1

Reselect fish50c axt polys Resel ew_transec = %ax% and ns_transec = %ay% :N ;N

grid gridclip L1990_HL0_1rc F:\fragstats_ecochange_samples_l1990_hl_0_1\l1990hl0_1km_ew%ax%\L90HL0_1%ax%%ay% cover axt

quit . kill axt all

&end

&end

4. Clip 50x50 window from L2000_HL0_1rc and store

&do ax = 1 &to 82 &sv ax = %ax% * 1

&do ay = 1 &to 94 &sv ay = %ay% * 1

Reselect fish50c axt polys Resel ew_transec = %ax% and ns_transec = %ay% ;N ;N

grid

gridclip L2000_HL0_1rc F:\fragstats_ecochange_samples_I2000_hl_0_1\I2000hl0_1km_ew%ax%\L00HL0_1%ax%%ay% cover axt quit kill axt all

&end

&end

5. Clip 50x50 window from L1960_HL0_1rc and store

&do ax = 1 &to 82 &sv ax = %ax% * 1

&do ay = 1 &to 94 &sv ay = %ay% * 1

Reselect fish50c axt polys

Resel ew_transec = %ax% and ns_transec = %ay% ;N

;N

grid

gridclip L1960_HL0_1rc F:\fragstats_ecochange_samples_I1960_hI_0_1\I1960hI0_1km_ew%ax%\L60HL0_1%ax%%ay% cover axt quit kill axt all

&end

aenu

&end

6. Generate help files for FRAGSTATS (shown for the 1990 cover with HISLU classes only) and ArcGIS

6.1 change to a platform with fortran compiler

rm out

6.2 run FORTRAN program and adjust files

f77 gen_ba_file_frags_1990.f \rightarrow yields executable file a.out a.out \rightarrow yields files out.txt which is the batch file for fragstats, koord a file used to generate a point file with the fragstats results for the center coordinates, and a file called items used for further analyses.

rename out to out_90_50km_01_interv1.txt rename items to items_90_50km_01_interv1.txt

open out_90_50km_01_interv1.txt in word remove all blanks exchange all \$ by \ sve as text

example from out_90_50km_01_interv1.txt :

F:\fragstats_ecochange_samples_I1990_hl_0_1\l1990hl0_1km_ew2\l90hl0_122, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hl_0_1\l1990hl0_1km_ew2\l90hl0_124, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_l1990_hl_0_1\l1990hl0_1km_ew2\l90hl0_126, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_l1990_hl_0_1\l1990hl0_1km_ew2\l90hl0_128, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_l1990_hl_0_1\l1990hl0_1km_ew2\l90hl0_1210, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hI_0_1\I1990hI0_1km_ew2\I90hI0_1212, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hI_0_1\I1990hI0_1km_ew2\I90hI0_1214, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hI_0_1\I1990hI0_1km_ew2\I90hI0_1216, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_l1990_hl_0_1\l1990hl0_1km_ew2\l90hl0_1218, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_l1990_hl_0_1\l1990hl0_1km_ew2\l90hl0_1220, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hI_0_1\I1990hI0_1km_ew2\I90hI0_1222, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hI_0_1\I1990hI0_1km_ew2\I90hI0_1224, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hI_0_1\I1990hI0_1km_ew2\I90hI0_1226, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hI_0_1\I1990hI0_1km_ew2\I90hI0_1228, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hI_0_1\I1990hI0_1km_ew2\I90hI0_1230, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hI_0_1\I1990hI0_1km_ew2\I90hI0_1232, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hI_0_1\I1990hI0_1km_ew2\I90hI0_1234, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_l1990_hl_0_1\l1990hl0_1km_ew2\l90hl0_1236, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_l1990_hl_0_1\l1990hl0_1km_ew2\l90hl0_1238, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_l1990_hl_0_1\l1990hl0_1km_ew2\l90hl0_1240, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hI_0_1\I1990hI0_1km_ew2\I90hI0_1242, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_l1990_hl_0_1\l1990hl0_1km_ew2\l90hl0_1244, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_l1990_hl_0_1\l1990hl0_1km_ew2\l90hl0_1246, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_l1990_hl_0_1\l1990hl0_1km_ew2\l90hl0_1248, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hI_0_1\I1990hI0_1km_ew2\I90hI0_1250, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_l1990_hl_0_1\l1990hl0_1km_ew2\l90hl0_1252, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_l1990_hl_0_1\l1990hl0_1km_ew2\l90hl0_1254, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_l1990_hl_0_1\l1990hl0_1km_ew2\l90hl0_1256, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hI_0_1\I1990hI0_1km_ew2\I90hI0_1258, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hI_0_1\I1990hI0_1km_ew2\I90hI0_1260, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hI_0_1\I1990hI0_1km_ew2\I90hI0_1262, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_l1990_hl_0_1\l1990hl0_1km_ew2\l90hl0_1264, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hI_0_1\I1990hI0_1km_ew2\I90hI0_1266, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hI_0_1\I1990hI0_1km_ew2\I90hI0_1268, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hI_0_1\I1990hI0_1km_ew2\I90hI0_1270, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hI_0_1\I1990hI0_1km_ew2\I90hI0_1272, x, 8, x, x, IDF_ARCGRID


```
F:\fragstats ecochange samples I1990 hl 0 1\I1990hl0 1km ew2\I90hl0 1274, x, 8, x, x, IDF ARCGRID
F:\fragstats_ecochange_samples_I1990_hl_0_1\I1990hl0_1km_ew2\I90hl0_1276, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hl_0_1\I1990hl0_1km_ew2\I90hl0_1278, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_l1990_hl_0_1\l1990hl0_1km_ew2\l90hl0_1280, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_l1990_hl_0_1\l1990hl0_1km_ew2\l90hl0_1282, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hl_0_1\I1990hl0_1km_ew2\I90hl0_1284, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hl_0_1\I1990hl0_1km_ew2\I90hl0_1286, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hI_0_1\I1990hI0_1km_ew2\I90hI0_1288, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hI_0_1\I1990hI0_1km_ew2\I90hI0_1290, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hI_0_1\I1990hI0_1km_ew2\I90hI0_1292, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_l1990_hl_0_1\l1990hl0_1km_ew2\l90hl0_1294, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hI_0_1\I1990hI0_1km_ew4\I90hI0_142, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hl_0_1\I1990hl0_1km_ew4\I90hl0_144, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hl_0_1\I1990hl0_1km_ew4\I90hl0_146, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hl_0_1\I1990hl0_1km_ew4\I90hl0_148, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_l1990_hl_0_1\l1990hl0_1km_ew4\l90hl0_1410, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hl_0_1\I1990hl0_1km_ew4\I90hl0_1412, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hl_0_1\I1990hl0_1km_ew4\I90hl0_1414, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hI_0_1\I1990hI0_1km_ew4\I90hI0_1416, x, 8, x, x, IDF_ARCGRID
F:\fragstats_ecochange_samples_I1990_hl_0_1\I1990hl0_1km_ew4\I90hl0_1418, x, 8, x, x, IDF_ARCGRID
```

.

gen_ba_file_frags_1990.f:

PROGRAM G

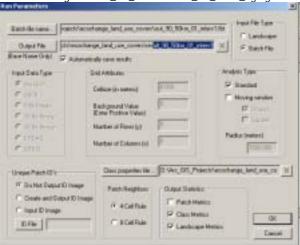
```
OPEN (UNIT=12, FILE='out', STATUS='NEW')
    OPEN (UNIT=13, FILE='koord', STATUS='NEW')
    OPEN (UNIT=14, FILE='items', STATUS='NEW')
    IYEAR = 1990
     IZAHL = 0
    DO 25 I=<mark>2</mark>,82,2
    DO 26 II=2,94,
     IZAHL = IZAHL + 1
     IX = II
     IY = I
     AX = (((IX - 1) * 50000) + 25000) + 2575600.
     AY = (((IY - 1) * 50000) + 25000) + 1350900.
    IF (IX .LT. 10 .AND. IY .LT. 10)WRITE (12,21)IYEAR,
   .IYEAR,IY,IY,IX
    IF (IX .GE. 10 .AND. IY .GE. 10)WRITE (12,22)IYEAR,
  .IYEAR,IY,IY,IX
    IF (IX .LT. 10 .AND. IY .GE. 10)WRITE (12,23)IYEAR,
  .IYEAR,IY,IY,IX
    IF (IX .GE. 10 .AND. IY .LT. 10)WRITE (12,24)IYEAR,
  .IYEAR,IY,IY,IX
    WRITE (13,31)IZAHL,
  .AX,AY
    IF (IX .LT. 10 .AND. IY .LT. 10)WRITE (14,41)IZAHL,
  .AX,AY,IYEAR,IYEAR,IY,IY,IX
    IF (IX .GE. 10 .AND. IY .GE. 10)WRITE (14,42)IZAHL,
  .AX,AY,IYEAR,IYEAR,IY,IY,IX
    IF (IX .LT. 10 .AND. IY .GE. 10)WRITE (14,43)IZAHL,
  .AX,AY,IYEAR,IYEAR,IY,IY,IX
    IF (IX .GE. 10 .AND. IY .LT. 10)WRITE (14,44)IZAHL,
  .AX,AY,IYEAR,IYEAR,IY,IY,IX
21
      FORMAT('F:$fragstats_ecochange_samples_I',I4,
   '_hl_0_1$l',I4,'hl0_1km_ew',I1,'$l<mark>90</mark>hl0_1',I1,I1,
  .', x, 8, x, x, IDF_ARCGRID')
     FORMAT('F:$fragstats_ecochange_samples_l',I4,
22
```


- 23 FORMAT('F:\$fragstats_ecochange_samples_l',I4, .'_hI_0_1\$I',I4,'hI0_1km_ew',I2,'\$I<mark>90</mark>hI0_1',I2,I1, .', x, 8, x, x, IDF_ARCGRID')
- 24 FORMAT('F:\$fragstats_ecochange_samples_l',I4, .'_hI_0_1\$I',I4,'hI0_1km_ew',I1,'\$I<mark>90</mark>hI0_1',I1,I2, .', x, 8, x, x, IDF_ARCGRID') IF(IZAL.EQ.1000) IZAL=0
- 31 FORMAT(I5,',',F10.1,',', F10.1)
- 41 FORMAT(I5,','F10.1,',', F10.1,',', .'F:\$fragstats_ecochange_samples_I',I4, .'_hI_0_1\$I',I4,'hI0_1km_ew',I1,'\$I<mark>70</mark>hI0_1',I1,I1, .', x, 8, x, x, IDF_ARCGRID')
- 42 FORMAT(I5,',',F10.1,',',F10.1,',', .'F:\$fragstats_ecochange_samples_I',I4, .'_hI_0_1\$I',I4,'hI0_1km_ew',I2,'\$I<mark>90</mark>hI0_1',I2,I2, .', x, 8, x, x, IDF_ARCGRID')
- 43 FORMAT(I5,',',F10.1,',',F10.1,',', .'F:\$fragstats_ecochange_samples_I',I4, .'_hI_0_1\$I',I4,'hI0_1km_ew',I2,'\$I<mark>90</mark>hI0_1',I2,I1, .', x, 8, x, x, IDF_ARCGRID')
- 44 FORMAT(I5,',',F10.1,',',F10.1,',', .'F:\$fragstats_ecochange_samples_I',I4, .'_hI_0_1\$I',I4,'hI0_1km_ew',I1,'\$I<mark>90</mark>hI0_1',I1,I2, .', x, 8, x, x, IDF_ARCGRID')
- 26 CONTINUE
- 25 CONTINUE
 - CLOSE (UNIT=12) CLOSE (UNIT=13) CLOSE (UNIT=14) STOP END

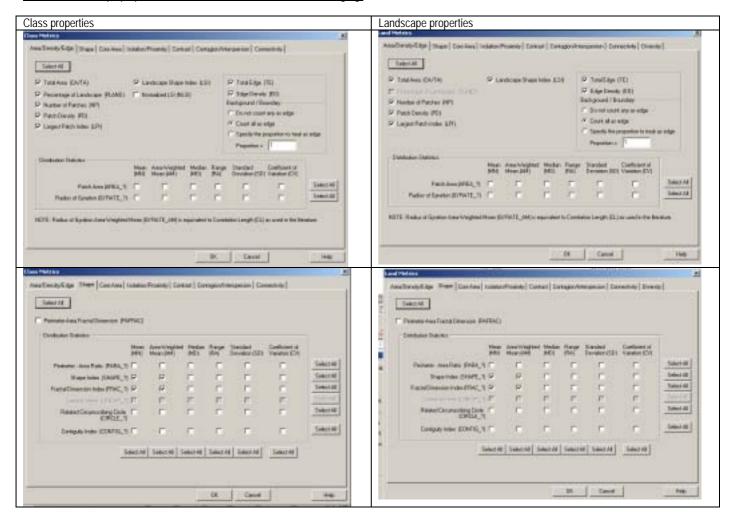
6.3 Generate point shape file with coordinates imported from koord.txt ---> all_p_50kmc

7. Run FRAGSTATS

open batch editor and open with "all files" files out_90_50km_01_interv1.txt


save as fbt file with extention.fbt

close


```
run fragstats (ca. 20 hrs)
for 1990 use file 1990_hl0_1km50kmwin_full_batch_frg.frg
```


Gerneral settings of 1990_hl0_1km50kmwin_full_batch_frg.frg:

Class- and landscape properties of 1990_hl0_1km50kmwin_full_batch_frg.frg:

ALTERRACR21_D01.02.02_05JAN09_V01.00

(Instruction)	And Market
Ans/Centy/Edge Mape Cantasa Anton Woods Cantad Cantagov/Insuman Covering	AnaTomig/Edge Mape Earlies Anister/Protein Earlies Earlies
Land Ad	Lance 44
	Search Rober Train Chi
Land Table 1998 at	Instanton Suttate
Many Americanstant Health Frager Standard. Configured at	Man Annucleoff Sell Sell Second Contents
	Preside and PRES_TI SF F F F F Sector
Rundy Sole (HED, 1) P P F F F F See M Smith Vole (Mr. 1) F F F F F F See M	Internet DM_NF F F F F F F Total
in second in the second	Property in the second s
Extensional PPPPPP	Extition Assertantics P P P P P P P P Benetik
Detates EWL7	Construction F F F F F F 2000
Secretarian P P P P	Larrente Trante I
PROPERTY AND A DESCRIPTION OF A DESCRIPT	Transferred association of the second second
Seecond Seecond Seecond Seecond Seecond Seecond	Televial Talevial Televial Televial Televial
C BC T Tand D Pag	D. 2aud 144
Analization Constant Constant Constant Constant Constant Constant (Constant)	Land Thinks
1200000	Ana-Tenny Kige [Sagar] San Son] Summer Cannot Contact Toringer-Summer and Cannadady [Son Sy]
Checht	Over 44
P Cleaners (CUMP) I' Lentrage S-Annihola (SMIDH)	P Canagos (CH146) P Landcope lineae Inter (CH1609)
T Populari at Life Adjension (FLBA) T Splitting Science (FRAT)	Theorem of Like Advancem PLICA Tables (191,17)
☐ Aggregeten leden (M) ☐ Etherhow Heads State (HESH) 32 Interpreters Autogetiese index (H)	Tagegeben hele (20) Theoree Here San (20174)
· · · · · · · · · · · · · · · · · · ·	P Interpreter Automatic Inter 80
F Institute (second context)	T substant manage and a
E contra é reco	E Lastel Com
In the first	
TR [Devid] Child	Dt Geck Hits
benittens betreten bereatte	THE TANK ALL OF
Interference Inter	Land Patrice All
	Assellently Dop State Enclose IndexnPrinetly Enclose Enc
Deal	Claute
P Path Column Index 807(5)(04)	P Ped Calman Inter (CHG104)
P Carearava idas (029607)	F Campbiana Inter (CLANECT)
Theshall Assess (marr)	Thereinid drivens int TXHII
E (an and the man () that the	F consistences Directoria
THE PARTY I	- therefore
DK Center Has 1	DR [Canal Heb
bissinging bissing bissing	

ALTERRACR21_D01.02.02_05JAN09_V01.00

Industri P Frank Rammens (FMS) P Hold Anterneon (FMS) P Hold and Fall of Hold and (FMS) Hold and Fold (Hold and (FMS)) Hold and Fold (Hold and (FMS))	anothemis (Connel (Congenitive genesis (Connected (Dentity)) P Steereris Dentity Index (2010) P Steereris Dentity Index (2010) P Steereris Dentity Index (2010) P Statistic Dentity Index (2010)
	DK [David] Hills

this saves results as

(a) D:\Arc_GIS_Projects\ecochange_land_use_covers\result_90_50km_01_interv1.class
(b) D:\Arc_GIS_Projects\ecochange_land_use_covers\result_90_50km_01_interv1.land
D:\Arc_GIS_Projects\ecochange_land_use_covers\result_90_50km_01_interv1.adj

Delete all blanks in (a) und (b); exchange all N/A by -9999.99 ersetzen and remove header; exchange extension to .txt

8. Import FRAGSTATS data into Workstation ARCINFO: &run amI90_50.txt to generate point covers with all metrics.

```
aml90_50.txt
Tables
Define items_90_50_i1
ld
4
5
b
х1
4
10
f
1
y1
4
10
f
1
ident
90
90
С
а
2
2
С
b
4
5
b
С
2
2
С
d
2
2
С
е
20
20
```


С ;N ;N sel items_90_50_i1 add from items_90_50km_01_interv1.txt save items_90_50_i1 quit tables dropitem items_90_50_i1 a b c d e sel items_90_50_i1 sort id quit copy ALL_P_50KMC AP_9050KMCb joinitem AP_9050KMCb.pat items_90_50_i1 AP_9050KMCb.pat id y ordered Tables Define r_90_50_i1_l ident 90 90 С TA 4 15 f 5 NP 4 15 f 5 PD 4 15 f 5 LPI 4 15 f 5 ΤE 4 15 f 5 ED 4 15 f 5 LSI 4 15 f 5 SHAPE_MN 4 15 f 5 SHAPE_AM 4 15 f 5 FRAC_MN 4

1
15
f
5
FRAC_AM
4
15
f
5
PROX_MN
4
15
f
5
PROX_AM
4
15
f
5
ENN_MN
4
15
f
5
ENN_AM
4
15
f
5
CONTAG
4
15
f
5
IJ
4
15
f
5
CONNECT
4
15
f
5
COHESION
4
15
f
5
PR
4
15
f
5
SHDI
4
15
f
5
SIDI
4
15
f
i E
5
;N
;N

sel r_90_50_i1_l add from result_90_50km_01_interv1land.txt save r_90_50_i1_l

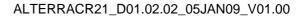
sel r_90_50_i1_l sort ident quit

copy AP_9050KMCb r90_50_011 joinitem r90_50_011.pat r_90_50_i1_l r90_50_011.pat ident ident ordered

Tables Define r_90_50_i1_c ident 90 90 С TYPE 20 20 С CA 4 15 f 5 PLAND 4 15 f 5 NP 4 15 f 5 PD 4 15 f 5 LPI 4 15 f 5 ΤE 4 15 f 5 ED 4 15 f 5 LSI 4 15 f 5 SHAPE_MN 4 15 f 5 SHAPE_AM 4 15 f 5 FRAC_MN


```
4
15
f
5
FRAC_AM
4
15
f
5
PROX_MN
4
15
f
5
PROX_AM
4
15
f
5
ENN_MN
4
15
f
5
ENN_AM
4
15
f
5
CLUMPY
4
15
f
5
IJI
4
15
f
5
CONNECT
4
15
f
5
COHESION
4
15
f
5
;N
;N
sel r_90_50_i1_c
add from result_90_50km_01_interv1class.txt
save r_90_50_i1_c
quit
copyinfo r_90_50_i1_c r_90_50_i1grass
tables
sel r_90_50_i1grass
resel type cn 'grass'
nsel
purge
y
sort ident
quit
copyinfo \ r\_90\_50\_i1\_c \ r\_90\_50\_i1arab
tables
sel r_90_50_i1arab
```


resel type cn 'arable' nsel purge y sort ident quit copyinfo r_90_50_i1_c r_90_50_i1nonag tables sel r_90_50_i1nonag resel type cn 'non-agricultural' nsel purge y sort ident quit copyinfo r_90_50_i1_c r_90_50_i1urb tables sel r_90_50_i1urb resel type cn 'urban' nsel purge y sort ident quit copyinfo r_90_50_i1_c r_90_50_i1forest tables sel r_90_50_i1forest resel type cn 'forest' nsel purge y sort ident quit copyinfo r_90_50_i1_c r_90_50_i1inlwat tables sel r_90_50_i1inlwat resel type cn 'inlandwaters' nsel purge y sort ident quit copyinfo r_90_50_i1_c r_90_50_i1seaalcoast tables sel r_90_50_i1seaalcoast resel type cn 'seaalongcoast' nsel purge y sort ident quit copy AP_9050KMCb r90_50_01cg copy AP_9050KMCb r90_50_01ca copy AP_9050KMCb r90_50_01cna copy AP_9050KMCb r90_50_01cu copy AP_9050KMCb r90_50_01cf


copy AP_9050KMCb r90_50_01ciw copy AP_9050KMCb r90_50_01cs

joinitem r90_50_01cg.pat r_90_50_i1grass r90_50_01cg.pat ident ident ordered joinitem r90_50_01ca.pat r_90_50_i1arab r90_50_01ca.pat ident ident ordered joinitem r90_50_01cna.pat r_90_50_i1nonag r90_50_01cna.pat ident ident ordered joinitem r90_50_01cu.pat r_90_50_i1urb r90_50_01cu.pat ident ident ordered

joinitem r90_50_01cf.pat r_90_50_i1forest r90_50_01cf.pat ident ident ordered joinitem r90_50_01ciw.pat r_90_50_i1inlwat r90_50_01ciw.pat ident ident ordered joinitem r90_50_01cs.pat r_90_50_i1seaalcoast r90_50_01cs.pat ident ident ordered

9. Display point covers with ArcView or ArcGIS

Appendix 2: ArcGis coverage files Landscape metrics Europe

File organization

data_deliv_122
 data_deliv_122_excel_txt_frg_appendix3
 data_deliv_122_shape_appendix2

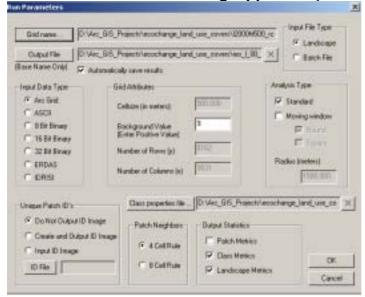
Data files

HISLU classes		
Year	Explanation	
Name of coverage file		
1960		
r60_50_01cg	grassland	
r60_50_01ca	arable	
r60_50_01cna	Non-agricultural land	
r60_50_01cu	urban	
r60_50_01cf	forest	
r60_50_01ciw	Inland water	
r60_50_01cs	sea	
r60_50_01I	Landscape: all hislu classes (7)	
1990		
r90_50_01cg	grassland	
r90_50_01ca	arable	
r90_50_01cna	Non-agricultural land	
r90_50_01cu	urban	
r90_50_01cf	forest	
r90_50_01ciw	Inland water	
r90_50_01cs	sea	
r90_50_01I	Landscape: all hislu classes (7)	
2000		
r00_50_01cg	grassland	
r00_50_01ca	arable	
r00_50_01cna	Non-agricultural land	
r00_50_01cu	urban	
r00_50_01cf	forest	
r00_50_01ciw	Inland water	
r00_50_01cs	sea	
r00_50_01I	Landscape: all hislu classes (7)	

Grassland, forest, other vegetated				
Year Name of coverage file	Explanation			
1990				
r90_50_gf141	Green urban areas			
r90_50_gf231	Pastures			
r90_50_gf311	Broad leaved forest			
r90_50_gf312	Coniferous forest			
r90_50_gf313	Mixed forest			
r90_50_gf321	Natural grasslands			
r90_50_gf322	Moors and heathland			
r90_50_gf323	Sclerophyllous vegetation			
r90_50_gf324	Transitional woodland-shrub			
r90_50_gfngf	lumped remaining classes			
r90_50_gfl	Landscape: all grassland, forest & other vegetated area classes + the lumped remaining classes (=10 classes)			
2000				
r00_50_gf141	Green urban areas			
r00_50_gf231	Pastures			
r00_50_gf311	Broad leaved forest			
r00_50_gf312	Coniferous forest			
r00_50_gf313	Mixed forest			
r00_50_gf321	Natural grasslands			
r00_50_gf322	Moors and heathland			
r00_50_gf323	Sclerophyllous vegetation			
r00_50_gf324	Transitional woodland-shrub			
r00_50_gfngf	lumped remaining classes			
r00_50_gfl	Landscape: all grassland, forest & other vegetated area classes + the lumped remaining classes (=10 classes)			
2 classes lumped Grassland	d, forest, other vegetated vs. matrix			
1990				
r90_50_yngre	lumped class consisting of units 231, 321, 311, 312, 313, 141, 322, 323, 324			
r90_50_ynmat	lumped class consisting of all classes not consisting units 231, 321, 311, 312, 313, 141, 322, 323, 324			
r90_50_ynl	Landscape: 2 above classes			
2000				
r00_50_yngre	lumped class consisting of units 231, 321, 311, 312, 313, 141, 322, 323, 324			
r00_50_ynmat	lumped class consisting of all classes not consisting units 231, 321, 311, 312, 313, 141, 322, 323, 324			
r00_50_ynl	Landscape: 2 above classes			
/				

2 classes lumped intensive urban, agricultural use and non-vegetated areas vs.matrix

Year Name of coverage file	Explanation		
1990			
r90_50_ieint	lumped class consisting of units 111 through 213 and 331 through 335		
r90_50_iemat	lumped class consisting of all classes not consisting units 111 through 213 and 331 through 335		
r90_50_iel	Landscape: 2 above classes		
2000			
r00_50_ieint	lumped class consisting of units 111 through 213 and 331 through 335		
r00_50_iemat	lumped class consisting of all classes not consisting units 111 through 213 and 331 through 335		
r00_50_iel	Landscape: 2 above classes		



Appendix 3: Command files (.frg) and output for FRAGSTATS runs with covers at 500-m pixel resolution

File organization

🔻 📁 dat	ta_deliv_122
🔹 🕨 💭	data_deliv_122_excel_txt_frg_appendix3
🛌 🛌 📁	data_deliv_122_shape_appendix2

General settings of FRAGSTATS runs at 500-m resolution (all .frg files in folder data_deliv_122_excel_txt_frg_appendix3)

Data files

Name of file	Explanation
1960_hl_5km.frg	FRAGSTATS command file for 1960
1990_hl_5km.frg	FRAGSTATS command file for 1990
2000_hl_5km.frg	FRAGSTATS command file for 2000
res_I_60_05kmsu_21_hislu_land.txt	All metrics at landscape level for 1960
res_I_90_05kmsu_21_hislu_land.txt	All metrics at landscape level for 1990
res_I_00_05kmsu_21_hislu_land.txt	All metrics at landscape level for 2000
res_I_60_05kmsu_21_hislu_class.txt	All metrics at class level for 1960
res_I_90_05kmsu_21_hislu_class.txt	All metrics at class level for 1990
res_I_00_05kmsu_21_hislu_class.txt	All metrics at class level for 2000
metrics_hislu_500m_land60_90_2000.xls	All metrics at landscape level for 1960, 1990 and 2000
	as Excel file
metrics_hislu_500m_class60_90_2000.xls	All metrics at class level for 1960, 1990 and 2000 as
	Excel file

Table of Contents Part II: Refined classifications" Modelling the actual spatial distribution for specific Natura 2000 habitat types. Prepared by CR21 ALTERRA.

Introduction	2
Habitat and vegetation typology	3
Selecting of vegetation and habitat types	
In-situ data	
Knowledge rules	9
REFERENCES	.13
HABITAT DISTRIBUTION MODELLING & RESULTS	.14
H4060 Alpine and Boreal heaths	
H4070 Bushes with Pinus mugo and Rhododendron hirsutum (Mugo-Rhododendretum hirsuti)	19
H6150 Siliceous alpine and boreal grasslands	.23
H6170 Alpine and subalpine calcareous grasslands	.27
H6210 Semi-natural dry grasslands and scrubland facies on calcareous substrates (Festuco-	
Brometalia) (* important orchid sites)	.31
H6230. Species-rich Nardus grasslands, on siliceous substrates in mountain areas (and	
submountain areas, in Continental Europe)	
H6240. Sub-pannonic steppic grasslands	.41
H6250. Pannonic loess steppic grasslands	
H7110. Active raised bogs	
H7130. Blanket bogs (* if active bog)	
H9150. Medio-European limestone beech forests of the Cephalanthero-Fagion	
H9410. Acidophilous Picea forests of the montane to alpine levels (Vaccinio-Piceetea)	
H9420. Alpine Larix decidua and/or Pinus cembra forests	
H9510. Southern Apennine Abies alba	
Annex I Criteria used to classify the vegetation releves into the relevant Annex I habitat type	
for the various countries for which in-situ data were obtained	.71
Annex II Knowledge rules for the relationship between CORINE Land Cover Classes and	
Annex 1 Habitats	.73

Introduction

The major objective here is to develop a refinement of land cover information into relevant ecological classes (see page 97 of the ECOCHANGE proposal task 01.02.03 "refined classifications") and can be considered as part II of the deliverable report D01.02.02. This ecological refinement concerns the land cover information as produced within task T01.02.02, the pan-European Land Cover Mosaics (PLCM's), see also deliverable report D01.02.01 and http://www.synbiosys.alterra.nl/ecochange/plcm.aspx . The methodology used is based on the experience from the PEENHAB project (Mücher et al., 2004, 2005). Land cover information next to environmental data sets plays a crucial role in this methodology. Since it became clear that in-situ information is often crucial next to information derived from remotely sensed information (position paper Mucher et al 2006 presented at the final workshop BIOPRESS) much effort was put in the collection of vegetation relevés across Europe. The land cover refinements will focuss especially on the forest and grassland ecosystems, since they are the major focus of the ECOCHANGE project. Since no list of key species was yet available when we started with this activity we made a proposal (see also analytical protocol of WP 1.2) of interesting vegetation types and related Annex I habitat types (European Commission, 2007) to be modelled in terms of their probability in actual distribution across Europe. The following sections will the selected Annex I habitat types and relation vegetation types, their spatial modelling and results.

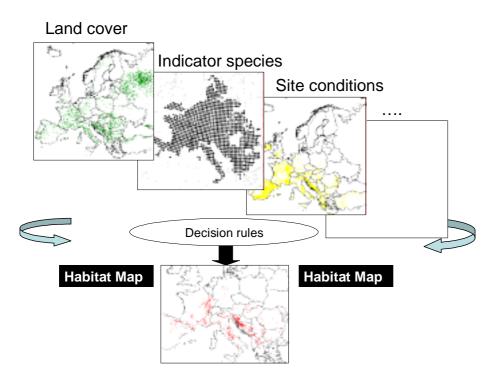


Figure 1 Flowchart of the methodological approach (Mücher et al 2005) to identify the spatial distribution of European Habitats.

Much effort was made on the establishment of the knowledge rules for the relationship between CORINE land cover classes (CEC, 1994; Bossard et al, 2000; Büttner et al, 2004) and the Annex 1 Habitats (European Commission, 2007), see also the website

<u>http://www.synbiosys.alterra.nl/ecochange/singleclasses.aspx</u>. The knowledge rules were largly based on the ecological knowledge of Dr R.G.H. Bunce who was responsible for this specific part in the report. The following sections will discuss the selected Annex I habitat types and related vegetation types, the established knowledge rules, and their impmentation as spatial distribution models and the final map results for the selected habitat types.

Habitat and vegetation typology

The use of the Natura 2000 habitat types seems to be very logic since the European policys on nature and biodiversity conservation are stronlgly linked to the HABITAT Directive. However, the Annex I of the HABITAT directive is not a hierarchical system and cannot be applied at various scales. Since aggregation and desaggregation of land cover, habitats and vegetation types is a strong requirement for the ECOCHANGE project, we suugest to use the European vegetation classification next to the Annex I of the HABITAT Directive. The European vegetation classification is a hierarchical unifying system for habitats in Europe. It consists of 930 alliances, grouped into 237 alliances and 80 classes. In most cases the alliances can be linked to EUNIS and Annex I types. All Annex I habitat types should be linked in the end with the Plant Fuctional Types (PFTs) being used by the modellers (eg. LPJ-GUESS). On the basis of the European classification of vegetation types (Rodwell at al. 2002), as implemented in SynBioSys Europe, and a set of well-defined criteria, a preliminary set of 18 vegetation types have been selected. This will be discussed in the next sections.

Selecting of vegetation and habitat types

Within the scope of EcoChange the emphasis is on forest and grassland ecosystems, all within the Arctic-Alpine region. Additional, a wider spatial domain was defined that includes also Eastern Europe, Fennoscandian mountains, Mediterranean, and Central Europe. The criteria for the selecting of vegetation types have been defined as follows by us:

- <u>Sensitive to climatic change</u>
 - o salt marsh vegetation along the coast;
 - snow bed vegetation and tall forbs vegetation in alpine en sub alpine regions)
 - o bog vegetation
- <u>Sensitivity to land use change</u>
 - o Grassland and heath types in sub alpine and alpine regions
 - o Mediterranean shrub vegetation
- Availability of computerized plot observation data.

Three tables will be presented. One with the selected vegetation types (called Alliances in the hierarchical system of the European vegetation classification, see Rodwell eta al., 2002). For each type there is a short description and an indication there sensitive. The higher order level (Class) to which the selected types belong is mentioned each time above.

The second table presents a list of potential species for each of the vegetation types. This list is created by linking the vegetation types to Natura2000 habitat types and to extract the the species listed for the habitat types.

Table 1 Prelimanary list of 15 selected vegetation types (plant communities), according to the European Vegetation Classification. The types in grey represent the orders or alliances.

Code	Scientific name	Description	Sensivity		
25	Oxycocco- Sphagnetea	Ombrotrophic bog and wet heathland vegetation of acid oligotrophic peats			
25A01	Ericion tetralicis	Wet heath and bog vegetation on drying deeper peats or winter-waterlogged peaty intergrades (Atlantic and sub-atlantic distribution)	Representative of heathlands and susceptable to changes in ground water levels and land use.		
25C02	Ledo-Pinion	Pine-dominated swampy woodlands (East- European distribution)	Representative of heathlands and susceptable to changes in ground water levels and land use.		
26	Molinio- Arrhenatheretea	Anthropogenic pastures and meadows on deeper, more or less fertile soils in lowland regions	<u>.</u>		
26103	Triseto-Polygonion bistortae	Meadows of well-drained, relatively fertile mineral soils in low-input agricultural systems of montane regions	Very sensitive to changes in agricultural practice.		
28	Festuco-Brometea	Steppes, rocky steppes and sandy grasslands of the sub-continental temperate and sub- boreal regions	I		
28F05	Festucion valesiacae	Sub-continental closed fescue pastures and swards of central Europe	Sensitive to changes in agricultural practice.		
42	Mulgedio-Aconitetea	Scrub and tall-herb vegetation at high altitudes, moistened and fertilised by percolating water			
42A01	Adenostylion alliariae	Tall-herb communities of central European mountains	Sensitive to climatic change and maybe land use.		
43	Salicetea herbaceae	Vegetation of long-lasting snow-beds and slopes irrigated by melt waters			
43A04	Salicion herbaceae	Dwarf-willow and moss dominated communities of snow-beds on lime-poor soils and rocks	Wide spread at high altitudes in the Alps and southern Norway, progressively lower in the North of Norway. Distribution can accurately estimated and very sensitive to climatic change		
44	Elyno-Seslerietea	Alpine and sub-alpine calcareous grasslands			
44D08	Seslerion albicantis	Alpine and sub-alpine calcareous blue-grass swards	In the mountains this is one of highest grazed pastures susceptable to declining grazing pressure.		
46	Juncetea trifidi	Pastures, rush-heaths and fjell-field on lime- poor soils above the forest belt in alpine and sub-alpine zones			

			1	
46A04	Caricion curvulae	Alpine acid swards of the Alps and eastern and southern Carpathians	Sensitive to climatic change, likely to be colonized by trees and srubs (possibily bu Pinus mugo and Juneperus species)	
46A08	Juncion trifidi	Rush-heaths of Scandinavia, the Alps and the western Carpathians	Sensitive to climatic change, likely to be colonized by trees and srubs (possibily bu Pinus mugo and Juneperus species)	
46B05	Nardion strictae	Dense chionophilous grassy swards of the subalpine and alpine belts of the Alps, Carpathians and northern Apennines	Sensitive to land use	
59	Querco-Fagetea	Mixed broadleaved woodland of more temperate climates in central and western Europe		
59B05	Cephalanthero- Fagion	Thermophilous beech forests mostly on limestone	Sensitive to climatic change	
62	Loiseleurio- Vaccinietea	Arctic-boreal and (sub)alpine dwarf-shrub heathlands		
62A02	Loiseleurio- Diapension	Arctic-boreal chionophilous tundra scrub	Sensitive to change in climat (moisture and temperature). Not effected by agricultaral activities	
62A05	Rhododendro- Vaccinion	Subalpine chionophilous wind-swept dwarf shrub heath of the Alps and Carpathians	Alpine low scrub mainly sensitive to grazing pressure	
63	Erico-Pinetea	Calcareous relict montane pine woods of the Balkans, the Alps and Carpathians	1	
63A01	Erico-Pinion sylvestris	Relict open pine woods of the Alps, Carpathians and northern Dinarides	Will probably expand due to climatic change and/or abandoment (ask Jozef)	
66	Vaccinio-Piceetea	Coniferous forest communities, and related heaths, of more acidic soils		
66B01 Pinion mugo		Subalpine silicicolous krummholz of mountains of central and southwestern EuropeMight expand due to cha climate and agricultural abandonment		

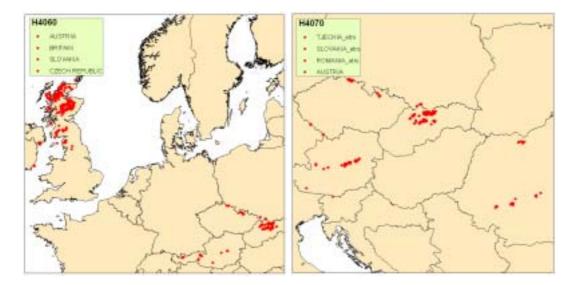
This Table was presented during the March workshop in 2007 in Wageningen and was well perceived as a preliminary selection of plant communities. In the months after the workshop the table has been slightly changed with the removal of the Mediterranean plant communities (Rosmarinion officinalis & Cistion ladaniferi) and Coastal plant communities (Armerion maritimae and Puccinellion phryganodis). Instead, Nardion stricae has been added as an association under Juncetea trifidi and Cephalantero-fagion under Querco-Fagetea. Finally, it lead to the selection of 18 Annex I habitat types (see Table 2), for which European distribution maps will be produced.

Table 2 Table of selected Natura 2000 habitat types and their relation to vegetation types, according to the European Vegetation Classification.

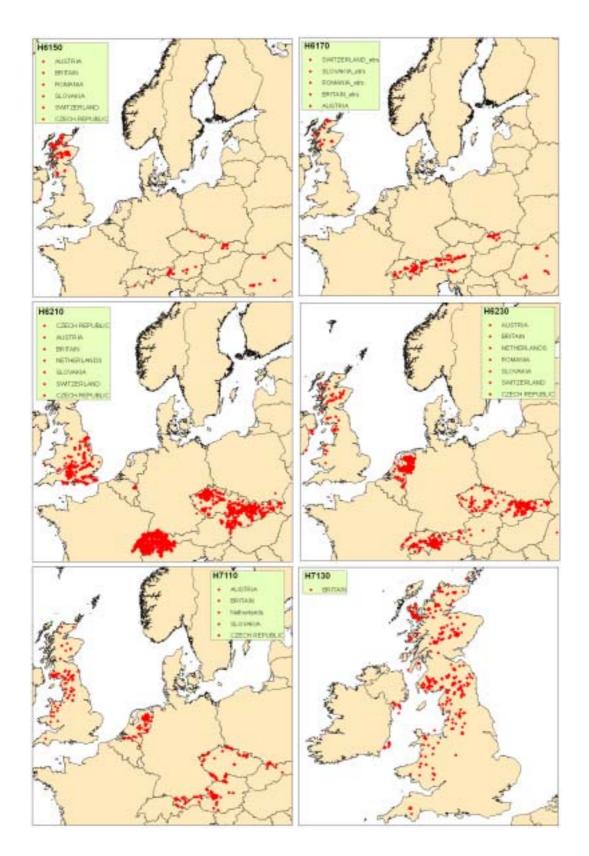
Nr.	Natura 2000 code	Natura 2000 description	Code	Vegetation type
1	4060	Alpine and Boreal heaths	62A02	Loiseleurio-Diapension
			62A05	Rhododendro-Vaccinion
			63A01	Erico-Pinion sylvestris
2	4070	Bushes with Pinus mugo and Rhododendron hirsutum (Mugo-Rhododendretum hirsuti)	66B01	Pinion mugo
		(Mugo-Khododendretum misuti)	25C02	Ledo-Pinion
3	6150	Siliceous alpine and boreal grasslands	46A04	Caricion curvulae
			46A08	Juncion trifidi
			46B05	Nardion strictae
4	6170	Alpine and subalpine calcareous grasslands	44D08	Seslerion albicantis
5	6210	Semi-natural dry grasslands and scrubland facies on calcareous substrates(Festuco-Brometalia) (* important orchid sites)	28C02	Bromion erecti
6	6230	Species-rich Nardus grasslands, on siliceous substrates in mountain areas (and submountain areas, in Continental Europe)	46A04	Caricion curvulae
7	6240	Sub-pannonic steppic grasslands	28F	Festucetalia valesiacae
8	6250	Pannonic loess steppic grasslands	28E	Festucetalia vaginatae
9	7110	Active raised bogs	25A01	Ericion tetralicis
10	7130	Blanket bogs (* if active bog)	25A01	Ericion tetralicis
11	9150	Medio-European limestone beech forests of the Cephalanthero-Fagion	59B05	Cephalanthero-Fagion
12	9410	Acidophilous Picea forests of the montane to alpine levels (Vaccinio-Piceetea)	66C01	Dicrano-Pinion
13	9420	Alpine Larix decidua and/or Pinus cembra forests		
14	9510	Southern Apennine Abies alba	66A01	Abieti-Piceion

In-situ data

To perform the various analyses within EcoChange the availability of in situ vegetation data (plot observations or relevés) is highly required. The estimation is that throughout Europe there are more than one million computerized plot observations stored in numerous local databases. Most of these observations are available in so-called Turboveg databases. Turboveg (Hennekens and Schaminée, J.H.J 2001) is a software package (for Microsoft Windows®) that was developed in The Netherlands for the processing of plot observations. It's an easy-to-use data base management system and provides methods for input, import, selection, and export of plot dat. In 1994, Turboveg was



accepted as the standard computer package for the European Vegetation Survey. Currently it has been installed in most European countries with more than thousand users.


For the EcoChange project in-situ (stored in Turboveg databases) has been obtained through the network of EcoChange partners and the network of SynBioSys Europa (Schaminée et al., 2007). In Table 1 an overview is given of all the collected vegetation releves. Unfortunately, there are still a lot of EU countries for which we did not succeed yet to obtain vegetation plot data, although we know that they exist.

Country	Contact person	# of releves	Selected	Long/Lat	Precision	Vegetation types	Remarks
Netherlands	stephan.hennekens@wur.nl	420,000	890	yes	point & 5x5 km	All requested delivered	
Britain		28,536	2,900	yes	100x100m	All requested delivered	
Germany	dengler@uni-lueneburg.de						Data expected soon
Belgium	Heidi.DEMOLDER@inbo.be	856	856	yes	point	Acid+Basic graslands	
Austria	wolfgang.willner@vinca.at	917	4,300	yes	35km2	All requested delivered	
Tjech republic	chytry@sci.muni.cz	5,985	8,762	yes	point	All requested delivered	
Slovakia	jozef.sibik@savba.sk	17,910	15,003	yes	point	All requested delivered	
Bulgaria	iva@bio.bas.bg	137	137	yes	point	Acid+Basic graslands	
Slovenia	urban@zrc-sazu.si	0	0	no			Approached, but no geo refe
Frankrijk	brisse.henry@orange.fr	0	0				Databank Sophie, H. Brisse i
Spain	idoia.biurrun@ehu.es	190	190	yes	10x10km	Acid+Basic graslands	
	mcaceres@ub.edu	1900					No yet approached
Roemenia	popanamaria19@yahoo.com	2000		yes	500 * 500 m	All types	
Switserland	niklaus.zimmermann@wsl.ch	14,900	14,900	yes	mostly 10x10m	All grassland types	
Poland		0	0				Approached, but no response
Estonia		0	0				?
Latvia		0	0				?
Lithuania		0	0				?
Italy		0	0				?
Hungary	bdz@botanika.hu	0	0				Approached, but no response
Norway	Nigel.Yoccoz@ib.uit.no	0	0				Approached, but no response
Sweden		0	0				?
Denmark		0	0				?
		493,331	47,938				

The vegetation releves were classified into the relevant vegetation classes of Table 2, which are related to the specific Annex I habitat types of interest, using the TurboVeg software and additional specific criteria are mentioned in Annex I.

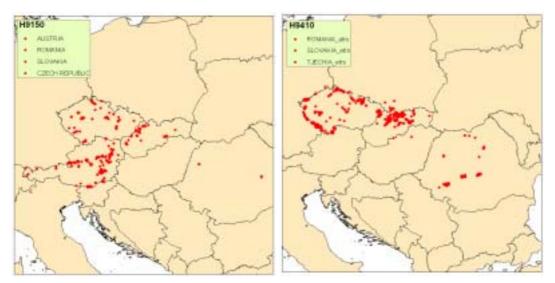


Figure 2 Locations of the cllected vegetation releves in relation to the specific habitat types.

Knowledge rules

A first formal relation between the Annex I habitats and CORINE land cover (CEC, 1994; Bossard et al, 2000; Büttner et al, 2004) was made in the PEENHAB project (Mücher et al., 2004, 2005). The relationship between CORINE land cover (CLC) and Natura 2000 habitats is now being improved per biogeographic region (Metzger et al. 2005) and additional rules are being created for topography. Next to important information about the threats and vegetation succession of the specific habitat type within the specific environmental region. Within the ECOCHANGE project the emphasis is on grassland and forest ecosystems. This means that habitats related to these ecosystems are being prioritized.

Many detailed comments have been made on various sections of the text in order to provide the background to the rules. In some cases where species have been given the incorrect names and where the terms used are not in regular English scientific usage than interpretations have been made of their probable intended meaning. However, it is essential to point out that the interpreters are technically trained and that these details are unlikely to have influenced their interpretation of the satellite images in terms of land cover. In the long term it is essential that the variation in the land cover classes is assessed objectively to determine the actual proportions of different habitats on the ground. Such information will greatly enhance the value of the existing land cover databases and will extend the range of potential uses of the CLC. In this respect, also the EBONE project will examine the possibilities of improving the matrices between the CLC and habitats in order to formalize these relationships. As Evans (2006) has shown phytosociology is the basis of many of the Annex I Habitat classes and also there have been different regional interpretations of their meaning. The first stage of validation is therefore to discuss the rules with staff in Alterra and then Doug Evans of the Topic Centre. The following sources of information have been used in preparing the current document:

- 1. Interpretation Manual of European Union Habitats
- 2. EUNIS website (http://eunis.eea.europa.eu/index.jsp)
- 3. Tables of Annex 1 habitats by Biogeographic regions
- 4. Working Paper on CLC equivalents (Romao, Evans and Halada, 2006)

- 5. CORINE land cover technical report
- 6. PEENHAB report (Mücher et al., 2005)
- 7. The list of Annex 1 habitats comprising HNV farmland by Environmental Zone and various other HNV documents e.g. Anderson et al (??)
- 8. Consultation with Doug Evans and some local experts

Evans (2006) describes in detail how the Annex 1 Habitats were constructed. The Interpretation manual of European Union Habitats is a living document. Evans also indicates that the names are much more difficult to change than their descriptions. The present document is a scientific amplification and interpretation of those descriptions, and will subsequently be discussed with Doug Evans.

The Annex 1 and its Priority Habitats are determined by an ongoing series of meetings held under the auspices of the EU. There has been no intention to complete a land cover key with total coverage of the land surface of Europe nor to provide a hierarchy for the classes. The EUNIS system was developed to provide this function but is unfortunately not suitable for field mapping. Because Annex 1 is legally binding it is essential that in the long term the habitats must be mapped in a consistent and reproducible way. The present document is a product of the ECOCHANGE project, but will also provide the framework for developing field rules for the habitats to be delivered by the EBONE expert system on a field computer.

The descriptions in the Interpretation manual of European Habitats include a wide range of levels of detail from three pages for species rich Nardus grasslands; to three lines for Castanea sativa forests but even in the former case there is no definition as to the number of species as a threshold for the class. Although some habitats are point features e.g. Tufa springs, it is unlikely that small patches of other habitats would be considered as valid records of that habitat. As Evans (2006) has pointed out the majority of Annex 1 habitats are based on vegetation associations with the principal exceptions of the landscape units, of which there are about 20. These associations are defined according to the descriptions in the literature which avoid gradients which are present differentially in some vegetation zones, especially in mountain areas. Highly disturbed vegetation and succession phases are also not included. The response of many countries has been to use broad interpretations of the Annex 1 descriptions e.g. in north-west Spain acidophilous beech forests (9120) are included in the biogeographic information submitted on Natura 2000 sites although the region is not mentioned as containing 9120 in the Annex I descriptions. Doug Evans has emphasized that the Annex I descriptions are not exhaustive as to their regional distributions. Furthermore it is recognized that the biogeographic references in the habitat names do not preclude that habitat from occurring outside that region.

In other cases, as in the Netherlands, closely linked associations have been added to the Annex I habitats present in Natura 2000 sites. The implications of this process are that a given list of habitats from different countries may not involve the same range of characteristics. The only way to determine the actual situation is to take stratified random samples of Annex I habitats in different Environmental Zones and actually record in the field what is present. Highly managed habitats e.g. species rich fallow and cropland, are not included in Annex I although they may be present in habitat complexes such as Machair. Many red data book species are present in such habitats and will therefore not be included under the current Annex I list Similarly agricultural land which is in the process of being abandoned is not included because the main objective of Annex 1 is to : "identify undisturbed/semi-natural habitats for protection". The Annex 1 habitats are not hierarchical but such a structure is currently being prepared for the expert system in EBONE.

Habitats may occur at several spatial levels, e.g. points, linear features, patches, and landscapes. The implication of these comments is that the majority of lowland agricultural landscapes do not have Annex 1 habitats present, hence there is a need to identify residual biodiversity in such areas by using other habitat categories (e.g. Bunce et al., 2008). Including linear and point elements.

There are many possibilities of refinement of the relationships identified in the present document especially by consultation with the available literature eg on tree lines and the range of altitudes occupied by different vegetation associations. Many of the terms used in Annex 1 are not defined which leads to differences in interpretation For example Fennoscandia may include the Baltic coast of Germany or not whilst alpine and montane are notoriously difficult to define. Evans (2006) states that the names of Annex 1 Habitats can only be altered by a decision from the Council of Ministers, whereas the descriptions can be changed by agreement of the Habitats Committee. The present document however is only concerned with the interpretation of those descriptions.

CORINE land cover manual

The English text contains many words eg briars and hortillonage that are not in general use in the ecological literature. Some terms eg heathland are incorrectly used and some species e.g. Ostrya carpinifolia do not belong to the land covers concerned. The English names of some species are also given the wrong Latin names e.g. briars are given as Rubus species Some of the descriptions are very general so that it is difficult to know what is included. The text in the present document includes commentaries on the manual and is designed to support the interpretation given as well as to help future users because the assumptions are described eg that briars probably do no mean Rosa spp which are only rarely seen as a dominant member of scrub habitats, whereas Rubus is widespread in this role throughout Europe. Similar problems have been encountered By Romeo Et al and in the HNV project.. Their information has been included in the present report.

As with Annexe 1 the only way to obtain quantitative more reliable data is to visit actual locations or use extant data. However another approach is to contact local recorders and experts to establish the range of regional interpretations that are present. and what they actually record in given situations. For example the boundaries between raised bog and blanket bogs is clear in well developed situations and in many regions but in Ireland and Scotland there are many overlaps and further confusion with valley bogs which do not fit into either of the other two categories.

The interpretation of some classes means that a given Annexe 1 habitat may appear in different places but with different rules being used to identify it. Paracchini et al give seeral examples of this process. Some land covers may have a wide range of biodiversity linked to them e.g vineyards and olive groves so that local rules could be developed to define potential biodiversity mote accurately. Thus in mountain foothills and on shallow soils in the Gredos mountains the vinyards are rich whereas in much of Andalucia they are intensively managed. Many of these problems were also encountered in the High Nature Farmland (HNV) project.

Each of the Annex I habitats has the following description fields in this document:

1. Mapping rules: these mapping rules are constructed from the information provided in the Interpretation manual of European habitats on where the habitat occurs. This information is supplemented by field experience of the author and by discussions with phytosociologists in the Ecochange project. In due course literature could be consulted to confirm that the altitudinal ranges are correct. Consultation will also be held with Doug Evans of the Topic Centre in Paris to further check the descriptions.

2. Indicator species: the indicator species are in most cases a subset of the Annex I plant species. A subset has been made since the selected species are the most characteristic and stable species present within the habitat

3. GHC BioHab. These are General Habitat Classes (GHC) as defined within the BIOHAB project. The basis of the General Habitat Categories is the classification of plant Life forms produced by the Danish botanist Raunkiaer early in the 20th Century. These Life forms e.g. annuals or trees. They are based on the scientific hypothesis that habitat structure is related to the environment. The BioHab General Habitat Categories cover the Pan-European region (except Turkey) with 130 GHC's derived from 16 Life Forms (Bunce et al., 2008) The Codes for the General Habitat Categories are in this document: LHE = leafy hemicryptophytes(herbs), CHE = caespitose hemicryptophytes (grasses), SUC = succulents, THE = therophytes (annuals), HEL =helophytes (marsh plants) CRY = mosses, liverworts and lichens, DCH = espaliers below 5cm, SCH=dwarf scrub 5-30cm, LPH = low scrub,30-60cm, MPH = mid scrub 60cm-2.0 m, TPH = tall scrub2m-5m., FPH = forest over 5 m, CON = conifer, DEC = deciduous, EVR = evergreen, NLE = non leafy evergreen, SPI = spiny/summer deciduous

4. Field identification: comments on the probable ease of identification of the habitat in the field.

5. Occurrence: three categories are used: rare, where the habitat is present in isolated patches, usually small, common, where it is distributed widely but does not cover large areas in the landscape and abundant where it is not only widespread but is also dominant. These are qualified where necessary.

6. Direct threats: based on the knowledge of the vegetation and literature . The information could also be supplemented later by other experts.

7. Potential impacts of climate change: based on knowledge of the vegetation, literature and the change in Environmental Zones described by Metzger et al (2008).

8. Vegetation succession due to abandonment: conversion of the present composition into BioHab plant lifeform categories followed by an interpretation of likely successional changes together with possible timescales.

9. Distribution. This is the distribution of the specific habitat over the various Environmental Zones (Metzger et al., 2005). The codes, based on the BioHab handbook (Bunce et al 2005) are as follows for the Environmental Zones:

ALS = Alpine South, **BOR** = Boreal, **NEM** = Nemoral, **ATN** = Atlantic North, **ATC** = Atlantic Central, **ALS** = Alpine South, **PAN** = Pannonian, **CON** = Continental, **LUS** = Lusitanean, **MDM**-Mediterranean Mountains, **MDN** = Mediterranean North, **MDS** = Mediterranean South

Distribution (sites) has been obtained directly from the Natura 2000 database intersected with the Environmental Zones. Distribution (Bunce) is based on expert knowledge from Bob Bunce. Besides, note that the code **CLC** refers to the CORINE land cover class. **Annex I** is standing for the Annex I of the Habitat Directive.

For the selected habitats the knowledge rules are given in the sections below. For all other habitat types, the knowledge rules are given in Annex II.

REFERENCES

Büttner, G., Feranec, J., Jaffrain, G., Mari, L., Maucha, G. & Soukup, T. 2004. The CORINE Land Cover 2000 Project. in R. Reuter, (Editor). EARSeL eProceedings, 3, (3). EARSeL0, Paris, pp. 331-346.

Bossard, M., Feranec, J., and Ot'ahel', J. 2000. CORINE land cover technical guide – Addendum 2000. Technical report, 40. European Environment Agency, Copenhagen. http://terrestrial.eionet.eea.int.

Commission of the European Communities, 1994. CORINE land cover. Technical guide. Office for Official Publications of European Communities, Luxembourg.

European Commission, 2007. Interpretation manual of European Habitats – EUR27. Published by the European Commission, DG Environment, Nature and biodiversity.

Evans, D., 2006. "The habitats of the European union habitats directive." Proceedings of the Royal Irish Academy - Section B, Biol. Environ. 106 (3): 167-173.

Hennekens, S.M. and Schaminée, J.H.J., 2001. TURBOVEG, a comprehensive data base management system for vegetation data. Journal of Vegetation Science, 12 (4), pp. 589-591.

Metzger M.J., Bunce R.G.H, Jongman R.H.G, Mücher C.A. & Watkins J.W, 2005. A climatic stratification of the environment of Europe. Global Ecology and Biogeography 14: 549-563.

Mücher, C.A., S.M. Hennekens, R.G.H. Bunce and J.H.J. Schaminée, 2004. Mapping European Habitats to support the design and implementation of a Pan-European Ecological Network. The PEENHAB project. Alterra report 952, Wageningen.

Mücher, C.A., S.M. Hennekens, R.G.H. Bunce and J.H.J. Schaminée, 2005. Spatial indentification of European habitats to support the design and implementation of a Pan-European Ecological Network. In: Planning, People and Practice. The landscape ecology of sustainable landscapes. Proceeding of the 13th Annual IALE(UK) Conference, held at the University of Northampton, 2005 (Edited by Duncan McCollin and Janet I. Jackson). Pages 217-225.

Rodwell, J.S., Schamineé, J.H.J., Mucina, L., Pignati, S., Dring, J., Moss, D., 2002. The Diversity of European Vegetation. An overview of phytosociological alliances and their relationships to EUNIS habitats. EC-LNV Report nr. 2002/054. Wageningen, the Netherlands, 168 p.

Schaminée, J.H., Hennekens, S.M., Ozinga, W.A., 2007. Use of the ecological information system SynBioSys for the analysis of large datasets. J. Veg. Sci. 18, 463-470.

HABITAT DISTRIBUTION MODELLING & RESULTS

The following sections will give the results of the habitat distribution modelling for each specific habitat type. All models were implemented within ARGIS 9.2 model builder. An example of such a model is given below. All resulting habitat distribution maps have a spatial resolution of 100 meters. Since this spatial resolution can be hardly visualised in this document for entire Europe, the results are also highlighted for specific details of the European habitat distribution maps.

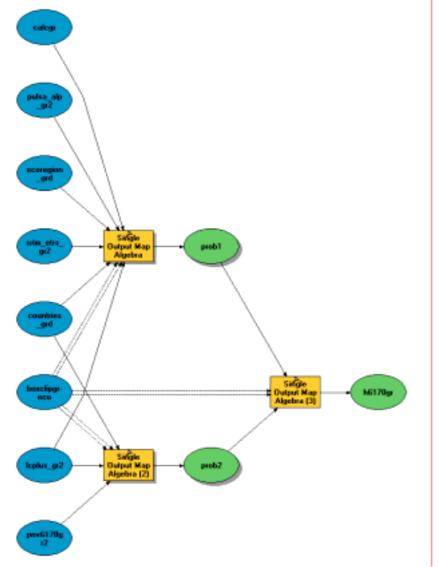


Figure 3 Example of the constructed ditribution model for Annex I habitat type H6170 "Alpine and subalpine calcareous grasslands" made with the modelbuilder in ARCGIS 9.2

For more details on the data sets we refer also to the submitted ECOCHANGE publication: Mücher, C.A., Hennekens, S.M., Bunce, R.G.H., Schaminée J.H.J. and M.E. Schaepman (2008). Modelling the Spatial Distribution of Natura 2000 Habitats across Europe. Submitted in February to Landscape & Urban Planning Manuscript Number: LAND-D-07-00306.

H4060 Alpine and Boreal heaths

Annex I description

Alpine and Boreal heaths

Natura 2000 habitat type code **4060**

Palearctic habitat code (and Corine Biotopes) 31.4

Priority habitat: No

Parent: Temperate heath and Scrub (4000)

Description

Small, dwarf or prostrate shrub formations of the alpine and subalpine zones of the mountains of Eurasia dominated by ericaceous species, [Dryas octopetala], dwarf junipers, brooms or greenweeds; [Dryas] heaths of the British Isles and Scandinavia.

Sub-types :

- 31.41 Alpide dwarf ericoid wind heaths. *Loiseleurio-Vaccinion*. Very low, single-stratum, carpets of trailing azalea, *Loiseleuria procumbens*, prostate *Vaccinium* spp. or other prostate ericoid shrublets, accompanied by lichen, of high windswept, mostly snowfree, localities in the alpine belt of the high mountains of the Alpine system.
- 31.42 Acidocline alpenrose heaths. *Rhododendro-Vaccinion. Rhododendron* spp.-dominated heaths of acid podsols in the Alps, the Pyrenees, the Dinarids, the Carpathians, the Balkan Range, the Pontic Range, the Caucasus and the Himalayan system, often with *Vaccinium* spp., sometimes with dwarf pines.
- 31.43 Mountain dwarf juniper scrub. *Juniperion nanae*, *Pino-Juniperion sabinae* p., *Pino-Cytision purgantis* p.Usually dense formations of prostrate junipers of the higher levels of southern Palaearctic mountains.
- 31.44 High mountain *Empetrum-Vaccinium* heaths. *Empetro-Vaccinietum uliginosi*. Dwarf heaths dominated by *Empetrum hermaphroditum*, *Vaccinium uliginosum*, with *Arctostaphylos alpina*, *Vaccinium myrtillus*, *Vaccinium vitis-idaea* and lycopodes (*Huperzia selago*, *Diphasiastrum alpinum*), mosses (*Barbilophozia lycopodioides*, *Hylocomium splendens*, *Pleurozium schreberi*, *Rhythidiadelphus triquetrus*) and lichens (*Cetraria islandica*, *Cladonia arbuscula*, *Cladonia rangiferina*, *Cladonia stellaris*, *Cladonia gracilis*, *Peltigera aphthosa*) of the sub-alpine belt of the Alps, the Carpathians, the Pyrenees, the Central Massif, the Jura, the Northern Apennines, characteristic of relatively windswept, snow-free stations, in frost-exposuresituations that are, however, less extreme than those prevailing where communities of 31.41dominate. Unlike the formations of 31.41, those of 31.44 are clearly two-layered.
- 31.45 Boreo-alpine heaths Alpine heaths of the highlands and islands of Scotland, alpine and lowland boreal heaths of Iceland, alpine heaths of boreal mountains, in particular of the mountains of Scandinavia, of the Urals, of the mountains of Siberia, alpine heaths of Far Eastern mountains at, or just south of, the limits of the boreal zone, with *Juniperus nana*, *Loiseleuria procumbens*, *Empetrum hermaphroditum*, *Arctostaphylos uva-ursi*, *Arctostaphylos alpina* and elements of Alpine flora.
- 31.46 Bruckenthalia heaths: only outside the European Union.
- 31.47 Alpide bearberry heaths. *Mugo-Rhodoretum hirsuti* p., *Juniperion nanae* p., i.a.Interpretation Manual EUR25 Page 44 Mats of *Arctostaphylos uva-ursi* or *Arctostaphylos alpina* of the alpine, sub-alpine and locally, montane, belts of the Alps, the Pyrenees, the northern and central Apennines, the Dinarids, the Carpathians, the Balkan Range, the Rhodopides (south to the Slavianka-Orvilos, the Menikion, the Pangeon, the Falakron and the Rhodopi), the Moeso-Macedonian mountains (including Athos), the Pelagonides (south to the Greek Macedonian border ranges Tzena, Pinovon and Kajmakchalan) and Olympus, in the Thessalian mountains, mostly on calcareous substrates.
- 31.48 Hairy alpenrose-erica heaths. *Mugo-Rhodoretum hirsuti* p. Forest substitution heaths, treeline fringe formations and alpine heaths or mats of calcareous soils in the Alps and the Dinarides, with *Rhododendron hirsutum*, *Rhododendron intermedium*, *Rhodothamnus chamaecistus* and *Erica herbacea*, often accompanied by *Clematis alpina*, *Daphne striata*, *Daphne mezereum*, *Globularia cordifolia*, *Arctostaphylos uva-ursi*. *Rhododendron hirsutum* and, mostly in the Austrian Alps, *Erica herbacea* are the most frequent dominants; other shrubs can locally play that role. *Arctostaphylos* spp.-dominated facies have, however, been included in 31.47.
- 31.49 Mountain avens mats Dwarf heaths formed by mats of the woody *Dryas octopetala* in high Palaearctic mountains, in boreal regions and in isolated Atlantic coastal outposts.
- 31.4A High mountain dwarf bilberry heaths *Vaccinium*-dominated dwarf heaths of the sub-alpine belt of southern mountains, in particular, of the northern and central Apennines, the Balkan Range, the Helenides, the Pontic Range and the Caucasus, with *Vaccinium myrtillus*, *Vaccinium uliginosum* s.l., *Vaccinium vitis-idaea* and, locally, *Empetrum nigrum*. They are richer in grassland species than the communities of 31.44 and often take the appearance of alpine grassland with dwarf shrubs. *Vaccinium myrtillus* also plays a much more dominant role, in lieu of *Vaccinium uliginosum* and *Empetrum hermaphroditum*.
- 31.4B High mountain greenweed heaths Low *Genista* spp. or *Chamaecytisus* spp. heaths of the sub-alpine, low alpine or montane belts of high southern nemoral mountains, in particular of the southern Alps, the Apennines, the Dinarides, the southern Carpathians, the Balkan Range, the Moeso-Macedonian mountains, the Pelagonides, the northern Pindus, the Rhodopides, the Thessalian mountains.

Plants

31.41 - Loiseleuria procumbens, Vaccinium spp.; 31.42 - Rhododendron ferrugineum; 31.44 - Empetrum hermaphroditum, Vaccinium uliginosum; 31.45 - Juniperus nana, Loiseleuria procumbens, Empetrum hermaphroditum, Arctostaphylos uva-ursi, Arctostaphylos alpina; in Fennoscandia also Betula nana, Cassiope tetragona, Cornus suecica, Juniperus communis, Phyllodoce caerulea, Vaccinium myrtillus and Cladonia alpestris; 31.47 - Arctostaphylos uva-ursi, Arctostaphylos alpina; 31.48 - Rhododendron hirsutum, Rhododendron intermedium, Rhodothamnus chamaecistus and Erica herbacea; 31.49 - Dryas octopetala; 31.4A - Vaccinium myrtillus, Vaccinium uliginosum s.l., Vaccinium vitis-idaea; 31.4B - Genista radiata, G. holopetala, G. hassertiana, Chamaecytisus eriocarpus, C. absinthioides.

Geographic distribution

Austria, Finland, France, Germany, Greece, Ireland, Italy, Portugal, Spain, Sweden, United Kingdom. Subtype distribution: 31.41 alpine belt of the high mountains of the Alpine system; 31.42 the Alps, the Pyrenees, the Dinarids, the Carpathians, the Balkan Range, the Pontic Range, the Caucasus and the Himalayan system; 31.43 the higher levels of southern Palaearctic mountains; 31.44 the sub-alpine belt of the Alps, the Carpathians, the Pyrenees, the Central Massif, the Jura, the Northern Apennines; 31.45 Scotland, Iceland, boreal mountains, in particular of the mountains of Scandinavia, of the Urals, of the mountains of Siberia, Far Eastern mountains at, or just south of, the limits of the boreal zone; 31.47 alpine, sub-alpine and locally, montane, belts of the Alps, the Pyrenees, the northern and central Apennines, the Dinarids, the Carpathians, the Balkan Range, the Rhodopides (south to the Slavianka-Orvilos, the Menikion, the Pangeon, the Falakron and the Rhodopi), the Moeso-Macedonian mountains (including Athos), the Pelagonides (south to the Greek Macedonian border ranges Tzena, Pinovon and Kajmakchalan) and Olympus, in the Thessalian mountains, mostly on calcareous substrates; 31.48 the Alps and the Dinarides; 31.49 high Palaearctic mountains, in boreal regions and in isolated Atlantic coastal outposts; 31.4A the sub-alpine belt of southern mountains, in particular, of the northern and central Apennines, the Balkan Range, the Helenides, the Pontic Range and the Caucasus; 31.4B the sub-alpine, low alpine or montane belts of high southern nemoral mountains, in particular of the southern Alps, the Apennines, the Dinarides, the southern Carpathians, the Balkan Range, the Moeso-Macedonian mountains, the Pelagonides, the northern Pindus, the Rhodopides, the Thessalian mountains;

http://eunis.eea.europa.eu/habitats-factsheet.jsp?tab=0&idHabitat=10087

ECOCHANGE rules

CLC:	322 - Moors and heath lands
Annex I:	4060 - Alpine and Boreal heaths
Mapping rules:	Alpine North / Boreal over 800m Atlantic North over 900 m small patches on exposed coastal areas in the north) Alpine South over 1800 m. No soils as highly variable, although skeletal soils eg rankers predominate.
Indicator species:	-
GHC (BioHab):	- SCH/EVR but locally DCH/EVR/DEC + Moist acid soils + upto 30% bare ground/rocks + key indicators. Also LPH/CON MPH/EVR
Field identification:	Although highly variable because this class has a well recognisable landscape context and consistent life form structure it will probably be readily identified.
Occurrence:	-Occurs in large areas in the centre of its range – small patches on edge
Direct threats:	At low altitudes overgrazing locally although in some areas grazing may have halted scrub invasion. decline in grazing can therefore lead to quite rapid changes. Reindeer grazing can cause erosion in Scandinavia.
Climate change:	The increased temperatures likely in many of these mountains will favour scrub expansion at lower levels as shown by Kienast. However the class may well be able to move higher except where it is caused by extreme exposure.
Succession:	Colonisation: status Shrubby chamaephytes or L PH or even Mid phanerophytes in some situations. May remain as Shrubby chamaephytes in extreme situations and especially in the Scandinavian mountains at mid altitudes Low

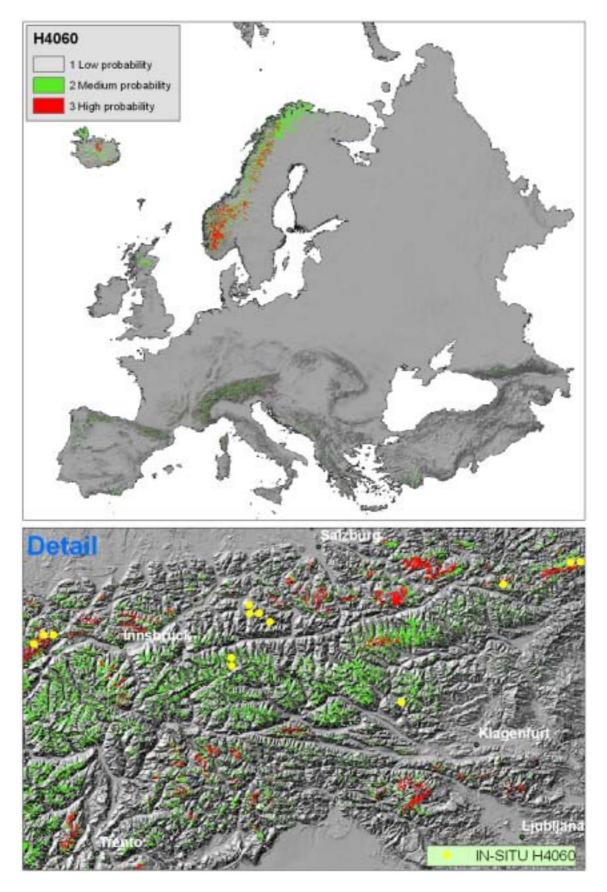

	phanerophytes to Mid phanerophytes 10 and Tall phanerophytes 15 at low altitudes Low phanerophytes to Mid phanerophytes 10 Tall phanerophytes 15 possibly Forest phanerophytes 20.											
Distribution (sites):	ALN	BOR	nem	ATN	ALS	CON	ATC	pan	LUS	MDM	mdn	mds
Distribution (Bunce):	ALN	BOR	nem	atn	ALS	CON	atc	pan	lus	mdm	mdn	mds

Photo 1 H4060 Alpine and boreal heath in Mountains Sweden (photo Bob Bunce, 2005).

RESULT H4060 ALPINE AND BOREAL HEATHS

H4070 Bushes with Pinus mugo and Rhododendron hirsutum (Mugo-Rhododendretum hirsuti)

Annex I description

Bushes with Pinus mugo and Rhododendron hirsutum (Mugo-Rhododendretum hirsuti)

Natura 2000 habitat type code **4070**

Palearctic habitat code (and Corine Biotopes) 31.5

Priority habitat: Yes

Parent: Temperate heath and Scrub (4000)

Description

Pinus mugo formations usually with *Rhododendron* spp. of the dry eastern inner Alps, the northern and southeastern outer Alps, the southwestern Alps and the Swiss Jura, the eastern greater Hercynian ranges, the Carpathians, the Apennines, the Dinarides and the neighbouring Pelagonides, the Pirin, the Rila and the Balkan Range.

Plants

Pinus mugo, Rhododendron hirsutum, R. ferrugineum. Rhodothamnus chamaecistus

Geographic distribution

Alps (Austria, France, Germany, Italy) and Apennines

http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10088

ECOCHANGE rules

CLC:	322 -	322 - Moors and heath lands										
Annex I:	4070 - Bushes with Pinus mugo and Rhododendron hirsutum (Mugo-Rhododendretum hirsuti)											
Mapping rules:	Alpir	Alpine South over 1800 m plus distribution of Pinus mugo.										
Indicator species:	Pinus mugo, Rhodendendron chamaecistus, Rhodondendron hirsutum.											
GHC (BioHab):	-MPH/EVR/CON + moist acid soils + montane situation + indicators											
Field identification:	straightforward if a minimal cover of 30% is assumed.											
Occurrence:	-often in large units but loccaly in small patches											
Direct threats:	Burning and clearance for grazing.											
Climate change:	Climate change: Likely to expand upwards with higher temperatures.											
Succession:	Colonisation: climax in most cases.											
Distribution (sites):	aln bor nem atn ALS CON atc pan lus MDM mdn mds								mds			
Distribution (Bunce):	aln bor nem atn ALS con atc pan lus mdm mdn mds								mds			

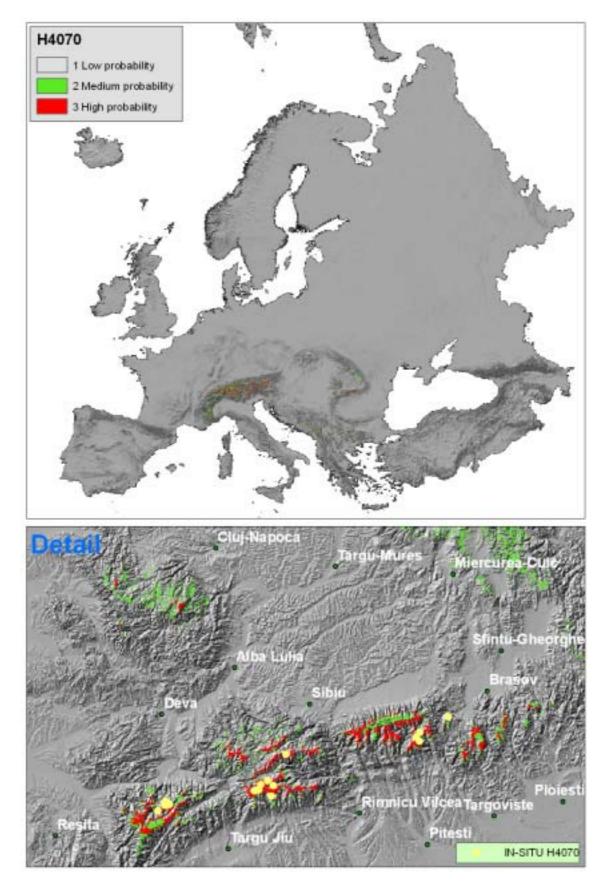

Photo 2 H4070 - Bushes with Rhododendron hirsutum (Mugo-Rhododendretum hirsuti) on Schneeberg, Austria (Photo Thomas Wrbka)

Photo 3 H4070 - Bushes with Pinus mugo (Mugo-Rhododendretum hirsuti) on Schneeberg, Austria (Photo Thomas Wrbka)

RESULT H4070 BUSHES WITH PINUS MUGO AND RHOD. HIRSUTUM

H6150 Siliceous alpine and boreal grasslands

Annex I Description

Siliceous alpine and boreal grasslands

Natura 2000 habitat type code 6150

Palearctic habitat code (and Corine Biotopes) 36.32 (36.11, 36.32, 36.34)

Priority Habitat: No

Parent: Natural grasslands (6100)

Description

Boreo-alpine formations of the higher summits of mountains in the Alps and Scandanavia with outliers elsewhere such as the Tatra, with *Juncus trifidus*, *Carex bigelowii*, mosses and lichens. Also included are associated snowbed communities.

Plants

Juncus trifidus, Carex bigelowii, Cassiope tetragona.

Geographic distribution

Boreo-alpine formations of the higher summits of the boreal mountains of northern Finland and Sweden, of Scotland, northern England and northern Wales, with [Juncus trifidus, Carex bigelowii], mosses and lichens.

Austria (Alpine), Czech Republic (Continental), Germany (Alpine, Continental), Finland (Alpine, Boreal), France (Alpine), Italy (Alpine), Poland (Alpine), Sweden (Alpine, Boreal), Slovenia (Alpine), Slovakia (Alpine), United Kingdom (Atlantic)

http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10115

ECOCHANGE rules

CLC:	321 - Natural grasslands (incl. Pastures)												
Annex I:	6150 - Siliceous alpine and boreal grasslands												
Mapping rules:	Acid rocks / soils. Look at adjacency of 332 and 333. Alpine South over 1500m./ Alpine north/Boreal over 700m, Atlantic North over 900m												
Indicator species:	Juncus trifidus, Carex bigelowii.												
GHC (BioHab):	-CHE/CRY + some dwarf chamaephytes + shallow acidic soils + mud bare rock + indicator species												
Field identification:	Needs instructions to separate from related vegetation, but reasily identifiable												
Occurrence:	-Except in Atlantic North occurs in large units above the critical altitude												
Direct threats:	-Overgrazi	-Overgrazing											
Climate change:	Will allow	tree / shrut	growth	to higher al	titudes.								
Succession:	Colonisation. Status: Ceaspitose hemicryptophytes / Cryptogames –Dwarf chamaephytes 5-10 years Shrubby chamaephytes 5-10 years maybe to Low phanerophytes5-10 years.												
Distribution (s)	ALN	BOR	nem	ATN	ALS	CON	atc	pan	lus	mdm	mdn	mds	
Distribution	ALN	BOR	nem	ATN	ALS	CON	atc	pan	lus	mdm	mdn	mds	

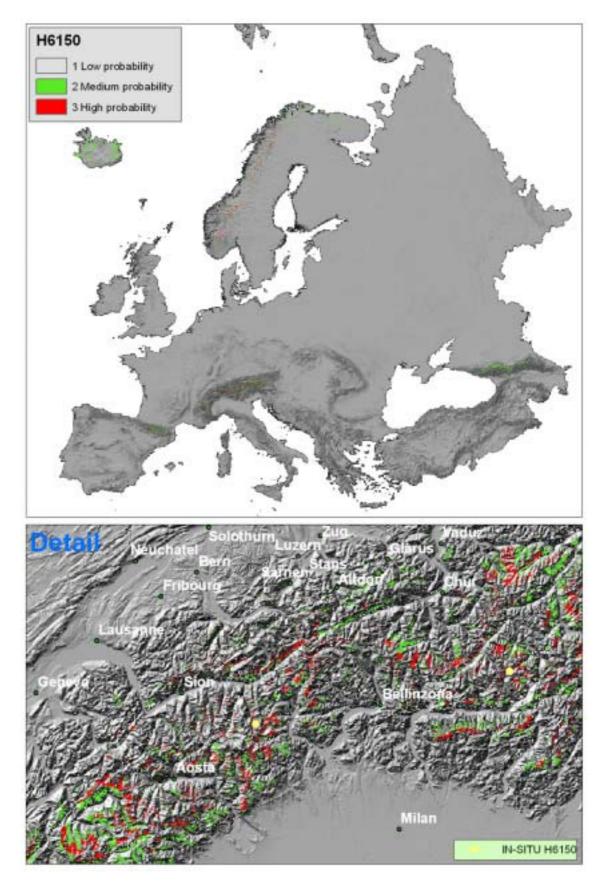


Photo 4 H6150: Alpine Carex curvula turf on siliceous parent material; Mannlibode (ca. 2400 m) south of Reckingen, Oberwallis/Switzerland (Photo U. Bohn).

RESULT H6150 SILICEOUS ALPINE AND BOREAL GRASSLANDS

H6170 Alpine and subalpine calcareous grasslands

Annex I description

Alpine and subalpine calcareous grasslands

Natura 2000 habitat type code 6170

Palearctic habitat code (and Corine Biotopes) 36.41 -> 36.45

Priority habitat: No

Parent: Natural grasslands (6100)

Description

Alpine and subalpine grasslands of base-rich soils, with *Dryas octopetala, Gentiana nivalis, Gentiana campestris, Alchemilla hoppeana, Alchemilla conjuncta, Alchemilla flabellata, Anthyllisvulneraria, Astragalus alpinus, Aster alpinus, Draba aizoides, Globularia nudicaulis, Helianthemum nummularium ssp. grandiflorum, Helianthemum oelandicum* ssp. *alpestre, Pulsatilla alpina* ssp.*alpina, Phyteuma orbiculare, Astrantia major, Polygala alpestris* (36.41 to 36.43) of mountain ranges such as the Alps, Pyrenees, Carpathians and Scandinavia. Also included are the grasslands of the subalpine (oro-Mediterranean) and alpine levels of the highest mountains of Corsica (36.37), and the Mesophile, closed, short turfs of the subalpine and alpine levels of the southern and central Apennines, developed locally above treeline, on calcareous substrates (36.38). Can also include associated snowpatch communities (e.g. *Arabidion coeruleae*).

Sub-types :

- 36.41 Closed calciphile alpine grasslands Mesophile, mostly closed, vigorous, often grazed or mowed, grasslands on deep soils of the subalpine and lower alpine levels of the Alps, the Pyrenees, the mountains of the Balkan peninsula, and, locally, of the Apennines and the Jura.
- 36.42 Wind edge naked-rush swards Meso-xerophile, relatively closed and unsculptured swards of *Kobresia myosuroides* (*Elynamyosuroides*) forming on deep, fine soils of protruding ridges and edges exposed to strong winds in the alpine and nival levels of the Alps, the Carpathians, the Pyrenees, the Cantabrian Mountains, Scandinavian mountains and, very locally, the Abruzzi and the mountains of the Balkan peninsula, with Oxytropis jacquinii (Oxytropis montana), Oxytropis pyrenaica, Oxytropis carinthiaca, Oxytropis foucaudii, Oxytropis halleri, Antennaria carpatica, Dryas octopetala, Draba carinthiaca, Draba siliquosa, Draba fladnizensis, Draba aizoides, Gentiana tenella, Erigeron uniflorus, Dianthus glacialis, Dianthus monspessulanus ssp. sternbergii, Potentilla nivea, Saussurea alpina, Geranium argenteum, Sesleria sphaerocephala, Carex atrata, Carex brevicollis, Carex foetida, Carex capillaris, Carex nigra, Carex curvula ssp. rosae and Carex rupestris. Scandinavian Kobresia grasslands with Carex ruprestis are included.
- 36.43 Calciphilous stepped and garland grasslands Interpretation Manual EUR25 Page 59 Xero-thermophile, open, sculptured, stepped or garland grasslands of the Alps, the Carpathians, the Pyrenees, the mountains of the Balkan peninsula and the Mediterranean mountains, with very local outposts in the Jura.
- 36.44 Alpine heavy metal communities: included in habitat 6130 'Calaminarian grasslands (Violetalia calaminariae)',
- 36.37 Oro-Corsican grasslands Grasslands of the subalpine (oro-Mediterranean) and alpine levels of the highest mountains of Corsica.
- 36.38 Oro-Apennine closed grasslands Mesophile, closed, short turfs of the subalpine and alpine levels of the southern and central Apennines, developed locally above treeline, on calcareous substrates.

Plants

36.41 to 36.43 - Dryas octopetala, Gentiana nivalis, Gentiana campestris, Alchemilla

hoppeana, Alchemilla conjuncta, Alchemilla flabellata, Anthyllis vulneraria, Astragalus alpinus, Aster alpinus, Draba aizoides, Globularia nudicaulis, Helianthemum nummularium ssp.grandiflorum, Helianthemum oelandicum ssp. alpestre, Pulsatilla alpina ssp. alpina, Phyteumaorbiculare, Astrantia major, Polygala alpestris; 36.37 - Plantago subulata ssp. insularis, Saginapilifera, Armeria multiceps, Paronychia polygonifolia, Bellardiochloa violacea, Phleum brachysrachyum, Geum montanum, Sibbaldia procumbens, Veronica alpina; 36.38 - Festucaviolacea ssp. macrathera, Trifolium thalii.

Geographic distribution

Austria (Alpine), Germany (Alpine), Spain (Alpine, Atlantic, Mediterranean) France (Alpine, Continental, Mediterranean), Greece (Mediterranean)

Italy (Alpine, Continental, Mediterranean), Poland (Alpine), Sweden (Alpine) Slovenia (Alpine), Slovakia (Alpine), United Kingdom (Atlantic)

http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10117

CLC:	321 - Nat	ural grassl	ands (inc	el. Pastures	5)							
Annex I:	6170 - Al	70 - Alpine and subalpine calcareous grasslands										
Mapping rules:	Alpine N		al over 7	00m, Atla	ntic North					description. anean moun	tains over 2	2000m,
Indicator species:	Dryas oct	topetala, G	entiana 1	nivalis, Dra	aba aizoid	les.						
GHC (BioHab):	-CHE/LH	IE + moist	calcareo	ous soils +	open grou	and upto 3-	⊷% + m	ontane	situations	+ indicator	species	
Field identification:	Contains	many vege	etation cl	asses and	experienc	e probably	neede	d for ex	act alloca	tion.		
Occurrence:	-occurs ir	n large unit	s in the o	centre of it	s distribu	tions – sma	all pate	hes tow	ards the e	dge		
Direct threats:	Decline o	r cessation	in grazi	ng. Rate o	f change	determines	rate of	f develo	pment.			
Climate change:	May mov	e higher b	ut threate	ened at low	ver levels	by increas	ed tree	/ shrub	growth.			
Succession:	Status: Co Shrubby o	Colonisation. tatus: Ceaspitose hemicryptophytes / Leafy hemicryptophytes to Ceaspitose hemicryptophytes if not grazed hrubby chamaephytes 5-10 Low phanerophytes 5-10 Tall phanerophytes 5-10 but only with climate change therwise only Low phanerophytes.										
Distribution (sites):	ALN	bor nem ATN ALS CON atc pan LUS MDM MDN MDS										
Distribution (Bunce):	ALN	BOR	nem	ATN	ALS	CON	atc	pan	lus	mdm	mdn	mds

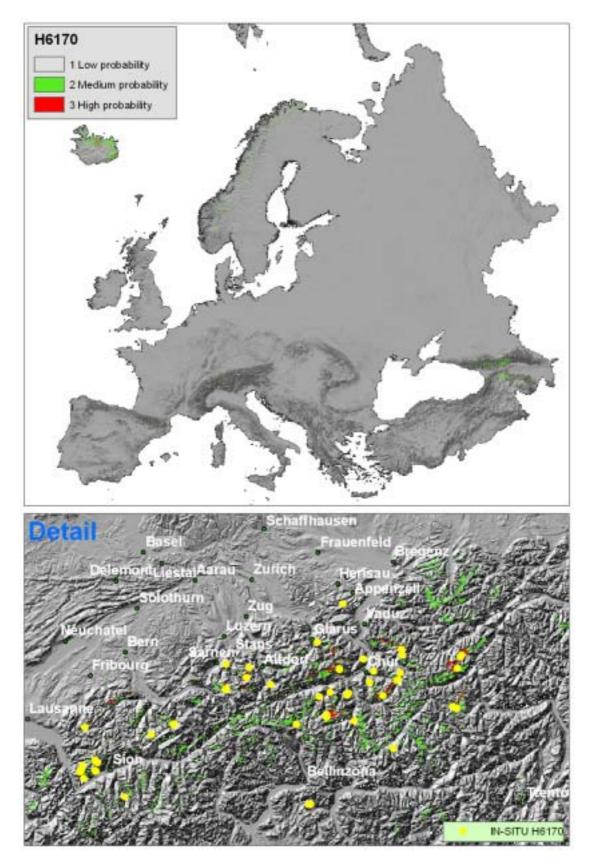

Photo 5 H6170 Alpine acalcareous grasslands at Ötscher Mountains, Austria (Photo Thomas Wrbka)

Photo 6 Photo 6 H6170 Alpine acalcareous grassland with Dryas octopetala and Anthyllis vulneraria at Ötscher Mountains, Austria (Photo Thomas Wrbka).

RESULT H6170 ALPINE AND SUBALPINE CALCAREOUS GRASSLANDS

H6210 Semi-natural dry grasslands and scrubland facies on calcareous substrates (Festuco-Brometalia) (* important orchid sites)

Annex I Description

Semi-natural dry grasslands and scrubland facies on calcareous substrates (Festuco-Brometalia) , (* important orchid sites)

Natura 2000 habitat type code 6210

Palearctic habitat code (and Corine Biotopes) 34.31 -> 34.34

Priority habitat: Yes

Parent: Semi-natural dry grasslands and scrubland facies (6200)

Description

Dry to semi-dry calcareous grasslands of the *Festuco-Brometea*. This habitat is formed on the one hand by steppic or subcontinental grasslands (*Festucetalia valesiacae*) and, on the other, by the grasslands of more oceanic and sub-Mediterranean regions (*Brometalia erecti*); in the latter case, a distinction is made between primary *Xerobromion* grasslands and secondary (semi-natural) *Mesobromion* grasslands with *Bromus erectus*; the latter are characterised by their rich orchid flora. Abandonment results in thermophile scrub with an intermediate stage of thermophile fringe vegetation (*Trifolio-Geranietea*). Interpretation Manual - EUR25 Page 61.

Important orchid sites should be interpreted as sites that are important on the basis of one or more of the following three criteria:

(a) the site hosts a rich suite of orchid species

(b) the site hosts an important population of at least one orchid species considered not very

common on the national territory

(c) the site hosts one or several orchid species considered to be rare, very rare or exceptional on the national territory.

Plants

<u>Mesobromion</u> - Anthyllis vulneraria, Arabis hirsuta, Brachypodium pinnatum, Bromus inermis, Campanula glomerata, Carex caryophyllea, Carlina vulgaris, Centaurea scabiosa, Dianthus carthusianorum, Eryngium campestre, Koeleria pyramidata, Leontodon hispidus, Medicago sativa ssp. falcata, Ophrys apifera, O. insectifera, Orchis mascula, O. militaris, O. morio, O. purpurea, O. ustulata, O. mascula, Polygala comosa, Primula veris, Sanguisorba minor, Scabiosa columbaria, Veronica prostrata, V. teucrium. Xerobromion - Bromus erectus, Fumana procumbens, Globularia elongata, Hippocrepis comosa. Festucetalia valesiacae: Adonis vernalis, Euphorbia seguierana, Festuca valesiaca, Silene otites, Stipa capillata, S. joannis.

Geographic distribution

Austria (Alpine Continental), Belgium (Atlantic Continental), Czech Republic (Continental Pannonian), Germany (Alpine Atlantic Continental), Denmark (Atlantic Continental), Estonia (Boreal), Spain

(Alpine Atlantic Mediterranean), Finland (Boreal), France (Alpine Atlantic Continental Mediterranean), Greece (Mediterranean), Hungary (Pannonian), Ireland (Atlantic), Italy (Alpine Continental Mediterranean), Lithuania (Boreal), Luxembourg (Continental), Latvia (Boreal) Netherlands (Atlantic), Poland (Alpine Continental), Portugal (Mediterranean), Sweden (Alpine Boreal Continental), Slovenia (Alpine), Slovenia (Continental) Slovakia (Alpine), Slovakia (Pannonian), United Kingdom (Atlantic)

http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10120

CLC:	321 -	321 - Natural grasslands (incl. Pastures)										
Annex I:		6210 - Semi-natural dry grasslands and scrubland facies on calcareous substrates(Festuco-Brometalia) (* important orchid sites)										
Mapping rules:	Borea	ul / Nemor					0m All At	lantic Cer	ntral Con	tinental / Al	pine South	below
Indicator species:	Arabi	s hirsuta,	Dianthus c	arthusiano	rum, Oph	rys apifer	a, Orchis r	nascula, l	Bromus e	recta, Adon	is vernalis.	
GHC (BioHab):	-LHE	/CHE + d	ry calcared	ous soils +	indicatior	ı						
Field identification:		Difficult as many vegetation associations are included-instructions as to local conditions therefore needed for regional surveyors. Also a definition of important orchid sites is required.										
Occurrence:	-Coul	d be large	e patches lo	cally but o	ften fragi	mented						
Direct threats:	Decli	ne in graz	ing.									
Climate change:	Could	l expand i	nto mesic g	grasslands	on south	facing slo	pes but rat	e likely to	o be slow	because of	closed swa	rds.
Succession:	Status	Colonisation. Status: Ceaspitose hemicryptophytes / Leafy hemicryptophytes to Ceaspitose hemicryptophytes 5 without grazing Shrubby chamaephytes 10 Low phanerophytes 5 Mid phanerophytes 5 Tall phanerophytes 10 Forest phanerophytes 10.										
Distribution (sites):	aln	BOR	NEM	ATN	ALS	CON	ATC	PAN	LUS	MDM	MDN	mds
Distribution (Bunce):	aln	BOR	NEM	ATN	als	CON	ATC	PAN	LUS	MDM	mdn	mds

Photo 7 H6210: Chalk grassland in South Limburg (Gerendal, The Netherlands) with Orhis purpurea and Orchis militaris (C.A.J. Kreuth)

Photo 8 H6210 Orchid rich calcareous grassland on slope of Wrakeler berg, South-Limburg, the Netherlands (Photo Sander Mucher).

Photo 9 6210: Chalk grassland in South Limburg (Wrakelberg, The Netherlands) with several thousand of individuals of Gymnadenia conopsea (J.H.J. Schaminée)

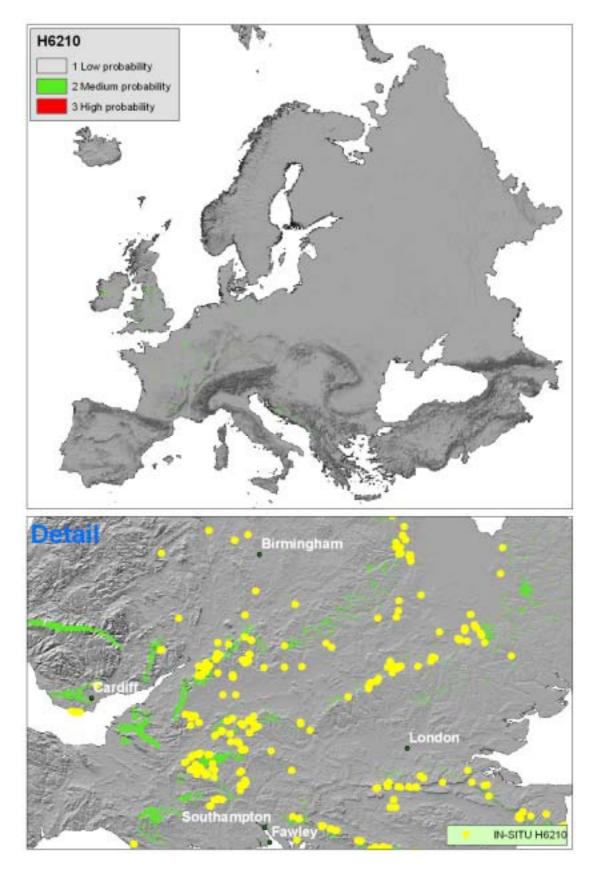


Photo 10 H6210. Calcareous grassland in a groundwater protection area in South Limburg, the Netherlands (Photo Sander Mucher)

RESULT H6210 SEMI-NATURAL DRY GRASSLANDS AND SCRUBLAND FACIES ON CALCAREOUS SUBSTRATES

H6230. Species-rich Nardus grasslands, on siliceous substrates in mountain areas (and submountain areas, in Continental Europe)

Annex I description

Species-rich Nardus grasslands, on siliceous substrates in mountain areas (and submountain areas, in Continental Europe)

Natura 2000 habitat type code 6230

Palearctic habitat code (and Corine Biotopes) 35.1

Priority Habitat: Yes

Parent: Semi-natural dry grasslands and scrubland facies (6200)

Description

Closed, dry or mesophile, perennial *Nardus* grasslands occupying siliceous soils in Atlantic or sub-Atlantic or boreal lowland, hill and montane regions. Vegetation highly varied, but the variation is characterised by continuity. *Nardetalia*: 35.1-*Violo-Nardion* (*Nardo-Galion saxatilis, Violion caninae*); 36.31-*Nardion*. Species-rich sites should be intrepreted as sites with are remarkable for a high number of species. In general, the habitats which have become irreversibly degraded through overgrazing should be excluded.

Plants

Antennaria dioica, Arnica montana, Campanula barbata, Carex ericetorum, C. pallescens, C. panicea, Festuca ovina, Galium saxatile, Gentiana pneumonanthe, Hypericum maculatum, Hypochoeris maculata, Lathyrus montanus, Leontodon helveticus, Leucorchis albida, Meum athamanticum, Nardus stricta, Pedicularis sylvatica, Platanthera bifolia, Polygala vulgaris, Potentill aaurea, P. erecta, Veronica officinalis, Viola canina.

Geographic distribution

Alps, Pyrenees, Apennines, Jura, Hercynian ranges, Netherlands, British Isles, Iberia peninsula, Luxembourg, Finland, Sweden.

Entire EU

http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10122

CLC:	321 - Natural grasslands (incl. Pastures)
Annex I:	6230 - Species-rich Nardus grasslands, on siliceous substrates in mountain areas (and submountain areas, in Continental Europe)
Mapping rules:	Making rules for this class is difficult because it depends on interpretation of the term species rich. If it is assumed that the extensive generally species poor Nardus grasslands of the Atlantic zone are included then it is widespread. More species rich grasslands with Nardus are rare in GB but are rather common at quite high elevations in the Alps. The comment in the text suggests that irreversibly degraded grasslands should be excluded which probably means many of those in GB. The rules below cover the whole range but mean that very different frequencies are likely to be involved. Siliceous soils / rocks Alpine North / Boreal below 700m Nemoral / Atlantic Central all altitudes Atlantic North below 900 m, Continental / Alpine South / Pannonian over 700 m but under 2000m, Lusitanian over 1000 m, Mediterranean mountains over 1500 m.
Indicator species:	Antennaria dioica, Galium saxatile.

GHC (BioHab):	-CHE/LF	IE + mois	t neutral/ad	cidic soils	+ Nardus	s + wide ra	inge of sp	eceis				
Field identification:	Depends	on the det	finition of	species ric	ch but the	associatio	ons are we	ll defined	l.			
Occurrence:	-often oc	curs in lar	ge units in	the centre	e of its rai	nge, small	er patches	elsewher	re			
Direct threats:	Mostly n	naintained	by grazing	g but some	e of the hi	igher sites	may be al	bove the t	ree line.			
Climate change:		if grazing	U		2		0			n at higher l ore competi		
Succession:	and will	therefore of		Ceaspitose	hemicry	ptophytes	, further d	levelopme	ent depen	rill expand v ds on altitue rtes.		
Distribution (sites):	ALN	BOR NEM ATN ALS CON ATC pan LUS MDM MDN mds										
Distribution (Bunce):	ALN	BOR NEM ATN ALS CON ATC PAN LUS mdm mdn mds										

Photo 11 H6230 Species rich Nardus grassland on silicious substrate in the mountain area of Jauerling, Austria (Photo Thomas Wrbka).

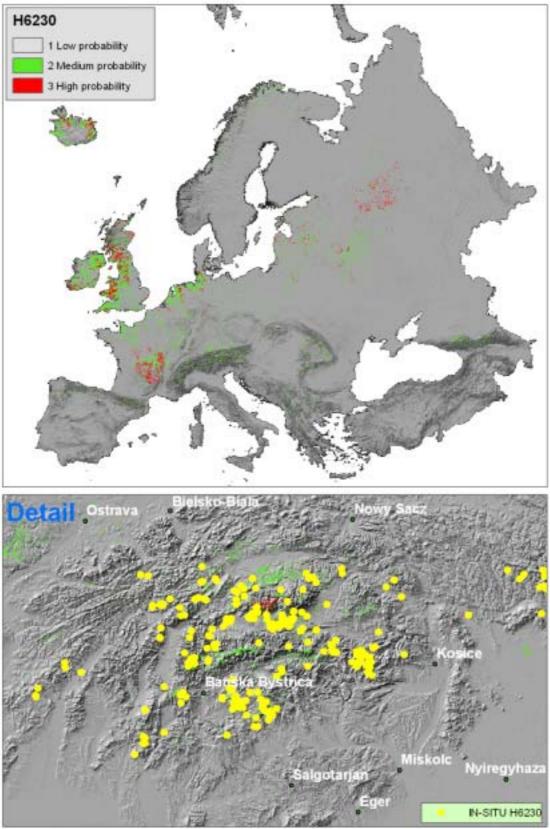


Photo 12 H6230 Species rich Nardus grassland on silicious substrate in the mountain area of Yspertal, Austria (Photo Thomas Wrbka)

RESULT H6230 SPECIES-RICH NARDUS GRASSLANDS ON SILICEOUS SUBSTRATES IN MOUNTAIN AREAS

H6240. Sub-pannonic steppic grasslands

Annex I description

Sub-pannonic steppic grasslands

Natura 2000 habitat type code 6240

Palearctic habitat code (and Corine Biotopes) 34.315

Priority habitat: Yes

Parent: Semi-natural dry grasslands and scrubland facies (6200)

Description

Steppic grasslands, dominated by tussock-grasses, chamaephytes and perennials of the alliance *Festucion vallesiacae* and related syntaxa. These xerotherme communities are developed on southern exposed slopes with AC-soils on rocky substrate and on clay-sandy sedimentation layers enriched with gravels. They are partially of natural, partially of anthropogenic origin.

Plants

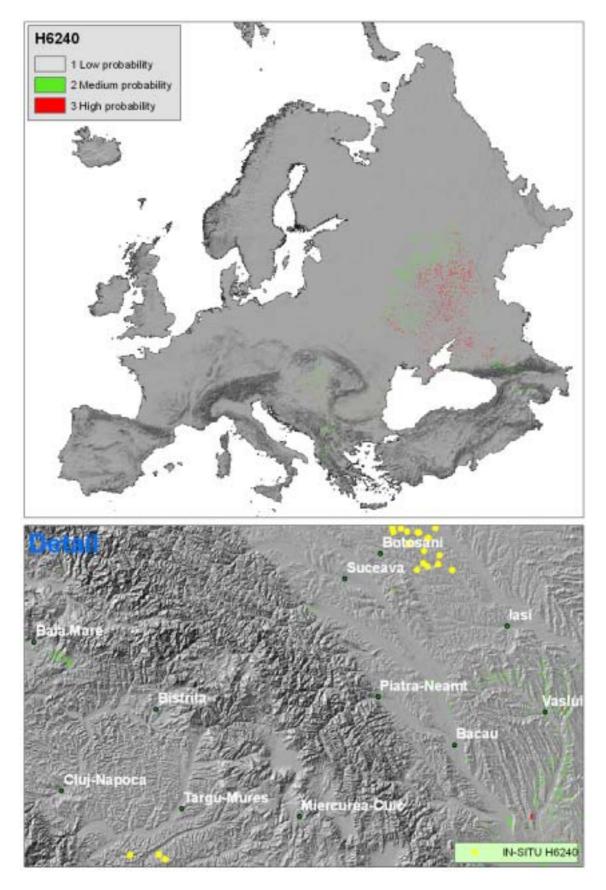
Festuca vallesiaca, Allium flavum, Gagea pusilla, Hesperis tristis, Iris pumila, Ranunculus illyricus, Teucrium chamaedrys, Medicago minima, Globularia cordifolia, Helianthemum canum, Poabadensis, Scorzonera austriaca, Potentilla arenaria, Seseli hippomarathrum, Alyssum alyssoides, Artemisia austriaca, Chrysopogon gryllus, Astragalus austriacus, A. excapus, A. onobrychis, Oxytropis pilosa, Daphne cneorum, Iris humilis ssp. arenaria, Carex humilis, Festuca rupicola, Stipa capillata, S.joannis, Botriochloa ischaemum.

Geographic distribution

Austria (most important sites: south slopes of the Leitha mountains, Hainburger mountains, mountains of the Waschberg range).

Austria (Alpine, Continental), Czech Republic (Continental, Pannonian) Germany (Atlantic, Continental), France (Alpine, Mediterranean), Hungary (Pannonian), Italy (Alpine, Continental), Slovakia (Alpine, Pannonian)

http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10123


CLC:	321 - Natural grasslands (incl. Pastures)
Annex I:	6240 - Sub-pannonic steppic grasslands
Mapping rules:	Pannonian and eastern Continental classes below 500 m clays / sands / gravels. South facing.
Indicator species:	Alyssum alyssoides, Astragalus austriacus, Iris humilis ssp. Arenaria, Stipa capillata.
GHC (BioHab):	-CHE/LHE + xeric soils + variable soil structure + species + expert judgement
Field identification:	Straightforward because detailed description of a restricted vegetation type included.
Occurrence:	-probably in small fragmented
Direct threats:	Some are more or less climax others depend on grazing but probably mostly the former so limited threats except for fertilization.
Climate change:	Could expand under the likely drier conditions but adjacent land may be cultivated so expansion unlikely.
Succession:	Colonization: status: probably Ceaspitose hemicryptophytes / Leafy hemicryptophytes with a representation of Shrubby chamaephytes which may expand without any management but otherwise stable.

Distribution (sites):	aln	bor	nem	atn	ALS	CON	atc	PAN	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	CON	atc	PAN	lus	mdm	mdn	mds

RESULTS H6240 SUB-PANNONIC STEPPIC GRASSLANDS

H6250. Pannonic loess steppic grasslands

Annex I description

Pannonic loess steppic grasslands

Natura 2000 habitat type code 6250

Palearctic habitat code (and Corine Biotopes) 34.91

Priority habitat: Yes

Parent: Semi-natural dry grasslands and scrubland facies (6200)

Description

Grassland communities rich in perennial grasses and herbs on loess deposits. Originally covering large areas, nowadays restricted to specific land forms like loess ridges formed by fluviatile erosion and accumulation.

Plants

Artyemisia pontica, Astragalus vesicarius, A. austriacus, A. onobrychis, Crambe tataria, Nonea pulla, Salvia nemorosa, Ornithogalum pannonicum, Agropyron pectinatum, Phlomis tuberosa, Bromus inermis, Festuca rupicola, Falcaria vulgaris, Peucedanum alsaticum, Elymus hispidus, Chamaecytisussupinus, Achillea pannonica..

Geographic distribution

Austria (Alpine), Austria (Continental), Czech Republic (Pannonian), Hungary (Pannonian), Slovakia (Pannonian)

http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10124

CLC:	321 - N	21 - Natural grasslands (incl. Pastures)										
Annex I:	6250 - I	50 - Pannonic loess steppic grasslands										
Mapping rules:	Pannon Loess s	ian below oils.	v 500 m.									
Indicator species:	Arteme	sia pontio	ca, Ornitho	galum pa	annonicu	ım, Achil	lea pann	onica.				
GHC (BioHab):	-CHE/I	LHE + xe	ric loess so	ils + crit	ical spec	cies + exp	ert know	vledge				
Field identification:	As 6240	s 6240.										
Occurrence:	-Small t	fragment	ed units									
Direct threats:	Informa	ation on r	nanagemer	nt needs t	to be che	ecked.						
Climate change:	Could e	expand in	to other gra	asslands	but likel	y to be sl	ow beca	use of surro	unding c	ultivated lan	d.	
Succession:	Shrubb	Colonisation: status Ceaspitose hemicryptophytes / Leafy hemicryptophytes may be susceptible to expansion of hrubby chamaephytes and Low phanerophytes and eventually Mid phanerophytes but restricted by xeric onditions.										
Distribution (sites):	aln	bor nem atn als con atc PAN lus mdm mdn mds										
Distribution (Bunce):	aln	bor	or nem atn als con atc PAN lus mdm mdn mds									

Photo 13 H6250: Transcaucasian steppe landscape in hilly country east of Thilisi near the David Gareji monastery/Georgia (U. Bohn).

RESULT H6250 PANNONIC LOESS STEPPIC GRASSLANDS

H7110. Active raised bogs

Annex I Description

Active raised bogs

Natura 2000 habitat type code **7110**

Palearctic habitat code (and Corine Biotopes) 51.1

Piority Habitat: Yes

Parent: Sphagnum acid bogs (7100)

Description

Acid bogs, ombrotrophic, poor in mineral nutrients, sustained mainly by rainwater, with a water level generally higher than the surrounding water table, with perennial vegetation dominated by colourful Sphagna hummocks allowing for the growth of the bog (*Erico-Sphagnetalia magellanici, Scheuchzerietalia palustris* p., *Utricularietalia intermedio-minoris* p., *Caricetalia fuscae* p.). The term "active" must be taken to mean still supporting a significant area of vegetation that is normally peat forming, but bogs where active peat formation is temporarily at a standstill, such as after a fire or during a natural climatic cycle e.g., a period of drought, are also included.

Plants

Erico-Sphagnetalia magellanici- Andromeda polifolia, *Carex pauciflora, Cladonia* spp., *Drosera rotundifolia, Eriophorum vaginatum, Odontoschisma sphagni, Sphagnum magellanicum, S.imbricatum, S. fuscum, Vaccinium oxycoccos;* in the Boreal region also *Betula nana, Chamaedaphne calyculata, Calluna vulgaris, Ledum palustre* and *Sphagnum angustifolium.* Scheuchzerietalia palustris *p.*, Utricularietalia intermedio-minoris *p.*, Caricetalia fuscae *p.- Carex fusca, C. limosa,Drosera anglica, D. intermedia, Eriophorum gracile, Rhynchospora alba, R. fusca, Scheuchzeria palustris, Utricularia intermedia, U. minor, U. ochroleuca;* in the Boreal region also *Sphagnumbalticum* and *S. majus.*

Geographic distribution

Austria, Belgium, Denmark, Finland, France, Germany, Italy, Ireland, Netherlands, Spain (Pyrenees and Cantabrian mountains), Sweden, United Kingdom.

EU27

http://eunis.eea.europa.eu/habitats-factsheet.jsp?tab=0&idHabitat=10142

CLC:	412 - Peat bogs
Annex I:	7110 - Active raised bogs
Mapping rules:	Atlantic Central / Atlantic North / Boreal / Nemoral below 300m.
Indicator species:	Andromeda polifolia, Vaccinium oxycoccos, Drosera anglica, Drosera intermedia.
GHC (BioHab):	Complexes of Cryptogames / Aquatic / Dwarf chamaephytes / Ceaspitose hemicryptophytes qualified with bog.
Field identification:	Difficult to separate from 7120 – Sphagnum dominated areas indicate quality habitat.
Occurrence:	Usually in discrete units but in the Atlantic zones difficult to separate from other bogs.
Direct threats:	Drainage, peat cutting.
Climate change:	Increases the rate of drying out and colonization by scrub and loss of Sphagnum species.

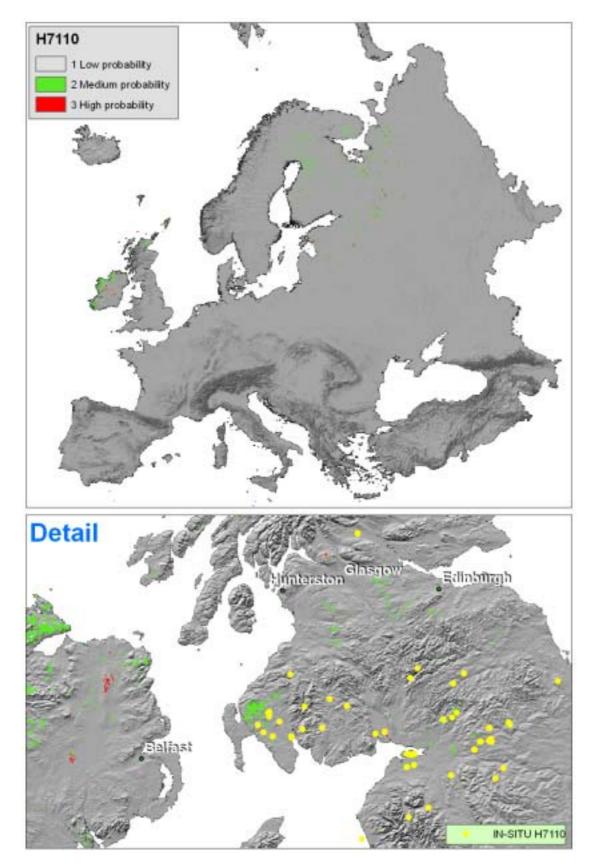

		Colonization by Low phanerophytes / Mid phanerophytes and eventually Tall phanerophytes. drying out and lestruction of the bog surface.										
Distribution (sites):	aln	BOR	NEM	ATN	ALS	CON	ATC	pan	LUS	MDM	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

Photo 14 Active raised bogs at Endla, Estonia (Photo Mucher).

RESULT H7110. ACTIVE RAISED BOGS

H7130. Blanket bogs (* if active bog)

Annex I Desciption

Blanket bogs (* if active bog) Natura 2000 habitat type code 7130

Palearctic habitat code (and Corine Biotopes) **52.1 & 52.2**

Priority Habitat: Yes

Parent: Sphagnum acid bogs (7100)

Description

Extensive bog communities or landscapes on flat or sloping ground with poor surface drainage, in oceanic climates with heavy rainfall, characteristic of western and northern Britain and Ireland. In spite of some lateral water flow, blanket bogs are mostly ombrotrophic. They often cover extensive areas with local topographic features supporting distinct communities [*Erico-Sphagnetalia magellanici: Pleurozio purpureae-Ericetum tetralicis, Vaccinio-Ericetum tetralicis* p.; Scheuchzerietalia palustris p., Utricularietalia intermedio-minoris p., Caricetalia fuscae p.]. Sphagna play an important role in all of them

but the cyperaceous component is greater than in raised bogs. The term "active" must be taken to mean still supporting a significant area of vegetation that is normally peat forming.

Sub-types in the British Isles

52.1 – HyperAtlantic blanket bogs of the western coastlands of Ireland, western Scotland and its islands, Cumbria, Northern Wales; bogs locally dominated by sphagna (*Sphagnum auriculatum*, Interpretation Manual - EUR25 Page 74 *S. magellanicum*, *S. compactum*, *S. papillosum*, *S. nemoreum*, *S. tenellum*, *S. tenellum*, *S. subnitens*), or, particularly in parts of western Ireland, mucilaginous algal deposits (*Zygogonium*).

52.2 – Blanket bogs of high ground, hills and mountains in Scotland, Ireland, Western England and Wales.

Plants

52.1- Calluna vulgaris, Campylopus atrovirens, Carex panicea, Drosera rotundifolia, Erica tetralix, Eriophorum vaginatum, Molinia caerulea, Myrica gale, Narthecium ossifragum, Pedicularis sylvatica, Pinguicula lusitanica, Pleurozia purpurea, Polygala serpyllifolia, Potentilla erecta, Racomitrium languginosum, Rhynchospora alba, Schoenus nigricans, Scirpus cespitosus, Sphagnum pulchrum, S. strictum, S. compactum, S. auriculatum. 52.2 - Calluna vulgaris, Diplophyllum albicans, Drosera rotundifolia, Empetrum nigrum, Erica tetralix, Eriophorum vaginatum, Mylia taylorii, Narthecium ossifragum, Rubus chamaemorus, Scirpus cespitosus, Vaccinium myrtillis.

Geographic distribution

Austria (Alpine), Estonia (Boreal), Spain (Atlantic), Spain (Mediterranean), France (Atlantic), Greece (Mediterranean), Ireland (Atlantic), Italy (Alpine), Italy (Continental), Portugal (Macaronesian), Sweden (Alpine), United Kingdom (Atlantic)

http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10144

CLC:	412 - Peat bogs
Annex I:	7130 - Blanket bogs (* if active bog)
Mapping rules:	Atlantic Central / Atlantic North above 300m.
Indicator species:	Drosera rotundifolia, Eriophorum vaginatum, Empetrum nigrum, Rubus chamaemorus.
GHC (BioHab):	Leafy hemicryptophytes, but usually with under 30% Low phanerophytes / Evergreen.
Field identification:	Several key species enable identification notably Rubus chamaemorus and Eriophorum vaginatum.

Occurrence:	Large	arge units where present.										
Direct threats:	Overg	razing an	d convers	sion to agric	culture;	drainage						
Climate change:	Will le	ad to dry	ving out a	nd coloniza	tion by	grasses.						
Succession:		low altitudes could be colonized by Low phanerophytes / Mid phanerophytes but only if climate change duces the water saturation.										
Distribution (sites):	aln	n bor nem ATN als con ATC pan LUS mdm mdn mds										
Distribution (Bunce):	aln	bor	por nem atn als con atc pan lus mdm mdn mds									

Photo 15 Lowland blanket bogs, Conemera, Ireland.

(source: http://144.41.253.33/lacope/gallery/gallery/albums/connemara/Lowland_blanket_bogs_and_lakes.jpg)

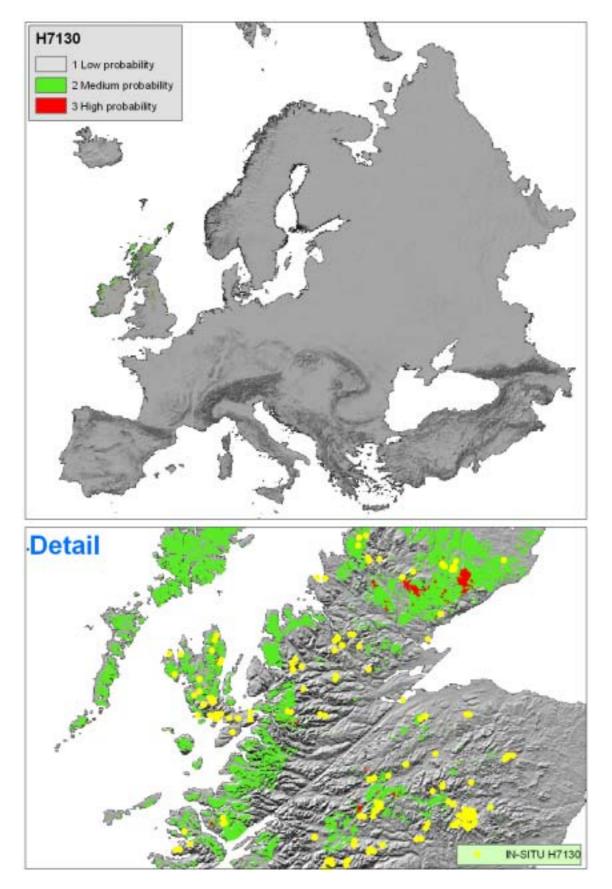

Photo 16 H7130: Irish lowland blanket bog (S5) with Molinia caerulea, Myrica gale, Schoenus nigricans and Calluna vulgaris, Nephin Mountain behind with dry heath and scree; Owenboy, Co. Mayo/western Ireland (N. Lockhart).

Photo 17 H7130: Extensive Irish blanket bogs of the lowlands, with numerous bog pools; Owenduff Valley, Co. Mayo/Ireland (J. Cross).

RESULTS H7130. BLANKET BOGS

H9150. Medio-European limestone beech forests of the Cephalanthero-Fagion

Annex I Description

Medio-European limestone beech forests of the Cephalanthero-Fagion

Natura 2000 habitat type code **9150**

Palearctic habitat code (and Corine Biotopes) 41.16

Priority Habitat: No

Parent: Forestst of Temperate Europe (9100)

Description

Xero-thermophile *Fagus sylvatica* forests developed on calcareous, often superficial, soils, usually of steep slopes, of the medio-European and Atlantic domaines of Western Europe and of central and northern Central Europe, with a generally abundant herb and shrub undergrowth, characterized by sedges (*Carex digitata, Carex flacca, Carex montana, Carex alba*), grasses (*Sesleria albicans, Brachypodium pinnatum*), orchids (*Cephalanthera* spp., *Neottia nidus-avis, Epipactis leptochila, Epipactis microphylla*) and thermophile species, transgressive of the *Quercetalia pubescentipetraeae*. The bush-layer includes several calcicolous species (*Ligustrum vulgare, Berberis vulgaris*) and *Buxus sempervirens* can dominate.

Sub-types :

• 41.161 - Middle European dry-slope limestone beech forests

Middle European sedge and orchid beech woods of slopes with reduced water availability.

• 41.162 - North-western Iberian xerophile beech woods

Fagus sylvatica forests of relatively low precipitation zones of the southern ranges of the Pais

Vasco and of superficially dry calcareous soils of the Cordillera Cantabrica, with *Brachypodiumpinnatum* ssp. *rupestre*, *Sesleria* argentea ssp. hispanica, Carex brevicollis, Carex ornithopoda, Interpretation Manual - EUR25 Page 98 Carex sempervirens, Carex caudata, Cephalanthera damasonium, C. longifolia, Epipactis

helleborine, Epipactis microphylla, Neottia nidus-avis.

Plants

Fagus sylvatica, Carex digitata, C. flacca, C. montana, C. alba, Sesleria albicans, Brachypodium pinnatum, Cephalanthera spp., Neottia nidus-avis, Epipactis leptochila, Epipactis microphylla, Buxus sempervirens.

Geographic distribution

EU27 (minus the Netherlands and Portugal)

http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10189

CLC:	311 - Broad-leaved forest
Annex I:	9150 - Medio-European limestone beech forests of the Cephalanthero-Fagion
Mapping rules:	Atlant. Central all Alpine South / Continental 400-1200 + Calcareous soils + Fagus.
Indicator species:	Fagus sylvatica, Carex digita, Cephalantera spp., Neotttia nidus-avis.
GHC (BioHab):	Forest phanerophytes / Winter deciduous + Fagus over 70% + shallow dry calcareous soils + steep slopes + ground flora species.
Field identification:	A well defined category but grades into 9130.

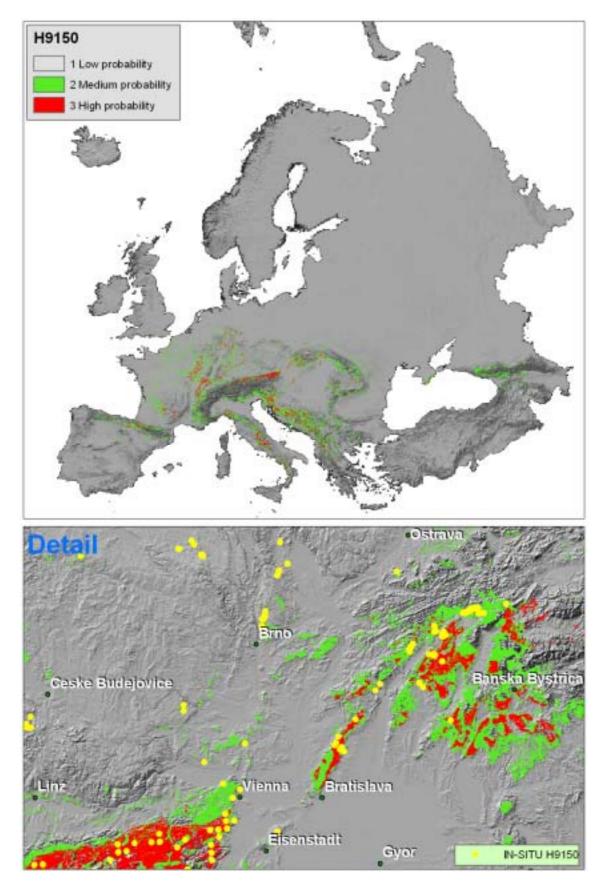

Occurrence:	Wide	Widespread in large patches but often replaced by Picea abies in the Alps.										
Direct threats:	Fellin	Felling withy deeper soils conversion to conifer.										
Climate change:	Ther	Thermophilic species will be favoured.										
Succession:	Clim	Climax.										
Distribution (sites):	aln	bor	nem	ATN	ALS	CON	ATC	PAN	LUS	MDM	MDN	mds
Distribution (Bunce):	aln	bor	nem	atn	ALS	con	ATC	PAN	lus	mdm	mdn	mds

Photo 18 Medio-European limestone beech forest on a slope above the Ticha orlice river, Ceskomoravska-mezihori hills, Eastern Bohemia, Czech Republic (photo Pavel Kovar).

RESULT H9150 MEDIO-EUROPEAN LIMESTONE BEECH FORESTS

H9410. Acidophilous Picea forests of the montane to alpine levels (Vaccinio-Piceetea)

Annex I description

Acidophilous Picea forests of the montane to alpine levels (Vaccinio-Piceetea)

Natura 2000 habitat type code 9410

Palearctic habitat code (and Corine Biotopes) 42.21 -> 42.23 (42.25)

Priority Habitat: No

Parent: Temperate Mountainous Coniferous Forests (9400)

Description

Sub-alpine and alpine conifer forests (dominated by *Picea abies* and *Picea orientalis*). Sub-types:

- 42.21 Alpine and Carpathian sub-alpine spruce forests. *Piceetum subalpinum.Picea abies* forests of the lower subalpine level, and of anomalous stations in the montane level, of the outer, intermediate and inner Alps; in the latter, they are often in continuity with the montane spruce forests of 42.22. The spruces are often stunted or columnar; they areaccompanied by an undergrowth of decidedly sub-alpine affinities. *Picea abies* forests of thelower sub-alpine level of the Carpathians.
- 42.22 Inner range montane spruce forests. *Piceetum montanum. Picea abies* forests of the montane level of the inner Alps, characteristic of regions climatically unfavourable to both beech and fir. Analogous *Picea abies* forests of the montane and collinear levels of the inner basin of the Slovakian Carpathians subjected to a climate of high continentality.
- 42.23 Hercynian sub-alpine spruce forests Sub-alpine *Picea abies* forests of high Hercynian ranges 21.
- 42.25 Peri-Alpine spruce forests Spontaneous *Picea abies* formations occupying outlying altitudinal or edaphic enclaves within the range of more predominant vegetation types of the montane levels of the outer Alps, the Carpathians, the Dinarides, the Jura, the Hercynian ranges, the subalpine levels of the Jura, the western Hercynian ranges and the Dinarides

Plants

Picea abies, Vaccinium spp.

Geographic distribution

Austria (Alpine, Continental), Czech Republic (Continental) Germany (Alpine, Continental), France (Alpine, Continental), Greece (Mediterranean), Italy (Alpine, Continental, Mediterranean), Poland (Alpine, Continental), Slovenia (Alpine), Slovakia (Alpine)

Weblink: http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10228

CLC:	312 - Coniferous forest											
Annex I:	9410 - Acidophilous Picea forests of the montane to alpine levels (Vaccinio-Piceetea)											
Mapping rules:	Alpine South / Continental 800 m-1700 m ?. Mediterranean Mountains but north of Pyreneees only											
Indicator species:	Picea abies, and rarely, Picea orientalis.											
GHC (BioHab):	- Forest phanerophytes/conifer over 70% + moist acid soils + key species											
Field identification:	Well defined species patterns but depends whether converted Fagus/and/or plantation forests are included.											
Occurrence:	Extensive forests often artificially pure spruce from forest practice. Also many converted Fagus forests.											
Direct threats:	Felling											
Climate change:	Could threaten spruce dominance by encouraging disease at lower altitudes											
Succession:	Climax but structure will change with age											
Distribution (s):	aln	bor	nem	atn	ALS	CON	atc	pan	lus	MDM	mdn	mds
Distribution (B):	aln	bor	nem	atn	ALS	CON	atc	pan	lus	mdm	mdn	mds

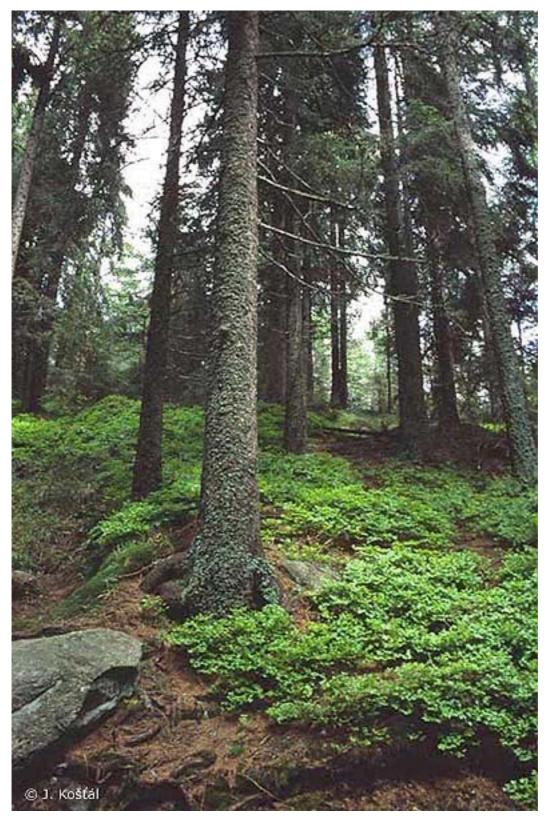
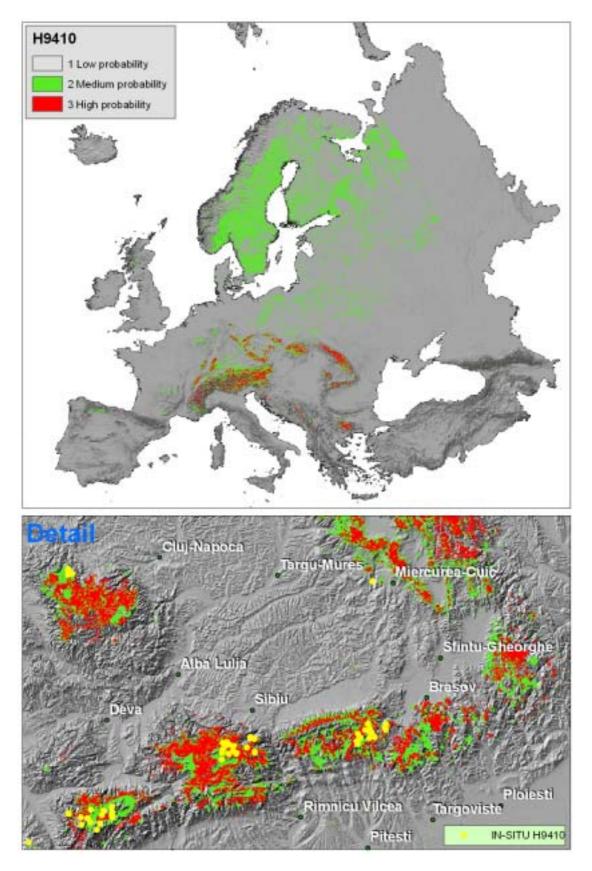



Photo 19 Vysoké Tatry, Štrbské pleso, at 1400 m. Asociácia: Vaccinio myrtilli-Piceetum, zväz: Piceion excelsae, trieda: Vaccinio-Piceetea with Vaccinium myrtillus (Photo: Jaroslav Košťál, 14.6.2006)

Source: http://www.sbs.sav.sk/atlas/admin/img/Vaccinio%20myrtilli-Picetum.JPG

RESULT H9410 ACIDOPHILOUS PICEA FORESTS OF THE MONTANE TO ALPINE LEVELS

H9420. Alpine Larix decidua and/or Pinus cembra forests

Annex I Description

Alpine Larix decidua and/or Pinus cembra forests

Natura 2000 habitat type code 9420

Palearctic habitat code (and Corine Biotopes) 42.31 & 42.32

Priority Habitat: No

Parent: Temperate Mountainous Coniferous Forests (9400)

Description

Forests of the sub-alpine and sometimes montane levels, dominated by *Larix decidua* or *Pinus cembra*; the two species may form either pure or mixed stands, and may be associated with *Piceaabies* or *Pinus uncinata*.

Sub-types:

- 42.31 Eastern Alpine siliceous larch and arolla forests. *Larici-Cembretum*. Sub-alpine *Larix decidua*, *Pinus cembra*, or *Larix decidua-Pinus cembra* forests of the eastern and central Alps, mostly of the inner ranges, usually on siliceous substrates, with an often species-poor undergrowth comprising *Vaccinium myrtillus*, *Rhododendron ferrugineum*, *Calamagrostis villosa*, *Luzula albida*.
- 42.32 Eastern Alpine calcicolous larch and arolla forests. *Laricetum, Larici-Cembretum Rhododendretosum hirsute*. Subalpine and montane *Larix decidua, Larix decidua - Picea abies, Pinus cembra* or *Larixdecidua-Pinus cembra* forests of the eastern and central Alps, mostly of the outer ranges, on calcareous substrates, with a usually species-rich undergrowth including *Erica herbacea, Polygala chamaebuxus, Rhododendron hirsutum* or *Pinus mugo*.
- 42.35 Carpathian larch and arolla forests Uncommon *Larix decidua* or *Pinus cembra* formations of the Carpathians, each occurring as a single dominant, together as codominants, or mixed with *Picea abies*.

Plants

Larix decidua, Pinus cembra.

Geographic distribution

Austria (Alpine), Germany (Alpine), France (Alpine), Italy (Alpine) Poland (Alpine), Slovakia (Alpine).

http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10229

ECOCHANGE rules

CLC:	312 - C	12 - Coniferous forest												
Annex I:	9420 - <i>I</i>	Alpine La	arix decidu	ia and/o	r Pinus cem	bra fores	ts							
Mapping rules:	distribu	pine South 1000-1700 m?. Mediterranean mountains over 100m but north of Pyrenees only plus native stribution of urix / P.cembra.												
Indicator species:	Larix de	ecidua, P	inus cemb	ra, Vacc	cinium myrt	illus.								
GHC (BioHab):	- Forest indicate	Forest phanerophyte/Conifer over 70%/ + Larix or P.cembra but only native stands + moist acid soils + species dicators												
Field identification:	Usually	present	as more or	less pu	re stands so	readily i	dentifiał	ole.						
Occurrence:	· ·				and relative Im mappabl	-	oatches.	May be c	onfused	with deciduou	is forest in	CLC		
Direct threats:	Felling	and conv	version to g	grazing l	land or spru	ce								
Climate change:	Could e	exert pres	sure on tre	ee health	at lower al	titudes b	ıt also iı	ncrease al	titude ra	ange				
Succession:	Probaly	Probaly climax but proportions of species may change with age.												
Distribution (sites):	aln	bor nem atn ALS con atc pan lus MDM mdn mds												

Distribution	aln	bor	nem	atn	ALS	con	atc	pan	lus	mdm	mdn	mds
(Bunce):												

Photo 20 9420: Subalpine arolla pine (Pinus cembra) forest in the Alps at the forestline in combination with dwarf shrub communities (C19); Oberhauser Zirbenwald, Defereggen Valley, Eastern Tyrol/Austria (K. Zukrigl).

H9420 1 Low probability 2 Medium probability 3 High probability Detail - दोन Nov Ostrava ansk IN-SITU H94

RESULT H9420. ALPINE LARIX DECIDUA AND/OR PINUS CEMBRA FORESTS

H9510. Southern Apennine Abies alba

Annex I description

Southern Apennine Abies alba

Natura 2000 habitat type code **9510**

Palearctic habitat code (and Corine Biotopes)

Priority Habitat: Yes

Parent: Mediterranean and Macaronesian mountainous coniferous forests (9500)

Description

Relict Abies alba woods associated with the beech forests of the Geranio versicolori-Fagion.

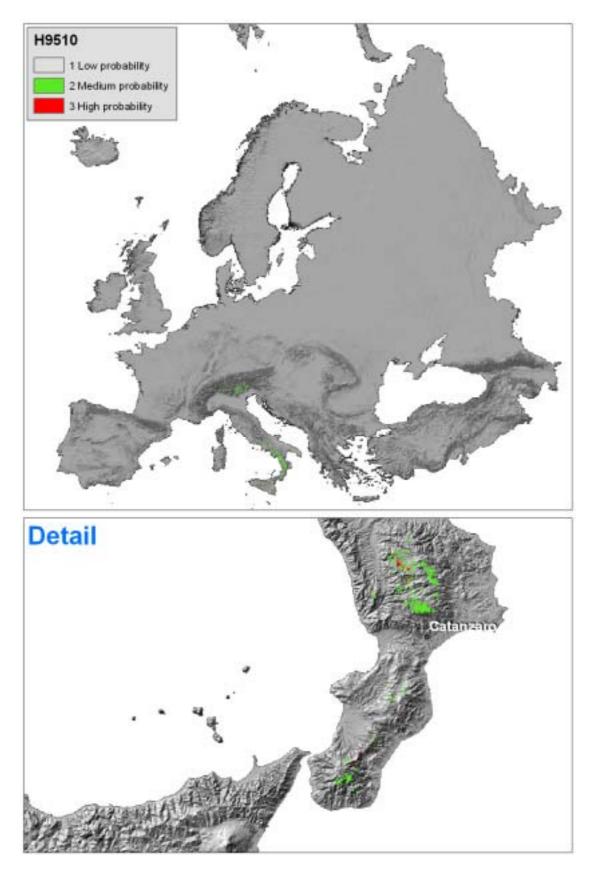
Plants

Abies alba.

Geographic distribution

Southern Apennines (Molise, Basilicata, Calabria)

Italy (Alpine, Meditterranean)


http://eunis.eea.europa.eu/habitats-factsheet.jsp?idHabitat=10232

ECOCHANGE rules

CLC:	312 - (2 - Coniferous forest												
Annex I:	9510 -	10 - Southern Apennine Abies alba												
Mapping rules:	Medite Abies		n mounta	ins sou	thern A	Apennin	es only	v. Over 8	300m?					
Indicator species:	Abies	alba.												
GHC (BioHab):	- Fores	st phane	rophytes	/over70)% cor	nifer + A	bies a	lba + fui	ther ex	pert know	vledge and ir	ndicators		
Field identification:	Depen	dant on	one spec	eies the	refore	clear cu	t. But j	problem	will be	e gradients	s with Fagus	forests		
Occurrence:	No inf	òrmatic	n.											
Direct threats:	Probab	oly felli	ng											
Climate change:	Could	be three	atened by	v increa	sed su	mmer d	rought							
Succession:	.likely	ikely to be climax												
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	MDN	mds		
Distribution (Bunce):	aln	n bor nem atn als con atc pan lus mdm mdn mds												

RESULT H9510. SOUTHERN APENNINE ABIES ALBA

Annex I Criteria used to classify the vegetation releves into the relevant Annex I habitat types for the various countries for which in-situ data were obtained.

Vegetation type	Britain	Netherlands	Belgium (Flanders)
Basic grassland	Comm. U1 - U21	vegetation class 15	
Acid grasslands	Comm. CG1 - CG14	vegetation alliance 19AA	ph <= 4.4
4070 Pinus mugo			
6150 Siliceous alpine and boreal grasslands	Comm. U7,U8,U9		
6170 Alpine and subalpine calcareous grasslands	presence of Dryas octopetala		
9410 Acidophilous Picea forests of the montane to alpine levels (Vaccinio- Piceetea)			
9150 Medio-European limestone beech forests of the Cephalanthero-Fagion			
6240 Sub-pannonic steppic grasslands			
6250 Pannonic loess steppic grasslands			
9510 Southern Apennine Abies alba			
4060 Alpine and boreal heath	Comm. H16, H17, H19, H20, H21, H22		
7110 Active raised bogs	Comm. M18, M20	Selection on AnnexI 7110	
7130 Blanket bog	Comm. M17, M18, M19, M20		
6210 Semi-natural dry grasslands and scrubland facies on calcareous substrates (Festuco-Brometalia)	Brachypodium pinnatum >10% cover or Bromus erectus >10% cover	Selection on AnnexI 6210	
9420 Alpine Larix decidua and/or Pinus cembra forest			
6230 Species-rich Nardus grasslands	Comm. U5, U7 AND one of the next 4 species: Gentiana pneumonanthe, Carex panicea, Carex ericetorum, Antennaria dioica	Selection on AnnexI 6230	

Vegetation type	Austria	Tjechia	Slovakia
Basic grassland		predefined	Vegetation class 06 and 10
Acid grasslands	field ACIDSOIL' = "X"	predefined	Vegetation class 13
4070 Pinus mugo	preselected	Pinus mugo > 75% cover	Pinus mugo > 75% cover
6150 Siliceous alpine and boreal grasslands	Juncus trifidus > 5% cover or Carex bigelowii > 5% cover		Juncus trifidus > 5% cover or Carex bigelowii > 5% cover
6170 Alpine and subalpine calcareous grasslands	Dryas octopetala		Dryas octopetala and vegetation class 06
9410 Acidophilous Picea forests of the montane to alpine levels (Vaccinio- Piceetea)	??	preselected	preselected
9150 Medio-European limestone beech forests of the Cephalanthero-Fagion	preselected	preselected	Syntaxon 27BD10
6240 Sub-pannonic steppic grasslands	Stipa pennata > 10% cover	preselected	preselected
6250 Pannonic loess steppic grasslands		preselected	
9510 Southern Apennine Abies alba			
4060 Alpine and boreal heath	Arctostaphyllos alpinus >20% cover or Rhododendron ferruginium >20% cover or Rhododendron hirsutum >20% cover	preselected	preselected
7110 Active raised bogs	Andromeda polifolia	Andromeda polifolia	Andromeda polifolia
7130 Blanket bog			
6210 Semi-natural dry grasslands and scrubland facies on calcareous substrates (Festuco-Brometalia) 9420 Alpine Larix decidua and/or Pinus cembra forest	Brachypodium pinnatum >10% cover or Bromus erectus >10% cover ??	Brachypodium pinnatum >10% cover or Bromus erectus >10% cover	Brachypodium pinnatum >10% cover or Bromus erectus >10% cover preselected

6230 Species-rich Nardus grasslands

Nardus stricta > 5% cover AND one of the next 4 species: Gentiana pneumonanthe, Carex panicea, Carex ericetorum, Antennaria dioica Nardus stricta > 5% cover AND one of the next 4 species: Gentiana pneumonanthe, Carex panicea, Carex ericetorum, Antennaria dioica Nardus stricta > 5% cover AND

one of the next 4 species: Gentiana pneumonanthe,

			Carex panicea, Carex
Vegetation type	Switzerland	Bulgaria	ericetorum, Antennaria dioica Romania
Basic grassland	pH > = 7.0	field BASICROCK='limestone'	??
e	I ····		
Acid grasslands	ph <= 4.4 and Nardus >= 25% cover	field BASICROCK='silicate'	??
4070 Pinus mugo			Pinus mugo $> 75\%$ cover
6150 Siliceous alpine and boreal grasslands	Juncus trifidus > 5% cover		Juncus trifidus > 5% cover
6170 Alpine and subalpine calcareous grasslands	Dryas octopetala and pH \geq = 7.0		Dryas octopetala > 5% cover
9410 Acidophilous Picea forests of the montane to alpine levels (Vaccinio- Piceetea)			Picea abies > 50% cover
9150 Medio-European limestone beech forests of the Cephalanthero-Fagion			Fagus sylvatica > 50% cover + Cephalanthera rubra
6240 Sub-pannonic steppic grasslands			preselected
6250 Pannonic loess steppic grasslands			
9510 Southern Apennine Abies alba			
4060 Alpine and boreal heath			
7110 Active raised bogs			
7130 Blanket bog			
6210 Semi-natural dry grasslands and scrubland facies on calcareous substrates (Festuco-Brometalia)	Brachypodium pinnatum >10% cover or Bromus erectus >10% cover		
9420 Alpine Larix decidua and/or Pinus cembra forest			Pinus cembra > 20 cover or Larix decidua >20% cover
6230 Species-rich Nardus grasslands	Nardus stricta > 5% cover AND		Nardus stricta > 5% cover
	one of the next 4 species: Gentiana pneumonanthe, Carex panicea, Carex ericetorum, Antennaria dioica		AND one
			of the next 4 species:
			Gentiana pneumonanthe,
			Carex panicea, Carex
			ericetorum, Antennaria dioica

Annex II Knowledge rules for the relationship between CORINE Land Cover Classes and Annex 1 Habitats

R.G.H. (Bob) Bunce, S.M. (Stephan) Hennekens & C.A. (Sander) Mücher with comments from Doug Evans, Berien Elbersen, John Janssen, Gerard Hazeu and Rob Jongman.

Each of the Annex I habitats has the following description fields in this document:

1. Mapping rules: these mapping rules are constructed from the information provided in the Interpretation manual of European habitats on where the habitat occurs. This information is supplemented by field experience of the author and by discussions with phytosociologists in the Ecochange project. In due course literature could be consulted to confirm that the altitudinal ranges are correct. Consultation will also be held with Doug Evans of the Topic Centre in Paris to further check the descriptions.

2. Indicator species: the indicator species are in most cases a subset of the Annex I plant species. A subset has been made since the selected species are the most characteristic and stable species present within the habitat

3. GHC BioHab. These are General Habitat Classes (GHC) as defined within the BIOHAB project. The basis of the General Habitat Categories is the classification of plant Life forms produced by the Danish botanist Raunkiaer early in the 20th Century. These Life forms e.g. annuals or trees. They are based on the scientific hypothesis that habitat structure is related to the environment. The BioHab General Habitat Categories cover the Pan-European region (except Turkey) with 130 GHC's derived from 16 Life Forms (Bunce et al., 2008)

The Codes for the General Habitat Categories are in this document:

LHE = leafy hemicryptophytes(herbs), CHE = caespitose hemicryptophytes (grasses), SUC = succulents, THE = therophytes (annuals), HEL =helophytes (marsh plants) CRY = mosses, liverworts and lichens, DCH = espaliers below 5cm, SCH=dwarf scrub 5-30cm, LPH = low scrub,30-60cm, MPH = mid scrub 60cm-2.0 m, TPH = tall scrub2m-5m., FPH = forest over 5 m, CON = conifer, DEC = deciduous, EVR = evergreen, NLE = non leafy evergreen, SPI = spiny/summer deciduous

4. Field identification: comments on the probable ease of identification of the habitat in the field.

5. Occurrence: three categories are used: rare, where the habitat is present in isolated patches, usually small, common, where it is distributed widely but does not cover large areas in the landscape and abundant where it is not only widespread but is also dominant. These are qualified where necessary.

6. Direct threats: based on the knowledge of the vegetation and literature . The information could also be supplemented later by other experts.

7. Potential impacts of climate change: based on knowledge of the vegetation, literature and the change in Environmental Zones described by Metzger et al (2008).

8. Vegetation succession due to abandonment: conversion of the present composition into BioHab plant lifeform categories followed by an interpretation of likely successional changes together with possible timescales.

9. Distribution. This is the distribution of the specific habitat over the various Environmental Zones (Metzger et al., 2005). The codes, based on the BioHab handbook (Bunce et al 2005) are as follows for the Environmental Zones:

ALS = Alpine South, **BOR** = Boreal, **NEM** = Nemoral, **ATN** = Atlantic North, **ATC** = Atlantic Central, **ALS** = Alpine South, **PAN** = Pannonian, **CON** = Continental, **LUS** = Lusitanean, **MDM**-Mediterranean Mountains, **MDN** = Mediterranean North, **MDS** = Mediterranean South

Distribution (sites) has been obtained directly from the Natura 2000 database intersected with the Environmental Zones. Distribution (Bunce) is based on expert knowledge from Bob Bunce.

All knowledge rules below has been ordered in sequence of Annex I habitat types.

CLC:		ea and o			.1			11.1						
Annex I:	1110 -	1110 - Sandbanks which are slightly covered by sea water all the time												
Mapping rules:		Sea and ocean but with shallow coast lines in Atlantic Central / Atlantic North / Lusitanian Atlantic coast of Mediterranean North / Mediterranean South.												
Indicator species:	Zostera	Costera marina, Potamogeton pectinatus.												
GHC (BioHab):	Subme	Submerged hydrophytes + Zostera over 30% + Saline water.												
Field identification:	Difficu	lt when	in deeper	water –	use evic	lence of r	naterial	washed u	ip on the	e shore.				
Occurrence:	Highly	localize	d, pollutio	on impac	et means	s that dist	ribution	maps are	unrelia	ble.				
Direct threats:	Polluti	on, sedin	nentation	disturba	ance.									
Climate change:	Unlike	ly to be a	affected.											
Succession:	None.													
Countries:			ark, Esto l Kingdor		and, Fra	ance, Ger	many, G	reece, Ita	aly, Latv	ria, Portug	al, Romar	nia, Spain,		
Distribution (sites):	aln	BOR	NEM	ATN	als	CON	ATC	pan	LUS	MDM	MDN	MDS		
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds		
CLC:	523 - S	lea and o	cean											
Annex I:			a beds (P	osidonic	on ocean	nicae)								
Mapping rules:		d ocean b rranean s		hallow c	oastline	es only in	the Med	iterranea	in in Me	diterranea	n North /			
Indicator species:	Posido	nia oceai	nica.											
GHC (BioHab):	Subme	rged hyd	rophytes	+ Posido	onia + sa	aline wate	er.							
Field identification:	Difficu	lt when	in deeper	water –	use evic	lence of r	naterial	washed u	ip on the	e shore.				
Occurrence: Direct threats:			d, pollution	-		s that dist	ribution	maps are	unrelia	ble.				
Climate change:		ly to be a												
Succession:	None.													
Countries:	France	, Greece,	Italy, Sp	ain.										
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	MDM	MDN	MDS		
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds		

CLC: **522** - Estuaries

Annex I:	1130 -	Estuaries	8									
Mapping rules:	geogra covere Theref	phical de d by tida	efinition. l water. in the ma	The desc	cription	suggests	that it inc	cludes o	nly the a	ctual sub	ore needs a strate whic confied site	h is
Indicator species:	Ruppia	a maritim	a, Sparti	na mariti	ma.							
GHC												
(BioHab):	-											
Field	-											
identification:												
Occurrence:	-											
Direct threats:	-											
Climate change:	-											
Succession:	-											
Countries:											taly, Lithu	ania,
	· · · ·		Poland,	e	·	nia, Spain	·	n, United	e			
Distribution (sites):	aln	BOR	nem	ATN	als	CON	ATC	pan	LUS	mdm	MDN	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:		ea and o										
Annex I:	1130 -	Estuaries	8									
Mapping rules:		d ocean b erranean S		shallow c	coastline	es only in	the Med	iterranea	an in Me	diterranea	an North /	
Indicator species:	Ruppia	ı maritim	a, Sparti	na mariti	ma.							
GHC (BioHab):	Landsc require	1	s whose g	general c	haracte	ristics wil	l be desc	ribed in	the key,	but expen	rt knowled	ge is also
Field identification:				of infor	mation,	but main	sites wil	l be idei	ntified re	latively e	asily – sm	aller units
Occurrence:	Some 1	arge unit	s, but sm	all patch	es will	be presen	t on man	y Atlant	tic coast	lines.		
Direct threats:	Urbani	sation an	d polluti	on.								
Climate change:	Unlike	ly to be a	affected.									
Succession:	None.											
Countries:						inland, Fr 1ia, Spain					taly, Lithu	ania,
Distribution (sites):	aln	BOR	nem	ATN	als	CON	ATC	pan	LUS	mdm	MDN	MDS
Distribution	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC: **523** - Sea and ocean

Annex I:	1140 -	Mudflat	s and sand	dflats no	t covere	ed by seav	vater at l	ow tide				
Mapping rules:	Betwee	en high a	nd low w	ater mar	∙k + mu	d and / or	sand.					
Indicator species:	-											
GHC (BioHab):	Tidal.											
Field identification:	Straigh	nt forwar	d.									
Occurrence:	Occurs	s as large	units in t	he main	estuarie	es of Atla	ntic Euro	ope. Oth	erwise fi	ragmentee	l small are	as.
Direct threats:	Urbani	isation.										
Climate change:	None.											
Succession:	None.											
Countries:			nark, Esto 1, Sweden				reece, Ire	eland, Ita	aly, Norv	way, Portu	ıgal, Roma	ania,
Distribution (sites):	aln	BOR	NEM	ATN	als	CON	ATC	pan	LUS	mdm	MDN	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:	521 - (Coastal la	igoons									
Annex I:	1150 -	Coastal	lagoons									
Mapping rules:	Coasta	l lagoons	s in CLC	which w	vill miss	small par	ches.					
Indicator species:	Zostera	a spp., R	uppia mai	ritima.								
GHC (BioHab):			ged hydro water or				nes of Er	nergent	hydroph	ytes + bra	ackish to sa	alt water
Field identification:						on of sma	ll patche	es will be	e difficul	lt because	of continu	a caused
Occurrence:		large area l vegetati		ally sma	all elem	ents may	also be p	oresent v	vithin m	atrices of	salt marsh	and
Direct threats:	Urbani	isation, re	emoval of	f sea wat	ter cove	rage.						
Climate change:	Could	increase	with incre	eased se	a level.							
Succession:	Chang	e to more	e dense co	overage (of non-r	naritime	species.					
Countries:			nark, Esto al, Roman							aly, Latvi	a, Lithuan	ia, Malta
Distribution (sites):	aln	BOR	NEM	ATN	als	CON	ATC	pan	LUS	mdm	MDN	MDS
Distribution	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC: **523** - Sea and ocean

Annex I: **1160** - Large shallow inlets and bays

Mapping rules:	domin	ated by fi	reshwater	. It is the	erefore		hat these	two cla	sses can	be separa	s in being ted and a c	combined
Indicator species:	-											
GHC (BioHab):	Sea +	coastal in	dentation	ıs, but as	a lands	scape clas	s it will ł	oe identi	fied befo	ore the GF	IC key.	
Field identification:					e inden	tations, bu	ut it only	present	in the m	arine or ti	dal areas a	and not
Occurrence:		bly some also be in		large ur	nits, but	the quest	ion rema	ins over	whethe	r some sm	all to med	lium unit
Direct threats:	Urban	ization ar	d polluti	on.								
Climate change:	Only i	f sea leve	l raises s	ignifican	tly.							
Succession:	Unlike	ely unless	extensiv	e sedime	entation	occurs.						
Countries:		ria, Denn 1 Kingdoi		nia, Finl	and, Fr	ance, Ger	many, G	reece, Ir	eland, It	aly, Malta	, Spain, S [.]	weden,
Distribution (sites):	aln	BOR	NEM	ATN	als	CON	ATC	pan	LUS	mdm	mdn	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC: Annex I:		Sea and o - Reefs	cean									
Mapping rules:	Marin	e only.										
Indicator species:	-											
GHC (BioHab):	Sea or	Tidal or	Sea / Tid	al.								
Field identification:	-											
Occurrence:	-											
Direct threats:	-											
Climate change:	-											
Succession:	-											
Countries:						ance, Ger ed Kingdo		reece, Ir	eland, It	aly, Latvia	a, Norway	,
Distribution (sites):	aln	BOR	NEM	ATN	als	CON	ATC	pan	LUS	MDM	MDN	MDS
Distribution	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC: **523** - Sea and ocean

Annex I: **1180** - Submarine structures made by leaking gases

Mapping Marine only.

rules: Indicator species:	-											
GHC (BioHab):	Sea.											
Field identification:	-											
Occurrence:	-											
Direct threats:	: -											
Climate change:	-											
Succession:	-											
Countries:												
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

Annex I: 1210 - Annual vegetation of drift lines

Mapping rules:	Lusitar (North Coasta cliffs, p	nian / Me / Mediter l GIS line presence	diterranea rranean S e but disco	an. outh but ontinuou as sand i	discont is and li f possib	inuous ar kely to be le and ad	nd only p e absent : dition of	orobabili from ma	stic. ny coast	ntic North lines espe er mark w	cially those	se with
Indicator species:	Cakile	maritima	, salsola l	kali, Gla	ucium f	lavum, M	latthiola	sinuata.				
GHC (BioHab):	Leafy l	nemicryp	tophytes /	Ceaspit	tose hen	nicryptop	hytes, sa	line + sa	and or gr	avel + coa	ıst.	
Field identification:	Very re	estricted	often degi	raded.								
Occurrence:	Fragme	ented disc	continues	line dep	endent	upon loca	l coastal	conditi	on.			
Direct threats:	Change	e in depos	sition patt	terns.								
Climate change:	Local p	patterns p	redomina	te - unli	kely to l	oe an imp	ortant fa	ctor.				
Succession:										to Mid ph t anyway.		es + Tall
Countries:			ark, Estor nia, Slove						eland, Ita	aly, Latvia	ı, Malta, P	oland,
Distribution (sites):	aln	BOR	NEM	ATN	als	CON	ATC	pan	LUS	mdm	MDN	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC: **331** - Beaches, sand, dunes

Annex I: **1220** - Perennial vegetation of stony banks

Mapping rules:	Coasta Probab be che	real / Nemoral / Atlantic Central / Atlantic North coastal mask 1 km. Discontinuous. astal only. bably included here although it is not sandy but pebbles. Of restricted localised occurrence and could checked by looking at well known examples eg Chesil Beach and Dungeness. astal mask plus shingle if available.												
Indicator species:	Cramb	e maritin	na, Crithr	num ma	ritimum									
GHC (BioHab):	Shrubł	oy chama	ephytes s	aline + p	bebbles.									
Field identification:	Could	be straig	htforward	l but a ni	umber o	f transitio	ons are m	nentione	d which	could lead	d to probl	ems.		
Occurrence:	Often	n fragmented but could be in large pattern locally.												
Direct threats:	Stone	e extraction / urbanization.												
Climate change:	Could	d come drying out to the extent that some species die out.												
Succession:		to Ceaspitose hemicryptophytes and then to non saline Shrubby chamaephytes, Low phanerophytes urther colonization if not too exposed.												
Countries:	Denma	urther colonization if not too exposed. ark, Estonia, Finland, France, Germany, Ireland, Latvia, Sweden, United Kingdom.												
Distribution (sites):	aln	BOR	NEM	ATN	als	CON	ATC	pan	lus	mdm	mdn	mds		
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds		
CLC: Annex I:		· · ·	sand, dun ed sea clif		Atlanti	c and Bal	ltic coast	S						
Mapping rules:			al / Atlan rules) + c							ian / Med	iterranear	n North		
Indicator species:	Brassi	ca olerac	ea, Cochl	earia off	icinalis,	Aspleniu	ım marir	um, Inu	la crithr	noides.				
GHC (BioHab):			icryptopl Evergree								ytes local	ly Shrubby		
Field identification:	Straigh	ntforward	l as long a	as region	al distri	bution m	aintained	l and the	e height	of cliffs.				
Occurrence:	Discor	ntinues –	but many	long se	ction int	erspersed	l because	e of bays	s / sand l	oanks.				
Direct threats:	Urbani	isation ot	herwise p	orotected	, becaus	e of isola	ation.							
Climate change:	Limite	d impact	– change	s in bala	nce of s	pecies.								
Succession:	Locall	y shrubs	could col	onize, bi	ut only i	n protect	ed locati	ons.						
Countries:		ark, Estoi				•			and, Por	tugal, Spa	in, Swede	n, United		
Distribution (sites):	aln	-												
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds		

Annex I: **1240** - Vegetated sea cliffs of the Mediterranean coasts with endemic Limonium spp.

Mapping rules:		Mediterranean North / Mediterranean South. Coastal mask 100 m + rocky – accuracy depends on Limonium spp.											
Indicator species:	Crithn	thmum maritimum, Asplenium marinum, Daucus carota ssp azorica. afy hemicryptophytes on Leafy hemicryptophytes / Ceaspitose hemicryptophytes or Shrubby											
GHC (BioHab):	2	21	otophytes + coastal		2	21 1 2		1			or Shrubby	4	
Field identification:		ludes rocky shores as well as cliffs so rather variable – also depends on how strictly the presence of demic Limonium species is applied.											
Occurrence:	Some	me long sections but often fragmented and discontinuous.											
Direct threats	: Urban	rbanization, but usually protected because of isolation.											
Climate change:	Limite	ed impact	, except t	o chang	e the bal	ance in s	pecies.						
Succession:	High t	emperatu	ires and in	nherent	drought	probably	restrict	colonizat	tion.				
Countries:	Bulgar	ria, Franc	e, Greece	e, Italy, I	Malta, P	ortugal, S	Slovenia	, Spain.					
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	MDM	MDN	MDS	
Distribution (Bunce):	aln	aln bor nem atn als con atc pan lus mdm mdn mds											

Annex I:	1250 -	Vegetate	ed sea cli	ffs with	endemic	flora of	the Mac	aronesiar	n coasts			
Mapping rules:	Macaro	onesia or	ıly.									
Indicator species:	Crithm	um mari	timum, I	imoniur	n spp							
GHC (BioHab):	-											
Field identification:	-											
Occurrence:	-											
Direct threats:	-											
Climate change:	-											
Succession:	-											
Countries:												
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC: **421** - Salt marshes

Annex I: 1310 - Salicornia and other annuals colonising mud and sand

Mapping rules:	Atlantic North / Atlantic Central / Continental / Lusitanian / Mediterranean North / Mediterranean South / km coastal marsh + (bare mud if possible).
Indicator species:	Salicornia spp, Suaeda maritima, Sagina maritima, Sagina nodosa, Cochlearia danica.
GHC	Therophytes or Leafy hemicryptophytes / Therophytes or Leafy hemicryptophytes / Ceaspitose

(BioHab):	hemici	nemicryptophytes or Shrubby chamaephytes high salinity.											
Field identification:	Starigh	aright forward except for areas which have below 30% vegetated cover.											
Occurrence:	Will o	ll occur in large units but also in small patches between mature salt marshes.											
Direct threats:	Urbani	banisation, cutting off from the sea.											
Climate change:	Only c	y changes of sea level likely to be important.											
Succession:	Slow b	out could	be Shrub	by cham	aephyte	es to Low	phanero	phytes it	f siltatior	n takes pla	ce.		
Countries:	U	, U	,	,	· ·	rance, Gei ia, Spain,		,	,	taly, Latvi n.	a, Malta,		
Distribution (sites):	aln	bor	NEM	ATN	als	CON	ATC	pan	LUS	mdm	MDN	MDS	
Distribution (Bunce):	aln	bor	NEM	ATN	als	CON	ATC	pan	LUS	MDM	MDN	mds	

CLC:	421 - 5	421 - Salt marshes											
Annex I:	1320 -	Spartina	swards (Spartinic	on mari	timae)							
Mapping rules:	Atlant	ic North	/ Atlantic	Central	+ coast	al mask 1	km.						
Indicator species:	Spartir	artina maritima.											
GHC (BioHab):	Ceaspi	aspitose hemicryptophytes + spartina maritimae coverage > 30% SPV < 70% , otherwise SPV / BAR.											
Field identification:	Straigh	aightforward although gradient under salt marsh development after initial colonization.											
Occurrence:	Mainly	ainly in large patches but also in small fragments.											
Direct threats:	Enclos	sure from	sea and	conversio	on in to	agricultu	ire.						
Climate change:	Chang	e in sea l	evel coul	d lead to	eventu	al loss.							
Succession:										inues and ng period			
Countries:	Belgiu Kingd		nark, Frai	nce, Gern	nany, Ir	eland, Ita	aly, Nethe	erlands,	Portugal	Slovenia	, Spain, U	nited	
Distribution (sites):	aln												
Distribution (Bunce):	aln	bor	nem	ATN	als	con	ATC	pan	LUS	MDM	MDN	mds	

CLC: Annex I:	421 - Salt marshes1330 - Atlantic salt meadows (Glauco-Puccinellietalia maritimae)
Mapping rules:	Atlantic North / Atlantic Central / BOS / Nemoral / Continental + coastal marsh + saline soils.
Indicator species:	Spergularia marina, Potentilla anserina.
GHC (BioHab):	Ceaspitose hemicryptophytes or Ceaspitose hemicryptophytes / Leafy hemicryptophytes strongly saline.

Ecochange

Field identification:	Contains quite a wide range of different salt marsh associations could be broadly interpreted.												
Occurrence:	Often in identifie	ten in large units but can also be in small patches + linear strips. The main areas will therefore be entified.											
Direct threats:	Urbaniz	rbanization + enclosure from sea.											
Climate change:	Change	es in sea l	evel coul	d alter b	alance	between s	pecies.						
Succession:	-					Shrubby Forest ph	-	•	0) ==> I	Low phan	erophytes	10 Mid	
Countries:	Belgiur Kingdo	,	ark, Franc	ce, Gern	nany, Ir	eland, Ne	therlands	s, Polano	d, Portug	al, Spain	, Sweden,	United	
Distribution (sites):	aln	bor	NEM	ATN	als	CON	ATC	pan	LUS	mdm	mdn	mds	
Distribution (Bunce):	aln	bor	NEM	ATN	als	CON	ATC	pan	LUS	mdm	mdn	mds	

CLC: Annex I:		11 - Inland marshes340 - Inland salt meadows											
Mapping rules:	Too sma	all and fr	agmented	l to pred	ict unles	ss the dis	tribution	of inlan	d saline	soils area	s is availa	ble.	
Indicator species:	Aster tri	ipolium,	Atriplex	hastata,	Puccine	llia dista	ns, Salic	ornia spr	o. Sperg	ularia salir	na.		
GHC (BioHab):	-	ose hemi v saline s	•••••	ytes or C	Ceaspitos	se hemic	ryptophy	rtes / Lea	afy hem	icryptophy	rtes + moi	st	
Field identification:	Gradien	radient with slightly salty areas leads to difficulties.											
Occurrence:	Occurre	ent in sma	all disper	sed patel	hes.								
Direct threats:	Gradual	loss of s	salt and c	onversio	n to agr	iculture.							
Climate change:	Could n	naintain	the salt le	vel and	maintair	n the clas	s.						
Succession:	Depend 10.	s on loss	of salt bu	ut Shrub	by cham	aephytes	s 10 Low	phanero	ophytes	10 maybe	Mid phan	erophytes	
Countries:	Bulgaria	a, Czech	Republic	, Denma	ırk, Fran	nce, Gern	hany, Ita	ly, Polar	nd, Slov	akia, Unite	ed Kingdo	om.	
Distribution (sites):	aln	bor	nem	ATN	als	CON	atc	PAN	lus	mdm	mdn	mds	
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds	

CLC: 421 - Salt marshes

Annex I: 1410 - Mediterranean salt meadows (Juncetalia maritimi)

Mapping
rules:Lusitanian (?), Mediterranean North / Mediterranean South, coastal marsh < 1 km. Inland only possible
on saline soils.Indicator
species:Juncus maritimus, Aster tripolium.GHC
(BioHab):Ceaspitose hemicryptophytes / Leafy hemicryptophytes saline , also Shrubby chamaephytes saline.FieldInland well-defined clear cut, but transitions with low shores and also intergrades with salt marshes on

identification: Occurrence:			land large	er patche	s often l	inear by	coast.					
Direct threats:	-		-	-		•		nization.				
Climate change:	Could	cause di	rying out	and loss	of speci	ies.						
Succession:										ose hemicr 10 probab		
Countries:	Bulga	ria, Fran	ce, Greec	e, Irelan	d, Italy,	Malta, P	ortugal, R	lomania	, Sloveni	a, Spain.		
Distribution (sites):	aln	bor	nem	atn	als	con	ATC	pan	LUS	MDM	MDN	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:	421 - 3	Salt mars	shes									
Annex I:	1420 -	Mediter	rranean ar	nd therm	o-Atlan	tic halopl	nilous scr	ubs (Sar	cocornet	tea frutico	si)	
Mapping rules:	Lusita	nian + N	ledit. Nor	th + Me	dit. Sou	th + Mea	n high wa	ater mar	k + Salin	e muds.		
Indicator species:	Sarcoo	cornetea	fruticosi,	Inula cri	itmoides	s, Sarcoco	ornia pere	ennis.				
GHC (BioHab):	Shrub	by cham	aephytes	/ Evergre	een or L	ow phan	erophytes	/ Everg	reen + sa	aline soils	+ indicate	or species.
Field identification:	Straig	ht forwa	rd.									
Occurrence:	Locall	y possib	le some la	arge area	is, but o	ften smal	l patches	of linea	r feature	s.		
Direct threats:	Urban	ization a	nd leechi	ng out of	f salt.							
Climate change:	Level	rise may	inundate	this typ	e of hab	itat.						
Succession:	Unlike	ely in pre	esent circu	umstance	es becau	se of hig	h salinity.					
Countries:	France	e, Greece	e, Ireland,	Italy, M	lalta, Po	rtugal, Sl	lovenia, S	pain, U	nited Kir	ngdom.		
Distribution (sites):	aln	bor	nem	atn	als	con	ATC	pan	LUS	mdm	MDN	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC:	421 - Salt marshes
Annex I:	1430 - Halo-nitrophilous scrubs (Pegano-Salsoletea)
Mapping rules:	Probably only Medit. South, but otherwise impossible to map because of requirement to access nitrophilous status. Indicators maybe available.
Indicator species:	Peganum harmala, Atriplex halimus, Atriplex glauca.
GHC (BioHab):	Low phanerophytes / Evergreen or Mid phanerophytes / Evergreen + dry eutropic + indicators.
Field identification:	Probably straight forward with experience.
Occurrence:	Probably in small patches, but difficult without expert knowledge.
Direct threats:	Conversion to green house arigulture.
Climate	May only alter balance of species to more xeric assemblies.

change:												
Succession:	Unlike	ely, beca	use of hig	gh salinit	y.							
Countries:	France	e, Greece	, Italy, Po	ortugal, S	Spain.							
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	MDN	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC: Annex I:		alt marsh Mediterra	les anean salt	steppes	(Limon	ietalia)						
Mapping rules:	No rule	s yet.										
Indicator species:	Limoni	um spp.,	Lygeum	spartum,	Salicor	nia patula	1.					
GHC (BioHab):	-											
Field identification:	-											
Occurrence:	-											
Direct threats:	-											
Climate change:	-											
Succession:	-											
Countries:	France,	Greece,	Italy, Ma	lta, Portu	igal, Spa	ain.						
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	MDN	
Distribution (Bunce):	aln	bor	nem	atn	als	con	ATC	pan	LUS	MDM	MDN	

Annex I: 1610 - Baltic esker islands with sandy, rocky and shingle beach vegetation and sublittoral vegetation

Mapping rules:	his is a landscape class but mainly belongs here but also 332 and 423 a re also included. Best solution a mask of Baltic islets separate from CLC.											
Indicator species:	lluna vulgaris, Empetrum nigrum, Honkenya peploides, Juniperus communis.											
GHC (BioHab):	V / Terrestrial and / or Therophytes and / or Leafy hemicryptophytes and / or Ceaspitose nicryptophytes / Leafy hemicryptophytes.											
Field identification:	Identifiable as a landscape type clear description required.											
Occurrence:	Probably quite large units.											
Direct threats:	Urbanisation.											
Climate change:	Sea level rise.											
Succession:	-											
Countries:	Finland, Sweden.											
Distribution (sites):	aln bor nem atn als con atc pan lus mdm mdn mds											

MDS

MDS

Distribution (Bunce):	aln	BOR	NEM	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:	331 - I	Beaches,	sand, dun	ies								
Annex I:	1620 -	Boreal b	altic islet	s and si	nall isla	nds						
Mapping rules:	Needs	to be sep	parated fro	o 1610 l	by rocky	coasts ot	herwise	distribut	ion the	same.		
Indicator species:	Agrost	tis stoloni	ifera, Alli	um sch	oenopra	sum, Coc	hleria da	anica, Ju	niperus	communis	, Silene v	iscosa.
GHC (BioHab):	Needs	clear lan	dscape de	escriptio	on in the	landscap	e.					
Field dentification:	Clear i	if adequa	te descrip	otion pro	ovided o	f the key.						
Occurrence: Direct threats:		• •	large whi	le prese	ent.							
Climate change:	Sea lev	vel rise.										
Succession:	-											
Countries:	Estoni	a, Finland	d, Sweder	n.								
Distribution (sites):	aln	BOR	NEM	atn	als	CON	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	aln	BOR	NEM	atn	als	CON	atc	pan	lus	mdm	mdn	mds
CLC:	331 - 1	Beaches,	sand, dun	ies								
Annex I:	1640 -	Boreal E	Baltic sand	dy beac	hes with	perennia	l vegeta	tion				
Mapping rules:	Coasta	al beaches	s on the F	ìinnish a	and Balt	ic coasts.						
Indicator species:	Ammo	ophila are	enaria, Ati	riplex li	ttoralis,	Cakile m	aritima.					
GHC (BioHab):	-											
Field dentification:	-											
Occurrence:	-											
Direct threats:	-											
Climate change:	-											
Succession:	-											
Countries:	Estoni		d, Latvia,	Swede	n.							
	aln	BOR	NEM	atn	als	CON	atc	pan	lus	mdm	mdn	mds
Distribution (sites):	am											

Annex I:	2110 -	Embryon	nic shiftir	ng dunes										
Mapping rules:	Coasta Boreal South.		al / Atlan	tic Nortl	n / Atlar	ntic Centr	al / Lusit	tanian / I	Mediterr	anean No	rth / Medi	terranean		
Indicator species:	Elymu	ymus farctus, Pancratium maritimum.												
GHC (BioHab):	-													
Field														
identification:	-													
Occurrence:	-													
Direct threats:	-													
Climate change:	-													
Succession:	-													
Countries:		ium, Bulgaria, Denmark, Estonia, Finland, France, Germany, Greece, Ireland, Italy, Latvia, ania, Malta, Netherlands, Poland, Portugal, Romania, Spain, Sweden, United Kingdom.												
Distribution (sites):	aln	BOR	NEM	ATN	als	CON	ATC	pan	LUS	mdm	MDN	MDS		
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds		
Annex I: Mapping rules:	All coa predict Coasta	asts with ion will t l only.	dunes bu therefore	t a band be unrel	of varia iable.		-maybe	not wide	enough	to be ma	pped by C rth / Medi			
Indicator species:		phila are	naria, Eu	phorbia	paralias									
GHC (BioHab):	-													
Field identification:	-													
Occurrence:	-													
Direct threats:	-													
Climate	-													
change: Succession:	_													
Countries:											taly, Latvia	1,		
Distribution	aln	Lithuania, Netherlands, Poland, Portugal, Spain, Sweden, United Kingdom. aln BOR NEM ATN als CON ATC pan LUS mdm MDN MDS												
(sites):		~						r			,			
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds		

Annex I:	2130	- Fixed c	oastal dun	es with l	herbace	ous veget	ation (gr	ey dune	s)			
Mapping rules:	North Coast	, Atlantic al only. Il / Nemo	c coast onl	у,.					-		outh / Med orth / Medi	literranean terranean
Indicator species:	Genti	tiana campestris, Ononis repens, Carex arenaria, Salix repens.										
GHC (BioHab):	-											
Field identification:	-											
Occurrence:	-											
Direct threats:	-											
Climate change:	-											
Succession:	-											
Countries:			aria, Denr Poland, Por								via, Lithua	nia,
Distribution (sites):	aln	bor	NEM	ATN	als	CON	ATC	pan	LUS	mdm	MDN	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:	331 -	Beaches,	, sand, dun	ies								
Annex I:	2140	- Decalci	ified fixed	dunes w	vith Emp	petrum nig	grum					

Annex I:	2140 - Decalcified	fixed dunes with	Empetrum nigrum
----------	--------------------	------------------	-----------------

Mapping rules:		2				2	1			ystems wh ndicative		o small to
Indicator species:	Carex	arenaria,	Empetrui	n nigrur	n.							
GHC (BioHab):	-											
Field identification:	-											
Occurrence:	-											
Direct threats:	: -											
Climate change:	-											
Succession:	-											
Countries:	Denma	ırk, Estor	nia, Finlar	nd, Gern	nany, Ire	eland, Lat	via, Net	herlands	, Poland	, Sweden,	United K	ingdom.
Distribution (sites):	aln	BOR	NEM	ATN	als	CON	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

2150 - Atlantic decalcified fixed dunes (Calluno-Ulicetea) Annex I:

Mapping rules:	As 214	40 but or	ly Atlant	ic Centra	l / Atla	ntic Nort	h in Franc	ce / Belg	gium and	l Britain.		
Indicator species:	Callun	a vulgar	is, Carex	arenaria.								
GHC (BioHab):	-											
Field identification:	: -											
Occurrence:	-											
Direct threats	: -											
Climate change:	-											
Succession:	-											
Countries:	France	e, Germa	ny, Irelan	d, Nethe	rlands, I	Portugal,	Spain, U	nited Ki	ngdom.			
Distribution (sites):	aln	bor	nem	ATN	als	con	ATC	pan	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC:	321	(231) -	Natural	grasslar	nds (Pastures)

Annex I: 21A0 - Machairs (* in Ireland)

Mapping This class is a landscape unit as it includes complexes of other recognised habitats. The separation of rules:
Irish machairs as a priority habitat from Scottish examples is historical.
Whilst machair is mainly dunes it also includes cultivated land, grassland, rock and even small groups of buildings and salt marsh intergrades with dune. Romeo et al comment that it can also include 242
Complex cultivation patterns and 211 Non-irrigated arable land and also possibly 321 natural grasslands. As with several other classes it would be useful to examine examples of specific sites and check what has been included. West coast of Ireland and Scotland Atlantic North and Atlantic central plus dunes although not all dunes are within Machair.

Indicator species:	-													
GHC (BioHab):		entifiable from location and local knowledge as it is landscape complex / includeg grasslands, herb rich isslands, dunes, salt marshes and small arable plots and crofts.												
Field identification:	1	os available of Irish sites and possibly Scottish-problems will be in drawing inland boundaries. mer are Priority the latter not.												
Occurrence:	Often	ten present as quite large units-small patches not present as complexes required.												
Direct threats:	: Agricu	gricultural fragmentation and decline of traditional farm practices.												
Climate change:	Adjace	Adjacent to Atlantic therefore buffered against change.												
Succession:	Depen	ds on see	d availab	ility but	could s	hift to srr	ub classe	s if graz	ing stop	os or reduc	es.			
Countries:	Ireland	l, United	Kingdom	1.										
Distribution (sites):	aln	bor	nem	ATN	als	con	ATC	pan	lus	mdm	mdn	mds		
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds		

CLC: **331** - Beaches, sand, dunes

Annex I: 2210 - Crucianellion maritimae fixed beach dunes

Mapping rules:		ıl only. erranean	North / N	/lediterra	inean So	outh.						
Indicator species:	Crucia	inella ma	aritima, E	phedra d	istachya	ı, Silene ı	nicaeensi	is.				
GHC (BioHab):	-											
Field identification:	-											
Occurrence:	-											
Direct threats:	: -											
Climate change:	-											
Succession:	-											
Countries:	France	e, Italy, N	Malta, Spa	ain.								
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	MDN	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

Annex I: 2220 - Dunes with Euphorbia terra	cina
---	------

Mapping rules:	Coasta	2	North / N	laditarra	noon So	uth						
Indicator species:			acina, Epl				caeensis					
GHC (BioHab):	-											
Field identification:	-											
Occurrence:	-											
Direct threats:	-											
Climate change:	-											
Succession:	-											
Countries:	Greece	e, Malta.										
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC:	321 (231) - Natural grasslands (Pastures)
Annex I:	2230 - Malcolmietalia dune grasslands

Mapping rules:	Coastal only. ? Mediterranean South?. + sand dunes -only possible to indicate region.
Indicator species:	Malcolmia lacera, Anthyllis hamosa.

GHC (BioHab):	Leafy	hemicry	ptophyte	/ Therop	hyte + c	oastall d	unes + lo	ocal knov	vledge -	+ indicator	species.	
Field identification:	Likely	to be we	ell define	d but ne	eds more	e details	of charac	eter.				
Occurrence:	Probal	ly small j	patches a	nd also l	ikely to	be rare.						
Direct threats:	Urban	isation.										
Climate change:	No inf	formation	1.									
Succession:	No inf	formation	1.									
Countries:	France	e, Greece	, Italy, Po	ortugal,	Spain.							
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	MDN	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:	321 (2	2 31) - Na	tural gras	slands (Pastures)						

Annex I:	2240 -	Brachy	podietalia	dune gr	asslands	with anr	nuals					
Mapping rules:		erranean	North / N ine potent			outh. + co	astal du	nes + cale	careous	soils but f	ragmented	and
Indicator species:	Brachy	podium	spp									
GHC (BioHab):	Caespi	tose hen	nicryptop	hytes / T	herophy	vtes + coa	astal dne	s + furthe	er exper	t knowledg	ge.	
Field identification:	Depen	ds on ho	w welll d	escribed	the clas	s is in th	e phytos	ociologic	al litera	ture.		
Occurrence:	Probab	oly fragn	nented an	d localis	ed.							
Direct threats:	Urbani	isation, g	grazing.									
Climate change:	Alread	y xeropl	nilous.									
Succession:	Unlike	ly.										
Countries:	France	, Italy, S	Spain.									
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	MDN	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

Annex I: 2250 - Coastal dunes with Juniperus spp.

Mapping rules:	LCC322, Mediterranean North / Mediterranean South but only Iberia. Plus coastal mask of 500m and / or adjacent to dunes 331. Romeo also comment that it could also be within Coniferous forest 312 but this is likely to be mostly 2270.
Indicator species:	Juniperus turbinata spp. Turbinata, J. macrocarpa, J. navicularis, J. communis, J. oxycedrus.
GHC (BioHab):	-

Field	-											
identification:												
Occurrence:	-											
Direct threats:	-											
Climate change:	-											
Succession:	_											
Countries:	Denm	ark Fran	ce, Greec	e Italy	Portugal	Snain	United I	Cingdom				
Distribution	aln	bor	nem	ATN	als	con	atc	pan	lus	mdm	MDN	MDS
(sites):	cutt	001	nem		cris	0011	uic	Pur	1115	mann		1120
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:	323 (3	24) - Scl	erophyllo	ous vege	tation (T	ransitio	nal wood	land-scru	ıb)			
Annex I:	2260 -	Cisto-La	avendulet	talia dun	e sclerop	hyllous	scrubs					
Mapping rules:	232 M 331.	lediterrar	iean Nort	h / Medi	iterranea	n South	plus coa	stal mask	c of 500	m and / or	adjacent to	o dunes
Indicator species:	-											
GHC (BioHab):		haneropl knowled		vergreen	or Shrub	by chan	naephyte	s / Everg	reen + o	dry sandy	soils + key	species
Field identification:	Inadec	juate info	ormation.									
Occurrence:	Prbabl	oly in sm	all patche	es.								
Direct threats:	Urban	isation, f	ire.									
Climate change:	Could	be threat	thened by	v increas	ed droug	ht.						
Succession:	Probal	oly stable	e.									
Countries:	France	e, Greece	, Italy, Po	ortugal, S	Spain.							
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	MDN	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:	312 (3	9 13) - Coi	niferous f	forest (N	lixed for	est)						
Annex I:			l dunes w				nus pina	ster				
Mapping rules:			ins / Med nus pinas		plus coa	astal ma	sk of 100	00 m and	/ or adj	acent to du	ines 331 +	Pinus
Indicator species:	-		nus pinas									
GHC (BioHab):			phytes / C and dunes		+ Pinus	pinea30	-100% ai	nd or Pin	us pinas	ster 30-100	0% + long	
Field	C4	h + f =	J 1	-1 :-			21	ahliat - 1				

Field Straightforward but problem is with definition of long established.

Occurrence: Usually extensive stands where present.

Direct threats: Fire,urbanization,felling.

Climate Close to coast so buffered.

change:												
Succession:	Stable.											
Countries:	France	, Greece,	Italy, Po	ortugal, S	Spain.							
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	LUS	mdm	MDN	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:	322 - N	Aoors and	d heath l	ands								
Annex I:	2310 -	Dry sand	l heaths	with Call	una anc	l Genista						
Mapping rules:	within system	the 25 ha	a unit. Ex al / Nem	camples i	need to	be checke	ed. May	include i	nland du	ines as we	nto dune sy ell so all du in Contine	ine
Indicator species:	Callun	a vulgari	s, Genist	a anglica	ι.							
GHC (BioHab):	Low p	haneroph	ytes / Ev	vergreen	+ moist	sands + l	key indic	ators + e	expert kn	owledge.		
Field identification:	•	ides with										
Occurrence:		sed, prob	•	-		• •						
Direct threats:	Overgi	azıng, ur	banizatio	on, cleara	ance for	agricultu	re.					
Climate	Buffer			C								
change:	Dunor	ed by adj	acency c	of ocean.								
change: Succession:	Depen		-		inerophy	ytes / 10 d	only Tall	phanero	ophytes /	Forest ph	anerophyt	es if
-	Depen Betula	ds on see	d source	Mid pha			only Tall	phanero	ophytes /	Forest ph	anerophyt	es if
Succession:	Depen Betula	ds on see nearby.	d source	Mid pha			only Tall ATC	phanero pan	pphytes / lus	Forest ph mdm	nanerophyt mdn	es if mds
Succession: Countries: Distribution	Depend Betula Belgiu	ds on see nearby. m, Denm	d source hark, Ger	Mid pha many, N	etherlan	nds.	-	-		-		
Succession: Countries: Distribution (sites): Distribution	Depend Betula Belgiu aln aln	ds on see nearby. m, Denm <i>bor</i>	d source hark, Ger <i>nem</i> nem	Mid pha many, N ATN atn	etherlan als	nds. CON	ATC	pan	lus	mdm	mdn	mds
Succession: Countries: Distribution (sites): Distribution (Bunce):	Depend Betula Belgiu aln aln 322 - N	ds on see nearby. m, Denm <i>bor</i> <i>bor</i>	d source nark, Ger <i>nem</i> <i>nem</i> d heath la	Mid pha many, N ATN <i>atn</i> ands	etherlan als als	nds. CON	ATC atc	pan pan	lus	mdm	mdn	mds
Succession: Countries: Distribution (sites): Distribution (Bunce): CLC:	Depend Betula Belgiu aln 322 - N 2320 - Romeco within system to be in 4010. Alpine British	ds on see nearby. m, Denm <i>bor</i> <i>bor</i> Moors and Dry sand o suggests the 25 ha s in Bore ncluded h	d source nark, Ger <i>nem</i> <i>nem</i> d heath la d heath la d heaths s 322 but a unit. Ex cal / Nem nere. elow 700 se only w	Mid pha many, N ATN atn ands with Call t many an coral / At poral / At	etherlan als als una and reas wil need to lantic N tic North km of c	ds. CON con l Empetru l be limita be checke lorth / Atl h below 9	ATC atc um nigrum ed in extend antic Ce	<i>pan</i> <i>pan</i> m ent and r include i ntral but	<i>lus</i> <i>lus</i> may be in inland du probabl	mdm mdm ncluded in unes as we y so rare	mdn	<i>mds</i> <i>mds</i> <i>wstems</i> <i>une</i> <i>ntal as not</i>
Succession: Countries: Distribution (sites): Distribution (Bunce): CLC: Annex I: Mapping	Depend Betula Belgiu aln 322 - N 2320 - Romeo within system to be in 4010. Alpine British Acid p	ds on see nearby. m, Denm <i>bor</i> <i>bor</i> Moors and Dry sand o suggest: the 25 ha s in Bore ncluded h North be otherwis	d source nark, Ger nem nem d heath la d heath la d heath so s 322 but a unit. Ex cal / Nem nere. elow 700 se only w sols, peat	Mid pha many, N ATN atn ands with Call t many an camples in horal / At m Atlant vithin 80 ts and ran	etherlan als als una and reas wil need to lantic N tic North km of c nkers.	ds. CON con l Empetru l be limita be checke lorth / Atl h below 9	ATC atc um nigrum ed in extend antic Ce	<i>pan</i> <i>pan</i> m ent and r include i ntral but	<i>lus</i> <i>lus</i> may be in inland du probabl	mdm mdm ncluded in unes as we y so rare	<i>mdn</i> <i>mdn</i> nto dune sy ell so all du in Contine	<i>mds</i> <i>mds</i> <i>wstems</i> <i>une</i> <i>ntal as not</i>
Succession: Countries: Distribution (sites): Distribution (Bunce): CLC: Annex I: Mapping rules: Indicator	Depend Betula Belgiu aln 322 - N 2320 - Romeco within system to be in 4010. Alpine British Acid p Callun Low pl	ds on see nearby. m, Denm <i>bor</i> <i>bor</i> Moors and Dry sand o suggests the 25 ha s in Bore ncluded h North be otherwis eaty pods a vulgari	d source nark, Ger nem nem d heath la d heat	Mid pha many, N ATN atn ands with Call t many an camples n horal / At poral / At oral / At	etherlan als als una and reas wil need to lantic N tic North km of c nkers. um.	ds. CON <i>con</i> I Empetru I be limito be checko Iorth / At h below 9 coast.	ATC atc atc antic antic Ce 200m and	<i>pan</i> <i>pan</i> m ent and r include i ntral but	lus lus lus inland du probabl	mdm mdm ncluded in mes as we y so rare k!!). Atla	<i>mdn</i> <i>mdn</i> nto dune sy ell so all du in Contine	mds mds

THELT HEAR	Abone	lonmont	or over-gi	razina dr	ainage	or fortilizi	na					
Climate			-	•	-		•					
change:	Regio	n well bu	iffered and	d increas	ed rain	unlikely t	o affect,	<i>,.</i>				
Succession:	Less e no fur	exposed contract ther exce	lrier soils pt in shel	Low pha tered pla	aneroph ces and	ytes 10, N limited b	1id phan y seed a	erophyte vailabilit	es 10, Ta y.	and soil ty all phanero probably n	ophytes 20) probabl
Countries:	Denm	ark, Esto	nia, Finla	nd, Gern	nany, La	atvia, Litł	uania, N	Vetherlar	ds, Swe	eden.		
Distribution (sites):	aln	bor	NEM	ATN	als	CON	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:			tural grass									
Annex I:	2330 -	Inland c	lunes with	n open C	oryneph	norus and	Agrostis	s grasslaı	nds			
Mapping rules:	Inland	l siliceou	tic Centra s.dunes. be mixed			h / Panno	nian / C	ontinenta	al.			
	- F											
Indicator species:		ephorus	canescens	s, Carex a	arenaria	L.						
	Coryn	itose hen					b below.	30% + in	land du	nes + dry	sandy soi	s + expe
species: GHC (BioHab): Field	Coryn Caesp knowl	itose hen edge.		hytes / th	erophyt	tes + scru		30% + in	land du	nes + dry	sandy soi	s + expe
species: GHC (BioHab): Field identification:	Coryn Caesp knowl Proba	itose hen edge.	nicryptopl efined but	hytes / th	erophyt	tes + scru		30% + in	lland du	nes + dry	sandy soi	s + expe
species: GHC (BioHab): Field identification: Occurrence: Direct threats:	Coryn Caesp knowl Proba Rare a	itose hen edge. ly well de ind locali	nicryptopl efined but ised.	hytes / th	erophyt ntergrad	tes + scru		30% + in	land du	nes + dry	sandy soi	s + exper
species: GHC (BioHab): Field identification: Occurrence: Direct threats: Climate	Coryn Caesp knowl Proba Rare a Colon	itose hen edge. ly well d ind locali isation b	nicryptopl efined but ised.	hytes / th t could in nd tree pl	erophyt ntergrad anting.	tes + scru	ub.		land du	nes + dry	sandy soi	s + expe
species: GHC (BioHab): Field identification: Occurrence: Direct threats: Climate change:	Coryn Caesp knowl Proba Rare a Colon Could Deper	itose hen edge. ly well d ind locali isation b put som	nicryptopl efined but ised. y scrub ar e species blation but	hytes / th t could in nd tree pl under pro	herophyt htergrad anting. essure a e coloni	tes + scrui e with scr and chang ized by sc	ub. e compo rub-furt	osition. her infor	mation	required.		-
species: GHC (BioHab): Field identification: Occurrence: Direct threats: Climate change: Succession:	Coryn Caesp knowl Proba Rare a Colon Could Deper Belgin	itose hen edge. ly well d ind locali isation b put som ids on iso im, Czec	nicryptopl efined but ised. y scrub ar e species blation but	hytes / th t could ir nd tree pl under pro t coule b ic, Denm	herophyt htergrad anting. essure a e coloni ark, Est	tes + scru e with scr and chang ized by sc tonia, Fran	ub. e compo rub-furt nce, Ger	osition. her infor	mation			-
species: GHC	Coryn Caesp knowl Proba Rare a Colon Could Deper Belgin	itose hen edge. ly well d ind locali isation b put som ids on iso im, Czec	nicryptopl efined but ised. y scrub ar e species blation but h Republi	hytes / th t could ir nd tree pl under pro t coule b ic, Denm	herophyt htergrad anting. essure a e coloni ark, Est	tes + scru e with scr and chang ized by sc tonia, Fran	ub. e compo rub-furt nce, Ger	osition. her infor	mation	required.		-

CLC:	331 - Beaches, sand, dunes
Annex I:	2340 - Pannonic inland dunes
Mapping rules:	Pannonian. Inland dunes. Related to 6260. Biopress –may be mixed with 321.
Indicator species:	Thymus serpyllum, Cerastrium semidecandrum, Spergularia morisonii, Alyssum montanum spp., Cynodon dactlylon.
GHC (BioHab):	-
Field	-

identification: Occurrence:	_											
Direct threats:	-											
Climate	_											
change:												
Succession: Countries:	- Austri	a Bulga	ria, Hung	arv Rom	nania Sl	ovakia						
Distribution	aln	bor	nem	atn	als	con	atc	PAN	lus	mdm	mdn	mds
(sites):												
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:	512 - 1	Water bo	odies									
Annex I:	3110 -	Oligotro	ophic wat	ers conta	ining ve	ery few m	inerals o	of sandy j	plains (l	Littorellet	alia uniflo	orae)
Mapping rules:			pt Medite d beyond			cid soils b	out from	the bioge	eograph	ic referen	ce list has	probably
Indicator species:	Isoetes	s lacustri	s, Isoetus	echinos	pora, Lo	belia dor	tmanna,	Deschan	npsia se	tacea.		
GHC (BioHab):	-											
Field identification:			d for the v t the degr			nakes it 1	nore diff	icult.				
Occurrence:			n also incl strict vege						tation s	o the class	s probably	covers
Direct threats:	Draina	ige, eutro	ophication	n and niti	rogen de	eposition.						
Climate change:	Suscep	otible to	drying ou	t under h	nigher te	emperatur	es.					
Succession:			atus: Hel								hange rap	idly to
Countries:			nark, Esto al, Russia						aly, Latv	via, Lithu	ania, Neth	erlands,
Distribution (sites):	aln	BOR	NEM	ATN	ALS	CON	ATC	pan	LUS	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:	512 - 1	Water bo	odies									
Annex I:			ophic wat with Isoe		ining ve	ery few m	inerals g	generally	on sand	ly soils of	the West	
Mapping rules:	Lusita	nian / M	EDN belo	ow 1200i	n.							
Indicator species:	Isoetes	s velata,	Isoetes se	etacea, Se	erapias s	spp						
aa												
GHC (BioHab): Field	-											

Occurrence:												
Direct threats:	-											
Climate												
change:	-											
Succession:	-											
Countries:	France	, Italy, P	ortugal, S	Spain.								
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:		Vater bo		asatran	hio stand	ing wate	re with v	agatation	of the	Littorallat	a uniflor	ae and/or
Annex I:		Nanojun		lesotropi	nic stand	ing wate	rs with v	egetation	1 of the	Littorellet	ea unifior	ae and/or
Mapping rules:	/ Alpin 3140 A	e South Ipine No	/ Pannoni	an belov eal / Nei	w 1000m moral be	n, Medite low 3001	rranean r n Atlanti	nountain	is over 7	orth below 00m. ntic North		
Indicator species:	Littore	lla uniflo	ora, Pilula	aria glob	ulifera, J	uncus bu	ılbosus s	sp. Bulb	osus, Sp	arganium	minimum	
GHC (Diallah):	_											
ыонар):												
(BioHab): Field identification:	-											
Field dentification:	-											
Field dentification: Dccurrence:	-											
Field dentification: Occurrence: Direct threats: Climate	-											
Field Identification: Occurrence: Direct threats: Climate change:	-											
Field Identification: Occurrence: Direct threats: Climate change: Succession:	- - - Austria Greece	, Hungai	ry, Ireland	d, Italy, I	Latvia, L	ithuania	, Luxeml	oourg, N		inland, Fra ds, Polanc		
Field Identification: Occurrence: Direct threats: Climate change: Succession: Countries: Distribution	- - - Austria Greece	, Hungai		d, Italy, I	Latvia, L	ithuania	, Luxeml	oourg, N				
Field	- - - Austria Greece Roman	, Hungai ia, Slova	ry, Ireland akia, Slov	d, Italy, I venia, Sp	Latvia, I ain, Swe	Lithuania eden, Uni	, Luxeml ited King	oourg, N gdom.	etherlan	ds, Polanc	l, Portuga	l,
Field dentification: Dccurrence: Direct threats: Climate change: Succession: Countries: Distribution sites): Distribution Bunce):	- - - Austria Greece Roman ALN <i>aln</i> 512 - V	, Hungar iia, Slova BOR <i>bor</i> Vater boo	ry, Ireland akia, Slov NEM <i>nem</i> dies	d, İtaly, J venia, Sp ATN <i>atn</i>	Latvia, I ain, Swe ALS <i>als</i>	Lithuania eden, Uni CON con	, Luxeml ited King ATC <i>atc</i>	pourg, N gdom. PAN <i>pan</i>	etherlan LUS lus	ds, Polanc MDM mdm	l, Portuga MDN mdn	MDS
Field dentification: Dccurrence: Direct threats: Climate hange: Succession: Countries: Distribution Sites): Distribution Bunce):	- - - Austria Greece Roman ALN <i>aln</i> 512 - V	, Hungar iia, Slova BOR <i>bor</i> Vater boo	ry, Ireland akia, Slov NEM <i>nem</i> dies	d, İtaly, J venia, Sp ATN <i>atn</i>	Latvia, I ain, Swe ALS <i>als</i>	Lithuania eden, Uni CON con	, Luxeml ited King ATC <i>atc</i>	pourg, N gdom. PAN <i>pan</i>	etherlan LUS lus	ds, Polanc MDM	l, Portuga MDN mdn	l, MDS
Field dentification: Decurrence: Direct threats: Climate change: Succession: Countries: Distribution sites): Distribution Bunce): CLC: Annex I: Mapping	- - - Austria Greece Roman ALN <i>aln</i> 512 - V 3150 -	, Hungar iia, Slova BOR <i>bor</i> Vater boo Natural	ry, Ireland akia, Slov NEM <i>nem</i> dies eutrophic	d, Italy, J venia, Sp ATN <i>atn</i> e lakes w Nemoral	Latvia, I ain, Swe ALS <i>als</i> ith Magn / Atlanti	Lithuania eden, Uni CON con	, Luxemb ited King ATC <i>atc</i> fon or Hy	pourg, N gdom. PAN pan vdrochari	etherlan LUS <i>lus</i> ition - ty	ds, Polanc MDM mdm	l, Portuga MDN <i>mdn</i> tion	mds
Field dentification: Decurrence: Direct threats: Climate change: Succession: Countries: Distribution (sites): Distribution (Bunce): CLC: Annex I: Mapping rules: Indicator	- - - Austria Greece Roman ALN aln 512 - V 3150 -	, Hungar iia, Slova BOR <i>bor</i> Vater boo Natural North / ental bel	ry, Ireland akia, Slov NEM <i>nem</i> dies eutrophic Boreal / N	d, Italy, J venia, Sp ATN <i>atn</i> lakes w Nemoral Mediter	Latvia, I ain, Swe ALS <i>als</i> ith Magn / Atlanti rranean n	Lithuania eden, Uni CON con nopotami ic North nountain	, Luxemb ited King ATC <i>atc</i> fon or Hy	pourg, N gdom. PAN pan vdrochari	etherlan LUS <i>lus</i> ition - ty	ds, Polanc MDM mdm rpe vegeta	l, Portuga MDN <i>mdn</i> tion	nds
Field dentification: Decurrence: Direct threats: Climate change: Succession: Countries: Distribution (sites): Distribution	- - - Austria Greece Roman ALN aln 512 - V 3150 -	, Hungar iia, Slova BOR <i>bor</i> Vater boo Natural North / ental bel	ry, Ireland akia, Slov NEM <i>nem</i> dies eutrophic Boreal / N ow 700m	d, Italy, J venia, Sp ATN <i>atn</i> lakes w Nemoral Mediter	Latvia, I ain, Swe ALS <i>als</i> ith Magn / Atlanti rranean n	Lithuania eden, Uni CON con nopotami ic North nountain	, Luxemb ited King ATC <i>atc</i> fon or Hy	pourg, N gdom. PAN pan vdrochari	etherlan LUS <i>lus</i> ition - ty	ds, Polanc MDM mdm rpe vegeta	l, Portuga MDN <i>mdn</i> tion	mds

0												
Occurrence: Direct threats:	-											
Climate	-											
change:	-											
Succession:	-											
Countries:	Greece	, Hungar		l, İtaly, I	Latvia, L	ithuania,	Luxemb	ourg, N		inland, Fra ds, Poland		
Distribution (sites):	aln	BOR	NEM	ATN	ALS	CON	ATC	PAN	LUS	MDM	MDN	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:	512 - V	Vater boo	lies									
Annex I:	3160 -	Natural o	lystrophi	c lakes a	nd pond	S						
Mapping rules:			Boreal / N ntal belov		below 4	00m Atla	intic Nor	th / Atla	ntic Cen	tral below	7 500m A	lpine
Indicator species:	Utricul	aria mino	or, Rhync	chospora	alba, Ni	uphar lut	ea, Nuph	ar pumil	a, Nymj	phaea cano	dida.	
GHC (BioHab):	-											
Field	_											
identification:	_											
Occurrence:	-											
Occurrence: Direct threats:	-											
Occurrence: Direct threats: Climate	- -											
Occurrence: Direct threats:	-											
Occurrence: Direct threats: Climate change:	- - Austria Ireland	, Italy, L		huania, 1						rance, Ger llovakia, S		
Occurrence: Direct threats: Climate change: Succession:	- - Austria Ireland	, Italy, L	atvia, Lit	huania, 1								
Occurrence: Direct threats: Climate change: Succession: Countries: Distribution	- Austria Ireland Swede	l, Italy, L n, United	atvia, Lit Kingdor	huania, 1 n.	Netherla	nds, Pola	nd, Portu	ugal, Roi	mania, S	Slovakia, S	slovenia,	Spain,
Occurrence: Direct threats: Climate change: Succession: Countries: Distribution (sites): Distribution	- Austria Ireland Swede ALN <i>aln</i>	l, Italy, L n, United BOR	atvia, Lit Kingdor NEM <i>nem</i>	huania, 1 n. ATN	Netherla ALS	nds, Pola	nd, Portu ATC	ugal, Ron PAN	mania, S LUS	Slovakia, S MDM	Slovenia, solo mdn	Spain, <i>mds</i>
Occurrence: Direct threats: Climate change: Succession: Countries: Distribution (sites): Distribution (Bunce):	- Austria Ireland Swede ALN aln 512 - V	l, Italy, L n, United BOR <i>bor</i> Vater boo	atvia, Lit Kingdor NEM <i>nem</i>	huania, 1 n. ATN <i>atn</i>	ALS als	nds, Pola	nd, Portu ATC	ugal, Ron PAN	mania, S LUS	Slovakia, S MDM	Slovenia, solo mdn	Spain, <i>mds</i>
Occurrence: Direct threats: Climate change: Succession: Countries: Distribution (sites): Distribution (Bunce): CLC:	- Austria Ireland Swede ALN aln 512 - V 3170 -	l, Italy, L n, United BOR <i>bor</i> Water boo Mediterr	atvia, Lit Kingdor NEM <i>nem</i> dies anean ter	huania, M n. ATN <i>atn</i> nporary	Netherla ALS als	nds, Pola CON con	nd, Portu ATC atc	agal, Roi PAN pan	nania, S LUS lus	Slovakia, S MDM	Slovenia, S mdn mdn	Spain, mds mds
Occurrence: Direct threats: Climate change: Succession: Countries: Distribution (sites): Distribution (Bunce): CLC: Annex I: Mapping rules: Indicator species:	- Austria Ireland Swede ALN aln 512 - V 3170 -	l, Italy, L n, United BOR <i>bor</i> Water boo Mediterr	atvia, Lit Kingdor NEM <i>nem</i> dies anean ter	huania, M n. ATN <i>atn</i> nporary	Netherla ALS als	nds, Pola CON con	nd, Portu ATC atc	agal, Roi PAN pan	nania, S LUS lus	Slovakia, S MDM mdm	Slovenia, S mdn mdn	Spain, mds mds
Occurrence: Direct threats: Climate change: Succession: Countries: Distribution (Sites): Distribution (Bunce): CLC: Annex I: Mapping rules: Indicator species: GHC (BioHab):	- Austria Ireland Swede ALN aln 512 - V 3170 -	l, Italy, L n, United BOR <i>bor</i> Water boo Mediterr	atvia, Lit Kingdor NEM <i>nem</i> dies anean ter	huania, M n. ATN <i>atn</i> nporary	Netherla ALS als	nds, Pola CON con	nd, Portu ATC atc	agal, Roi PAN pan	nania, S LUS lus	Slovakia, S MDM mdm	Slovenia, S mdn mdn	Spain, mds mds
Occurrence: Direct threats: Climate change: Succession: Countries: Distribution (sites): Distribution (Bunce): CLC: Annex I: Mapping rules: Indicator species: GHC	- Austria Ireland Swede ALN aln 512 - V 3170 -	l, Italy, L n, United BOR <i>bor</i> Water boo Mediterr	atvia, Lit Kingdor NEM <i>nem</i> dies anean ter	huania, M n. ATN <i>atn</i> nporary	Netherla ALS als	nds, Pola CON con	nd, Portu ATC atc	agal, Roi PAN pan	nania, S LUS lus	Slovakia, S MDM mdm	Slovenia, S mdn mdn	Spain, mds mds

Direct threats: Climate												
change:	-											
Succession:	-											
Countries:			e, Italy, M	lalta, Por	•	pain, Un	ted King	dom.				
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	LUS	MDM	MDN	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:	512 -	Water bo	odies									
Annex I:	3180	- Turloug	ghs									
Mapping rules:	Atlan	tic Centra	al below 2	200m.								
Indicator species:	-											
GHC (BioHab):	-											
Field identification:	-											
Occurrence:	-											
Direct threats:	-											
Climate change:	-											
Succession:	-											
Countries:	Estonia, Germany, Ireland, Slovenia, United Kingdom.											
Distribution (sites):	aln	bor	nem	ATN	als	con	ATC	pan	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

Annex I:	3190 - Lakes of gypsum karst
----------	------------------------------

Mapping rules:	Mediterranean mountains / Mediterranean North below 600m Mediterranean South below100m. Gypsum soils.
Indicator species:	-
GHC (BioHab):	-
Field identification:	-
Occurrence:	-
Direct threats:	-
Climate change:	-
Succession:	-
Countries:	Latvia, Lithuania.

ALTERRACR21_D01.02.02_05JAN09_V01.00

Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC: **512** - Water bodies

Annex I: **31A0** - Transylvanian hot-spring lotus beds

Mapping rules:	Petea	lake Ron	nania onl <u>y</u>	у.								
Indicator species:	-											
GHC (BioHab):	-											
Field identification:	-											
Occurrence:	-											
Direct threats	-											
Climate change:	-											
Succession:	-											
Countries:	Roma	nia.										
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC: **511** - Water courses

Annex I:	3210 -	Fennosc	andian na	atural riv	vers							
Mapping rules:	Digital		al. of large r e present	-	ıs buffer	of 100m	l.					
Indicator species:	-											
GHC (BioHab):	-											
Field identification:	-											
Occurrence:	-											
Direct threats	: -											
Climate change:	-											
Succession:	-											
Countries:	Finland	d, Norwa	iy, Swede	en.								
Distribution (sites):	ALN	BOR	NEM	atn	als	con	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC:	511 - Water courses														
Annex I:	3220 - Alpine rivers and the herbaceous vegetation along their banks														
Mapping rules:	3000m	l.	Boreal ov only, onl [,]		-				-	South / Con	ntinental	1000-			
Indicator species:	-				1		1								
GHC (BioHab):	-														
Field identification:	-														
Occurrence:	-														
Direct threats:	-														
Climate change:	-														
Succession:	-														
Countries:	Austria Sweder		d, France	, Germar	ny, Italy,	Poland,	Portuga	l, Roman	ia, Slov	akia, Slove	enia, Spa	in,			
Distribution (sites):	ALN	BOR	nem	atn	ALS	CON	atc	pan	lus	MDM	mdn	mds			
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds			
CLC:	511 - V	Vater cou	urses												
Annex I:	3230 -	Alpine r	ivers and	their lig	neous ve	egetation	with My	yricaria g	germani	ca					
Mapping rules:	As 322	20 but wi	th distrib	ution of 1	Myricari	a-could	nake the	em mutua	ally exc	lusive.					
Indicator species:	Myrica	aria germ	anica, Sa	lix daph	noides, S	Salix nigi	ricans.								
GHC (BioHab):	-														
Field identification:	-														
Occurrence:	-														
Direct threats:	-														
Climate change:	-														
Succession:	-														
Countries:	Austria	a, Czech	Republic	, Finland	l, France	, Germai	ny, Italy	, Poland,	Roman	ia, Slovaki	a, Slover	nia, Spain.			
Distribution (sites):	aln	bor	nem	atn	ALS	CON	atc	pan	lus	MDM	mdn	mds			
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds			

CLC: **511** - Water courses

Annex I:	3240 -	Alpine	rivers and	i their lig	gneous ve	egetation	with Sa	inx elaea	gnos			
Mapping rules:	As 322	20 but w	ith distrib	oution of	Salix ela	eagnos a	nd othe	r shrubby	v but not	dwarf Sal	ix species	-
Indicator species:	Salix e	elaeagno	s, Salix p	urpurea	ssp. Grac	ilis.						
GHC (BioHab):	-											
Field identification:	-											
Occurrence:	-											
Direct threats:	-											
Climate change:	-											
Succession:	-											
Countries:	Austri	a, France	e, Germai	ıy, Gree	ce, Italy,	Poland, I	Romania	a, Slovak	ia, Slove	nia, Spair	ı.	
Distribution (sites):	aln	bor	nem	atn	ALS	CON	atc	pan	LUS	MDM	MDN	mds
Distribution	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

3240 - Alpine rivers and their ligneous vegetation with Salix elaeagnos Annex I[.]

CLC: 511 - Water courses

Annex I:	3250 - Constantly flowing Mediterranean rivers with Glaucium flavum
Mapping rules:	As 3220 with distribution of Glaucium flavum.

Indicator species:Myricaria germanica, Glaucium flavum.GHC (BioHab):-Field identification:-Field identification:-Occurrence:-Direct threats:-Climate change:-Succession:-Succession:-Distribution (sites):aln bor nem atn als (Bunce):Distribution (Bunce):aln bor nem atn alsDistribution (Bunce):aln bor nem atn alsDistribution (Bunce):aln bor nem atn alsDistribution (Bunce):aln bor nem atn alsDistribution (Bunce):aln bor nem atn alsDistribution (Bunce):aln bor nem atn alsDistribution (Bunce):aln bor nem atn alsDistribution (Bunce):aln bor nem atn alsDistribution (Bunce):aln bor bor nem atn alsDistribution (Bunce):aln bor bor bor bor bor atn atn bor <b< th=""><th>rules:</th><th colspan="13">As 3220 with distribution of Glaucium flavum.</th></b<>	rules:	As 3220 with distribution of Glaucium flavum.												
(BioHab):Image: Constraint of the second		Myrica	ria germa	anica, Gla	ucium f	lavum.								
identification:-Occurrence:-Direct threats:-Climate change:-Succession:-Succession:-France, Greece, Italy, Portugal, SpainDistribution (sites):alnbornemalnalsconatcpanlusMDMMDNMDSDistributionalnbornematnalsconatcpanlusmdmmdnmds		-												
Direct threats:-Climate change:-Succession:-Succession:-Countries:France, Greece, Italy, Portugal, Spain.Distribution (sites):alnbornemalsconatcpanlusMDMMDNMDSDistributionalnbornematnalsconatcpanlusmdmmdnmds		-												
Climate change:-Succession:-Countries:France, Greece, Italy, Portugal, Spain.Distribution (sites):alnbornematnalsconatcpanlusMDMMDNMDSDistribution (sites):alnbornematnalsconatcpanlusmdmmdnmds	Occurrence:	-												
change:Succession:Succession:Countries:France, Greece, Italy, Portugal, Spain.DistributionalnbornematnalsconconatcpanlusMDMMDNMDS(sites):Distributionalnbornematnalsconatcpanlusmdmmdnmds	Direct threats:	-												
Countries:France, Greece, Italy, Portugal, Spain.Distribution (sites):aln bornem atn atn alscon atcpan atclus panMDM MDN MDN MDSDistribution aln bornem atn atn alscon atcpan pan lusmdm mdnmds		-												
DistributionalnbornematnalsconatcpanlusMDMMDNMDS(sites):Distributionalnbornematnalsconatcpanlusmdmmdnmds	Succession:	-												
(sites): Distribution aln bor nem atn als con atc pan lus mdm mdn mds	Countries:	France,	Greece,	Italy, Por	tugal, Sp	oain.								
\mathbf{r}		aln	bor	nem	atn	als	con	atc	pan	lus	MDM	MDN	MDS	
		aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds	

CLC: 511 - Water courses

3260 - Water courses of plain to montane levels with the Ranunculion fluitantis and Callitricho-Annex I: Batrachion vegetation

Mapping Alpine North / Boreal / Nemoral below 600m Atlantic Central / Atlantic North / Lusitanian below 800m Continental / Pannonian / Alpine South below1200 m Mediterranean mountains all Mediterranean North rules:

	over 200 m Mediterranean South over 400 m. Lines of rivers could be used but this class is likely to be rare especially in the Mediterranean. Calcareous rocks would also be used but may be overridden by local conditions. Ranunculus fluitans, Ranunculus aquatilis, Callitriche spp. Zannichellia palustris.														
Indicator species:	Ranun	culus flu	itans, Rar	nunculus	aquatili	s, Callitri	che spp.	Zannich	ellia pa	lustris.					
GHC (BioHab):	-														
Field identification:	-														
Occurrence:	-														
Direct threats:	-														
Climate change:	-														
Succession:	-	Austria Balgium Bulgaria Czach Penublic Denmark Estonia Finland France Cermony Crosse													
Countries:	Hunga	Austria, Belgium, Bulgaria, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, United Kingdom.													
Distribution (sites):	ALN	ovakia, Slovenia, Spain, Sweden, United Kingdom. LN BOR NEM ATN ALS CON ATC PAN LUS MDM MDN MDS													
Distribution (Bunce):	aln	n bor nem atn als con atc pan lus mdm mdn mds													
CLC:	511 - \	Water cou	urses												
Annex I:	3270 -	Rivers w	with mudd	ly banks	with Ch	enopodic	on rubri p	p.p.and E	Bidentio	n p.p. vege	etation				
Mapping rules:	Contin over 20 Lines o Calcar	 3270 - Rivers with muddy banks with Chenopodion rubri p.p. and Bidention p.p. vegetation Alpine North / Boreal / Nemoral below 600m Atlantic Central / Atlantic North / Lusitanian below 800m Continental / Pannonian / Alpine South below1200 Mediterranean mountains all Mediterranean North over 200 m Mediterranean South over 400 m. Lines of rivers could be used but this class is likely to be rare especially in the Mediterranean. Calcareous rocks would also be used but may be overridden by local conditions. As 3260 but with larger rivers. 													
Indicator species:	Cheno	podium r	rubrum, B	Bidens fro	ondosa, I	Polygonu	ım lapatl	nifolium.							
GHC (BioHab):	-														
Field identification:	-														
Occurrence:	-														
Direct threats:	-														
Climate change:	-														
Succession:	-														
Countries:										ermany, H , Slovenia,		eland,			
Distribution (sites):	aln	bor	nem	ATN	ALS	CON	ATC	PAN	LUS	MDM	MDN	MDS			

(sites):							-					
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC: **511** - Water courses

Annex I:	3280 - Constantly flowing Mediterranean rivers with Paspalo-Agrostidion species and hanging curtains of Salix and Populus alba												
Mapping rules:			North / N lus large		inean Sc	outh all.							
Indicator species:	Paspal	um pasp	aloides, (Cyperus	fuscus.								
GHC (BioHab):	-												
Field identification	: -												
Occurrence:	-												
Direct threats	: -												
Climate change:	-												
Succession:	-												
Countries:	France	e, Greece	e, Italy, Po	ortugal, l	Romania	ı, Spain.							
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	MDM	MDN	MDS	
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds	

CLC: Annex I:		511 - Water courses3290 - Intermittently flowing Mediterranean rivers of the Paspalo-Agrostidion												
Mapping rules:			mountair is likely					rth / Med	iterrane	an South a	ll but only	7		
Indicator species:	Polygo	onum am	phibium,	Ranunc	ilus fluit	tans, Pota	amogetor	n natans.						
GHC (BioHab):	-													
Field identification:	-													
Occurrence:	-													
Direct threats:	: -													
Climate change:	-													
Succession:	-													
Countries:	France	e, Greece	, Italy, Po	ortugal, S	Spain.									
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	MDM	MDN	MDS		
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds		

Annex I: 4020 - Temperate Atlantic wet heaths with Erica ciliaris and Erica tetralix

Mapping
rules:Atlantic Central all within 80 km of coast, Lusitanian below 800 m.Podsols / peaty gleys.

Indicator species:	Erica c	Erica ciliaris, Ulex minor var. lusitanicus.												
GHC (BioHab):	Shrubł	oy chama	aephytes /	/Evergre	een + wet	t peat so	ils + jey i	ndicator	rs + expe	rt knowlee	dge.			
Field identification:	Quite	straightfo	orward if	Erica cil	iaris is tł	ne main	indicator.							
Occurrence:	Probab	robably fragmented but locally common.												
Direct threats:	Aband	Abandonment, overgrazing, drainage, fertilization.												
Climate change:		in the south of its range may be influenced by higher temperatures casing drying out. In the north could expand but unlikely as suitable sites unlikely to be available.												
Succession:	phaner	Colonisation: status Shrubby chamaephytes Low phanerophytes 10, Mid phanerophytes 10 Tall phanerophytes 10 Forest phanerophytes 15 dependent upon exposure and soil wetness where the process will be slower.												
Countries:	France	e, Portuga	al, Spain,	United I	Kingdom	l .								
Distribution (sites):	aln	France, Portugal, Spain, United Kingdom. aln bor nem atn ALS con ATC pan LUS MDM MDN MDS												
Distribution (Bunce):	aln bor nem atn ALS con ATC pan LUS MDM MDN mds													

Annex I: 4030 - European dry heaths

Mapping rules:	Alpine North / Boreal below 700 m Nemoral / Continental / Atlantic Central all Atlantic North below 500m Alpine South over 1500 m Mediterranean mountains over 1800 m below 700m Lusitanian below 800 m.
Indicator species:	Caluna vulgaris, Genista anglica, Erica cinerea.
GHC (BioHab):	Low phanerophytes / Evergreen or Shrubby chamaephytes / Evergreen + moist acid soils + wide range of conditions + better definition.
Field identification:	A broad category including many classes that is likely to be open to a wide range of regional interpretations. The use of the term xerophile in the description does not fit well with the associations listed.
Occurrence:	Some extensive areas covering whole landscapes.
Direct threats:	Overgrazing, burning (which may maintain the class) fertilization / ploughing, nitrogen deposition.

Climate Impact likely to be highly variable because of the wide range of conditions covered but soil type may restrict changes to the proportions of species present rather than major shifts.

Succession: Colonisation: status Shrubby chamaephytes / Low phanerophytes depending on altitude ,grazing pressure exposure and burning all of which are likely to affect colonization. Many exposed high altitude locations may go no further than Low phanerophytes or Mid phanerophytes. Otherwise Mid phanerophytes 10 Tall phanerophytes 10 Forest phanerophytes 15.

Countries: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Estonia, Finland, France, Germany, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Netherlands, Poland, Portugal, Romania, Slovakia, Spain, Sweden, United Kingdom. Distribution aln BOR NEM ATN ALS CON ATC PAN LUS MDM **MDN** MDS

(sites): Distribution aln BOR NEM ATN als CON ATC pan LUS mdm mdn mds (Bunce):

CLC: **322** - Moors and heath lands

Annex I: 4040 - Dry Atlantic coastal heaths with Erica vagans

			~			2									
Mapping rules:		Lusitanian / Atlantic Central within 20 km of coast. Podsols.													
Indicator species:	Erica	vagans, U	Jlex euro	paeus.											
GHC (BioHab):	SCeas	Ceaspitose hemicryptophytes / Evergreen + moist acid soils + Erica vagens and other indicators.													
Field identification:	One as	One association only so no problems.													
Occurrence:	Probał	oly small	+ fragm	ented.											
Direct threats:	Draina	ige fertili	ization bu	ut not us	ually gra	zed.									
Climate change:	As for	Drainage fertilization but not usually grazed. As for 4030.													
Succession:	termin	olonisation status: Shrubby chamaephytes Low phanerophytes 10 if Ulex present which can result in a rminated succession otherwise more slowly Mid phanerophytes 10 and dependent upon seed sources otentially and finally Tall phanerophytes 10 but probably not to Forest phanerophytes.													
Countries:	France	e, Spain,	United K	ingdom.											
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	LUS	mdm	mdn	mds			
Distribution (Bunce):	aln	bor	nem	atn	als	con	ATC	pan	LUS	mdm	mdn	mds			
CLC: Annex I:			nd heath l c macaro		eaths										
Mapping rules:	Macar	onesia o	nly.												
Indicator species:	Daboe	cia azori	ca, Erica	arborea,	Teline	canarieni	s.								
GHC (BioHab):	-														
Field identification:	-														
Occurrence:	Not in	cluded.													
Direct threats:	-														
Climate change:	-														
Succession:	-														
Countries:															
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds			
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds			

Annex I: **4060** - Alpine and Boreal heaths

Mapping
rules:Alpine North / Boreal over 800m Atlantic North over 900 m small patches on exposed coastal areas in
the north) Alpine South over 1800 m.

No soil	s as high	ly variat	ole, althou	ıgh skel	etal soils	eg rank	ers pred	ominate.						
-														
Moist a	cid soils	+ upto 3	0% bare											
							ognisable	e landsca	pe contex	t and cor	isistent life			
Occurs														
decline	t low altitudes overgrazing locally although in some areas grazing may have halted scrub invasion. ecline in grazing can therefore lead to quite rapid changes. Reindeer grazing can cause erosion in													
The increased temperatures likely in many of these mountains will favour scrub expansion at lower levels as shown by Kienast. However the class may well be able to move higher except where it is														
remain mid alt	as Shrub itudes Lo	by cham w phane	aephytes prophytes	in extre to Mid	eme situa phaneroj	tions an ohytes 1	d especia 0 and Ta	ally in th	e Scandin ophytes 1	avian mo 5 at low	untains at altitudes			
	, U	,	1	,	,	· ·		ece, Irel	and, Italy,	Poland,	Portugal,			
ALN	BOR	nem	ATN	ALS	CON	ATC	pan	LUS	MDM	mdn	mds			
ALN	BOR	nem	atn	ALS	CON	atc	pan	lus	mdm	mdn	mds			
	- Shrubb Moist a Mid ph Althoug form st Occurs At low decline Scandin The inc levels a caused Colonis remain mid alti Low ph Austria	- Shrubby chamae Moist acid soils Mid phanerophy Although highly form structure it Occurs in large At low altitudes decline in grazin Scandinavia. The increased te levels as shown caused by extren Colonisation: st remain as Shrub mid altitudes Lo Low phaneroph Austria, Bulgari Romania, Slova ALN BOR	- Shrubby chamaephytes / Moist acid soils + upto 3 Mid phanerophytes / Eve Although highly variable form structure it will pro Occurs in large areas in the At low altitudes overgrate decline in grazing can the Scandinavia. The increased temperature levels as shown by Kiene caused by extreme expose Colonisation: status Shru remain as Shrubby chammid altitudes Low phane Low phanerophytes to M Austria, Bulgaria, Czech Romania, Slovakia, Slow ALN BOR <i>nem</i>	- Shrubby chamaephytes / Evergree Moist acid soils + upto 30% bare Mid phanerophytes / Evergreen. Although highly variable because form structure it will probably be Occurs in large areas in the centre At low altitudes overgrazing loca decline in grazing can therefore le Scandinavia. The increased temperatures likely levels as shown by Kienast. How caused by extreme exposure. Colonisation: status Shrubby chan remain as Shrubby chamaephytes mid altitudes Low phanerophytes Low phanerophytes to Mid phane Austria, Bulgaria, Czech Republi Romania, Slovakia, Slovenia, Spa ALN BOR <i>nem</i> ATN	 Shrubby chamaephytes / Evergreen but lo Moist acid soils + upto 30% bare ground Mid phanerophytes / Evergreen. Although highly variable because this cla form structure it will probably be readily Occurs in large areas in the centre of its ratio at low altitudes overgrazing locally although decline in grazing can therefore lead to que Scandinavia. The increased temperatures likely in man levels as shown by Kienast. However the caused by extreme exposure. Colonisation: status Shrubby chamaephytes in extremid altitudes Low phanerophytes to Mid Low phanerophytes to Mid phanerophyte Austria, Bulgaria, Czech Republic, Finlar Romania, Slovakia, Slovenia, Spain, Swe ALN BOR nem ATN ALS 	 Shrubby chamaephytes / Evergreen but locally Dw Moist acid soils + upto 30% bare ground / rocks + Mid phanerophytes / Evergreen. Although highly variable because this class has a v form structure it will probably be readily identified Occurs in large areas in the centre of its range – sr At low altitudes overgrazing locally although in so decline in grazing can therefore lead to quite rapid Scandinavia. The increased temperatures likely in many of these levels as shown by Kienast. However the class ma caused by extreme exposure. Colonisation: status Shrubby chamaephytes or L F remain as Shrubby chamaephytes in extreme situa mid altitudes Low phanerophytes to Mid phanerophytes 10 Tall Austria, Bulgaria, Czech Republic, Finland, Franc Romania, Slovakia, Slovenia, Spain, Sweden, Uni ALN BOR nem ATN ALS CON 	 Shrubby chamaephytes / Evergreen but locally Dwarf chamoist acid soils + upto 30% bare ground / rocks + key ind Mid phanerophytes / Evergreen. Although highly variable because this class has a well record form structure it will probably be readily identified. Occurs in large areas in the centre of its range – small pate At low altitudes overgrazing locally although in some aread decline in grazing can therefore lead to quite rapid change Scandinavia. The increased temperatures likely in many of these mount levels as shown by Kienast. However the class may well be caused by extreme exposure. Colonisation: status Shrubby chamaephytes or L PH or everemain as Shrubby chamaephytes in extreme situations an mid altitudes Low phanerophytes to Mid phanerophytes 10 Tall phanerod Austria, Bulgaria, Czech Republic, Finland, France, Germ Romania, Slovakia, Slovenia, Spain, Sweden, United King ALN BOR nem ATN ALS CON ATC 	 Shrubby chamaephytes / Evergreen but locally Dwarf chamaephyt Moist acid soils + upto 30% bare ground / rocks + key indicators. Mid phanerophytes / Evergreen. Although highly variable because this class has a well recognisable form structure it will probably be readily identified. Occurs in large areas in the centre of its range – small patches on e At low altitudes overgrazing locally although in some areas grazin decline in grazing can therefore lead to quite rapid changes. Reind Scandinavia. The increased temperatures likely in many of these mountains will levels as shown by Kienast. However the class may well be able to caused by extreme exposure. Colonisation: status Shrubby chamaephytes or L PH or even Mid premain as Shrubby chamaephytes in extreme situations and especia mid altitudes Low phanerophytes to Mid phanerophytes 10 and Ta Low phanerophytes to Mid phanerophytes 10 Tall phanerophytes Austria, Bulgaria, Czech Republic, Finland, France, Germany, Gre Romania, Slovakia, Slovenia, Spain, Sweden, United Kingdom. ALN BOR nem ATN ALS CON ATC pan 	 Shrubby chamaephytes / Evergreen but locally Dwarf chamaephytes / Ever Moist acid soils + upto 30% bare ground / rocks + key indicators. Also Low Mid phanerophytes / Evergreen. Although highly variable because this class has a well recognisable landsca form structure it will probably be readily identified. Occurs in large areas in the centre of its range – small patches on edge. At low altitudes overgrazing locally although in some areas grazing may ha decline in grazing can therefore lead to quite rapid changes. Reindeer grazi Scandinavia. The increased temperatures likely in many of these mountains will favour s levels as shown by Kienast. However the class may well be able to move h caused by extreme exposure. Colonisation: status Shrubby chamaephytes or L PH or even Mid phanerop remain as Shrubby chamaephytes in extreme situations and especially in th mid altitudes Low phanerophytes to Mid phanerophytes 10 Tall phanerophytes 15 possit Austria, Bulgaria, Czech Republic, Finland, France, Germany, Greece, Irel Romania, Slovakia, Slovenia, Spain, Sweden, United Kingdom. 	 Moist acid soils + upto 30% bare ground / rocks + key indicators. Also Low phanero Mid phanerophytes / Evergreen. Although highly variable because this class has a well recognisable landscape contex form structure it will probably be readily identified. Occurs in large areas in the centre of its range – small patches on edge. At low altitudes overgrazing locally although in some areas grazing may have halted decline in grazing can therefore lead to quite rapid changes. Reindeer grazing can can Scandinavia. The increased temperatures likely in many of these mountains will favour scrub expalevels as shown by Kienast. However the class may well be able to move higher exce caused by extreme exposure. Colonisation: status Shrubby chamaephytes or L PH or even Mid phanerophytes in scremain as Shrubby chamaephytes to Mid phanerophytes 10 and Tall phanerophytes 1 Low phanerophytes to Mid phanerophytes 10 Tall phanerophytes 15 possibly Forest Austria, Bulgaria, Czech Republic, Finland, France, Germany, Greece, Ireland, Italy, Romania, Slovakia, Slovenia, Spain, Sweden, United Kingdom. 	 Shrubby chamaephytes / Evergreen but locally Dwarf chamaephytes / Evergreen / Winter dec Moist acid soils + upto 30% bare ground / rocks + key indicators. Also Low phanerophytes / Mid phanerophytes / Evergreen. Although highly variable because this class has a well recognisable landscape context and cor form structure it will probably be readily identified. Occurs in large areas in the centre of its range – small patches on edge. At low altitudes overgrazing locally although in some areas grazing may have halted scrub inv decline in grazing can therefore lead to quite rapid changes. Reindeer grazing can cause erosic Scandinavia. The increased temperatures likely in many of these mountains will favour scrub expansion at levels as shown by Kienast. However the class may well be able to move higher except where caused by extreme exposure. Colonisation: status Shrubby chamaephytes or L PH or even Mid phanerophytes in some situar remain as Shrubby chamaephytes to Mid phanerophytes 10 and Tall phanerophytes 15 at low Low phanerophytes to Mid phanerophytes 10 Tall phanerophytes 15 possibly Forest phanerop Austria, Bulgaria, Czech Republic, Finland, France, Germany, Greece, Ireland, Italy, Poland, Romania, Slovakia, Slovenia, Spain, Sweden, United Kingdom. 			

CLC:	322 - Moors and heath lands														
Annex I:	4070 - E	Bushes w	ith Pinus	mugo ar	nd Rhodo	odendror	n hirsutur	n (Mugo	-Rhodo	dendretum	n hirsuti)				
Mapping rules:	Alpine	lpine South over 1800 m plus distribution of Pinus mugo.													
Indicator species:	Pinus m	inus mugo, Rhodendendron chamaecistus, Rhodondendron hirsutum.													
GHC (BioHab):	Mid pha	d phanerophytes / Evergreen / Conifers + moist acid soils + montane situation + indicators.													
Field identification:	:straight	tforward	if a minir	nal cove	r of 30%	is assur	ned.								
Occurrence:	Often in	n large un	its but lo	ccaly in	small pa	tches.									
Direct threats:	Burning	g and clea	rance for	grazing											
Climate change:	Likely t	o expand	upwards	with hig	gher tem	peratures	5.								
Succession:	Colonis	ation: cli	max in m	ost cases	5.										
Countries:	Austria,	Bulgaria	a, Czech I	Republic	, France	, Germar	ny, Italy,	Poland,	Romani	a, Slovaki	a, Sloveni	a.			
Distribution (sites):	aln	bor	nem	atn	ALS	CON	atc	pan	lus	MDM	mdn	mds			
Distribution (Bunce):	aln	bor	nem	atn	ALS	con	atc	pan	lus	mdm	mdn	mds			

Annex I: 4080 - Sub-Arctic Salix spp. scrub

Mapping															
rules:	Alpine	e North o	ver 11001	n Atlanti	c North	over 900) m Bor	eal over 1	1000m A	Ipine Sou	th over 18	300m.			
Indicator species:	Salix l	apponum	, Salix m	yrsinites											
GHC (BioHab):										er deciduo ituations +					
Field identification:	Presen	t in well	defined n	nountain	environ	ments w	ith a rea	dily reco	gnized s	tructure.					
Occurrence:	In the	the centre of its range can dominate landscapes – elsewhere more restricted.													
Direct threats:	Mostly	lostly above the gazing level except for reindeer which can have a major impact.													
Climate change:		ligher temperatures may encourage other scrub species to invade at lower altitudes and at higher levels arlier snow melt may encourage its expansion upwards.													
Succession:		olonisation: status: mostly Low phanerophytes but sometimes Shrubby chamaephytes-climax under resent conditions so unlikely to change.													
Countries:	Bulgar	ulgaria, Czech Republic, Finland, France, Italy, Poland, Romania, Slovakia, Sweden, United Kingdom.													
Distribution (sites):	ALN	BOR	nem	ATN	ALS	CON	atc	pan	lus	mdm	mdn	mds			
Distribution (Bunce):	ALN	BOR	nem	ATN	ALS	CON	atc	pan	lus	mdm	mdn	mds			
CLC:	202	Moors an	d hooth le	mda											
Annex I:					on hooth	a with a	raa								
Alliex I.	4090 -	4090 - Endemic oro-Mediterranean heaths with gorse													
Mapping rules:		nian 700 South P						: 600m , I	Mediterr	anean Sou	th over 1:	500 m			
Indicator species:	-														
GHC (BioHab):										reen local tors + loca					
Field identification:			range of	types wi	ith local	knowled	lge likel	y to be ir	nportant	in getting	uniform				
Occurrence:	Origin	ally poter	ntial conf	usion wi	th spiny	cushion	S.								
Direct threats:										. Even so t climates.	the Burnii	ng or			
Climate change:		areas of t lictable w					reatly in	ncreased	temperat	ures but th	neir respo	nse is			
Succession:		increasi								piny cushi piny speci					
Countries:		ria, Franc	e, Greece	e, Italy, P	ortugal,	Spain.									
Distribution (sites):	aln	bor	nem	atn	ALS	con	atc	pan	LUS	MDM	MDN	MDS			
Distribution (Bunce):	aln	bor	nem	atn	ALS	con	atc	pan	LUS	mdm	mdn	mds			

CLC: **323 (324)** - Sclerophyllous vegetation (Transitional woodland-scrub)

Annex I: 40A0 - Subcontinental peri-Pannonic scrub

Mapping rules:	Panno	nian belc	w 900m	Alpine	South (Ca	arpathian	s only) t	elow 900	0 m.						
Indicator species:	-														
GHC (BioHab):			nytes / W tes / Leaf							with Ceas edge.	pitose				
Field identification:	In one	restricte	d region a	and a sp	ecific cla	ss therefo	ore straig	ghtforwa	rd if 309	% rule for	scrub cov	er is used.			
Occurrence:	Probab	obly sma	ll patches	with in	tegrades.										
Direct threats:	Unkno	Inknown-more information needed but already adapted tom dry conditions.													
Climate change:	Could	Could be favoured by more drought conditions.													
Succession:	develo	blonisation: status: Low phanerophytes / Winter deciduous possibly climax but has probably veloped from grasslands 6210 and 6190 maybe after removal of grazing maybe moves to Mid anerophytes and Tall phanerophytes but probably no further because of dryness.													
Countries:	Bulgar	Bulgaria, Czech Republic, Germany, Hungary, Romania, Slovakia.													
Distribution (sites):	aln	bor	nem	atn	als	CON	atc	PAN	lus	mdm	mdn	mds			
Distribution (Bunce):	aln	n bor nem atn als con atc PAN lus mdm mdn mds													
CLC: Annex I: Mapping rules:	5110 - Alpine	Stable x South, s	south faci	ophilou ng slope	s formations formations formations for the second sec	ons with 800 m M	Buxus so lediterrai	empervir nean Nor	ens on 1 th 200-3		tinental w	dion p.p.) varm south s best			
		ted by di eous soil	stribution	ı of Bux	us.										
Indicator species:		-	virens, Pro												
GHC (BioHab):			th some N						⊦ variab	le soils + i	Buxus + e	expert			
Field identification:			if Buxus	alone in	dicative.										
Occurrence:		pread loc	-												
Direct threats:	Burnir	ig and cl	earance f	or grazi	ng but un	likely be	cause on	steep slo	opes.						
Climate change:					2					s as it is of					
Succession:	succes		se toward							fficult to p likely to t					
Countries:	Belgiu	m, Franc	ce, Germa	any, Gre	ece, Italy	, Luxem	bourg, P	ortugal, S	Spain, U	Jnited Kin	gdom.				
Distribution (sites):	aln	bor	nem	atn	ALS	CON	ATC	pan	LUS	MDM	MDN	MDS			
Distribution (Bunce):	aln	bor	nem	atn	ALS	CON	atc	pan	lus	MDM	mdn	mds			

CLC: **323 (324)** - Sclerophyllous vegetation (Transitional woodland-scrub)

Annex I: 5120 - Mountain Cytisus purgans formations

Mapping rules:		Mediterranean mountains over 700 m Lusitanian 700-1500m. Skeletal soils.												
Indicator species:	Cytisu	Cytisus purgans.												
GHC (BioHab):	-	Low phanerophytes / Non-leafy evergreens or Mid phanerophytes / Non-leafy evergreens + shallow acidic soils + Mountain situations + Cutisus purgens + expert knowledge.												
Field identification:	Straigh	traightforward with 30% rule for canopy cover.												
Occurrence:	Locall	y occurs	in large a	reas.										
Direct threats:	: Burnir	Burning and clearance for agriculture or forestry.												
Climate change:	Covers	s a wide	range of a	ltitudes	so may t	oe resista	ant to the	e likely ir	icrease ii	n temperat	ures.			
Succession:	develo	p no furt		stands a	are often	very de	nse and t	the result	of color	ergreens p nization of				
Countries:	France	e, Portuga	al, Spain.											
Distribution (sites):	aln	bor	nem	atn	ALS	con	atc	pan	lus	MDM	MDN	mds		
Distribution (Bunce):	aln bor nem atn als con atc pan LUS mdm mdn mds													

Annex I: 5130 - Juniperus communis formations on heaths or calcareous grasslands

Mapping Includes a wide range of conditions and the distribution of Juniperus communis and the suggested zones below could indicate its likely extent. rules: Alpine North below 500m Atlantic North below 400m Boreal below 500m Nemoral / Atlantic Central / Pannonian all Continental / Lusitanian / Alpine South below 800 m Mediterranean North 500-1000m Mediterranean mountains over 800 m. Threats: clearance for agriculture. Indicator Juniperus communis. species: GHC Low phanerophytes / Conifers or Mid phanerophytes / Conifers + moist acid calcareous soils + Juniperus + local knowledge. (BioHab): Field Straightforward with 30% cover of Juniperus / but integrades with grasslands. identification: Occurrence: Locally common but not usually in large areas. Direct threats: Burning clearance for grazing. Climate Covers a wide range and can probably adapt although species composition may change with increased drought which could also encourage fire. change: Succession: Colonisation: status: Low phanerophytes / Mid phanerophytes / depending upon length of establishmentlikely to move to Tall or Forest phanerophytes with composition depending on local conditions. Austria, Belgium, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, France, Germany, Hungary, Countries: Ireland, Italy, Latvia, Lithuania, Luxembourg, Netherlands, Poland, Romania, Slovakia, Slovenia, Spain, Sweden, United Kingdom. Distribution aln bor NEM ATN ALS CON ATC PAN LUS MDM **MDN** mds (sites): Distribution aln BOR NEM ATN ALS CON ATC PAN LUS MDM mdn mds (Bunce):

CLC: Annex I:		323 (324) - Sclerophyllous vegetation (Transitional woodland-scrub)5140 - Cistus palhinhae formations on maritime wet heaths												
Mapping rules:	Cistus	Cistus palinhae only in Mediterranean North S. Portugal and 5km from coast.												
Indicator species:	Cistus	istus palhinhae.												
GHC (BioHab):	Shrub	hrubby chamaephytes / Evergreen + moist acid soils + Cistus palinlae + endemics.												
Field identification:	Very	Very restricted to one area. So probably clear if Cistus is indicator.												
Occurrence:	Local	ised prob	ably frag	mented.										
Direct threats:	: Urban	isation, f	fire.											
Climate change:	Could	effect th	e endemi	cs throug	gh drier	soils.								
Succession:	Proba	bly in ex	posed are	as theref	ore limi	ted.								
Countries:	Portug	gal.												
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds		
Distribution (Bunce):	aln	aln bor nem atn als con atc pan lus MDM mdn mds												

CLC:	323 (324) - Sclerophyllous vegetation (Transitional woodland-scrub)
Annex I:	5210 - Arborescent matorral with Juniperus spp.

Mapping rules:	Medit	Mediterranean mountains below 500m Mediterranean North below 800m Mediterranean South all.												
Indicator species:	Junipe	niperus oxycedrus, J. phoenicea, J. exelsea.												
GHC (BioHab):	-	id phanerophytes / Conifers or Tall phanerophytes / Conifers + dry or xeric soils + Juniperus species + apert knowledge.												
Field identification:		fficult because of the likely varying proportions of Juniperus species would have to be determined and mmunis is included overlapping with 5130 in MDM and MDN.												
Occurrence:	Some	ome large units in favourable locations.												
Direct threats:	Fire a	Fire and increased grazing the latter unlikely at present.												
Climate change:	Likely	to incre	ase the cl	nance of	fire.									
Succession:			tatus: Mic y situation								nd age. Li	kely to be		
Countries:	Bulga	ria, Fran	ce, Greec	e, Italy, I	Portugal,	Spain.								
Distribution (sites):	aln	bor	nem	atn	ALS	con	atc	pan	LUS	MDM	MDN	MDS		
Distribution (Bunce):	aln	In bor nem atn als con atc pan lus MDM MDN mds												

CLC: **323 (324)** - Sclerophyllous vegetation (Transitional woodland-scrub)

Annex I: 5230 - Arborescent matorral with Laurus nobilis

Mapping Lusitanian / Medit. South + distribution of Laurus nobilis, otherwise badly defined.

rules: Indicator species:	Laurus	s nobilis	, Quercus	ilex.								
GHC (BioHab):	Mid pl	haneropl	hytes / Ta	ll phane	rophytes	/ Evergr	een + La	urus nob	ilis + fur	ther exper	t knowled	lge.
Field identification:	More	informat	tion requir	ed.								
Occurrence:	More i	informat	tion requir	ed.								
Direct threats:	-											
Climate change:	-											
Succession:	-											
Countries:	Greece	e, Italy, I	Malta, Po	rtugal, S	pain.							
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	MDN	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	LUS	MDM	mdn	mds

CLC:	321 (231) - Natural grasslands (Pastures)											
Annex I:	6110 -	Rupicolo	ous calcar	eous or	basophil	ic grassla	ands of t	he Alyss	o-Sedio	n albi		
Mapping rules:	25 ha u	init. skele	as grassl etal calca al below	reous so	ils.	-				s in small j	patches be	elow the
Indicator species:	Alyssu	m alysso	ides, Hor	nungia p	etraea.							
GHC (BioHab):	1	hytes / S or specei		chamaer	ohytes +	bare san	d + dry c	calcareou	ıs soils -	⊦ expert kı	nowledge	+
Field identification:	Specia	lized and	local the	refore re	cognisal	ble.						
Occurrence:	Probab	ly in sma	all patche	s, could	be comm	non local	ly.					
Direct threats:	Coloni	zation by	shrubs.									
Climate change:			ditions wi vith high o		t coloniz	zation bu	t unlikel	y to expa	and beca	use other	adjacent v	regetation
Succession:	Shrubb	y chama	ephytes 1	0 years	Low pha	inerophy	tes 5-10	years Mi	d phane	yptophyte prophytes f of shallov	5-10 years	Tall
Countries:										ingary, Ita Spain, Sv		,
Distribution (sites):	aln	bor	nem	ATN	ALS	CON	ATC	PAN	LUS	MDM	MDN	MDS
Distribution (Bunce):	aln	BOR	NEM	atn	ALS	CON	ATC	PAN	LUS	MDM	MDN	mds

CLC:	321 (231) - Natural grasslands (Pastures)
Annex I:	6120 - Xeric sand calcareous grasslands

MappingCalcareous and sandy soils.rules:Same altitude bands as 6110.

Indicator species:	Alyssum montanum ssp germelinii, Astragalus arenarius, Dianthus deltoides, Gypsophila fastigiata, Helichrysum arenarium, Koelerion glauca.												
GHC (BioHab):	2	Leafy hemicryptophytes / Therophytes + bare sand + dry neutral / calcareous + expert knowledge + indicator species.											
Field identification:	Specia	lised and	l very loca	al.									
Occurrence:	Probab	ly small	patches.	Probabl	y rare.								
Direct threats:	Coloni	sation by	/ shrubs /	irrigatio	on for agr	iculture.							
Climate change:	Would	favour r	nore xeic	species									
Succession:	Coloni	sation as	6110.										
Countries:	Belgiu Swede	,	nark, Fran	ice, Ger	many, La	ıtvia, Litl	nuania, L	uxembo	urg, Net	herlands,	Poland, S	lovakia,	
Distribution (sites):	aln	bor	NEM	atn	als	CON	ATC	PAN	lus	mdm	mdn	mds	
Distribution (Bunce):	aln	aln BOR NEM atn ALS CON ATC PAN LUS MDM MDN mds											

CLC: Annex I:	321 (231) - Natural grasslands (Pastures)6130 - Calaminarian grasslands of the Violetalia calaminariae											
			0									
Mapping rules:										heavy me thin certai		
Indicator species:	Viola c	alamine	ria, Thlasj	oi caeule	scens, C	Cochleria	alpina,	Festuca	ovina, N	Iinuartia v	verna.	
GHC (BioHab):	-	tose hem knowled	••••	ytes / Le	eafy hen	nicryptop	hytes +	heavy m	netal ridg	ge soils	+ indicato	r species +
Field identification:	A site s	specific c	lass whic	h should	l be read	lily recog	gnised.					
Occurrence:	In smal	ll patches	s, very loc	alized.								
Direct threats:	Taller s	scrub dev	velopmen	t unlikel	y becaus	se of the	high tox	ic levels	but low	shrubs po	ossible.	
Climate change:	Prbably	y limited	impact.									
Succession:				ryptophy	/tes / Le	afy hemi	cryptop	hytes to	Shrubby	⁷ chamaep	hytes 10 a	and
Countries:	Austria	ı, Belgiui	m, France	, Germa	ny, Irela	nd, Italy	, Nether	lands, Sl	lovenia,	United Ki	ngdom.	
Distribution (sites):	aln	bor	nem	ATN	als	CON	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	ALN	BOR	NEM	ATN	ALS	con	atc	pan	lus	mdm	mdn	mds

CLC:	321 (231) - Natural grasslands (Pastures)
Annex I:	6140 - Siliceous Pyrenean Festuca eskia grasslands
Mapping	Pyrenees and Cantabrian mountains (from local knowledge, not in description).
rules:	Over 1000 m but check Festuca eskia distribution in the Flora Europea.
Indicator species:	Festuca eskia, Arnica montana, Ranunculus pyrenaeus.

(BioHab):	Ceaspitose hemicryptophytes / Leafy hemicryptophytes + acid soils + over 1000m + indicator species + local knowledge.											
Field identification:	Clear i	f Festuca	eskia is	the only	indicato	r but nee	ds chec	king with	local ex	xperts.		
Occurrence:	-											
Direct threats:	Declin	e in graz	ing press	sure and s	pread of	Genista	and Cy	tisus spe	cies.			
Climate change:		-	• •		-		-	•		shrub inva	asion.	
Succession:	Shrubb	Ceaspito by chama	ephytes :		s depend	dent on a	ltitude I					es 10 years nytes 5 but
Countries:	France	, Spain.										
Distribution (sites):	aln	bor	nem	atn	ALS	con	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	ALS	con	atc	pan	LUS	mdm	mdn	mds
			1	slands (P	actures)							
CLC:	321 (23	31) - Nat	ural gras	Sianas (1	astures							
			-	and borea	,							
Annex I: Mapping	6150 - Acid ro Look a	Siliceou ocks / soi t adjacer	s alpine a ls. acy of 33	and borea 2 and 333	ıl grassla 3.	ands	over 70	00m, Atla	ntic Nor	th over 90	00m.	
Annex I: Mapping rules: Indicator	6150 - Acid ro Look a Alpine	Siliceou ocks / soi t adjacer South o	s alpine a ls. acy of 33 ver 1500	and borea 2 and 333	ıl grassla 3.	ands	over 70	00m, Atla	ntic Nor	th over 90	00m.	
Annex I: Mapping rules: Indicator species: GHC	6150 - Acid ro Look a Alpine Juncus Ceaspi	Siliceou ocks / soi t adjacer South o trifidus, tose hem	s alpine a ls. acy of 33 ver 1500 Carex bi	and borea 2 and 333 m. / Alpin igelowii. hytes / C	ll grassla 3. ne north	nds / Boreal					00m. acidic so	ils + mud
Annex I: Mapping rules: Indicator species: GHC (BioHab): Field	6150 - Acid ro Look a Alpine Juncus Ceaspi bare ro	Siliceou ocks / soi t adjacer South o trifidus, tose hem ck + ind	s alpine a ls. acy of 33 ver 1500 Carex bi icryptop	and borea 2 and 333 m. / Alpin igelowii. hytes / C	ll grassla 3. ne north ryptogar	nds / Boreal mes + so:	me dwai	rf chamae	ephytes -	+ shallow		ils + mud
Annex I: Mapping rules: Indicator species: GHC (BioHab): Field identification:	6150 - Acid ro Look a Alpine Juncus Ceaspi bare ro Needs	Siliceou ocks / soi t adjacer South o trifidus, tose hem ck + ind instructio	s alpine a ls. ver 1500 Carex bi icryptop icator spo ons to sep	and borea 2 and 333 m. / Alpin igelowii. hytes / Ca ecies.	al grassla 3. ne north ryptogar om relate	nds / Boreal nes + so: ed vegeta	me dwar tion, bu	rf chamae t reasily	ephytes - identifial	+ shallow		ils + mud
Annex I: Mapping rules: Indicator species: GHC (BioHab): Field identification: Occurrence:	6150 - Acid ro Look a Alpine Juncus Ceaspi bare ro Needs Except	Siliceou ocks / soi t adjacer South or trifidus, tose hem ck + ind instruction	s alpine a ls. ver 1500 Carex bi icryptop icator spo ons to sep	and borea 2 and 333 m. / Alpin igelowii. hytes / Ca ecies. parate fro	al grassla 3. ne north ryptogar om relate	nds / Boreal nes + so: ed vegeta	me dwar tion, bu	rf chamae t reasily	ephytes - identifial	+ shallow		ils + mud
Annex I: Mapping rules: Indicator species: GHC (BioHab): Field identification: Occurrence: Direct threats: Climate	6150 - Acid ro Look a Alpine Juncus Ceaspi bare ro Needs Except Overgr	Siliceou ocks / soi t adjacer South or trifidus, tose hem ck + ind instructio in Atlan azing.	s alpine a ls. lecy of 33 ver 1500 Carex bi icryptop icator spo ons to sej tic North	and borea 2 and 333 m. / Alpin igelowii. hytes / Ca ecies. parate fro	al grassla 3. ne north ryptogar om relate n large u	nds / Boreal nes + so ed vegeta units abo	me dwar tion, bu	rf chamae t reasily	ephytes - identifial	+ shallow		ils + mud
CLC: Annex I: Mapping rules: Indicator species: GHC (BioHab): Field identification: Occurrence: Direct threats: Climate change: Succession:	6150 - Acid ro Look a Alpine Juncus Ceaspi bare ro Needs Except Overgr Will al Coloni Status:	Siliceou ocks / soi t adjacer South o trifidus, tose hem ck + ind instructio in Atlan azing. low tree sation. Ceaspite	s alpine a ls. lcy of 33 ver 1500 Carex bi icryptop icator spo ons to sep tic North / shrub g ose hemio	and borea 2 and 333 m. / Alpin igelowii. hytes / Cr ecies. parate from n occurs i growth to	Il grassla 3. ne north ryptogar om relate n large u higher a ytes / Cr	nds / Boreal nes + so ed vegeta inits abo iltitudes. yptogam	me dwar tion, bu ve the c es –Dw	rf chamad t reasily ritical alt arf cham	ephytes - identifial itude. aephytes	+ shallow ble.		
Annex I: Mapping rules: Indicator species: GHC (BioHab): Field identification: Occurrence: Direct threats: Climate change: Succession:	6150 - Acid ro Look a Alpine Juncus Ceaspii bare ro Needs Except Overgr Will al Colonii Status: chamao Austria	Siliceou ocks / soi t adjacer South or trifidus, tose hem ck + ind instructio in Atlan azing. low tree sation. Ceaspite ephytes 5 a, Bulgar	s alpine a ls. lecy of 33 ver 1500: Carex bi icryptop icator spo ons to sep tic North / shrub g ose hemia 5-10 year ia, Czech	2 and 333 m. / Alpin igelowii. hytes / C ecies. parate fro n occurs i growth to cryptophy s maybe	I grassla 3. ne north ryptogar om relate n large u higher a ytes / Cr to Low j ic, Finlar	nds / Boreal nes + so d vegeta inits abo iltitudes. yptogam phanerop	me dwar tion, bu ve the cr es –Dw shytes5-	rf chamae t reasily ritical alt arf cham 10 years.	ephytes - identifial itude. aephytes	+ shallow ble. s 5-10 yea	acidic so	у
Annex I: Mapping rules: Indicator species: GHC (BioHab): Field identification: Occurrence: Direct threats: Climate change:	6150 - Acid ro Look a Alpine Juncus Ceaspii bare ro Needs Except Overgr Will al Colonii Status: chamao Austria	Siliceou ocks / soi t adjacer South or trifidus, tose hem ck + ind instructio in Atlan azing. low tree sation. Ceaspite ephytes 5 a, Bulgar	s alpine a ls. lecy of 33 ver 1500: Carex bi icryptop icator spo ons to sep tic North / shrub g ose hemia 5-10 year ia, Czech	and borea 2 and 333 m. / Alpin igelowii. hytes / Cr ecies. parate fro n occurs i growth to cryptophy rs maybe n Republi	I grassla 3. ne north ryptogar om relate n large u higher a ytes / Cr to Low j ic, Finlar	nds / Boreal nes + so d vegeta inits abo iltitudes. yptogam phanerop	me dwar tion, bu ve the cr es –Dw shytes5-	rf chamae t reasily ritical alt arf cham 10 years.	ephytes - identifial itude. aephytes	+ shallow ble. s 5-10 yea	acidic soi rs Shrubb	у

CLC: **321 (231)** - Natural grasslands (Pastures)

Annex I: 6160 - Oro-Iberian Festuca indigesta grasslands

Mapping
rules:Acid soils / rocks.Lusitanian / Mediterranean mountains over1800 m. / Alpine South (Pyrenees only over 1800m).
Look up distribution of Festuca indigesta.

Indicator species:	Festuc	a indiges	ta.											
GHC (BioHab):	Ceaspi	tose hem	icryptopł	nytes + e	xpert kn	owledge	+ specie	es indicat	tors + Fe	estuca indi	gesta.			
Field identification:	Needs	further in	nformatio	n.										
Occurrence:	Needs	further in	nformatio	n.										
	Probab	robably dependent on grazing but further information required from the literature.												
Climate change:	Further	Further information needed on character.												
Succession:	.Probal	Ceaspite bly slow		pansion a	and limit	ed develo	opment l			micryptop le and exp		ot grazed		
Countries:	Portug	al, Spain												
Distribution (sites):	aln	bor	nem	atn	ALS	con	atc	pan	LUS	MDM	mdn	mds		
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	LUS	MDM	mdn	mds		
CLC:	321 (2)	31) - Nat	ural grass	alands (P	actures)									
Annex I:			nd subalp		· · · · ·	rasslands	5							
		r			0									
Mapping rules:	Alpine	North /		er 700m	, Atlanti	c North o				n in the de ⁄Iediterran		tains over		
Indicator species:	Dryas	octopetal	a, Gentia	na nivali	is, Draba	a aizoides	5.							
GHC (BioHab):			icryptopł tuations -				hytes +	moist ca	lcareous	soils + op	en ground	d upto 3-		
Field identification:	Contai	ns many	vegetatio	n classes	s and exp	perience	probably	v needed	for exac	t allocatio	n.			
Occurrence:	Occurs	s in large	units in t	he centre	e of its d	istributio	ons – sma	all patch	es towar	ds the edg	e.			
Direct threats:	Declin	e or cess	ation in g	razing. F	Rate of c	hange de	termines	s rate of o	developr	nent.				
Climate change:	May m	ove high	er but thr	reatened	at lower	levels by	y increas	sed tree /	shrub gi	rowth.				
Succession:	grazed	Ceaspite Shrubby		ohytes 5-	10 Low	phanerop	ohytes 5-			se hemicry ohytes 5-1				
Countries:			ia, France erland, Ur			ece, Italy	, Poland	, Roman	ia, Slova	kia, Slove	enia, Spair	1,		
Distribution (sites):	ALN	bor	nem	ATN	ALS	CON	atc	pan	LUS	MDM	MDN	MDS		
Distribution (Bunce):	ALN	BOR	nem	ATN	ALS	CON	atc	pan	lus	mdm	mdn	mds		

CLC: **321 (231)** - Natural grasslands (Pastures)

Annex I: 6180 - Macaronesian mesophile grasslands

Mapping rules:	Macar	onesia o	nly.									
Indicator species:	Holcu	s rigidus	, Festuca	jubata, (Cardami	ne caldeir	arum, D	ryopteris	azorica	a.		
GHC (BioHab):	No inf	formation	n required	1.								
Field identification:	No inf	formation	n required	1.								
Occurrence:	-											
Direct threats:	-											
Climate	-											
change:												
Succession: Countries:	-											
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC: Annex I:	6190 -	Rupicol	tural gras lous pann) (Stipo-Fes	stucetali	a pallenti	s)			
	6190 - Rendz	Rupicol	lous pann			·	stucetali	a pallenti	s)			
Annex I: Mapping rules: Indicator	6190 - Rendz	Rupicol	lous pann			·	stucetali	a pallenti	s)			
Annex I: Mapping rules: Indicator species:	6190 - Rendz Panno	Rupicol inas. nian 150	lous pann)-900 m.	onic gra	sslands ((Stipo-Fe		-		⊦ rare and	threatene	1 Pannoni
Annex I: Mapping rules: Indicator	6190 - Rendz Panno - Leafy	Rupicol inas. nian 150 hemicry	lous pann)-900 m.	onic gra s / Ceasp	sslands ((Stipo-Fe		-		⊦ rare and	threatened	1 Pannoni
Annex I: Mapping rules: Indicator species: GHC (BioHab): Field	6190 - Rendz Panno - Leafy specie	Rupicol inas. nian 150 hemicry s + expe	lous pann)-900 m. ptophytes rt knowle	onic gra s / Ceasp edge.	sslands (bitose he	(Stipo-Fe	phytes +	-		⊦ rare and	threatened	1 Pannoni
Annex I: Mapping rules: Indicator species: GHC (BioHab): Field	6190 - Rendz Panno - Leafy specie	Rupicol inas. nian 150 hemicry s + expe	lous pann)-900 m. ptophytes rt knowle	onic gra s / Ceasp edge.	sslands (bitose he	(Stipo-Fes	phytes +	-		⊦ rare and	threatened	1 Pannoni
Annex I: Mapping rules: Indicator species: GHC (BioHab): Field identification: Occurrence: Direct threats:	6190 - Rendz Panno - Leafy specie A spec	Rupicol inas. nian 150 hemicry s + expe cific veg	lous pann)-900 m. ptophytes rt knowle etation ty	onic gra s / Ceasp edge. pe with j	sslands (bitose he precise c	(Stipo-Fe: micryptop lefinition.	ohytes +	dry calca		⊦ rare and	threatened	l Pannoni
Annex I: Mapping rules: Indicator species: GHC (BioHab): Field identification: Occurrence:	6190 - Rendz Panno - Leafy specie A spec - Declin	Rupicol inas. nian 150 hemicry s + expe cific vego ne in graz	lous pann)-900 m. ptophytes rt knowle etation ty	onic gra s / Ceasp edge. pe with p pably fra	sslands (bitose he precise c gmentec	(Stipo-Fes micryptop lefinition. l in small	ohytes +	dry calca		⊦ rare and	threatened	l Pannoni
Annex I: Mapping rules: Indicator species: GHC (BioHab): Field identification: Occurrence: Direct threats: Climate	6190 - Rendz Panno - Leafy specie A spec - Declin Could Colon Status hemicr	Rupicol inas. nian 150 hemicry s + expe cific vege te in graz lead to e isation. Ceaspito ryptophy	lous pann)-900 m. ptophytes rt knowle etation ty zing. Prob expansion ose hemic /tes -Shru	onic gra s / Ceasp edge. pe with p bably fra n into me cryptoph bby cha	sslands (bitose he precise c gmented ssic grass ytes / Le maephyt	(Stipo-Fes micryptop lefinition. l in small slands. eafy hemio	phytes + patches cryptopl depende	dry calca nytes with	ureous -	rare and rare and razing Ceas of seed L	pitose	
Annex I: Mapping rules: Indicator species: GHC (BioHab): Field identification: Occurrence: Direct threats: Climate change:	6190 - Rendz Panno - Leafy specie A spec - Declin Could Colon Status hemici Mid pl	Rupicol inas. nian 150 hemicry s + expe cific veg ne in graz lead to e isation. Ceaspito ryptophy haneroph	lous pann)-900 m. ptophytes rt knowle etation ty zing. Prob expansion ose hemic /tes -Shru	onic gra s / Ceasp edge. pe with j pably fra a into me cryptoph ibby cha aybe no	sslands (bitose he precise c gmentec esic grass ytes / Le maephyt further b	(Stipo-Fes micryptop lefinition. l in small slands. eafy hemi- ces 10-15 pecause o	phytes + patches cryptopl depende	dry calca nytes with	ureous -	zing Ceas	pitose	
Annex I: Mapping rules: Indicator species: GHC (BioHab): Field identification: Occurrence: Direct threats: Climate change: Succession:	6190 - Rendz Panno - Leafy specie A spec - Declin Could Colon Status hemici Mid pl	Rupicol inas. nian 150 hemicry s + expe cific veg ne in graz lead to e isation. Ceaspito ryptophy haneroph	lous pann 0-900 m. ptophytes rt knowle etation ty zing. Prot expansion ose hemic /tes -Shru nytes 5 m.	onic gra s / Ceasp edge. pe with j pably fra a into me cryptoph ibby cha aybe no	sslands (bitose he precise c gmentec esic grass ytes / Le maephyt further b	(Stipo-Fes micryptop lefinition. l in small slands. eafy hemi- ces 10-15 pecause o	phytes + patches cryptopl depende	dry calca nytes with	ureous -	zing Ceas	pitose	

CLC: **321 (231)** - Natural grasslands (Pastures)

Annex I: 6210 - Semi-natural dry grasslands and scrubland facies on calcareous substrates(Festuco-Brometalia) (* important orchid sites)

Mapping Calcareous soils.

rules:	Boreal / Nemoral Below 200m Atlantic North below 300m All Atlantic Central Continental / Alpine South below 700m Mediterranean mountains below1400m.												
Indicator species:	Arabis hirst vernalis.	uta, Dianthus	carthusia	anorum,	Ophrys a	apifera, (Orchis m	ascula, l	Bromus er	ecta, Ado	nis		
GHC (BioHab):	Leafy hemi	Leafy hemicryptophytes / Ceaspitose hemicryptophytes + dry calcareous soils + indication.											
Field identification:		many vegetat regional surve								ons theref	ore		
Occurrence:	Could be la	arge patches lo	cally bu	t often f	ragmente	ed.							
Direct threats:	Decline in g	grazing.											
Climate change:	Could expa swards.	ind into mesic	grasslan	ds on so	outh facir	ng slopes	but rate	likely to	be slow l	because o	f closed		
Succession:	without gra	on. Ispitose hemici Izing Shrubby Iytes 10 Forest	chamaej	phytes 1	0 Low pl						s 5		
Countries:	Ireland, Ital	elgium, Bulgar ly, Latvia, Lith pain, Sweden,	nuania, I	Juxembo	ourg, Net	herlands	,	· · · ·	,		0 2 /		
Distribution (sites):	aln BC	OR NEM	ATN	ALS	CON	ATC	PAN	LUS	MDM	MDN	mds		
Distribution (Bunce):	aln BC	OR NEM	ATN	als	CON	ATC	PAN	LUS	MDM	mdn	mds		

CLC:	321 (231) - Natural grasslands (Pastures)											
Annex I:	6220 - Pseudo-steppe with grasses and annuals of the Thero-Brachypodietea											
Mapping rules:	Although included in grasslands the signal could be confused with fallow and sparsely vegetated depending on the proportion of bare ground. Calcareous soils. Mediterranean mountains below 800 m Mediterranean North below1200m Mediterranean South below1600 m.											
Indicator species:	Brachypodium distachym, Brachypodium retusum.											
GHC (BioHab):	Ceaspitose hemicryptophytes / Therophytes + xeric + calcareous + critical species + expert knowledge.											
Field identification:	Difficult because a range of vegetation types are included-further instructions required.											
Occurrence:	Prbably rare and fragmented because specific local conditions required.											
Direct threats:	This class probably depends on regular disturbance whether of heavy grazing or cultivation. Any changes in the status quo could lead to colonization or if more intense to more bare ground.											
Climate change:	The probable drier conditions could lead to expansion into more stable grasslands.											
Succession:	Colonisation. Depends on the start point and local factors such as xeric conditions and seed availability. Status is likely to be Ceaspitose hemicryptophytes / Therophytes .For total abandonment the rate could be:. Dry: Shrubby chamaephytes 10 Low phanerophytes 10 Mid phanerophytes 10 Tall phanerophytes20 Forest phanerophytes 10. Xeric Shrubby chamaephytes 15 Low phanerophytes 15 Mid phanerophytes 10 Tall phanerophytes 10.											
Countries:	Bulgaria, France, Greece, Italy, Malta, Portugal, Spain.											
Distribution (sites):	aln bor nem atn ALS con atc PAN LUS MDM MDN MDS											

Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	MDM	MDN	mds
CLC:	321 (2	31) - Nat	tural grass	slands (F	Pastures)							
Annex I:		-	rich Narc nental Eur	-	slands, or	n siliceou	ıs substra	ates in m	ountain	areas (and	l submour	ntain
Mapping rules:	is assu then it quite h should but me Siliceo Atlant	med that is wides ligh eleva be exclu- can that v bus soils ic North	the exten pread. Mo ations in t ided whic rery differ / rocks Al	nsive ger ore speci- the Alps. The proba- rent freq pine No 0 m, Con	nerally sp ies rich g . The cor bly mear uencies a orth / Bor ntinental	pecies po grassland mment in as many o are likely real below / Alpine	or Nardu s with Na the text of those i to be inv v 700m N South / J	s grassla ardus are suggests n GB. T volved. Nemoral Pannonia	inds of t rare in that irre he rules / Atlant	of the tern he Atlanti- GB but ar eversibly c below cov ic Central 700 m but	c zone are e rather co legraded g ver the wh all altitud	e included ommon at grasslands nole range les
Indicator species:	Anten	naria dioi	ica, Galiu	m saxati	ile.							
GHC (BioHab):	-	itose hem of specei	•••	nytes / L	eafy hen	nicryptop	ohytes + 1	moist ne	utral / ac	cidic soils	+ Nardus	+ wide
Field identification:	Depen	ds on the	e definitio	n of spe	cies rich	but the a	ssociatio	ons are w	ell defir	ned.		
Occurrence:	Often	occurs in	large uni	its in the	centre o	of its rang	ge, smalle	er patche	s elsewl	nere.		
Direct threats:	Mostly	/ maintai	ned by gr	azing bu	it some c	of the hig	her sites	may be	above th	e tree line		
Climate change:	would	be favou		zing dec	clines. Th					colonizati may also c		
Succession:	less gr altitud	azing and	d will the	refore ch	nange to	Ceaspito	se hemic	ryptophy	ytes , fui	es- Nardus rther devel rophytes h	lopment d	epends on
Countries:	Ireland	l, Italy, L		huania,	Luxemb	ourg, Ne				ermany, G al, Roman		
Distribution (sites):	ALN	BOR	NEM	ATN	ALS	CON	ATC	pan	LUS	MDM	MDN	mds
Distribution (Bunce):	ALN	BOR	NEM	ATN	ALS	CON	ATC	PAN	LUS	mdm	mdn	mds
CLC:	321 (2	31) - Nat	tural grass	slands (F	Pastures)							
Annex I:	6240 -	Sub-pan	nonic ste	ppic gra	sslands							
Mapping rules:		nian and facing.	eastern C	ontinent	tal classe	es below	500 m cla	ays / san	ds / grav	vels.		
Indicator species:	Alyssu	ım alysso	oides, Ast	ragalus a	austriacu	ıs, Iris hu	milis ssp	. Arenar	ia, Stipa	a capillata.		
	~		· , ,	autor / I	eafy her	nieruntor	hutag	vorio coi	1			
GHC (BioHab):		itose hem judgeme		lytes / L	cary nen	inci yptop	Sinytes + 1	xeric soi	is + vari	able soil s	tructure +	- species +
	expert	judgeme	ent.	-	-		-			able soil s	tructure +	- species +

Direct threats			e or less c for fertiliz		hers depe	end on gr	azing bı	ut probab	ly most	ly the form	ner so lim	ited
Climate change:	Could unlike	-	under the	likely dı	rier cond	itions bu	t adjacer	nt land m	ay be ci	ultivated s	o expansi	on
Succession:		1	2 1		21 1	2	2	21 1	2	vith a repro therwise s		of
Countries:	Austri	a, Bulga	ria, Czecł	n Republ	ic, Franc	e, Germa	ny, Hur	ngary, Ital	ly, Ron	nania, Slov	vakia.	
Distribution (sites):	aln	bor	nem	atn	ALS	CON	atc	PAN	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	CON	atc	PAN	lus	mdm	mdn	mds

CLC: Annex I:	321 (231) - Natural grasslands (Pastures)6250 - Pannonic loess steppic grasslands								
Mapping rules:	Pannonian below 500 m. Loess soils.								
Indicator species:	Artyemesia pontica, Ornithogalum pannonicum, Achillea pannonica.								
GHC (BioHab):	Ceaspitose hemicryptophytes / Leafy hemicryptophytes + xeric loess soils + critical species + expert knowledge.								
Field identification:	As 6240.								
Occurrence:	Small fragmented units.								
Direct threats:	: Information on management needs to be checked.								
Climate change:	Could expand into other grasslands but likely to be slow because of surrounding cultivated land.								
Succession:	Colonisation: status Ceaspitose hemicryptophytes / Leafy hemicryptophytes may be susceptible to expansion of Shrubby chamaephytes and Low phanerophytes and eventually Mid phanerophytes but restricted by xeric conditions.								
Countries:	Austria, Bulgaria, Czech Republic, Hungary, Romania, Slovakia.								
Distribution (sites):	aln bor nem atn als con atc PAN lus mdm mdn mds								
Distribution (Bunce):	aln bor nem atn als con atc PAN lus mdm mdn mds								

CLC: Annex I:	321 (231) - Natural grasslands (Pastures)6260 - Pannonic sand steppes
Mapping rules:	Pannonian below 500 m but distribution given in France and Italy so maybe Continental or even Mediterranean North at low altitudes –literature needs to be checked. Sands / inland dunes?.
Indicator species:	Helychrysum arenarium, Dianthus serotinus, Alyssum montanum ssp. Gmelinii, Cynodon dactylon.
GHC (BioHab):	Leafy hemicryptophytes / Therophytes + xeric inland sands + critical species + expert knowledge.
Field identification:	Probably straightforward because it is restricted to a small area of sand.
Occurrence:	No information.

Direct threats	5	1				ely to be influence.	5	stage in s	success	ion therefo	ore seral	
Climate change:	Alrea	dy very o	lry-may b	e kept o	pen by i	ncreased	drought.					
Succession:				-	• •		-	• •		es with so es afterran		by
Countries:	Austr	ia, Bulga	ria, Czec	h Repub	lic, Hung	gary, Ron	nania, Sl	lovakia.				
Distribution (sites):	aln	bor	nem	atn	als	CON	atc	PAN	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:	321 (2	231) - Na	atural gras	sslands (Pastures)						
Annex I:	6270	- Fennos	candian l	owland s	species-r	ich dry to	mesic g	grasslands	8			
Mapping	Boreal / Nemoral below 200 m.											

rules:	Siliceo	Siliceous soils.										
Indicator species:	Botryc	Botrychium spp., Dianthus deltoides, Gentianella campestris, Primula veris.										
GHC (BioHab):	-	tose hem or specie	21 1	ytes / L	eafy her	nicryptop	hytes +	moist / c	lry acid	soils + gra	azing / mo	wing +
Field identification:	Distrib	ution pro	bably we	ll know	n locally	and in n	nedium	sized uni	ts.			
Occurrence:	Restric	Restriced and now probably rare.										
Direct threats:	Decline	Decline in agriculture and grazing.										
Climate change:	Region	Region has unpredictable changes therefore stable.										
Succession:	hemicr	yptophyt		bby cha	maephy	tes-10 Lo				es-Ceaspit d phaneroj		all
Countries:	Estonia	a, Finlanc	l, Latvia,	Sweden	l.							
Distribution (sites):	aln	BOR	NEM	atn	als	CON	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	aln	BOR	NEM	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC:	321 (231) - Natural grasslands (Pastures)
Annex I:	6280 - Nordic alvar and precambrian calcareous flatrocks
Mapping	Nemoral / Boreal below 200m and probably a coastal mask of 20 km.
rules:	Pre-Cambrian / Silurian calcareous rocks.
Indicator	Asperula tinctoria, Potentilla tabernaemontani, Saxifraga tridactylites, Hornungia petraea.
species:	
GHC (BioHab):	Ceaspitose hemicryptophytes / Leafy hemicryptophytes + bare calcareous rocks + invading sands + expert judgement.
Field	
identification:	Well defined – could be considered as a landscape class as it is on one geomorphological situation.
Occurrence:	Locally dominant in large units.
Direct threats:	Seral development combined with lack of grazing.

Climate change:	Regio	n has unp	oredictable	e change	es theref	ore likely	to have	no effec	t.			
Succession:	Thero	phytes Pr	ocess cou	ld be Sl	nrubby c	hamaephy	ytes 10	Mid phar	herophy	es with pat tes 10 Tall icryptophy	phanerop	hytes 10
Countries:	Estoni	a, Finlan	d, Sweder	1.								
Distribution (sites):	aln	bor	NEM	atn	als	CON	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	aln	BOR	NEM	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC: Annex I:		321 (231) - Natural grasslands (Pastures)62A0 - Eastern sub-mediteranean dry grasslands (Scorzoneratalia villosae)										
Mapping rules: Indicator species:	Medit	Aediterranean North and Mediterranean South east of Italy to the Balkans below 300m.										
GHC (BioHab):	Ceasp	itose hen	nicryptop	hytes / L	eafy her	nicrypto	phytes +	xeric + k	ey spec	cies.		
Field identification:	Rather	Rather general description-needs more information.										
Occurrence:	No inf	No information.										
Direct threats:	Furthe	er literatu	re search	needed	on chara	icter.						
Climate change:	A regi	on with 1	likely fur	her exte	nsion of	xeric co	nditions	so could	expand			
Succession:				-	• •		-	• •		es but no ir ric conditio		n on
Countries:	Bulga	ria, Croa	tia, Greec	e, Italy,	Slovenia	a.						
Distribution (sites):	aln	bor	nem	atn	als	con	atc	PAN	lus	MDM	MDN	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	MDM	MDN	mds

CLC:	332 (333) - Bare rocks (Sparsely vegetated areas)
Annex I:	62B0 - Serpentinophilous grassland of Cyprus
Mapping rules:	Only in Troodos mountains and Akamas peninsula,Cyprus. Serpentine soils. No other information but such vegetation on such soils is usually stable.
Indicator species:	-
GHC (BioHab):	-
Field identification:	More information needed.
Occurrence:	-
Direct threats:	-
Climate	-

change: Succession:	_											
Countries:												
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:	244 -	Agro-foi	estry area	ıs								
Annex I:	6310	- Dehesa	s with eve	ergreen (Quercus	spp.						
Mapping rules:	defini differe There	tion of or ence in in fore the n penins	nly everg nterpretati rule is: M	reen Que ion betw editerrar	ercus spe een Spa hean mo	ecies. In j in and Po untains /	practice prtugal le Mediterr	there has eading to canean N	been pr confusi orth / M	ninsula and coblems be on with scl lediterranes eded as the	cause of th lerophyllo an South i	ne us scrub. n the
Indicator species:	Querc	sus suber	, Quercus	ilex, Qu	iercus ro	otundifoli	a.					
GHC (BioHab):	-											
Field identification:	Straig	htforwar	d if the 30	0% cove	r is used	l together	with ev	ergreen o	ak spec	eies.		
Occurrence:	-											
Direct threats:			enance of abandonn				trees and	d convers	ion to a	rable / past	ture farmi	ng
Climate change:	In the	south ho	otter summ	ners are	leading	to the dea	ath of Qı	uercus tre	es.			
Succession:	aband	onment a		hrubs ar	e often p	-				n quite rapi inage to reg		-
Countries:	France	e, Italy, I	Portugal, S	Spain.								
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	MDM	MDN	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC: Annex I:			itural gras a meadow			·	clayey-s	ilt-laden	soils (N	Aolinion ca	eruleae)	
Mapping rules:	it is al Remo	lso likely ve Alpin	to be fou	ind in sm lasses 2	all pate	hes. the rest c	of Alpine	North u		akes it diff 0m Boreal	_	
Indicator species:	Molin	inia caer	ulea, Pote	entilla er	ecta.							
GHC (BioHab):	Ceasp specie		nicryptop	hytes / I	Leafy he	micrypto	phytes +	wet pear	ty / clay	v soils + Ma	ainia + cri	tical
Field identification:	A wel	l known	and defin	ed class	but sepa	aration fr	om some	e related	vegetati	on may be	difficult.	

Occurrence:	Now ra	Now rare and dispersed patches.										
Direct threats												
	Draina	0		~								
Climata	Agricu	inurai ini	ensificati	011.								
Climate change:	Likely	Likely to be robust because of high soil moisture retention but could shift into drier types. Colonisation Leafy hemicryptophytes / Ceaspitose hemicryptophytes to Ceaspitose hemicryptophytes 5 Low phanerophytes 10 Mid phanerophytes 10 Tall phanerophytes 5 Forest phanerophytes 10.										
Succession:												
Countries:	Hunga	Austria, Belgium, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, United Kingdom.										
Distribution (sites):	aln	BOR	NEM	ATN	ALS	CON	ATC	PAN	LUS	MDM	MDN	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC:	321 (23	1) - Nat	ural gras	slands (I	Pastures)						
Annex I:	6420 - N	Mediter	ranean ta	ll humid	herb gr	asslands	of the M	olinio-H	oloschoe	nion		
Mapping rules:	dunes of	n Black	sea coas	t but like	ely to be	in small	patches.			fore diffic an South o		•
Indicator species:	Scirpus	holoscł	10enus, N	Iolinia c	aerulea,	Orchis l	axiflora.					
GHC (BioHab):	Ceaspite critical s			hytes / L	eafy he	micrypto	phytes b	ut domin	ated by g	grasses + r	noist neut	ral soils +
Field identification:	Likely t	o be cle	arly define	ned.								
Occurrence:	Probabl	y fragm	ented.									
Direct threats:	Abando Drainag Fertilisa	e.										
Climate change:	As it is	in a reg	ion of lik	ely incre	eased ter	nperature	es it is th	reatened	by dryin	ig out.		
Succession:	hemicry	ptophy		rs with n	o manag	gement S	hrubby c	hamaeph		o Ceaspito Low phan		5 Mid
Countries:	Bulgaria	a, Franc	e, Greece	e, Italy, I	Portugal	, Roman	ia, Spain					
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	LUS	MDM	MDN	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC: 321 (231) - Natural grasslands (Pastures)

Annex I: 6430 - Hydrophilous tall herb fringe communities of plains and of the montane to alpine levels

Mapping Very localized and usually occurring in narrow bands by major rivers or in small patches by smaller streams or on forest edges which are difficult to predict therefore the major rivers only are likely to be indicative of likely extent. Otherwise wet alluvial soils.

Alpine North / Boreal below 500m Nemoral all, likely to be very rare and difficult to identify in Atlantic Central / Atlantic North, so omit, Pannonian below 500 m Continental / Alpine South seems to be subalpine therefore 800 m-1800 m m probably rare in Lusitanian too.

	alpine therefore 800 m-1800 m m probably rare in Lusitanian too.
Indicator	-
species:	
GHC (BioHab):	Leafy hemicryptophytes + seasonally eutrophic wet alluvial soils + water courses + indicator species.
Field identification:	Roles need to separate from related vegetation types.
Occurrence:	Probably in restricted linear elements and patches streamsides.
Direct threats:	Probably variable in origin and needing further literature work but likely to be affected by drainage and tree / shrub colonization.
Climate change:	As it is adjacent to rivers and water courses will be stable.
Succession:	Status: Leafy hemicryptophytes-Shrubby chamaephytes 5-Low phanerophytes 5- Mid phanerophytes- 5,Tall phanerophytes-5.Forest phanerophytes-5 because of high nutrients and moisture although the wetter soils may be slower.
Countries:	Austria, Belgium, Bulgaria, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, United Kingdom.
Distribution (sites):	ALN BOR NEM ATN ALS CON ATC PAN LUS MDM MDN MDS
Distribution (Bunce):	aln bor nem atn als con atc pan lus mdm mdn mds
CLC:	321 (231) - Natural grasslands (Pastures)
Annex I:	6440 - Alluvial meadows of river valleys of the Cnidion dubii
Mapping rules:	Boreal / Nemoral below 300 m m Atlantic Central / Pannonian below 500 m m, probably 800 m-1400 m Alpine South / Continental but needs more information Also occurs in small patches on transitions so will be infrequent so the map will be indicative only. Brown earths.
Indicator species:	Cnidium dubium, Viola persicifolia.
GHC (BioHab):	Ceaspitose hemicryptophytes / Leafy hemicryptophytes + wet seasonally flooded alluvial soils + river valleys.
Field identification:	Depends upon how many indicators need to be present – often degraded.
Occurrence:	Linear feature but now restricted.
Direct threats:	More information needed.
Climate change:	Probabbly robust as by major rivers.

Succession:	More	informat	ion neede	ed.								
Countries:	Austr	ia, Bulga	ria, Czecl	h Republ	lic, Fran	ce, Germa	ny, Hu	ngary, Po	land, R	omania, S	lovakia.	
Distribution (sites):	aln	bor	nem	atn	als	CON	atc	PAN	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC: 321 (231) - Natural grasslands (Pastures)

Annex I:	6460 ·	- Peat gra	asslands o	of Troodo	os							
Mapping			tains in C	yprus or	ıly.							
rules: Indicator species:	Peat s	ons.										
GHC (BioHab):	Ceasp	itose her	nicryptop	hytes +	moist ba	sic peat	soil + inc	licator sp	ecies +	expert kno	owledge.	
Field identification:	More	informat	ion neede	ed.								
Occurrence:	More	informat	ion neede	ed.								
Direct threats:	More	informat	ion neede	ed.								
Climate change:	More	informat	ion neede	ed.								
Succession:		isation st nation ne		spitose h	emicryp	tophytes	/ Leafy	hemicryp	otophyte	s but othe	rwise moi	re
Countries:												
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC: Annex I:			ural grass hay mead			is pratens	sis, Sang	uisorba	officinal	is)		
Mapping rules:	m, Alp Medite	ine South	n / Contine nountains	ental 700)-900 m,	Pannoni	ian belov	w 800m,	Lusitan	s, Atlantic ian below		low 250
Indicator species:	-											
GHC (BioHab):	Ceaspi indicat		icryptoph	ytes / Le	afy hem	icryptop	hytes + r	noist nei	utral soil	ls + lowlaı	nd situatio	ons +
Field identification:	Proble	ms with i	ntergrade	s with de	graded	examples	s but wel	ll defined	d with g	ood literat	ure.	
Occurrence:	Now fr	agmentee	d in a few	small fie	elds wid	lely dispe	ersed.					
Direct threats:			ed by fert be aband					ilage cut	s. Very	sensitive t	o any cha	nges but
Climate change:	Likely facing		nimal beca	ause on r	nesic sit	tes althou	ıgh dryir	ng out co	ould be a	problem	on steeper	south
Succession:	Becaus Ceaspi	e of high tose hemi	soil fertil	lity :statu ytes -5- S	ıs Ceasp	itose her	nicrypto	phytes /	Leafy h	nent likely emicrypto nytes 10,-7	phytes –	
Countries:	Ireland	, Italy, La		nuania, L	uxembo	ourg, Net				nany, Gre al, Roman		
Distribution (sites):	aln	BOR	NEM	ATN	ALS	CON	ATC	PAN	LUS	MDM	MDN	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC: Annex I:		,	ural grass n hay mea		astures)							
Mapping rules:	The inc confus means :Borea	clusion of ions as no a high co l / Alpine	f dwarf pi o figures a over of pir e North 40	nes (par are giver ne where 00-700 m	rticularit 1 for the 2as 333 i 1 but pro	ty of clas percenta s over 10 bably no	s 322) a ige requ)% rock ow no lo	ind rock : ired but ' onger har	formatic ' formin vested e	ds to be ex ons-class 33 g a compa xcept in pr nean moun	33 could ct canopy otected a	probably reas
Indicator species:	Trisetu	m flaves	cens, Asti	antia ma	ajor, Sile	ene vulga	aris, Tro	llius euro	opaeus.			
GHC (BioHab):			icryptoph ils + upla					t high pr	oportior	n of Leafy l	hemicryp	tophytes +
Field identification:			and widel ls.	y unders	stood.							
Occurrence:	Wides	pread in A	Alpine So	uth but s	scarce ev	verywher	e else.					
Direct threats:	Aband	onment o	f hay cutt	ing but a	also afte	rmath gr	azing.					
Climate change:	Could	lead to in	crease in	altitude	but limi	ted by su	iitable s	oils.				
Succession:	chamae never t 6530-	ephytes-1 o Forest j CLC 244	0. Low p phanerop	hanerop hytes exe ed to rec	hytes-5, cept at le	Mid pha ower alti	nerophy tudes.	/tes -10, '	Tall pha	icryptophy nerophytes ome other	s-10 and 1	maybe
Countries:			n, Bulgar kia, Slove							ungary, Ita m.	aly, Polan	ıd,
Distribution (sites):	ALN	BOR	nem	ATN	ALS	CON	atc	pan	lus	MDM	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC: **412** - Peat bogs

Annex I: **7110** - Active raised bogs

Mapping rules:	Atlantic Central / Atlantic North / Boreal / Nemoral below 300m.
Indicator species:	Andromeda polifolia, Vaccinium oxycoccos, Drosera anglica, Drosera intermedia.
GHC (BioHab):	Complexes of Cryptogames / Aquatic / Dwarf chamaephytes / Ceaspitose hemicryptophytes qualified with bog.
Field identification:	Difficult to separate from 7120 – Sphagnum dominated areas indicate quality habitat.
Occurrence:	Usually in discrete units but in the Atlantic zones difficult to separate from other bogs.
Direct threats:	Drainage, peat cutting.
Climate change:	Increases the rate of drying out and colonization by scrub and loss of Sphagnum species.
Succession:	Colonization by Low phanerophytes / Mid phanerophytes and eventually Tall phanerophytes. drying out and destruction of the bog surface.
Countries:	Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Hungary, Ireland,

Italy, Latvia, Lithuania, Netherlands, Poland, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, United Kingdom.

Distribution (sites):	aln	BOR	NEM	ATN	ALS	CON	ATC	pan	LUS	MDM	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:	412 - I	Peat bogs										
Annex I:	7120 -	Degrade	d raised b	ogs still	capable	of natura	al regene	eration				
Mapping rules:	Atlanti	ic Centra	l / Atlanti	c North	/ Boreal	/ Nemor	al below	300m.				
Indicator species:	-											
GHC (BioHab):	As 711	0 but wi	th less op	en water								
Field identification:			um covei	plus ab	sence of	dome st	ructure a	nd rand	vegetatio	on (scrub a	around th	e edge of
Occurrence:	-											
Direct threats:	Conve	rsion to a	griculture	e through	n drainag	ge and fe	rtilizer.					
Climate change:	Probab	oly alread	ly drier th	an 7110,	, but furt	her dryir	ng would	l lead to	conversi	on to acid	grasslan	d.
Succession:	hemic	yptophyt		hrubby c	hamaep	hytes ==				st Ceaspito ⇒ Mid pha		tes
Countries:			m, Czech erlands, I							rmany, Ire lom.	land, Ital	y, Latvia,
Distribution (sites):	aln	BOR	NEM	ATN	ALS	CON	ATC	pan	LUS	MDM	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

- CLC: **412** Peat bogs
- Annex I: **7130** Blanket bogs (* if active bog)

Mapping rules:	Atlantic Central / Atlantic North above 300m.
Indicator species:	Drosera rotundifolia, Eriophorum vaginatum, Empetrum nigrum, Rubus chamaemorus.
GHC (BioHab):	Leafy hemicryptophytes, but usually with under 30% Low phanerophytes / Evergreen.
Field identification:	Several key species enable identification notably Rubus chamaemorus and Eriophorum vaginatum.
Occurrence:	Large units where present.
Direct threats:	Overgrazing and conversion to agriculture; drainage.
Climate change:	Will lead to drying out and colonization by grasses.
Succession:	At low altitudes could be colonized by Low phanerophytes / Mid phanerophytes but only if climate change reduces the water saturation.

Countries:	France	e, Ireland	l, Spain, S	Sweden, I	United I	Kingdom						
Distribution (sites):	aln	bor	nem	ATN	als	con	ATC	pan	LUS	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:	412 -]	Peat bogs	5									
Annex I:	7140 -	- Transiti	on mires	and quak	ing bog	;s						
Mapping rules:	Probal	bly the o	nly way i	s to extra	ct 7130	and 711) and leav	ve the re	mainder	as 7140.		
Indicator species:	Scheu	chzeria p	alustris(?	?), Carex	rostrata	, Menyar	thes trife	oliata.				
GHC (BioHab):	Very o	difficult t	o define	without f	urther w	vork and	specific s	site descr	ription.			
Field dentification:			s with ma	any interg	grades v	vith other	bog clas	ses. Fur	ther wor	k needed	to define t	this clas
Occurrence: Direct threats:	U		re presen	t. Specifi	c site de	escription	is often a	vailable				
Climate change:	Leads	to drying	g out and	conversi	on to gr	assland t	ypes.					
Succession:	Conta	ins so ma	any variat	tions that	it is im	possible	to genera	lize.				
Countries:	Hunga	ary, Irela	nd, Italy,		ithuani	a, Luxer	bourg, N			rance, Ge nd, Portug		
Distribution (sites):	ALN	BOR	NEM	ATN	ALS	-	ATC	PAN	LUS	MDM	MDN	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:	412 - 1	Peat bogs	5									
Annex I:	7150 -	Depress	ions on p	beat subst	rates of	the Rhy	nchospori	on				
Mapping rules:			at a small t below 3		nly poss	sible to us	se distribu	ution of	peat bog	s with low	v probabil	ity.
ndicator species:	-											
GHC BioHab):	Ceasp	itose hen	nicryptop	hytes / ve	ery acid	/ standir	g water /	+ key sj	pecies.			
Field dentification:	A wel	l defined	vegetatio	on class v	vith sev	eral spec	ific indica	ators.				
Occurrence: Direct threats:		-	ted patter	m in spec	ific situ	ation.						
Climate		•										
change:	High (emperau	are will c	ause dryi	ng out.							

Succession:Only if drainage and drying out takes place.Countries:Austria, Belgium, Czech Republic, Denmark, Estonia, France, Germany, Ireland, Italy, Latvia,
Lithuania, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, United Kingdom.

Distribution aln BOR NEM ATN ALS CON ATC pan LUS MDM mdn mds

(sites): Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:	411 - I	inland ma	arshes									
Annex I:	7160 -	Fennosc	andian m	ineral-r	ich sprin	igs and sj	oringfens	5				
Mapping rules:	Boreal	l / Nemo	ral very lo	ocalized	and sma	all scale.	Impossil	ole to pre	dict.			
Indicator species:	-											
GHC (BioHab):	Needs	interpret	ation of r	elevant	phytoso	ciologica	l associa	tions.				
Field identification:	Severa	al specifi	c associat	ions but	quite va	ariable +	depende	d upon p	hytosoc	iological e	experience	.
Occurrence:	Locali	zed and t	fragmente	ed assoc	iations.							
Direct threats:	Draina	ige and e	utrophica	tion.								
Climate change:	Drying	g out and	invasion	of non t	fennosca	andian sp	ecies.					
Succession:		1	nus and c >Forest p		2	Shrubby o	chamaep	hytes ->!	Mid pha	nerophyte	s->Tall	
Countries:	Estoni	a, Finlan	d, Latvia,	Lithuar	nia, Swe	den.						
Distribution (sites):	ALN	BOR	NEM	atn	als	con	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC: **411** - Inland marshes

020.												
Annex I:	7210 -	Calcareo	ous fens w	ith Clad	ium mar	iscus and	l species	of the C	Caricion	davalliana	e	
Mapping rules:	Adjace	ent to wat	er bodies	but also	wetland	ls – diffic	ult to ide	entify.				
Indicator species:	Cladiu	m marisc	us, Schoe	nus nigr	ans, Sal	ix repens						
GHC (BioHab):	Comple	exes of g	rassland a	nd shrul	bs – nee	ds exami	nation.					
Field identification:	Contain	ns a rang	e of assoc	iations -	- usually	v phytoso	ciologica	al associ	ations to	develop t	he key.	
Occurrence:	Highly	localized	d, usually	fragmer	nted.							
Direct threats:	Draina	ge and co	onversion	to agrice	ulture.							
Climate change:	Leads t	to drying	out and t	rend tow	ards gra	issland.						
Succession:	but pos		1 /	1			0			refore diff hytes==>]		eneralize,
Countries:	Hungar	ry, Irelan	, U	atvia, L	ithuania	· ·	,	,		rance, Ger Slovakia, S		· ·
Distribution	aln	bor	NEM	ATN	ALS	CON	ATC	PAN	LUS	MDM	MDN	MDS

(sites): Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC: Annex I:		Inland m Petrifyi	arshes ng springs	s with tu	fa forma	tion (Cra	toneurio	n)				
Mapping rules:	Point	features -	- not poss	ible to p	redict.							
Indicator species:	-											
GHC (BioHab):	Ceasp	itose hen	nicryptop	hytes / C	ryptogai	mes, high	nly calcar	reous and	l tufa pr	esent.		
Field dentification:	-		eter readil	•								
Occurrence:	•		fragmente	ed but m	ay be loo	cally com	nmon on	particula	r substr	ates.		
Direct threats: Climate	Draina	age.										
change:	Leads	to drying	g out.									
Succession:	Only i	f drying	out takes	place.								
Countries:	Hunga	ary, Irela		Latvia, I	lithuania	ı, Luxem	bourg, N			rance, Ge nd, Romai		
Distribution (sites):	aln	BOR	NEM	ATN	ALS	CON	ATC	PAN	LUS	MDM	MDN	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:	411 -]	Inland m	arshes									
Annex I:	7230 -	Alkalin	e fens									
Mapping rules:	Atlant	ic Centra	oils / wet al: all, Con to predic	ntinental				,		, Atlantic n.	North: be	low 250n
Indicator species:	-											
GHC (BioHab):	Leafy	hemicry	ptophytes	/ Crypto	ogames v	vet alkali	ne peat -	+ expert	knowled	lge from p	hytosocio	logy.
Field dentification:	Rich f	ens clear	ly defined	d. Proble	m is wit	h transiti	ons to po	oor fens.				
Occurrence:	Quite	often in s	small pate	ches – on	ly large	units reli	able.					
Direct threats:	Draina	age + cor	version to	o agricul	ture.							
Climate change:	Will c	ause dry	ing out an	d shift to	o scrub.							
Succession:	Shrub	by chama		(5-10 y)	==> Lov	v phaner	opĥytes ((5-10 Y)	==> Mi	es dependi d phanero er level.		
Countries:	Hunga	ary, Irela		Latvia, I	lithuania					rance, Ge Slovakia, S		

Distribution (sites):	ALN	BOR	NEM	ATN	ALS	CON	ATC	PAN	LUS	MDM	MDN	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC: Annex I:		nland ma Alpine p	arshes vioneer fo	ormation	s of Cari	cion bicc	oloris-atr	ofuscae				
Mapping rules:		peats / sa on 2000 i		ine Nort	h / Borea	al on 500	m, Atlar	tic Nortl	1 on 90() m Contin	nental / Al	pine
Indicator species:	Carex	atrofusa,	Carex bi	color, Ju	incus trig	glumis.						
GHC (BioHab):	Ceaspi	tose hem	icryptopl	hytes / w	vet / acid	+ phytos	sociologi	cal units	+ solifl	uction terr	aces.	
Field identification:	Readil	y identifi	able, exc	ept smal	l transiti	onal pate	ches will	be often	present			
Occurrence:		centre of atches.	distribut	ion occu	rs in larg	e areas,	but on th	e edge o	f e.g. At	lantic Nor	th (ATN)	only in
Direct threats:	See be	low unde	er climate	change,	because	grazing	is minin	nal.				
Climate change:	Probab	oly chang	ing due t	o decline	e in pern	na-frost a	nd high	temperat	ures.			
Succession:			tures rise phanero						phytes =	==> Shrub	by chama	ephytes
Countries:			d, France		• •	Romani	a, Spain,	Sweden	, United	l Kingdom	1.	
Distribution (sites):	ALN	bor	nem	ATN	ALS	con	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:	412 - F	Peat bogs										
Annex I:	7310 -	Aapa mi	res									
Mapping rules:	Only N	Jorthern	classes of	f Alpine	North (A	Alpine No	orth) and	Boreal.				
Indicator species:	Saxifra	aga hircu	lus.									
GHC (BioHab):			-			• •	-			phytes / A	•	
Field identification:	guideli	ne only i				dependi	ng on he	ight of pa	alsa mir	es labelled	l with bog	code +
Occurrence:	In larg											
Direct threats:	Draina	ge and a	ttorestati	on.								
Climate change:	Could	lead to d	rying out	and colo	onizatior	n by shru	bs / trees	l.				
Succession:	•	-	-	w phane	erophytes	s ==> M	id phane	rophytes	==>Tal	l phanerop	phytes.	
Countries:		d, Swede			Ŧ				1	T	T	
Distribution (sites):	ALN	BOR	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
Distribution	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

(Bunce):

CLC:	412 - Peat bogs											
Annex I:	7320 -	7320 - Palsa mires										
Mapping rules:	Only N	only Northern classes of Alpine North (Alpine North) and Boreal.										
Indicator species:	Erioph	orum ru	sseolum,	Betula r	ana, Va	ccinium	microcar	pum.				
GHC (BioHab):			1	21	1 2	21	0			phytes / A s over 2 m	1	elled with
Field identification:	Could	be diffic	cult to sep	oarate fro	om 7310	but OK	if palsa-l	neight ov	er 2m is	included.		
Occurrence:	In larg	e units.										
Direct threats:	Unlike	ly to be	threatene	d, excep	t by clin	nate char	nge – see	below.				
Climate change:	Loss o	f perma	frost coul	d lead to	breakd	own of pa	alsa and	conversi	on to otl	ner bog tyj	pes.	
Succession:	Unlike	ly to be	beyond L	low pha	nerophyt	es or Mi	d phaner	ophytes	even in	the long te	erm.	
Countries:	Finlan	l, Swed	en.									
Distribution (sites):	ALN	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC:	332 (333) - Bare rocks (Sparsely vegetated areas)												
Annex I:	8110 -	8110 - Siliceous scree of the montane to snow levels (Androsacetalia alpinae and Galeopsetalia ladani)											
Mapping rules:	1	lpine North (Alpine North) > 800 m, Atlantic North > 900 m, Continental / Alpine South > 2000 m + .cidic soils.											
Indicator species:	Andros	acae alpi	ina, Oxyri	a digyna	ı, Saxifr	aga bryo	ides, Cr	yptogran	nma cris	spa, Anthyr	rium alpe	stre.	
GHC (BioHab):										hemicrypto be areas < 3		Leafy	
Field identification:	Quite w	vell defin	ed but co	uld grad	e into of	her scree	associa	ations.					
Occurrence:			the range mall patcl		lps and	Scandina	via wid	espread.	On the	edge of its	range e.g	g., in ALN,	
Direct threats:	See clin	nate cha	nge.										
Climate change:	Would	move up	wards wi	th climat	te chang	e and dis	appear	at lower	levels.				
Succession:	Only by	y Shrubb	y chamae	phytes /	Low ph	anerophy	tes und	er climat	e chang	e and with	the slow		
Countries:			n, Bulgar , Sweden,				nd, Fra	nce, Geri	nany, Ir	eland, Italy	y, Poland	, Romania,	
Distribution (sites):	ALN	BOR	nem	ATN	ALS	CON	atc	pan	lus	MDM	mdn	mds	
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds	

CLC:	332 (333) - Bare rocks (Sparsely vegetated areas)											
Annex I:	8120 -	20 - Calcareous and calcshist screes of the montane to alpine levels (Thlaspietea rotundifolii)										
Mapping rules:	-	pine North (Alpine North) above 800 m, Atlantic North above 450 m, Continental / Alpine South ove 2000 m.										
Indicator species:	Campa	mpanula cenisia, Saxifraga biflora, Thlaspi rotundifolium, Hutchinsia alpina, Galium villarsi.										
GHC (BioHab):			ptophytes tes, but lo							ptophytes o	or locally	Leafy
Field identification:	Quite	well defi	ned altho	ugh some	e units n	nay have	quite sr	nall amo	unts of l	oare rock.		
Occurrence:	In the patches		the rang	e if Alps	+ Scand	inavia m	ay be ex	xtensive,	elsewhe	ere in small	fragmen	ited
Direct threats:	Coloni	olonization by shrubs.										
Climate change:	Could	lead to i	ncrease ii	n altitude	and dist	tinction a	t lower	levels du	e to san	ds coloniza	ation.	
Succession:		oy chama posure.	aephytes /	Low pha	aneroph	ytes unde	er clima	te change	e. Rate v	varies accor	rding to s	oil depth
Countries:		, U	ria, Franc erland, U	· ·		and, Italy	, Polanc	l, Roman	ia, Slov	akia, Slove	enia, Spai	in,
Distribution (sites):	ALN	bor	nem	ATN	ALS	CON	atc	pan	lus	MDM	mdn	mds
Distribution (Bunce):	aln	bor nem atn als con atc pan lus mdm mdn mds										
CLC:	332 (3	33) - Bai	re rocks (Sparsely	vegetate	ed areas)						

Annex I:	8130 -	Western	Mediter	ranean a	nd therm	ophilous	screes					
Mapping rules:			lpine Sou screes + c			n south fa	acing, M	editerra	nean mo	untains / N	/lediterran	ean North
Indicator species:	-											
GHC (BioHab):	Leafy	hemicryp	otophytes	or Leaf	y hemicr	yptophyt	es / Ceas	pitose h	emicryp	tophytes.		
Field identification:					ations - 1	therefore	a compl	ex class	with a re	equiremen	t for	
Occurrence:	Could	be some	large are	as but of	ften smal	l patches	-					
Direct threats:	None f	oreseen,	except se	ee climat	te change	e.						
Climate change:	Could	get too d	ry to sup	port the	current c	over and	shift to	high ten	nperature	species.		
Succession:	Unlike	ly becau	se high te	emperatu	ire and sl	nallow sc	oils.					
Countries:	Austria	a, France	, Italy, P	ortugal, S	Spain, Sv	vitzerlan	d.					
Distribution (sites):	aln	bor	nem	atn	ALS	CON	ATC	pan	LUS	MDM	MDN	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC: **332 (333)** - Bare rocks (Sparsely vegetated areas) Annex I: **8140** - Eastern Mediterranean screes

Mapping rules:		Mediterranean North / Mediterranean mountains above 500m + Greece only (but could also be elsewhere?).										
Indicator species:	Drypis	s spinosa	, Ranunc	ulus brev	vifolius,	Senecio	thapsoid	es, Aren	aria serp	entini.		
GHC (BioHab):	Leafy	afy hemicryptophytes + screes + expert knowledge.										
Field identification:	Limite	nited information available, but two vegetations units only.										
Occurrence:	Likely	to be fra	agmented	and in s	small loc	calized pa	tches.					
Direct threats:	None	foreseen	except cl	imate ch	nange.							
Climate change:	Could	get too d	lry to sup	port the	current	flora and	shift to	more the	rmophy	lous specie	s.	
Succession:	Unlike	ely becau	se high to	emperati	are and s	shallow s	oils.					
Countries:	Greec	Inlikely because high temperature and shallow soils.										
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	MDM	mdn	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:		,		1 2	U	ted areas))					
Annex I:	8150 -	Medio-	European	upland	siliceous	s screes						
Mapping rules:			ous rocks ntal / Alpi				0 m-100	0m Atlar	tic Nort	h / Atlantic	c Central	over
Indicator species:	Epilob	oium coll	inum, Ga	leopsis	segetum	, Cryptog	gramma o	erispa.				
GHC (BioHab):	-											
F ¹ 1 1												

(Biorido).												
Field identification:	-											
Occurrence:	-											
Direct threats:	-											
Climate change:	-											
Succession:	-											
Countries:	Austria	a, Czech	Republic	, France,	Germar	ny, Hunga	ary, Luxe	embourg	, Polanc	l, Slovakia		
Distribution (sites):	aln	bor	nem	ATN	ALS	CON	ATC	PAN	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC: Annex I:	332 (333) - Bare rocks (Sparsely vegetated areas)8160 - Medio-European calcareous scree of hill and montane levels
Mapping rules:	Alpine South 400 m-2500 m. Continental 400 m-2500 m.
Indicator species:	Dryopteris robertiania, Rumex scutatus, Petasites paraduxus.

GHC (BioHab):	Leafy l	Leafy hemicryptophytes / Ceaspitose hemicryptophytes + calcareous scree + expert knowledge.										
Field identification:	Limite	mited information means that it will be difficult to separate from 8130 – further consultation needed.										
Occurrence:	Likely	to be fra	gmented	and in sn	nall pate	ches.						
Direct threats:	None f	oreseen,	except se	e below.								
Climate change:	Increas	ncrease temperatures could lead to shift to more thermophyllous types.										
Succession:	Unlike	ly under	present c	ondition	because	of shalle	w soils.					
Countries:		, U	m, Czech nia, Switz	1	c, Franc	e, Germa	ny, Hun	gary, Ita	ly, Luxe	embourg, P	oland, Ro	omania,
Distribution (sites):	aln	bor	nem	ATN	ALS	CON	ATC	pan	lus	MDM	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC:	332 (3	33) - Bar	e rocks (S	Sparsely	vegetate	ed areas)						
Annex I:	8210 -	2210 - Calcareous rocky slopes with chasmophytic vegetation										
Mapping rules:	Medite	editerranean North / Alpine South below 800m. Mediterranean mountains / limestone roads.										
Indicator species:		umonda myconi, Potentilla caulescentis, Cystopteris fragilis, Asplenium thrichomanes, Asplenium ride, Woodsia glabella.										
GHC (BioHab):			tophytes ge of bar		hemicr	yptophyt	es / Ceas	pitose h	emicryp	tophytes +	Highly c	alcareous
Field identification:	Difficu	ılt becau	se of the 1	ange of	habitant	s overlap	with lin	nestone p	avemen	ts / consu	lt with exp	perts.
Occurrence:	Likely	to be fra	gmented	and in sr	nall pate	ches.						
Direct threats:	Succes	sional de	evelopme	nts in lov	vlands,	but none	on steep	cliffs.				
Climate change:	Variab	le accore	ling to as	pect and	altitude.							
Succession:	phaner		Mid phan	, 1		1				rubby chai ohytes wou	1 2	s Low according
Countries:	Ireland	l, Italy, L	, U	xembou	g, Malta	,	,	· · · ·	,	many, Gre vakia, Slov	· · ·	0 0
Distribution (sites):	ALN	BOR	NEM	ATN	ALS	CON	ATC	PAN	LUS	MDM	MDN	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC:	332 (333) - Bare rocks (Sparsely vegetated areas)
Annex I:	8230 - Siliceous rock with pioneer vegetation of the Sedo-Scleranthion or of the Sedo albi-Veronicion dillenii
Mapping rules:	As 8220.
Indicator species:	-

GHC (BioHab):	-											
Field												
identification:	-											
Occurrence:	-											
Direct threats:	-											
Climate	_											
change:												
Succession:	-	. D.1.		i. C	1. D 1	1: D.		.11 .	C		гт	(. 1
Countries:			m, Bulga Poland, Po							ermany, H	lungary, I	laiy,
Distribution (sites):	ALN	BOR	NEM	ATN	ALS	CON	ATC	PAN	LUS	MDM	MDN	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:	332 (3	33) - Bar	e rocks (Sparsely	vegetate	ed areas)						
Annex I:	8240 -	Limesto	ne paven	nents								
Mapping rules:	in Mec specifi	diterranea c altitudi		ains / Alj s.	pine Sou					nparable k diterranea		
Indicator species:	Gymn	ocarpium	n robertia	num, Dry	yopteris	villarii.						
GHC (BioHab):	-											
Field identification:	-											
Occurrence:	-											
Direct threats:	-											
Climate change:	-											
Succession:	_											
Countries:	Austri	a. Estonia	a. France	. Ireland.	Italv. P	ortugal.	Slovenia	Sweden	. United	l Kingdom	1.	
Distribution (sites):	aln	bor	nem	ATN	ALS	CON	ATC	pan	lus	MDM	MDN	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:	332 (3	33) - Bar	e rocks (Sparsely	vegetate	ed areas)						
Annex I:	8320 -	Fields o	f lava and	l natural	excavat	ions						
Mapping rules:	Adjace	ent to act	ive volca	noes only	у.							

Indicator species: GHC (BioHab): Field dentification: Occurrence: Direct threats: Climate change: Succession: Countries: Distribution (sites): Distribution	exoert Difficu togethe Widesp Fire wi Will fa	er with ol pread and indblow wour dry	ge. se it cove ld forest. l domina	nt over 1	large are	as but als		•		be biogea mdm mdm	graphic re mdn mdn	
species: GHC (BioHab): Field dentification: Occurrence: Direct threats: Climate change: Succession: Countries:	exoert Difficu togethe Widesp Fire wi Will fa Climax Estonia	knowled alt because er with ol pread and indblow wour dry c. a, Finland	ge. se it cove ld forest. d dominat felling. species. d, Latvia,	nt over 1 Lithuar	large are nia, Swe	as but als den.	o fragm	ented in j	places.			gion
species: GHC BioHab): Field dentification: Decurrence: Direct threats: Climate change: Succession:	exoert Difficu togethe Widesp Fire wi Will fa	knowled ilt becaus er with ol pread and indblow wour dry	ge. se it cove ld forest. l dominat felling. species.	nt over 1	large are	as but als		•		be biogea	graphic re	
pecies: GHC BioHab): Field dentification: Occurrence: Direct threats: Climate change:	exoert Difficu togethe Widesp Fire wi Will fa	knowled ilt becaus er with ol pread and indblow	ge. se it cove ld forest. l dominat felling.			•		•		be biogea	graphic re	
species: GHC BioHab): Field dentification: Decurrence: Direct threats:	exoert Difficu togethe Widesp Fire wi	knowled Ilt becaus er with ol pread and indblow	ge. se it cove ld forest. l dominat felling.			•		•		be biogea	graphic re	
species: GHC (BioHab): Field dentification: Occurrence:	exoert Difficu togethe Widesp	knowled Ilt becauser with ol	ge. se it cove ld forest. l domina			•		•		be biogea	graphic re	
species: GHC (BioHab): Field dentification:	exoert Difficu togethe	knowled It becauser with ol	ge. se it cove ld forest.			•		•		be biogea	graphic re	
species: GHC (BioHab): Field	exoert Difficu	knowled	ge. se it cove	rs such	a wide ra	ange of cl	asses. C	Can only l	oe done	be biogea	graphic re	
species: GHC (BioHab):	exoert	knowled	ge.	1	• •	<u> </u>	~	ч 1 I	1	1 1 .	1.	
species:	Forest	nharm	hutca C.	miers +	- Pinus a	ind or P1C	ea + ary	acid soil	s + aen	muon of C	ind forest	
ndianter	_			nifora	Dipus	nd or Dia	$aa \perp dm$	anid ani	a ± dof	nition of a	ld foract	- 1a aal
Mapping rules:	only ol may be does no therefo habitat Alpine	d forests e preset c ot extend ore define status is	are inclusionsultation into the where the more difference (where the more difference)	ided rector on with nemoral ne class ficult to	ently bui general l zone bu can pote determi	rnt areas a descriptic at is in the entially oc ne.	are also ons of ta high m cur but	covered. iga sugge ountains whether	Also w est that i of Norv an indiv	hilst some t is mainly vay and S ⁻ vidual unit ghout.(ba	broadleav conifero weden. Th is actuall	ved trees us and ne rules y priorit
Monning	This of	ass contr	ing o wid	la ranga	ofvorio	tion and a	lthough	the deep	rintian	in the man	uol impli	as that
Annex I:		Western				- /						
CLC:	311 (3	13) - Bro	ad-leaved	d forest	(Mixed :	forest)						
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
Countries:	Greece				_				_	_		_
Succession:	-											
	-											
change:												
Climate												
	-											

Annex I:	9020 - Fennoscandian hemiboreal natural old broad-leaved deciduous forests (Quercus, Tilia, Acer, Fraxinus or Ulmus) rich in epiphytes
Mapping rules:	Boreal below 500m Nemoral all + Brown earth soils + Presence of Ulmus and Quercus.
Indicator species:	Anemone nemorosa, Dentaria bulbifera, Hepatica nobilis, Mercurialis perennis.
GHC	Forest phanerophytes / Winter deciduous + mixtures of nQuercus / Tilia / Acer / Fraxinus and Ulmus +

(BioHab):	eviden	ce of con	tinuity bo	of forest	t cover +	dead wo	od + epi	phytes.				
Field identification:	-		nay deper	nd on ar	nount of	dead woo	od other	wise rest	ricted ra	ange of var	riation and	d well
Occurrence:	Restric	ted and l	ocal.									
Direct threats:	Felling											
Climate change:	Long l	ived tree	s in good	conditio	ons there	efore limit	ed impa	act.				
Succession:	Climax	ί.										
Countries:	Estonia	a, Finlan	d, Latvia,	Lithuar	nia, Swe	den.						
Distribution (sites):	aln	BOR	NEM	atn	als	CON	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	ALN	BOR	NEM	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC: Annex I:			ad-leaved orests of				es of land	dupheava	al coast			
Mapping rules: Indicator species:			the Baltic quired as					CLC fore	st catego	ories to be	included	
GHC (BioHab):	Forest	phanerop	hytes / W	/inter de	ciduous	s + exper	t informa	ation.				
Field identification:	Include	es a comb	ination o	f a spec	ific geo	morphol	ogical fo	rmation a	and rang	ge of fores	t types.	
Occurrence:	Restric	ted to a s	pecific g	eograph	ical regi	ion.						
Direct threats:	Felling	, wind bl	ow, conv	ersion to	o conife	rs.						
Climate change:	Probab	ly stable.										
Succession:	Balance	e betwee	n species	may ch	ange bu	t otherwi	ise matur	e forest	type.			
Countries:	Finland	l, Swedei	1.									
Distribution (sites):	aln	BOR	NEM	atn	als	con	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	aln	BOR	NEM	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC: Annex I:		,	ad-leaved ubalpine/				etula pub	escens ss	sp. Czer	epanovii		
Mapping rules:	Alpine	North / H	Boreal (v	vestern s	sector) 4	400-800 1	Boreal ea	astern sec	tor nort	hern class	es only.	
Indicator species:	Betula lycocto		is ssp. cz	erepano	vii, Emp	petrum h	ermaphro	oditum, V	/acciniu	m myrtillu	us, Aconi	tum
GHC (BioHab):			hytes / W on + expe			s + Betul	a pubesc	ens ssp c	zerrpan	ovii over 7	70% + vai	iable
Field identification:	Its occu	urrence d	epends of	n the Be	tula sub	ospecies.						
Occurrence:	Probab	ly widesp	oread but	depends	s on hov	w specifi	c the clas	ss is to th	e subsp	ecies of B	etula.	

Climate change:	Maybe	e expand	north bu	t be und	er pressu	ire at sou	thern ed	ge of its	range.			
Succession:	Clima	х.										
Countries:	Finlan	d, Swede	n.									
Distribution (sites):	ALN	BOR	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	ALN	BOR	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC: Annex I:		13) - Cor Fennosc				· ·	a abies					
	2000	1 0111000		••••	1010000							
Mapping rules:	Brown	n soils Alp	pine Nor	th / Bore	eal below	v 300 Ne	moral al	l + Picea	abies.			
Indicator species:	Picea a	abies, Act	taea spic	ata, Ger	anium sy	ylvaticun	n, Paris q	luadrifoli	a, Matte	euccia stru	thiopteris	
GHC (BioHab):		phanerop over30%						rophytes	/ Winte	r deciduou	us present	Picea
Field identification:										lass is con presence		bably n
Occurrence:	Wides	pread cov	vering la	rge areas	5.							
Direct threats:	, Wind	lblow,fell	ing.									
Climate change:	Minim	nal.										
Succession:	Climax	x.										
Countries:	Estoni	a, Finland	d, Latvia	, Lithua	nia, Swe	den.						
Distribution (sites):	ALN	BOR	NEM	atn	als	con	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	ALN	BOR	NEM	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:	312 (3	13) - Cor	niferous	forest (N	lixed for	rest)						
Annex I:	9060 -	Conifero	ous fores	ts on, or	connect	ed to, gla	ciofluvi	al eskers				
Mapping rules:	Find if	f there is a	a map of	eskers I	Boreal b	elow 300	Nemora	ıl all.				
Indicator species:	Anteni	naria dioe	eca, Pteri	dium aq	uilinum	, Pinus sy	vlvestris.					
GHC (BioHab):	sylvest		0 and or							Winter de soils + ric		
Field identification:	Contai	ins only t	wo assoc	ciations s	so is pro	bably cle	ar in cor	njunction	with es	kers.		
Occurrence: Direct threats:			specific §	geomorp	hologica	al format	ion whic	h is exter	nsive in	the lowlar	nds of the	zone.

change: Robust species composition therefore limited but mor eatern species possible.

Succession: Climax.

Countries:		ia, Finlan		Swede	n.							
Distribution (sites):	aln	BOR	NEM	atn	als	con	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	aln	BOR	NEM	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:	321 (2	2 31) - Nat	ural gras	slands (Pastures)						
Annex I:	9070 -	- Fennosc	andian w	ooded p	oastures							
Mapping rules:	Brown	n soils + A	Alpine No	orth / Be	oreal / N	emoral u	oto 700r	n.				
Indicator species:	-											
GHC (BioHab):										Betula wit g or former		30% co
Field identification:	Most	examples	probably	well k	nown wi	th a clear	structur	e althoug	h now o	often in the	e process	of chan
Occurrence:		red small to be kno		en now	ungraze	d - theref	ore diffi	cult to de	tect-the	refore regi	ional dist	ribution
Direct threats:	Colon	isation by	Picea ar	d Pinus	s, loss of	grazing a	and conv	version to	forest	structure.		
Climate change:	Probal	ly stable ł	because o	f ling li	ved tree	s.						
Succession:	Canop	by closure	and shif	t to fres	t.							
Countries:	Estoni	ia, Finlan	d, Lithua	nia, Sw	eden.							
Distribution (sites):	aln	BOR	NEM	atn	als	CON	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	ALN	BOR	NEM	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:	311 (3	8 13) - Bro	ad-leave	d forest	(Mixed	forest)						
Annex I:		- Fennosc			•	· · · · ·						
Mapping rules:	Borea	l below 3	00 Nemo	ral all +	- Wet pe	ats.						
Indicator species:	Fraxin	nus excels	ior, Alnu	s glutin	iosa, Aln	us icana,	Lycopu	s europae	eus, Lys	imachia th	yrsiflora.	
GHC (BioHab):	Forest eutrop		phytes / V	Vinter d	leciduou	s + more	than 309	% of Alm	us,Betul	a or Salix	+ wet soi	ls +
Field identification:	Well o	defined re	stricted r	ange of	associat	tions plus	recogni	zable loc	al condi	tions.		
Occurrence: Direct threats:		•				suitable	soils but	t otherwis	se small	patches b	y rivers.	
Climate		to be bu				jor rivers						
change: Succession:	Clima	x unless o	change in	local c	ondition	s.						
Countries: Distribution	Estoni aln	ia, Finlan BOR	d, Latvia, NEM		nia, Pola <i>als</i>	nd, Swec CON		pan	lus	mdm	mdn	mds

Distribution (sites):	aln	BOR	NEM	atn	als	CON	atc	pan	lus	mdm	mdn	mds
Distribution	ALN	BOR	NEM	atn	als	con	atc	pan	lus	mdm	mdn	mds

(Bunce):

	211 (2)		11		NC 16							
CLC: Annex I:			ad-leaved Fagetum l			orest)						
Mapping rules:										ne South 3 tion of Fag		Medit.
Indicator species:	Fagus	sylvatica	, Luzula l	uzuloide	es, Pterio	dium aqu	ilinum, V	Vacciniu	m myrti	illus.		
GHC (BioHab):			hytes / W led to oth			more that	an 70% F	Fagus + r	noist ac	cid soils + o	one assoc	iation but
Field identification:			le associa	tion dep	endent o	on Luzula	a albida l	but proba	ably nov	w includes	other aci	dic beech
Occurrence:	Often p	present as	s large blo	ocks of c	ontinuo	us forest						
Direct threats:	Felling	, convers	sion to co	nifer.								
Climate change:	Fagus of long te		affected l	oy droug	ht at edg	ges of its	range w	ith sunbs	sequent	shift to Qu	iercus pet	raea in the
Succession:	Climax	over lar	ge areas.									
Countries:			n, Bulgar etherland							Greece, H weden.	ungary, It	aly,
Distribution (sites):	aln	bor	NEM	ATN	ALS	CON	ATC	PAN	lus	MDM	MDN	mds
Distribution (Bunce):	aln	BOR	NEM	atn	als	CON	ATC	PAN	lus	mdm	mdn	mds
CLC:	311 (32	13) - Bro	ad-leaved	l forest (Mixed f	orest)						
Annex I:			acidophil ri-petraea				ex and so	ometimes	s also T	axus in the	shrublay	er
Mapping rules:			outhern cl ls + Fagu		ly and w	vithin 10)km of c	oast Atla	ant. Cen	ıtral within	100km o	f coast +
Indicator species:		sylvatica ium myr		ifolium	(?), Taxi	us baccat	a, Desch	ampsia f	lexuosa	a, Pteridiun	n aquilinu	ım,
GHC (BioHab):		phanerop uidance.	ohytes / W	/inter de	ciduous	+ Fagus	over 70%	% + Ilex	and or	Taxus + m	ost acid s	oils +
Field identification:	Alright	t for vege	etation sci	entists c	otherwise	e difficul	t to separ	rate from	n 9110.			
Occurrence:	Scatter	ed and d	ifficult to	separate	e from 9	110.						

Direct threats: Felling, conversion to conifer.

Climate change: Drought would lead to gradual loss of fagus and shift vto Quercus.

Succession:	Clima	x.										
Countries:	Belgiu	ım, Denr	nark, Frar	nce, Gern	nany, Lit	thuania, l	Luxembo	ourg, Ne	therland	s, Spain, U	Jnited Ki	ngdom.
Distribution (sites):	aln	bor	nem	ATN	ALS	CON	ATC	pan	LUS	MDM	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	CON	ATC	pan	lus	mdm	mdn	mds

CLC: Annex I:			oad-leaved o-Fagetur			orest)						
Mapping rules:	distrib Alpine Basic /	ution wil South /	l be giver Continen ous soils.	n by the t	followin	g rules.		-	and dif	ficult to id	entify-the	core
Indicator species: GHC	Fagus	sylvatica	, Anemor	ne nemo	rosa, Lai	nium gal	eobdoloi	n, Denta	ria spp			
(BioHab):	-											
Field identification:	Seems	to cover	a wide ra	ange of v	regetatio	n-could t	herefore	be diffic	cult to i	dentify.		
Occurrence:	Fragm	ented in	the west l	out inclu	des large	e patches	in the ce	entre of i	ts distri	bution.		
Direct threats:	-											
Climate change:	-											
Succession:	_											
Countries:	- Austri	a Beloiu	m Bulaa	ria Czec	h Renut	lic Den	mark Fr	ance Ge	rmany	Greece, H	ungary It	alv
Countries.										nited Kingd		ary,
Distribution (sites):	aln	bor	NEM	ATN	ALS	CON	ATC	PAN	lus	MDM	MDN	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC: Annex I:			ad-leaved European			ŕ	ith Acer	and Rur	nex arif	òlius		
Mapping rules:	Alpine	e South /	Continen	tal 700-1	200.							
Indicator species:	Fagus	sylvatica	, Acer ps	eudoplat	anus, Rı	imex acr	ifolius.					
GHC (BioHab):	Forest knowle	1 1	phytes / V	Vinter de	eciduous	+ Fagus	30-70 +	Acer pse	edoplata	anus 30-70	+ expert	local
Field identification:	Difficu	ult to sep	arate from	n 9130 a	nd 9110	and limi	ted descr	riptive in	formati	on.		
Occurrence:	Not en	ough inf	ormation	but prob	ably res	tricted.						
Direct threats:	Felling	g, conver	sion to co	onifer.								
Climate change:	Inadeq	uate info	ormation l	out could	l expand	upwards	5.					
Succession:	Climax	Χ.										
Countries:	Austria	a, Czech	Republic	, France,	Germar	ny, Greec	e, Italy,	Poland,	Slovaki	a, Spain, S	witzerlan	d.
Distribution (sites):	aln	bor	nem	atn	ALS	CON	atc	pan	lus	MDM	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	ALS	con	atc	PAN	lus	mdm	mdn	mds

CLC: **311 (313)** - Broad-leaved forest (Mixed forest)

Annex I:	9150 - Medio-European limestone beech forests of the Cephalanthero-Fagion
Mapping rules:	Atlant. Central all Alpine South / Continental 400-1200 + Calcareous soils + Fagus.
Indicator species:	Fagus sylvatica, Carex digita, Cephalantera spp., Neotttia nidus-avis.
GHC (BioHab):	Forest phanerophytes / Winter deciduous + Fagus over 70% + shallow dry calcareous soils + steep slopes + ground flora species.
Field identification:	A well defined category but grades into 9130.
Occurrence:	Widespread in large patches but often replaced by Picea abies in the Alps.
Direct threats:	Felling withy deeper soils conversion to conifer.
Climate change:	Thermophilic species will be favoured.
Succession:	Climax.
Countries:	Austria, Belgium, Bulgaria, Czech Republic, Denmark, France, Germany, Greece, Hungary, Italy, Lithuania, Luxembourg, Poland, Romania, Slovakia, Spain, Switzerland.
Distribution (sites):	aln bor nem ATN ALS CON ATC PAN LUS MDM MDN mds
Distribution (Bunce):	aln bor nem atn ALS con ATC PAN lus mdm mdn mds
CLC: Annex I:	311 (313) - Broad-leaved forest (Mixed forest)
AIIICA I.	9160 - Sub-Atlantic and medio-European oak or oak-hornbeam forests of the Carpinion betuli
Mapping rules:	
Mapping	 9160 - Sub-Atlantic and medio-European oak or oak-hornbeam forests of the Carpinion betuli Atlant. Central all Continental below 800 Alpine North / Boreal too restricted to predict but look at possibility of species + Brown earth soils + Quercus robur (mainly but can also be petraea but not often)
Mapping rules: Indicator	 9160 - Sub-Atlantic and medio-European oak or oak-hornbeam forests of the Carpinion betuli Atlant. Central all Continental below 800 Alpine North / Boreal too restricted to predict but look at possibility of species + Brown earth soils + Quercus robur (mainly but can also be petraea but not often) + Carpinus.
Mapping rules: Indicator species: GHC	 9160 - Sub-Atlantic and medio-European oak or oak-hornbeam forests of the Carpinion betuli Atlant. Central all Continental below 800 Alpine North / Boreal too restricted to predict but look at possibility of species + Brown earth soils + Quercus robur (mainly but can also be petraea but not often) + Carpinus. Quercus robur, Quercus petraea, Carpinus betulus, Stellaria holostea, Ranunculus nemorosus. Forest phanerophytes / Winter deciduous Quercus petraea and or Quercus robur and Carpinus all 30-70% + moist neutral soils. Grades into other oak forests and can be on former beech forests.
Mapping rules: Indicator species: GHC (BioHab): Field	 9160 - Sub-Atlantic and medio-European oak or oak-hornbeam forests of the Carpinion betuli Atlant. Central all Continental below 800 Alpine North / Boreal too restricted to predict but look at possibility of species + Brown earth soils + Quercus robur (mainly but can also be petraea but not often) + Carpinus. Quercus robur, Quercus petraea, Carpinus betulus, Stellaria holostea, Ranunculus nemorosus. Forest phanerophytes / Winter deciduous Quercus petraea and or Quercus robur and Carpinus all 30-70% + moist neutral soils. Grades into other oak forests and can be on former beech forests.
Mapping rules: Indicator species: GHC (BioHab): Field identification: Occurrence:	 9160 - Sub-Atlantic and medio-European oak or oak-hornbeam forests of the Carpinion betuli Atlant. Central all Continental below 800 Alpine North / Boreal too restricted to predict but look at possibility of species + Brown earth soils + Quercus robur (mainly but can also be petraea but not often) + Carpinus. Quercus robur, Quercus petraea, Carpinus betulus, Stellaria holostea, Ranunculus nemorosus. Forest phanerophytes / Winter deciduous Quercus petraea and or Quercus robur and Carpinus all 30-70% + moist neutral soils. Grades into other oak forests and can be on former beech forests.
Mapping rules: Indicator species: GHC (BioHab): Field identification: Occurrence:	 9160 - Sub-Atlantic and medio-European oak or oak-hornbeam forests of the Carpinion betuli Atlant. Central all Continental below 800 Alpine North / Boreal too restricted to predict but look at possibility of species + Brown earth soils + Quercus robur (mainly but can also be petraea but not often) + Carpinus. Quercus robur, Quercus petraea, Carpinus betulus, Stellaria holostea, Ranunculus nemorosus. Forest phanerophytes / Winter deciduous Quercus petraea and or Quercus robur and Carpinus all 30-70% + moist neutral soils. Grades into other oak forests and can be on former beech forests. Locally extensive and also widespread.
Mapping rules: Indicator species: GHC (BioHab): Field identification: Occurrence: Direct threats: Climate	 9160 - Sub-Atlantic and medio-European oak or oak-hornbeam forests of the Carpinion betuli Atlant. Central all Continental below 800 Alpine North / Boreal too restricted to predict but look at possibility of species + Brown earth soils + Quercus robur (mainly but can also be petraea but not often) + Carpinus. Quercus robur, Quercus petraea, Carpinus betulus, Stellaria holostea, Ranunculus nemorosus. Forest phanerophytes / Winter deciduous Quercus petraea and or Quercus robur and Carpinus all 30-70% + moist neutral soils. Grades into other oak forests and can be on former beech forests. Locally extensive and also widespread. Felling, conversion to agriculture.
Mapping rules: Indicator species: GHC (BioHab): Field identification: Occurrence: Direct threats: Climate change:	 9160 - Sub-Atlantic and medio-European oak or oak-hornbeam forests of the Carpinion betuli Atlant. Central all Continental below 800 Alpine North / Boreal too restricted to predict but look at possibility of species + Brown earth soils + Quercus robur (mainly but can also be petraea but not often) + Carpinus. Quercus robur, Quercus petraea, Carpinus betulus, Stellaria holostea, Ranunculus nemorosus. Forest phanerophytes / Winter deciduous Quercus petraea and or Quercus robur and Carpinus all 30-70% + moist neutral soils. Grades into other oak forests and can be on former beech forests. Locally extensive and also widespread. Felling, conversion to agriculture. Probably stable but long term changes in tree composition possible.

(sites): Distribution aln bor NEM atn als CON ATC pan lus mdm mdn mds (Bunce):

CLC: **311 (313)** - Broad-leaved forest (Mixed forest)

Annex I: 9170 - Galio-Carpinetum oak-hornbeam forests

Mapping rules:	Contin	Continental below 400 + Distribution of Quercus petraea and Carpinus.											
Indicator species:	Quercu	ıs petraea	a, Carpinu	ıs betulu	s, Sorbu	s tormina	alis, Con	vallaria	majalis				
GHC (BioHab):	Forest soils.	Forest phanerophytes / Winter deciduous + Quercus petraea + Carpinus + Tilia all 30-70 % + dry neutral soils.											
Field identification:	One as	One association only so should be clear although dominance of tree species could be variable.											
Occurrence:	Restric	Restricted but probably locally dominant.											
Direct threats:	Felling	Felling.											
Climate change:	Probab	Probably stable.											
Succession:	Climax	κ.											
Countries:	Austria Swede	, U	ia, Czech	Republi	c, Denm	ark, Frar	nce, Gerr	nany, Ita	ıly, Pola	and, Roma	nia, Slova	ıkia,	
Distribution (sites):	aln	bor	nem	ATN	ALS	CON	ATC	PAN	lus	mdm	mdn	mds	
Distribution (Bunce):	aln	n bor nem atn als CON ATC PAN lus mdm mdn mds											

CLC: Annex I:		11 (313) - Broad-leaved forest (Mixed forest)180 - Tilio-Acerion forests of slopes, screes and ravines											
Mapping rules:										emoral like types + s			
Indicator species:	Acer p	cer pseudoplatanus, Tilia cordata (?).											
GHC (BioHab):		rest phanerophytes / Winter deciduous + m Acer pseu + Tilia + Fraxinus all 30-70% + moist neutral ls + shallow rock soils + steep slopes.											
Field identification:	,Depen	epends on local knowledge of the relevant associations.											
Occurrence:	Localis	ocalised but difficult to assess because of high variability of situations.											
Direct threats:	Often p	protected	by inacco	essibility									
Climate change:	Probab	ly stable											
Succession:	Climax	ί.											
Countries:	Italy, L	atvia, Li		Luxembo						many, Gre 1, Spain, S		gary,	
Distribution (sites):	aln	BOR	NEM	ATN	ALS	CON	ATC	PAN	LUS	MDM	MDN	mds	
Distribution (Bunce):	ALN	LN BOR NEM ATN ALS CON atc pan lus mdm mdn mds											

CLC: Annex I:	311 (313) - Broad-leaved forest (Mixed forest)9190 - Old acidophilous oak woods with Quercus robur on sandy plains
Mapping rules:	Atlant. Central / Nemoral / Boreal / Continental + 100km from coast of Estonia to theNetherlands + Podzols + Quercus robur / Betula.

Indicator	0											
species:	-	ıs robur.										
GHC (BioHab):	Forest podzol		phytes / W	/inter de	ciduous	s Quercus	robur / I	Betula 30)-70 % +	- old fores	sts + Acid	moist
Field identification:	Well de	efined an	nd one ass	ociation								
Occurrence:	Probab	ly localiz	zed and n	ot comm	ion.							
Direct threats:	Felling	.•										
Climate change:	Shift to	Quercu	s petraea	and drie	r herb la	ayer speci	es.					
Succession:	Climax											
Countries:		Belgium, Czech Republic, Denmark, Finland, France, Germany, Italy, Lithuania, Netherlands, Poland, lovakia, Sweden, United Kingdom.										
Distribution (sites):	aln	bor	NEM	ATN	als	CON	ATC	PAN	LUS	mdm	mdn	mds
Distribution (Bunce):	aln	BOR	NEM	atn	als	con	atc	pan	lus	mdm	mdn	mds
Mapping rules: Indicator species: GHC		Atlant. North / Atlant. Central 100 km from west coast of GB + Acid brown earths. Ilex aquifolium, Arbutus unedo, Quercus petraea.										
	Forest	nhaneror	shytes / W	/inter de	ciduous	•	netraea	over 70º	$6 \pm \text{old}$	Corects + r	noist acid	soils +
(BioHab):			phytes / W of mosses			s Quercus	petraea	over 70%	% + old t	forests + r	noist acid	soils +
		rb layer o				•	petraea	over 70%	% + old t	forests + 1	noist acid	soils +
(BioHab): Field identification: Occurrence:	rich he Well de Localiz	rb layer of efined.	of mosses over large	and ferre e areas w	ns. vhere pr	s Quercus resent.	petraea (over 70%	% + old 1	forests + r	noist acid	soils +
(BioHab): Field identification:	rich he Well de Localiz Overgr	rb layer of efined. zed but corazing res	of mosses over large stricting re	and ferre e areas we egenerat	ns. vhere pr ion,fell	s Quercus resent. ing.	-	over 70%	% + old t	forests + r	noist acid	soils +
(BioHab): Field identification: Occurrence:	rich he Well de Localiz Overgr Likely	rb layer of efined. zed but corazing res	of mosses over large stricting re the richn	and ferre e areas we egenerat	ns. vhere pr ion,fell	s Quercus resent.	-	over 70%	% + old 1	forests + r	noist acid	soils +
(BioHab): Field identification: Occurrence: Direct threats: Climate	rich he Well de Localiz Overgr Likely	rb layer of efined. zed but co azing res to affect	of mosses over large stricting re the richn	and ferre e areas we egenerat	ns. vhere pr ion,fell	s Quercus resent. ing.	-	over 70%	% + old 1	forests + r	noist acid	soils +
(BioHab): Field identification: Occurrence: Direct threats: Climate change:	rich he Well de Localiz Overgr Likely Succes	rb layer of efined. zed but co razing res to affect siuon Cli	of mosses over large stricting re the richn	and ferre e areas we egenerat ess of th	ns. vhere pr tion,fell te Atlan	s Quercus resent. ing.	-	over 70%	% + old 1	forests + r	noist acid	soils +
(BioHab): Field identification: Occurrence: Direct threats: Climate change: Succession:	rich he Well de Localiz Overgr Likely Succes	rb layer of efined. zed but co razing res to affect siuon Cli	of mosses over large stricting re the richne ima.	and ferre e areas we egenerat ess of th	ns. vhere pr tion,fell te Atlan	s Quercus resent. ing.	-	over 70% pan	% + old t lus	forests + r mdm	noist acid mdn	soils + mds

CLC:	311 (313) - Broad-leaved forest (Mixed forest)
Annex I:	91B0 - Thermophilous Fraxinus angustifolia woods
Mapping rules:	Medit. North all Medit. mountains below 1200 Medit. South probably too rare to predict but check + + distribution of F.angustifolia.
Indicator species:	Fraxinus angustifolia, Quercus pubescens, Quercus pyrenaica.
GHC (BioHab):	Forest phanerophytes / Winter deciduous + Fraxinus angustifolia over 70% + moist neutral soils + usually grazed by domestic stock.

	Occurr	Occurremce. Localised usually small patches often linear.											
Field	Well d	efined.											
identification:													
Occurrence:	Localis	sed usual	ly small j	patches o	often lin	ear.							
Direct threats:			•	•									
Climate change:	Suscep	otible to i	ncreased	drought	leading	to loss o	f canopy	•					
Succession:	Ground	d layer co	ould chan	ge from	grass to	scrub if	grazing	abandone	ed.				
Countries:	France	, Italy, P	ortugal, S	Spain.									
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	MDM	MDN	MDS	
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	LUS	MDM	MDN	mds	
CLC: Annex I:		312 (313) - Coniferous forest (Mixed forest)21C0 - Caledonian forest											
Mapping rules:	North	North of the Highland fault in Scotland only + native distribution of Pinus sylvestris.											
Indicator species:	Pinus s	sylvestris											
GHC (BioHab):	Forest	phanerop	ohytes / C	Conifers -	+ Pinus	sylvestri	s over 30)% + dist	ribution	literature.			
Field identification:	Straigh	ntforward	l.										
Occurrence:	A few	large site	es otherw	ise fragm	nented.								
Direct threats:	Felling	g but mos	tly protec	cted.									
Climate change:	Will fa	wour drie	er species	5.									
Succession:	Canop	y will clo	se if deer	r exclude	d other	wise clin	nax.						
Countries:	United	Kingdor	n.										
Distribution (sites):	aln	bor	nem	ATN	als	con	atc	pan	lus	mdm	mdn	mds	
Distribution (Bunce):	aln	bor	nem	ATN	als	con	atc	pan	lus	mdm	mdn	mds	

CLC: **312 (313)** - Coniferous forest (Mixed forest)

Annex I: 91D0 - Bog woodland

Mapping
rules:Should also include mixed forests- pure deciduous likely to be much less common and therefore exclude
unless good soil information is available.
Alpine North / Boreal / Nemoral probably exclude Atlant. Central / Atlant. North / Continental / Medit.
mountains as rare and fragmented in these zones + Wet acid peat soils.

Indicator species: Betula pubescens, Picea abies, Pinus sylvestris.

GHCForest phanerophytes / Conifers and Forest phanerophytes / Winter deciduous Picea Pinus sylvestris and
also Alnus and Betula possible also mixed but the critical parameter is water saturated acid peat soils +
very acid wet species assemblages.

Field identification:	Conati	onatins many vegetation units and is not well defined.												
Occurrence:		•	pread in t combina			-	ften form	ning line	ar featu	res,small p	atches ou	itside core		
Direct threats:	Draina	Drainage felling.												
Climate change:	Could	ould lead to lower water tables ad drying out.												
Succession:	Close t	ose to climax.												
Countries:	Italy, I	Austria, Belgium, Bulgaria, Czech Republic, Denmark, Estonia, Finland, France, Germany, Ireland, Italy, Latvia, Lithuania, Luxembourg, Netherlands, Poland, Romania, Slovakia, Slovenia, Spain, Sweden, United Kingdom.												
Distribution (sites):	ALN													
Distribution (Bunce):	ALN	BOR	NEM	atn	als	con	atc	pan	lus	mdm	mdn	mds		
CLC:			ad-leaved	`										
Annex I:		Alluvial n albae)	forests w	vith Alnu	ıs glutin	osa and I	Fraxinus	excelsic	or (Alno	-Pandion, A	Alnion in	canae,		
Mapping rules:	1		Boreal / A							/ Pannonia	n all Con	tinental /		

Indicator species: Alnus incanae, Populus nigra, Salix alba, Cirsium oleraceum, Filipendula ulmaria, Rumex sanguineus.

GHC Forest phanerophytes / Winter deciduous + Fraxinus / Alnus / Populus or Salix species + alluvial soils + regular flooding.

Field Although containing a range of vegetation classes and canopy types is probably distinctive because of identification: the local conditions.

Occurrence: Likely to be fragmented and mainly in small patches.

NEM

ATN

Direct threats: Drainage and felling.

ALN

Distribution

(Bunce):

Climate change: Drying out and lowering water table.

Succession: Climax but susceptible to local changes.

BOR

Countries: Austria, Belgium, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, United Kingdom. Distribution ALN BOR NEM ATN ALS CON ATC PAN LUS MDM **MDN** MDS (sites):

CON

ATC

PAN

LUS

mdm

mdn

mds

ALS

CLC:	311 (313) - Broad-leaved forest (Mixed forest)
Annex I:	91F0 - Riparian mixed forests of Quercus robur, Ulmus laevis and Ulmus minor, Fraxinus excelsior or Fraxinus angustifolia, along the great rivers (Ulmenion minoris)
Mapping rules:	Atlant. North / Atlant. Central / Continental below 300m 500m buffer by large river.
Indicator species:	Quercus robur, Ulmus laevis, Ulmus minor, Ulmus glabra, Fraxinus exelsior, Tamus communis, Phalaris arundinacea.
GHC	Forest phanerophytes / Winter deciduous + mixtures of Quercus robur, Ulmus minor and Fraxinus

(BioHab):	species	becies + tall herb ground vegetation + alluvial wet soils + adjacent to large rivers.											
Field identification:	Well d	efined al	though ev	idence o	of tempo	rary floo	ding may	/ not alw	ays be a	vailable.			
Occurrence:	Locally	ocally extensive stands usually linear.											
Direct threats:	Draina	rainage fragmentation by felling.											
Climate change:	Likely	ikely to be stable as by large rivers.											
Succession:	Climax	Climax but may get denser canopies.											
Countries:		, U	m, Bulgar erlands, F	,	-	,	,	,	2,	reece, Hun reden.	gary, Italy	y, Latvia,	
Distribution (sites):	aln	BOR	NEM	ATN	als	CON	ATC	PAN	LUS	MDM	MDN	mds	
Distribution (Bunce):	ALN	ALN BOR NEM ATN ALS CON ATC PAN LUS mdm mdn mds											

CLC: Annex I:	311 (313) - Broad-leaved forest (Mixed forest)91G0 - Pannonic woods with Quercus petraea and Carpinus betulus										
Annex I.	91G0 - Pannonic woods with Quercus perfaea and Carpinus betulus										
Mapping rules:	Pannonian below 500, + Quercus petraea and Carpinus + mixed soils.										
Indicator species:	Quercus petraea, Carpinus betulus.										
GHC (BioHab):	Forest phanerophytes / Winter deciduous + Quercus petraea 30-70- and Carpinus 30-70 + local Pannonian species + local knowledge.										
Field identification:	Vell defined.										
Occurrence:	ocalized and fragmented.										
Direct threats:	elling, conversion to conifer.										
Climate change:	Colonisation by thermophilic species eg Quercus pubescens.										
Succession:	Climax unless threatened by climate change.										
Countries:	Austria, Bulgaria, Czech Republic, Germany, Hungary, Slovakia.										
Distribution (sites):	aln bor nem atn als CON atc PAN lus mdm mdn mds										
Distribution (Bunce):	aln bor nem atn als con atc pan lus mdm mdn mds										
CLC:	311 (313) - Broad-leaved forest (Mixed forest)										
Annex I:	91H0 - Pannonian woods with Quercus pubescens										
Mapping rules:	Pannonian below 500 + Quercus pubescens + shallow calcareous soils.										
Indicator species:	Quercus pubescens, Fraxinus ornus, Sorbus domestica, Cornus mas.										
GHC (BioHab):	Forest phanerophytes / Winter deciduous + Quercus pubescens over 30% + dry calcareous soils + local knowledge.										

Field Well defined but local knowledge also required.

Occurrence: Localized and fragmented.

Direct threats: Felling, fire.												
Climate change:	Therm	hermophilic on edge of range therefore possibly stable.										
Succession:	Climaz	max unless disturbance.										
Countries:	Austri	Austria, Bulgaria, Czech Republic, Hungary, Italy, Romania, Slovakia.										
Distribution (sites):	aln	bor	nem	atn	als	CON	atc	PAN	lus	MDM	MDN	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC: Annex I:		311 (313) - Broad-leaved forest (Mixed forest)9110 - Euro-Siberian steppic woods with Quercus spp.											
Mapping rules:	Eastern	n Contine	ental class	ses only	+ Querc	sus spp +	Loess so	oil.					
Indicator species:	Quercu	Quercus cerris, Quercus pubescens, Tanacetum corybosum, Vincetoxicum hirundinaria.											
GHC (BioHab):		Forest phanerophytes / Winter deciduous o0ver 30% Quercus cerris and orQuercus petraea or pubescens + expert knowledge.											
Field identification:	Clear b	Clear because of distinctive species but complicated by the degree of invasion by Robinia.											
Occurrence:	Very fr	agmente	ed but mo	re inform	nation re	equired.							
Direct threats:	Invasio	n by Ro	binia, fell	ing, fire									
Climate change:	Could a	alter bala	ance of sp	ecies wi	th therm	nophiles i	ncreasin	ıg.					
Succession:	Climax	but see	threats.										
Countries:	Austria	ı, Bulgar	ria, Czech	Republi	ic, Hung	ary, Pola	nd, Ron	nania, Slo	vakia.				
Distribution (sites):	aln	bor	nem	atn	als	CON	atc	PAN	lus	mdm	mdn	mds	
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds	

CLC:	312 (313) - Coniferous forest (Mixed forest)
Annex I:	91J0 - Taxus baccata woods of the British Isles
Mapping rules:	Too rare to predict but only in GB lowlands below 200 m. Atlantic central only.
Indicator species:	Taxus baccata.
GHC (BioHab):	Forest phanerophytes / Conifers over 70% Taxus.
Field identification:	Direct.
Occurrence:	-
Direct threats:	Felling for veneers but often protected.
Climate change:	Robust long lived trees resistant to change.
Succession:	Climax.
Countries:	Ireland, United Kingdom.

ECOCHANGE – Deliverable D01.02.02, Part II

Distribution (sites): Distribution (Bunce):	aln aln	bor bor	nem nem	atn atn	als als	con con	ATC ATC	pan pan	lus lus	mdm mdm	mdn mdn	mds mds		
CLC: Annex I:			oad-leave 1 Fagus sy			<i>,</i>	o-Fagion)							
Mapping rules:			over 300 E ers in SE .				olomitic	limeston	e.					
Indicator species:	-													
GHC (BioHab):	Forest	Forest phanerophytes / Winter deciduous + Fagus over 70% + moist calcareaous soil.												
Field identification:	Probat	Probably difficult because intergrades with 9130 9140 and 9150.												
Occurrence: Direct threats:		No information. Felling.												
Climate change:	Increas	Felling. ncreased drought coulod affect density of Fagus.												
Succession:		Climax.												
Countries: Distribution	Hunga aln	ry, Italy <i>bor</i>	, Romania <i>nem</i>	a, Slovei <i>atn</i>	nia. ALS	con	atc	PAN	lus	MDM	mdn	mds		
(sites):	шп	001	nem	un	ALS	con	ш	IAN	ius		тип	mus		
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds		
CLC:	311 (3	13) - Bro	oad-leave	d forest	(Mixed f	forest)								
Annex I:	91L0 -	- Illyrian	oak-horn	ibeam fo	orests (Er	ythronic	-carpinio	n)						
Mapping rules:	-		Balkans o utral / aci				00 outlier	r in N Aj	opennin	ies + Querc	cus specie	s +		
Indicator species:	-													
GHC (BioHab):			phytes / V and 70%				s robur +	Quercus	petraea	a + Quercu	s cerris +	Carpinus		
Field identification:	Could	be diffic	cult as the	y are qu	oted as in	ntermedi	ates betw	een 917() and 9	1GO.				
Occurrence:		ormation	1.											
Direct threats:	Felling	g. fire.												
Climate change:		•	balance t	o more t	hermoph	nilic spec	eies.							
Succession:	Climax			~										
Countries:	-		, Romania				<i></i>	DANT	1		MIDAT			
Distribution (sites):	aln	bor	nem	atn	ALS	con	atc	PAN	lus	MDM	MDN	mds		
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds		

CLC: Annex I:		311 (313) - Broad-leaved forest (Mixed forest)D1M0 - Pannonian-Balkanic turkey oak –sessile oak forests											
Mapping rules:	Alpine	South ne	orthern E	Balkans o	only 300	-600 Pani	nonian s	southern o	nly 300	$0-600 + B_1$	rown soils	3.	
Indicator species:	-	anat alemananhatan (Winten desiduana) Ouenana astrony (Ouenana astrony (Ouenana) (Ouenana)											
GHC (BioHab):		Forest phanerophytes / Winter deciduous + Quercus petraea + Quercus cerris both 30-70% + dry neutral and acidic soils.											
Field identification:	Rather	Rather ill defined with limited information.											
Occurrence:	No infe	No information.											
Direct threats:	Felling	Celling and fire.											
Climate change:	Would	Vould favour shift to more thermophilic species.											
Succession:	Climax	ζ.											
Countries:	Austria	ı, Bulgar	ia, Hung	ary, Ron	nania, Sl	ovakia.							
Distribution (sites):	aln	bor	nem	atn	als	CON	atc	PAN	lus	mdm	mdn	mds	
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds	
CLC:	212 (2	13) Cor	niferous f	Forast (N	lived for	rost)							
Annex I:						<i>´</i>	ro-Poni	iletum alb	ae)				
		i uniton		Sund du		or (sumpe	io i ope	iletuili ule	uc)				
Mapping rules:	Pannor	nian belo	w 500m	+ sands.									
Indicator species:	-												
GHC (BioHab):		or Tall s r dunes.	crub ove	r 30% bı	it below	70% + m	nixed co	nifer / deo	cicuous	+ Juniper	us and po	pulus +	
Field identification:	Seems	well def	ined if as	sumptio	n of ove	r 30% tre	e cover	is correct					
Occurrence:	Probab	ly locali	zed and f	ragment	ed.								
Direct threats:	Felling	, fire con	nversion	to agricu	lture.								
Climate change:	Could	increase	fire risk	and favo	r xeric s	pecies in	ground	vegetatio	n.				
Succession:	-												
Countries:	Hunga	ry, Slova	ıkia.										
Distribution (sites):	aln	bor	nem	atn	als	con	atc	PAN	lus	mdm	mdn	mds	

CLC: **331** - Beaches, sand, dunes

Distribution aln bor

(sites):

(Bunce):

Annex I: 91N0 - Pannonic inland sand dune thicket (Junipero-Populetum albae)

atn

nem

als

con atc pan lus

mdn

mds

mdm

rules:	Panno Populu	nian. 1s / Junip	perus.									
Indicator	-	1										
species:												
GHC (BioHab):	-											
Field	T ileala	to ho di	atin atires									
identification:	Likely	to be al	stinctive.									
Occurrence:		oly fragn	nented an	d small	patches.							
Direct threats:	-											
Climate change:	-											
Succession:	-											
Countries:	Hunga	ry, Slov	akia.									
Distribution (sites):	aln	bor	nem	atn	als	con	atc	PAN	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
	Alpine	e South I	Poland on	ly + dist	ribution	ofAbies	polonicu	ım.				
rules: Indicator	Alpine -	e South F	Poland on	ly + dist	ribution	ofAbies	polonicu	ım.				
rules: Indicator species: GHC	-		Poland on				-					
Mapping rules: Indicator species: GHC (BioHab): Field identification:	- Forest	phanero		Conifer o	over 30 %		-					
rules: Indicator species: GHC (BioHab): Field identification: Occurrence:	- Forest Relies One lo	phanero on prese	pphytes / (Conifer o	over 30 %		-					
rules: Indicator species: GHC (BioHab): Field identification: Occurrence: Direct threats: Climate	Forest Relies One lo Felling	phanero on prese	ophytes / (ence of a nly.	Conifer o	over 30 %		-					
rules: Indicator species: GHC (BioHab): Field identification: Occurrence: Direct threats: Climate change:	Forest Relies One lo Felling No inf	phanero on prese ocation o g.	ophytes / (ence of a nly. n.	Conifer o	over 30 %		-					
rules: Indicator species: GHC (BioHab): Field identification: Occurrence: Direct threats: Climate change: Succession:	Forest Relies One lo Felling No inf	phanero on prese ocation o g. formation	ophytes / (ence of a nly. n.	Conifer o	over 30 %		-					
rules: Indicator species: GHC (BioHab): Field identification: Occurrence: Direct threats: Climate change: Succession: Countries: Distribution	Forest Relies One lo Felling No inf	phanero on prese ocation o g. formation	ophytes / (ence of a nly. n.	Conifer o	over 30 %		-		lus	mdm	mdn	mds
rules: Indicator species: GHC (BioHab): Field	Forest Relies One lo Felling No inf Polanc	phanero on prese ocation o g. Formation 1.	ophytes / (ence of a nly. n. n.	Conifer o	over 30 % pecies.	% + Abie	es poloni	cum.	lus lus	mdm mdm	mdn mdn	mds mds
rules: Indicator species: GHC (BioHab): Field identification: Occurrence: Direct threats: Climate change: Succession: Countries: Distribution (sites): Distribution	Forest Relies One lo Felling No inf Polano <i>aln</i> <i>aln</i>	phanero on prese ocation o g. formation 1. <i>bor</i> <i>bor</i>	ophytes / (ence of a nly. n. n. n. <i>nem</i>	Conifer of single sp atn atn	over 30 % becies. als ALS	% + Abie con con	es polonio atc	cum. pan				

Mapping rules:	Alpine South and Continental (eastern only) over 1200m,Western Carpathians only + Calcareous soils + Pinus sylvestris.
Indicator species:	-

GHC Forest phanerophytes / Conifers + Pinus sylvestris over 70% + dry calcareous soils + distin=ctive

(BioHab):	ground	ground layer.												
Field identification:	Not we	Not well defined only general description provided, more information needed.												
Occurrence:	Only i	Only in small isolated patches difficult to predict and more information needed.												
Direct threats:	Fire, fo	elling.												
Climate change:	Could	Could be under pressure as only small patches.												
Succession:	Presur	Presumably climax.												
Countries:	Polanc	l, Romar	nia, Slova	kia.										
Distribution (sites):	aln	bor	nem	atn	ALS	CON	atc	pan	lus	mdm	mdn	mds		
Distribution (Bunce):	aln	aln bor nem atn ALS CON atc pan lus mdm mdn mds												

CLC: Annex I:	312 (313) - Coniferous forest (Mixed forest)91R0 - Dinaric dolomite Scots pine forests (Genisto januensis-Pinetum)													
Mapping rules:	Dolom Pinus s	Alpine South 900 m-1200 m, Balkans only. Dolomitic limestone. Pinus sylvestris. Related to 91KO and higher than 9530.												
Indicator species:	-													
GHC (BioHab):		Forest Phanerophytes + conifer over70% + Pinus sylvestris + dolomite rendzina soils + expert cnowledge + key continental species.												
Field identification:	Restric	Restricted distribution limited description –by context only.												
Occurrence:	No inf	ormation	1.											
Direct threats:	Felling	g,fire.												
Climate change:	Increas	sed fire	risk and p	otential	loss of re	lict speci	ies and o	could cau	ise loss	of Fagus.				
Succession:	Clima	х.												
Countries:	Slover	nia.												
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds		
Distribution (Bunce):	aln	bor	nem	atn	ALS	CON	atc	pan	lus	mdm	mdn	mds		

CLC: Annex I:	312 (313) - Coniferous forest (Mixed forest)91T0 - Central European lichen scots pine forests
Mapping rules:	Continental, Northeast + central / below 800m, plus sandy acid soils + Pinus sylvestris.
Indicator species:	-
GHC (BioHab):	Forest phanerophytes / conifers over 70% / Pinus sylvestris / sandy podsoils + lichen.
Field identification:	Well defined vegetation association.

Occurrence:	Probably present in large units.												
Direct threats:	Fellin	g but ma	ybe expa	nding th	rough la	nd abando	nment.						
Climate change:	Pinus	sylvestri	s has wid	le tolerar	nce, but g	ground flo	ora may	shift to m	ore xei	ric species			
Succession:	Clima	IX.											
Countries:	Czech	n Republi	c, Germa	ny, Lith	uania, Po	oland.							
Distribution (sites):	aln	bor	nem	atn	als	CON	atc	pan	lus	mdm	mdn	mds	
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds	
CLC:	312 (3	313) - Co	niferous	forest (N	lixed for	rest)							
Annex I:	91U0	312 (313) - Coniferous forest (Mixed forest)91U0 - Sarmatic steppe pine forest											
Mapping rules:		Pannonian 300 m Eastern Continental below 300 m but indicative only. Pinus sylvestris.											
Indicator species:	-	· · · · · · · · · · · · · · · · · · ·											
GHC (BioHab):	Fores	t phanerp	hytes + c	conifer 0	ver 70%	+ Pinus s	ylvestri	s + expert	knowl	edge and l	key specie	es.	
Field identification:	One a	ssociatio	n only an	d sound	s distinct	tive but m	ore deta	ails requir	ed.				
Occurrence:	No in	formation	1.										
Direct threats:	Fellin	g, fire.											
Climate change:	Could	lincrease	fire risk	and caus	se loss o	f relict spo	ecies.						
Succession:	Clima	IX.											
Countries:	Germ	any.											
Distribution (sites):	aln	bor	nem	atn	als	CON	atc	pan	lus	mdm	mdn	mds	
Distribution	aln	bor	nem	atn	als	CON	atc	PAN	lus	mdm	mdn	mds	
(Builce).													
(Bunce):													
CLC:	311 (3	313) - Bro	oad-leave	ed forest	(Mixed	forest)							

Mapping rules:	Alpine South eastern only 800-1400? (Dacian is not well defined) + Fagus.
Indicator species:	-
GHC (BioHab):	Forest phanerophytes / Winter deciduous + more than 70% Fagus + local expert knowledge.
Field identification:	One association only but more details required.
Occurrence:	No information.
Direct threats:	Felling, conversion to conifer.
Climate change:	Drought could affect Fagus- if so shift to Quercus.
Succession:	Climax unless disturbance.

Countries:	Romai	nia.												
Distribution (sites):	aln	bor	nem	atn	ALS	CON	atc	pan	lus	mdm	mdn	mds		
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds		
CLC:	311 (3	311 (313) - Broad-leaved forest (Mixed forest)												
Annex I:	9210 - Apennine beech forests with Taxus and Ilex													
Mapping rules:	Medit.	mounta	ins Apeni	nines onl	y 700-90	0 + Fagi	18.							
Indicator species:	Fagus	sylvatica	a, Taxus ł	accata, I	Ilex aquif	folium.								
GHC (BioHab):	Forest	phanero	phytes / V	Vinter de	eciduous	+ Fagus	over 70	% + Ilex	and / or	Taxus.				
Field identification:	Severa	l exact l	ocations 1	nentione	ed but oth	erwise d	lepends	on comb	ination	of Taxus / I	Fagus / Ile	ex.		
	Fragmented but could be common locally.													
Occurrence:	Fragm	ented bu	it could be	e commo	on locally	•								
Occurrence: Direct threats:	-				on locally	•								
	Felling	g, convei		onifer.			n.							
Direct threats: Climate	Felling Droug	g, convei ht could	rsion to co	onifer. ss of Fag			n.							
Direct threats: Climate change:	Felling Droug	g, convei ht could	rsion to co lead to lo	onifer. ss of Fag			n.							
Direct threats: Climate change: Succession:	Felling Droug Climar	g, convei ht could	rsion to co lead to lo	onifer. ss of Fag			n. atc	pan	lus	MDM	MDN	mds		

CLC:	311 (313) - Broad-leaved forest (Mixed forest)													
Annex I:	9220 -	Apennii	ne beech f	forests w	vith Abie	es alba ar	nd beech	forests w	vith Abi	es nebrode	nsis			
Mapping rules:		Mediterranean mountains Apennines only 800 m-1000 m?. Fagus / Abies alba / Abies nebrodensis.												
Indicator species:	Fagus	Fagus sylvatica, Abies alba, Abies nebrodensis, Daphne laureola.												
GHC (BioHab):		Forest phanerophytes / 40-60% conifer,40-60% winter deciduous + Fagus over 30% and Abies over 30% + expert knowledge.												
Field identification:	Severa	Several sites mentioned and if the three species are indicative then clear cut.												
Occurrence:	Fragm	ented bu	t could be	e locally	commo	n.								
Direct threats:	Felling	g.												
Climate change:	Increas	sed drou	ght could	influenc	e Fagus	and char	nge spec	ies balan	ce.					
Succession:	Climax	x.												
Countries:	Italy.													
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	MDM	MDN	mds		
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds		

CLC: Annex I:			niferous f			· ·	nd beech	forests v	vith Abi	es nebrode	nsis	
Mapping rules:			mountair alba / Abi	1		ly 800 m	-1000 mʻ	?.				
Indicator species:	Fagus	sylvatic	a, Abies a	lba, Abi	es nebro	odensis, I	Daphne la	aureola.				
GHC (BioHab):			phytes / 4 knowledg		conifer,4	40-60% v	vinter de	ciduous -	+ Fagus	over 30% a	and Abies	over
Field identification:	Severa	al sites m	nentioned	and if th	e three s	species a	re indica	tive then	clear cu	ıt.		
Occurrence:	Fragm	ented bu	it could be	e locally	commo	n.						
Direct threats:	Felling	g.										
Climate change:	Increa	sed drou	ght could	influenc	e Fagus	and cha	nge spec	ies balan	ce.			
Succession:	Clima	x.										
Countries:	Italy.											
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	MDM	MDN	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC:	311 (3	13) - Bro	oad-leave	d forest	(Mixed f	orest)						
Annex I:	9230 -	Galicio	Portugue	se oak w	voods wit	th Querc	cus robur	and Que	ercus pyr	enaica		
Mapping rules:	Medit.	mounta	ins over 4	00 Iberi	an penins	sula only	y but out	lier in SV	V France	e + Quercu	s pyrenaio	ca.
Indicator species:	Quercu	us robur,	Quercus	pyrenai	ca.							
GHC (BioHab):	Forest	phanero	phytes / V	Winter d	eciduous	+ Quero	cus pyrei	naica + d	ry and m	oist acid s	oils.	
Field identification:	Covers	Covers a wide range of vegetation classes but if Quercus pyrenaica alone is indicative then clear cut.										
Occurrence:	Extens	sive stan	ds where	it occurs	but also	often in	small pa	atches in	grazed a	reas.		
Direct threats:	Felling	g,overgra	azing.									
Climate change:	May fa	avour ex	pansion o	f sclerop	ohyllous	species.						
Succession:												
Countries:	France	, Portug	al, Spain.									
Distribution (sites):	aln	bor	nem	atn	ALS	con	atc	pan	LUS	MDM	MDN	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC: **311 (313)** - Broad-leaved forest (Mixed forest)

Annex I: 9240 - Quercus faginea and Quercus canariensis Iberian woods

Mapping rules:	Possib	ly Medit	. mounta	ins 400-	1500 oth	erwise d	istributio	on of Que	ercus fag	inea and (Quercus ca	nariensi
Indicator species:	Querc	us fagine	ea, Querc	us canari	iensis.							
GHC (BioHab):			phytes / V nformatio		eciduous	s + Q> fa	aginea +	Quercus	canarien	sis + mois	st acid soi	s +
Field identification:			e quantity	y of cove	er of the t	ree spec	ies to de	termine t	he class	but limite	d informa	tion
Occurrence: Direct threats:	e		d likely t	o be in s	mall stan	ıds.						
Climate		-	ght could	l lead to	loss of ca	anopy ar	nd drie g	round co	nditions.			
change: Succession:	Clima											
Countries:	Portug	al, Spair	1.									
Distribution (sites):	aln	bor	nem	atn	ALS	con	atc	pan	LUS	MDM	MDN	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
species: GHC (BioHab): Field	inform	nation.				-	, c	na over 7	0% + dr	y soils + e	expert loca	1
identification: Occurrence:	-	ids on the	e one spe	cies but	no details	s on % c	cover.					
Direct threats:			1.									
Climate change:	Increa	sed dessi	ication m	ay lead t	to loss of	canopy	and min	crease in	xeric sp	ecies.		
Succession:	Clima	x.										
Countries:	Greece	e, Italy.										
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:			oad-leave		(Mixed f	forest)						
Annex I:	9260 -	Castane	a sativa v	woods								
Mapping rules:	Medit	. North /	Medit. m	ountains	s + Casta	nea sativ	va but di	stributior	needs to	o include 1	10n-native	stands.
Indicator species:	Castar	nea sativa	a.									
species.												

GHC FEH / Winter deciduous probably over 70 % + moist acid soils + local knowledge.

Ec@change

(BioHab): Field identification:	Depen	ds on the	e one spec	cies but 1	no inform	nation of	n require	d % cove	er or defi	nition of c	old.	
Occurrence:	Occurs native.		lly small	stands ir	the Iber	ian peni	nsula and	d France	but may	be more e	extensive v	where
Direct threats:	Felling	, fungal a	and insec	t disease	s.							
Climate change:	Could	be affect	ted by inc	reased d	lrought.							
Succession:	Manag	ed wood	ls will cha	ange rap	idly if ab	andoned	1 ground	vegetatio	on will c	hange with	nout grazi	ng.
Countries:	Austria	a, Bulgar	ria, Franc	e, Greec	e, Italy, I	Portugal	, Romani	a, Spain.				
Distribution (sites):	aln	bor	nem	atn	ALS	con	atc	pan	LUS	MDM	MDN	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC:	311 (3	5 13) - Bro	oad-leave	d forest	(Mixed	forest)								
Annex I:	9270 -	Helleni	c beech fo	orests wi	th Abies	s borisii-1	regis							
Mapping rules:			Mountaiı borisii-reg		00m? G	reece onl	у.							
Indicator species:	Fagus	us sylvatica, Abies borisii-regis.												
GHC (BioHab):		st phanerophytes / conifer 40-60, deciduous 40-60 + Fagus over 30 and Abies over 10? + expert vledge + endemic species.												
Field identification:	Depen	ends on presence of two species-clear cut if these are indicative.												
Occurrence:	No inf	formation	1.											
Direct threats:	Proba	bly fellin	g.											
Climate change:		sded terr hreatene		likely to	o affect	Fagus as	it is on t	he edge o	of its dis	tribution a	lso ender	nics likely		
Succession:	Proba	bly clima	ıx.											
Countries:	Bulga	ria, Gree	ce.											
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	MDM	mdn	mds		
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds		

CLC:	312 (313) - Coniferous forest (Mixed forest)
Annex I:	9270 - Hellenic beech forests with Abies borisii-regis
Mapping rules:	Mediterranean Mountains over700m? Greece only. Fagus / Abies borisii-regis.
Indicator species:	Fagus sylvatica, Abies borisii-regis.
GHC (BioHab):	Forest phanerophytes / conifer 40-60, deciduous 40-60 + Fagus over 30 and Abies over 10? + expert knowledge + endemic species.
Field identification:	Depends on presence of two species-clear cut if these are indicative.
Occurrence:	No information.

Direct threats: Climate change: Succession: Countries:	Increa to be t Proba	•	aperatures d. ax.	s likely t	o affect	Fagus as	it is on t	he edge o	of its dis	stribution a	lso enden	nics likely
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	MDM	mdn	mds
(Sites): Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC: Annex I:			oad-leave s frainetto		(Mixed	forest)						
Mapping rules:			ins below eds checl		edit. Sou	th + dist	ribution	of Querci	ıs fraine	etto only bu	ıt Fagus n	nay also
Indicator species:	Fagus	sylvatica	a, Quercu	s frainet	to.							
GHC (BioHab):			phytes / V nformatic		eciduou	s + Quero	cus frain	etto and]	Fagus 3	0-70 % but	needs	
Field identification:	May d	lepend or	n the one	species	but no ir	nformatio	on on req	uired %	or if miz	ked with Fa	igus.	
Occurrence:	No inf	formation	1.									
Direct threats:	Fellin	g.										
Climate change:	Fagus	likely to	be stress	ed by dr	ought as	s it is at tl	ne edge o	of its rang	ge.			
Succession:	Clima	X.										
Countries:	Greec	e, Italy.										
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	MDM	MDN	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC: Annex I:	312 (313) - Coniferous forest (Mixed forest)9290 - Cupressus forests (Acero-Cupression)
Mapping rules:	Cupressus species alone-Mediterranean mountains over1000 m Balkans only.
Indicator species:	Cupressus atlantica, Cupressus sempervirens.
GHC (BioHab):	Forest phanerpphytes / conifer 0ver 70% + Cupressus species over 30% + further expert knowledge.
Field identification:	Depends on the % of Cupressus cover which is indicative.
Occurrence:	No information.
Direct threats:	Possibly fire and felling.
Climate change:	Long lived trees probably robust but ground vegetation may be different.
Succession:	No information.
Countries:	Greece.

ECOCHANGE – Deliverable D01.02.02, Part II

Distribution (sites): Distribution	aln aln	bor bor	nem	atn	als als	con	atc	pan	lus lus	mdm mdm	mdn MDN	MDS mds			
(Bunce):	am	DOI	nem	atn	uis	con	atc	pan	ius	mam	IVIDIN	mas			
CLC:	311 (3	8 13) - Br	oad-leave	d forest	(Mixed f	orest)									
Annex I:	92A0	- Salix a	lba and P	opulus a	lba galle	ries									
Manufaa	N	NT41- /	M. 14 C		. 1:4		1	•	1:1			•			
Mapping rules:			by smalle							ill only ide	entity the	main			
Indicator species:	Salix a	ix alba, Populus alba. est phanerophytes / Winter deciduous + Populus species as well as Alnus and Salix over 30 % +													
GHC (BioHab):		rest phanerophytes / Winter deciduous + Populus species as well as Alnus and Salix over 30 % + acent to major rivers + further expert information.													
Field identification:	Well o	IJacent to major rivers + further expert information. /ell defined and different from surrounding vegetation therefore distinctive.													
Occurrence:		v to be lo plantati		ut may b	e in sign	ificant lii	near stan	ds where	present	Could be	confused	with			
Direct threats:	Fellin	g drainag	ge.												
Climate change:	Could	lead to i	infrequent	t river flo	ow and lo	owering	of the wa	ter table.							
Succession:	Clima	X.													
Countries:	Bulga	ria, Fran	ce, Greec	e, Italy,	Malta, Po	-		Sloveni	a, Spain						
Distribution (sites):	aln	bor	nem	atn	ALS	CON	ATC	PAN	LUS	MDM	MDN	MDS			
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds			
CLC:		,	oad-leave												
Annex I:		- Riparia and othe		ons on i	ntermitte	nt Medit	erranean	water co	ourses w	ith Rhodo	dendron p	onticum			

Mapping rules:	Medit.	South P	resence o	f Rhodo	dendron	ponticu	m.						
Indicator species:	Rhodo	ondendro	n ponticu	m ssp. B	aeticum	, Betula	parvibra	cteata.					
GHC (BioHab):	1	1	ytes / Tal local exp	1	1 2	/ Evergi	reen + R.	ponticur	n + end	emics + m	oist soils	+ steep-	
Field identification:	Clear	ar cut if the one species is solely indicative.											
Occurrence:	Likely	ikely to be rare and in small patches or linear features.											
Direct threats:	Cleara	nce and	fire.										
Climate change:	Likely	to be a s	ensitive s	system to	o deserti	fication.							
Succession:	Possib	ly a loca	l climax i	n nan ex	treme si	tuation.							
Countries:	Portug	al, Spain	l .										
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds	
Distribution	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds	

(Bunce):

CLC: Annex I:			oad-leave s oriental			· · · ·	italis wo	ods (Plan	tanion o	orientalis)		
Mapping rules:	+ Prese	ence of I	n Greece t Platanus o ian these	orientalis	and Lic	Judamber			so canne	ot be identi	fied by riv	vers.
Indicator species:	Platanı aquilin		alis, Liqu	idambaı	oriental	lis, Ranu	nculus fi	caria, He	lleborus	s cyclophyl	lus, Pterio	lium
GHC (BioHab):			phytes / V ound flora			s + Platar	nus and I	Liquidam	ber 30-	70% + m n	noist neuti	al soils +
Field identification:					ow exact	t definitio	on but qu	estion re	mains a	bout the m	umber of s	species
Occurrence: Direct threats:	-		ements-m	nay be b	elow the	25 ha ur	nit of CL	C.				
Climate change:	-		ght could	lead to	drying o	ut of soil	s and ex	pansion o	of sclero	ophylls.		
Succession:	Climax	ζ.										
Countries:	Bulgar	ia, Gree	ce, Italy.									
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	MDM	MDN	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:	211 (2	12) Dr	ad-leave	d forast	(Mixed)	forast)						
Annex I:					`	<i>,</i>	Verio-Ta	maricetea	and Se	curinegion	tinctoriae	e)
Mapping rules:	Medit.	South b	elow 30.									
Indicator species:	Neriun	n oleand	er, Tamai	rix spp								
GHC (BioHab):	Mid pł	naneroph	ytes / Ev	ergreen	+ water	courses -	⊦ further	expert ki	nowledg	ge.		
Field identification:	Disting	ctive veg	etation lin	nked to	a clear g	eomorph	ological	feature.				
Occurrence:		•	as in nar	row line	ar patch	es.						
Direct threats:	Fire ur	banizati	on.									
Climate change:	Increas	sed dessi	cation co	uld char	nge flora	•						
Succession:		•	to climax									
Countries:		, Greece	, Italy, M	alta, Po	rtugal, R	omania,	Spain.					
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	MDM	MDN	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC: **311 (313)** - Broad-leaved forest (Mixed forest)

Annex I:	9310 -	- Aegean	Quercus	brachyp	hylla for	rests								
Mapping rules:	Medit	. South b	elow 500	+ Quer	cus bracl	hyphylla	+ Aegea	n margin	is only.					
Indicator species:	Querc	us brach	aphylla.											
GHC (BioHab):	Forest	t phanero	phytes / V	Winter d	eciduous	s + exper	t knowle	dge.						
Field identification:			n apart fro	om the o	ne speci	es.								
Occurrence:	No inf	o information. re.												
Direct threats:	Fire.													
Climate change:	Increa	sed temp	peratures	will favo	our sclere	ophylls.								
Succession:	Clima	X.												
Countries:	Greec	e.												
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds		
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds		
CLC: Annex I:			oad-leave			forest)								
Mapping rules:	Medit	. South b	elow 400	? + disti	ibution o	of Olea a	nd Cerat	onia.						
Indicator species:	Olea e	europaea	ssp. Sylv	estris, C	eratonia	siliqua.								
GHC (BioHab):	Tall p	haneropł	nytes / Ev	ergreen	+ 30-70)lea + 30	-70 n%	Ceratonia	a + xerio	e soils + in	dicator sp	ecies.		
Field identification:	Usual	ly well d	efined ac	cording	to the na	med spe	cies.							
Occurrence:	identi	fied accu		thin CLO	C-indicat					patches. Unce only. A				
Direct threats:	Fire.													
Climate change:	Could	well lea	d to expa	nsion.										
Succession:	May p	orocede t	o Forest p	hanerop	hytes / V	Winter de	eciduousi	in favour	able site	es.				
Countries:	• •		e, Italy, M	-	•									
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	MDN	MDS		
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds		

CLC: **311 (313)** - Broad-leaved forest (Mixed forest)

Annex I: 9330 - Quercus suber forests

(Bunce):

Mapping Medit. North / Medit. South + distribution of Quercus suber + Acid soils.

rules: Indicator												
species:	Querc	us suber.										
GHC (BioHab):	Forest pyren		phytes / l	Evergree	en + dry a	acid soils	s + May I	have som	ne Querc	us faginea	and Quer	cus
Field identification:										ied-the % ntados.	cover nee	eds to be
Occurrence:		sive stan phyllous		it occurs	s but like	ly to be	confused	with De	hesas / N	Aontados,	as well as	
Direct threats:	Fire la	ack of ma	inagemen	t Felling	<u>g</u> .							
Climate change:	Alrea	dy affecti	ng the tre	ees in dr	yier area	S.						
Succession:	Infilli	ng with s	crub betv	veen tree	es and sh	ift to Qu	ercus ile	x.				
Countries:	Franc	e, Italy, F	ortugal,	Spain.								
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	LUS	MDM	MDN	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:	311 (3	813) - Bro	oad-leave	d forest	(Mixed)	forest)						
Annex I:			s ilex and			,	ests					
		τ.										
Mapping rules:	dry sc	oils.	ins below					ı Plus Qu	ercus ile	x and Que	ercus rotui	ndifolia +
Indicator species:	Querc	us ilex, ()uercus r	otundifo	lia.							
GHC (BioHab):		t phanero 11y) + dry		Evergree	en + Que	rcus ilex	and Que	ercus rotu	indifolia	over 70 %	(canopy o	cover over
Field identification:						ed the pro	oblem is	with the	% cover	that is rec	uired to f	orm
Occurrence:		ly in larg ensity acc	-				1 2			many com	binations	of height
			joi unig tt				the ureu	concerni				
Direct threats:		-	orung u				the ureu	concerno				
Direct threats: Climate change:	Fire, f	elling. ed impac	t but will	increase	e xeric sp	ecies in	the grou	nd vegeta	ation.	cing grou	nd cover s	pecies.
Climate	Fire, f	elling. ed impac	t but will	increase	e xeric sp	ecies in	the grou	nd vegeta	ation.	icing grou	nd cover s	pecies.
Climate change:	Fire, f Limite Succe	elling. ed impacession: C	t but will	increase t many s	e xeric sp standsare	becies in open an	the groui d canopi	nd vegeta	ation.	cing grou	nd cover s	pecies.
Climate change: Succession:	Fire, f Limite Succe	elling. ed impacession: C	t but will limax bu	increase t many s	e xeric sp standsare	becies in open an	the groui d canopi	nd vegeta	ation.	ncing grout	nd cover s MDN	pecies. MDS

CLC: Annex I:	311 (313) - Broad-leaved forest (Mixed forest)9350 - Quercus macrolepis forests
Mapping rules:	Medit. South Greece only + Quercus macrolepis.
Indicator	Quercus macrolepsis.

species: GHC (BioHab):		1	phytes / V iercus ma			-		1	nanerop	hytes / Eve	ergreen de	epending
Field identification:	Proba	bly if the	species i	s over 70)% then	it could	be consid	dered dor	ninant b	ut needs c	hecking.	
Occurrence:	No inf	formation	1.									
Direct threats:	Fire fe	elling.										
Climate change:	Could	favour i	ncreasing	scleropl	nylls and	l xeric sp	ecies.					
Succession:	Clima	x.										
Countries:	Greec	e, Italy.										
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC: Annex I:			oad-leaved nesian lau				ea)					
Mapping rules:	Macar	onesia oi	nly.									
Indicator species:	Laurus	azorica	e, Hedera	canarier	nsis, Pru	nus lusita	anica.					
GHC (BioHab):	-											
Field identification:	-											
Occurrence:	-											
Direct threats	: -											
Climate change:	-											
Succession:	-											
Countries:												
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC:**311 (313)** - Broad-leaved forest (Mixed forest)Annex I:**9370** - Palm groves of Phoenix

Mapping rules:	Crete and the Canaries only with distribution of the two species.
Indicator species:	Phoenix canariensis, Phoenix theophrasti.
GHC (BioHab):	-
Field identification:	-

Occurrence:												
Direct threats:	-											
Climate												
change:	-											
Succession:	-											
Countries:	Greece								_		_	_
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC: Annex I:			oad-leave of Ilex ac			forest)						
Mapping rules:	Too rar	e to be j	predicted									
Indicator species:	Ilex acu	uifolium	l.									
GHC (BioHab):	Forest	phanero	phytes / I	Evergree	n + Ilex	aquifoliu	ım over '	70% + oc	casional	lly Taxus j	present.	
Field identification:	Straigh	tforward	d because	e of Ilex	over 70%	∕₀ otherw	ise % ne	eds speci	fying.			
Occurrence:	Dispers	ed smal	1 wary ro	re natche	· C							
	-	ea sina	i very ra	ic patent								
Direct threats:	-		•	ie patene								
	Felling	overgra	•	-		ction may	y kill tree	es.				
Direct threats: Climate	Felling Only at	overgra	zing.	f the ran	ge dessio	-						
Direct threats: Climate change: Succession: Countries:	Felling Only at In old a	overgra souther	zing. m edge o	f the ran die and	ge dessio be repla	-						
Direct threats: Climate change: Succession:	Felling Only at In old a	overgra souther	nzing. En edge o rees may	f the ran die and	ge dessio be repla	-			LUS	MDM	MDN	mds
Direct threats: Climate change: Succession: Countries: Distribution	Felling Only at In old a France,	overgra souther ge the t Greece	izing. m edge o rees may , Italy, Po	f the ran die and ortugal, S	ge dessio be repla Spain.	ced by of	ther spec	ies.	LUS lus	MDM mdm	MDN mdn	mds mds
Direct threats: Climate change: Succession: Countries: Distribution (sites): Distribution (Bunce): CLC:	Felling Only at In old a France, <i>aln</i> 323 (32	overgra souther ge the t Greece bor bor 24) - Scl	r edge o rees may , Italy, Po <i>nem</i> <i>nem</i> erophyllo	f the ran die and ortugal, s <i>atn</i> <i>atn</i> ous vege	ge dessio be repla Spain. <i>als</i> <i>als</i> tation (T	ced by of <i>con</i> <i>con</i> Transition	ther spec atc atc	ies. <i>pan</i> <i>pan</i> land-scru	lus			
Direct threats: Climate change: Succession: Countries: Distribution (sites): Distribution (Bunce):	Felling Only at In old a France, <i>aln</i> 323 (32	overgra souther ge the t Greece bor bor 24) - Scl	izing. m edge o rees may , Italy, Po <i>nem</i> <i>nem</i>	f the ran die and ortugal, s <i>atn</i> <i>atn</i> ous vege	ge dessio be repla Spain. <i>als</i> <i>als</i> tation (T	ced by of <i>con</i> <i>con</i> Transition	ther spec atc atc	ies. <i>pan</i> <i>pan</i> land-scru	lus			
Direct threats: Climate change: Succession: Countries: Distribution (sites): Distribution (Bunce): CLC: Annex I: Mapping	Felling Only at In old a France, <i>aln</i> 323 (32 9390 -	overgra souther ege the t Greece <i>bor</i> <i>bor</i> 24) - Scl Scrub an	r edge o rees may , Italy, Po <i>nem</i> <i>nem</i> erophyllo	f the ran die and ortugal, s <i>atn</i> <i>atn</i> ous vege orest vege	ge dessio be repla Spain. <i>als</i> <i>als</i> tation (T etation w	ced by of <i>con</i> <i>con</i> Transition	ther spec atc atc	ies. <i>pan</i> <i>pan</i> land-scru	lus			
Direct threats: Climate change: Succession: Countries: Distribution (sites): Distribution (Bunce): CLC: Annex I: Mapping rules: Indicator	Felling Only at In old a France, <i>aln</i> 323 (32 9390 -	overgra souther ege the t Greece <i>bor</i> <i>bor</i> 24) - Scl Scrub an	r edge o rees may , Italy, Po <i>nem</i> <i>nem</i> erophyllo	f the ran die and ortugal, s <i>atn</i> <i>atn</i> ous vege orest vege	ge dessio be repla Spain. <i>als</i> <i>als</i> tation (T etation w	ced by of <i>con</i> <i>con</i> Transition	ther spec atc atc	ies. <i>pan</i> <i>pan</i> land-scru	lus			
Direct threats: Climate change: Succession: Countries: Distribution (sites): Distribution (Bunce): CLC: Annex I: Mapping rules: Indicator species: GHC	Felling Only at In old a France, <i>aln</i> 323 (32 9390 - 5 Quercu	overgra souther age the t Greece <i>bor</i> <i>bor</i> 24) - Scl Scrub an s alnifle	rin edge o rees may , Italy, Po <i>nem</i> <i>nem</i> erophyllo nd low fo	f the ran die and ortugal, s <i>atn</i> <i>atn</i> ous vege orest vege	ge dessid be repla Spain. <i>als</i> <i>als</i> tation (T etation w	ced by of <i>con</i> Transition with Quer	ther spec atc atc atc al wood	ies. <i>pan</i> <i>pan</i> land-scru	lus b)		mdn	mds
Direct threats: Climate change: Succession: Countries: Distribution (sites): Distribution (Bunce): CLC: Annex I: Mapping rules: Indicator species: GHC (BioHab): Field	Felling Only at In old a France, <i>aln</i> 323 (32 9390 - Quercu - Forest p	overgra souther age the t Greece <i>bor</i> <i>bor</i> 24) - Scl Scrub an s alniflo	rin edge o rees may , Italy, Po <i>nem</i> <i>nem</i> erophyllo nd low fo	f the ran die and ortugal, s <i>atn</i> <i>atn</i> ous vege orest vege los moun	ge dession be replay Spain. <i>als</i> <i>als</i> tation (T etation we obtain on tains on	ced by of <i>con</i> <i>con</i> Transition vith Quer ly.	ther spec atc atc atc al wood	ies. <i>pan</i> <i>pan</i> land-scru	lus b)	mdm	mdn	mds
Direct threats: Climate change: Succession: Countries: Distribution (sites): Distribution (Bunce): CLC: Annex I: Mapping rules: Indicator species: GHC (BioHab): Field identification: Occurrence:	Felling Only at In old a France, <i>aln</i> 323 (32 9390 - 5 Quercu - Forest p Clear if No info	overgra souther ge the t Greece <i>bor</i> <i>bor</i> 24) - Scl Scrub ar s alniflc phanerop	nzing. n edge o rees may , Italy, Po <i>nem</i> <i>nem</i> erophyllo nd low fo ora Trood phytes / V ce of spect	f the ran die and ortugal, s <i>atn</i> <i>atn</i> ous vege orest vege los moun	ge dession be replay Spain. <i>als</i> <i>als</i> tation (T etation we obtain on tains on	ced by of <i>con</i> <i>con</i> Transition vith Quer ly.	ther spec atc atc atc al wood	ies. <i>pan</i> <i>pan</i> land-scru	lus b)	mdm	mdn	mds
Direct threats: Climate change: Succession: Countries: Distribution (sites): Distribution (Bunce): CLC: Annex I: Mapping rules: Indicator species: GHC (BioHab): Field identification: Occurrence: Direct threats:	Felling Only at In old a France, <i>aln</i> 323 (32 9390 - 5 Quercu - Forest p Clear if No info	overgra souther ge the t Greece <i>bor</i> <i>bor</i> 24) - Scl Scrub ar s alniflc phanerop	nzing. n edge o rees may , Italy, Po <i>nem</i> <i>nem</i> erophyllo nd low fo ora Trood phytes / V ce of spect	f the ran die and ortugal, s <i>atn</i> <i>atn</i> ous vege orest vege los moun	ge dession be replay Spain. <i>als</i> <i>als</i> tation (T etation we obtain on tains on	ced by of <i>con</i> <i>con</i> Transition vith Quer ly.	ther spec atc atc atc al wood	ies. <i>pan</i> <i>pan</i> land-scru	lus b)	mdm	mdn	mds
Direct threats: Climate change: Succession: Countries: Distribution (sites): Distribution (Bunce): CLC: Annex I: Mapping rules: Indicator species: GHC (BioHab): Field identification: Occurrence:	Felling Only at In old a France, <i>aln</i> 323 (32 9390 - 5 Quercu - Forest p Clear if No info	overgra souther ge the t Greece <i>bor</i> <i>bor</i> 24) - Scl Scrub ar s alniflc phanerop	nzing. n edge o rees may , Italy, Po <i>nem</i> <i>nem</i> erophyllo nd low fo ora Trood phytes / V ce of spec n. n.	f the ran die and ortugal, s <i>atn</i> <i>atn</i> ous vege orest vege los moun	ge dession be replay Spain. <i>als</i> <i>als</i> tation (T etation we obtain on tains on	ced by of <i>con</i> <i>con</i> Transition vith Quer ly.	ther spec atc atc atc al wood	ies. <i>pan</i> <i>pan</i> land-scru	lus b)	mdm	mdn	mds

Distribution	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
(sites): Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:	311 (3	313) - Br	oad-leave	d forest	(Mixed	forest)						
Annex I:	93A0	- Woodl	ands with	Quercu	s infecto	oria (Anag	gyro foet	idae-Que	ercetum	infectoria	e)	
Mapping rules:	Querc	us infect	oria Troo	dos mou	intains o	nly 600-	1100 + d	ry limest	one soil	s.		
Indicator species:	-											
GHC (BioHab):			ophytes / V n local spe		eciduou	s? + Que	rcusinfe	ctoria ovr	30%? -	⊦ dry lime	stone soli	ls + expe
Field identification:	Clear	if presen	ce of spe	cies only	<i>.</i>							
Occurrence:	No in	formation	n but like	ly to be.								
Direct threats:	Unkn	own.										
Climate change:	But co	ould lead	to sccero	phyll in	vasion.							
Succession:	Sugge	estion in	descriptio	on that it	may be	susceptił	le to col	onizatior	by oth	er species.		
Countries:												
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
CLC:	312 (3	813) - Co	oniferous	forest (N	lixed for	rest)						
Annex I:	9410	- Acidop	hilous Pic	cea fores	ts of the	montane	to alpin	e levels (Vaccini	o-Piceetea	a)	

Mapping rules:	Alpine	South / C	Continenta	al 800 m-	-1700 m	. Medit	erranear	n Mounta	ins but i	north of Py	reneees c	only.
Indicator species:	Picea al	bies, Pice	ea orienta	lis.								
GHC (BioHab):	Forest p	ohanerop	hytes / co	nifer ove	er 70% -	⊦ moist a	cid soils	+ key sp	ecies.			
Field identification:	Well defined species patterns but depends whether converted Fagus / and / or plantation forests are included.											
Occurrence:	Extensi	ve forest	s often ar	tificially	pure sp	ruce fron	n forest p	oractice.	Also ma	ny conver	ted Fagus	forests.
Direct threats:	Felling.											
Climate change:	Could t	hreaten s	pruce dor	ninance	by enco	uraging o	lisease a	t lower a	ltitudes.			
Succession:	Climax	but struc	ture will	change v	with age							
Countries:		, Bulgaria ia, Switze	· ·	Republic	, France	e, Germai	ny, Gree	ce, Italy,	Poland,	Romania,	Slovakia	,
Distribution (sites):	aln	bor	nem	atn	ALS	CON	atc	pan	lus	MDM	mdn	mds
Distribution	aln	bor	nem	atn	ALS	CON	atc	pan	lus	mdm	mdn	mds

(Bunce):

CLC:	312 (3	13) - Co	niferous f	forest (N	Aixed for	est)						
Annex I:	9420 -	Alpine	Larix dec	idua and	d/or Pinus	s cembra	forests					
Mapping rules:	native	South 1 distribut P.cemb	tion of.) m?. M	editerran	ean mou	ntains ov	ver 100m	but nor	th of Pyrer	nees only	plus
Indicator species:	Larix o	lecidua,	Pinus cer	nbra, V	accinium	myrtillu	IS.					
GHC (BioHab):		phanero ies indic	1 2	onifer o	ver 70%	/ + Larix	c or P.ce	mbra but	only na	tive stands	+ moist	acid soils
Field identification:	Usuall	y presen	t as more	or less	pure stan	ds so rea	dily ider	ntifiable.				
Occurrence:					ls and relation				y be coi	nfused with	n deciduo	us forest
Direct threats:	Felling	g and cor	nversion t	to grazir	ng land or	spruce.						
Climate change:	Could	exert pro	essure on	tree hea	ulth at low	ver altitu	des but a	also incre	ase alti	tude range.		
Succession:	Probal	y climax	but prop	ortions	of species	s may ch	nange wi	th age.				
Countries:	Austri	a, France	e, Germar	ıy, Italy	, Poland,	Romani	a, Sloval	kia.				
Distribution (sites):	aln	bor	nem	atn	ALS	con	atc	pan	lus	MDM	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	ALS	con	atc	pan	lus	mdm	mdn	mds
CLC:	312 (3	13) - Co	niferous f	forest (N	Aixed for	est)						
Annex I:	9430 -	Pinus u	ncinata fo	orests (*	if on gyp	sum or 1	limeston	e)				
Mapping rules:	Variab				limeston	e or gyp	sum.					
Indicator species:	Pinus ferrugi		, Lycopoo	dium an	notium, H	Iuperzia	selago,	Arctostap	ohylos a	lpina, Rod	ondendru	m
GHC (BioHab):			phyte / co estone + i			Pinus u	ncinata o	over 70%	/ variał	ole soils bu	t Priority	habitat if
Field identification:	Clear i	f only de	ependant	on P.un	cinata bu	t % prob	olems wit	th other t	ree spec	vies.		
Occurrence:			ably rath			ergrades	with 942	20 could	be a pro	blem of op	oen stand	s being
Direct threats:	Felling	g and / or	r conversi	ion to gi	azing lan	d.						
Climate change:	Could	increase	altitudin	al range								
Succession:	Probab	oly clima	IX.									
Countries:	Austri	a, France	e, Italy, S	pain.								
Distribution (sites):	aln	bor	nem	atn	ALS	con	atc	pan	lus	MDM	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	ALS	con	atc	pan	lus	mdm	mdn	mds

-	ELC: Annex I:		,	niferous n Apenni	```		rest)						
	Iapping ules:	Medit Abies		mountair	ns southe	ern Aper	nines on	ly. Over	800m?.				
	ndicator pecies:	Abies	alba.										
	HC BioHab):	Forest	phanero	phytes / o	over70%	conifer	+ Abies	alba + fi	irther exp	oert kno	wledge an	d indicator	s.
	ield lentification:	Depen	idant on	one speci	es theref	fore clea	r cut. Bu	t probler	n will be	gradien	ts with Fa	gus forests	
С	Occurrence:	No inf	formation	n.									
D	Direct threats:	Proba	bly fellin	ıg.									
-	limate hange:	Could	be threa	tened by	increase	d summ	er drougł	nt.					
S	uccession:	Likely	to be cl	imax.									
C	Countries:	Italy.											
	Distribution sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	MDN	mds
_	Distribution Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC:	312 (313) - Coniferous forest (Mixed forest)													
Annex I:	9520 -	Abies pi	nsapo foi	rests										
Mapping rules:	Medite	erranean	South bu	t Abies p	oinsapo o	only.								
Indicator species:	Abies	Abies pinsapo.												
GHC (BioHab):	Probal	Probaly not 30% tree cover of Abies remainder of cover is various scrub categories.												
Field identification:	One sp	One species only in one site.												
Occurrence:		-	n Souther lerophyll	-		es are so	open tha	t they are	e not like	ely to be id	entified a	s forest,		
Direct threats:	Fire bu	it protect	ed from f	elling.										
Climate change:	Probab	oly resista	ant to fur	her desi	ccation	as long li	ved tree.							
Succession:	Vituall	y no tree	e regenera	tion the	refore of	nly chang	ge in scru	ıb structı	ure.					
Countries:	Spain.													
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds		
Distribution (Bunce):	aln bor nem atn als con atc pan lus mdm mdn mds													

CLC: **312 (313)** - Coniferous forest (Mixed forest)

Annex I: 9530 - (Sub-)Mediterranean pine forests with endemic black pines

Mapping rules:		erranean is over 10		s over 9	00 m. ? /	Medite	rranean r	orth over	r 1000m	n ?. / maybe	e Alpine S	South in		
Indicator species:	Pinus 1	nigra.												
GHC (BioHab):		Forest phanerphyte / Conifer over 70% + Pinus laricio or Pinus nigra + dolomite rock + expert nowledge of species distribution and character of native forest.												
Field identification:		Not likely to be difficult, dependent upon specific tree species that usually grow separately from other rees But difficult to separate the many plantations of P.nigra.												
Occurrence:	Locali	sed but p	robably e	extensive	where p	resent.								
Direct threats:	: Felling	g,fire.												
Climate change:	Probal	y resistar	nt to chan	ge but d	epends o	n exten	t of temp	erature in	crease.					
Succession:	Climax	k but moi	re open st	ands ma	y fill in [,]	with der	nser scrul	o stands.						
Countries:	Austria	a, Bulgar	ia, Franc	e, Greec	e, Italy, I	Romania	a, Sloven	ia, Spain						
Distribution (sites):	aln	bor	nem	atn	ALS	con	atc	pan	lus	MDM	MDN	mds		
Distribution (Bunce):	aln	bor	nem	atn	ALS	con	atc	pan	lus	MDM	mdn	mds		

CLC:	312 (3	13) - Coi	niferous f	forest (M	lixed for	rest)						
Annex I:	9540 -	Mediter	ranean pi	ne forest	ts with e	ndemic I	Mesogea	n pines				
Mapping rules:	Lusitanian / Mediterranean North / Mediterranean South / Mediterranean mountains below 800 m.											
Indicator species:	Pinus p	pinaster s	ssp. Pinas	ster, P. h	alepensi	s, P. pity	usa, P. s	tankewic	zii, P. ele	larica, P. ł	orutia.	
GHC (BioHab):			phyte / C tificial pl			+ thermo	ophilic s	crub spec	ies-long	establishe	d plantati	ons
Field identification:				2			1	lem is lik	ely to be	intergrade	s with Q.i	lex and
Occurrence:	One of the most extensive forest classes in Annexe 1 covering large areas. Confusion with planted stands of P. radiata in LUS and plantations of P.nigra in MDM in Spain.											
Direct threats:	Fire,fe	lling.										
Climate change:	Ground vegetation likely to be increasingly dominated by xeric species but trees probably resistant.											
Succession:	Climax but proportions of canopy species may change but wide variation makes estimation difficult.											
Countries:	France, Greece, Italy, Malta, Spain.											
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	MDM	MDN	MDS
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	LUS	MDM	MDN	mds

CLC: Annex I:	312 (313) - Coniferous forest (Mixed forest)9550 - Canarian endemic pine forests
Mapping rules:	Canaries only.

Indicator Pinus canariensis.

species: GHC (BioHab):	-											
Field identification:	-											
Occurrence:	-											
Direct threats:	: -											
Climate change:	-											
Succession:	-											
Countries:												
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds

CLC:	312 (313) - Coniferous forest (Mixed forest)										
Annex I:	9560 - Endemic forests with Juniperus spp.	etidissima, J. oxycedrus, J. phoenicera, J. conifers but with other scrub fcies between nd covers. a very widespread class although not getation.									
Mapping rules: Indicator species:	Mediterranean South / Mediterranean mountains 300 m-1200 m ?. Mediterranean Juniperus spp. Juniperus brevifolia, J. cedrus, J. drupacea, J. exelsa, J. foetidissima, J. oxycedrus, J. phoenicera, J. thurefera.										
GHC (BioHab):	Tall phanerphytes with mixtures of mid-phanerophytes / conifers but with other scrub fcies between trees + Juniperus species + Expert knowledge.										
Field identification:	Difficult because of % mixtures with other species and land covers										
Occurrence:	Likely to occur in small patches but locally common and a very widespread class although not commonly a dominant cover class.										
Direct threats:	Fire clearance for grazing.										
Climate change:	Increased fire risk and extreme xeric species in ground vegetation.										
Succession:	Locall could be colonized by pines but many areas too dry.										
Countries:	Bulgaria, France, Greece, Italy, Portugal, Spain.										
Distribution (sites):	aln bor nem atn als con atc pan lus MDM MDN mds										
Distribution (Bunce):	aln bor nem atn als con atc pan lus mdm MDN mds										
CLC: Annex I:	312 (313) - Coniferous forest (Mixed forest)9580 - Mediterranean Taxus baccata woods										
Mapping rules:	Too fragmented and rare to predict But present in Mediterranean mountains over 700m ?.										
Indicator species:	Taxus baccata.										
GHC (BioHab):	Forest phanerphytes / Conifer over 70% + Taxus baccata and sometimes Ilex aquifolium.										

Field Depends on definition of required % of Taxus.

identification:												
Occurrence:	Probal	bly fragn	nented an	d rare.								
Direct threats:	Felling	g.										
Climate change:	Could	Could alter ground vegetation but Taxus long lived and persistent.										
Succession:	Unlikely but no information as ti status.											
Countries:	France	France, Italy, Portugal, Spain.										
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	LUS	MDM	MDN	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	LUS	mdm	MDN	mds
CLC:	312 (3	5 13) - Co	niferous f	forest (M	lixed for	rest)						
Annex I:	9590 -	Cedrus	brevifolia	a forests	(Cedros	etum bre	vifoliae)					
Mapping rules:		Cedrus brevifolia. Troodos mountains.										
Indicator species:	-											
GHC (BioHab):	Forest	phanero	phytes / c	over 70%	o conifer	+ Cedru	s brevifo	olia + mo	untain s	ummits +	expert kno	owledge.
Field identification:				Cedrus o	only is ir	dicative.	But furt	er inforn	nation ne	eded from	n literature	e and / or
Occurrence:	No inf	formation	1.									
Direct threats:	No inf	formation	1.									
Climate change:	No inf	No information.										
Succession: Countries:	No inf	formation	1.									
Distribution (sites):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds
Distribution (Bunce):	aln	bor	nem	atn	als	con	atc	pan	lus	mdm	mdn	mds