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Abstract— The primary objective of this paper is to information and plausibility considerations are
estimate behavioural parameters of the quadratic formally included in the estimator.
regional supply models in the modelling system CAPRI  Heckelei and Britz [5] estimated supply parameters
using the time series data in the CAPRI database. A nf the regional supply models in CAPRI using cross
Bayesian ~highest posterior density estimator is gootion data for all regions in a single year, and

developed to address the primary objective. After . troduci fior information Vi neralized or
discarding regions with insufficient data, parametes for introducing prio ormatio a generajized Cross

up to 23 crop production activities with related iputs, ~ €Ntropy. This work improves on their approach in
outputs, prices and behavioural functions are estimed Several ways: Firstly, a more general Bayesian
for 165 regions in EU-15. The results are systematlly ~ estimator is developed, secondly, time series data
compared to the outcomes of other studies. For crop used in the estimation, and thirdly, the regional
aggregates (e.g. cereals, oilseeds etc.) at theimal level  coverage is extended to EU27. As in Heckelei and
of nations, the estimated own price elasticities afupply  Britz, some limitations apply: The estimation only
are found to be in a plausible range. On a regiondével  consjders the arable annual crop producing paittef
and for individual crops, the picture is much more  ohesentative regional farm, keeping other parts
diverse. Whether the regional results are plausibler . shangry  permanent grassland and permanent
not is difficult to judge, since no other study ofsimilar . .
regional and product coverage is known to the auths. crops) fixed when necessary or Ieavmg them out
altogether when possible. We also ignore the

Keywords— Bayesian estimation, errors-in-variables, fertilization constraints of the full model, workjn
PMP with Leontief fertilizer input coefficients.

The remaining part of this report contains four
sections. Section two describes the structure ef th
template regional representative farm model that is
used for all regions. Section three formulates the

ayesian estimation model and discusses the use of

rior information. In section four, results are ggpted
o selected regions, and compared to the restilts o
C(hther studies. Section five concludes the paper.

. INTRODUCTION

Large scale optimization models typically contain
parameters from a multitude of sources, includin
statistics, outcomes of estimations, and assumngtio
The parameters and data are made consistent with
assumed model by some calibration procedure whi
operates on a single or a handful of parametegs (e.

[11], [15]). This article demonstratescansistentand Il. A REGIONAL SUPPLY MODEL

transparent method for estimating parameters of a

large scale agricultural optimization model (the The regional representative farm is assumed to act
CAPRI model, see [1]) using econometric techniqueas if solving a linearly constrained quadratic
to time series of observations. Bgnsistenive mean programming problem (1) in every time periad
that the estimating equations are equivalent to thEhroughout this paper we generally use lower case
equations of the economic model (its optimalitybold face letters to represent items that are colum
conditions, see also [7], [8]). The transportapilif vectors for eacht, upper case bold face letters to
the parameter from the estimation to the simulatiorepresent matrices and italic letters to represent
model is ensured, in contrast to many situationsreth scalars. The dimensions of vectors and matrices are
parameters are gathered from literature. Bylenoted by upper case letters, where a lower case
transparentwe mean that a uniform methodology isversion of the same letter denotes the indiceshef t
applied to the whole data set. In the case at hihgl, elements in that dimension, so that for instane€'dh
means that the same algorithm is applied to each véctor of acreages’ means a vector of length with

252 regional models, with results for 23 differentelementsy, j = 1...J. The prime character'§ denotes
agricultural crops. Transparency also means that pr the ordinary transpose of a vector or a matrix.
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All regional models have identical structure, amd n
arparameters to estimate, we assume that cross-crop

cross-regional constraints or relationships

In order to reduce the number of behavioural

assumed, in order to keep the regional estimatiosffects are only permitted betwegnoups of crops
rather flexible and to limit the complexity of the That is achieved using a vectorof linear effects, a
estimation. Thus, indices for regions can be omhitte diagonal matriXD of quadratic own-crop effects, and a
The producer is assumed to solve the optimizatiomatrix B of cross-group effects. Thlex M matrix G is

problem in each period independently of other mkyjo used

to sum the acreages within each group,

and items that change across periods obtain ax inde substantially reducing the number of parameters

For examplex; denotes the vectorin periodt, butx

(without index) denotes the whole 3-dimensionadarr
with dimensions J,1,T), where the “1” indicates that

that dimension is not used in this case.

The model can then be written for each period as

Maximise w.r.t.x
x;[Ytpt +5, —Atwt]—x;[qtc—%lt[D+GBG']xt]
1)
subject to
Rix = vy

where for eacly,

X; vector of acreages for eachdfand uses

Y J x J diagonal matrix of yields

p: Jvector of prices

s Jvector of direct subsidies

A: J x| matrix of input coefficients for inputs

w; | vector of input prices

g price index

¢ Jvector of parameters

l; land availability index (described below)

D Jx Jdiagonal matrix of parameters

G Jx M matrix that sums up land use by eaciVof
6 crop groups, i.e. with, = 1 if cropj belongs to
groupm, elseg, =0

B 6 x 6 matrix of parameters

Rt 2 x J matrix of constraint coefficients, wherg =1

forj = 1...J andry is the net set-aside contribution

of cropj
v; 2 vector withv; total land availabley, = 0.

compared to estimation of a full x J matrix. The
appendix lists groups, crops and inputs.

The pricesp andw in the model are nominal, and
since the quadratic function is assumed to capture,
among other things, the opportunity cost of resesirc
not explicitly modelled, it should be inflated. Ehis
obtained by multiplication ot by the general price
indexq;.

The total amount of land fluctuates slightly betwee
years, in general with a downward trend due to
migration of land into other sectors (fallow lansl i
modelled explicitly as a land use activity). We rimt
know if it is productive or unproductive land that
migrates, so to avoid that land migration strongly
influences land rent (the dual value of the first
constraint), we usi&nd sharesn the quadratic term.
This is equivalent to scaling the matr  GBG'] by
the square inverse of total land available in each
period. For scaling purposes, it is also multiplogd2
times square of total land available in year 2080,
(V1)2000 Thusl; = ((v1)200d (Vo)1)

The optimization model (1) can be equivalently
described by the following first- and second order
conditions for optimaxk

Yipe +s —A W, —q,C

2
-1,[D+GBG']x, -R}A, =0 @
RtXt:Vt (3)
B=U'U 4)
d; 20 forj = 1...J (andd; = O fori #j) (5)

The model implies that the producer maximises the

sum of gross margins (the first term) minus a qatacr
function (the second term), subject to a land cairst

At is the 2x 1 vector of dual values for the
constraints. Note that for positive semi-definitenef

and set-aside requirement. The quadratic function ithe Hessian matrix, it is sufficient thBt is positive

the objective function is behavioural functior{andc,

semi-definite, which is satisfied by the Cholesky

D and B behavioural parameters) in the tradition offactorisation with the upper triangular mattix and
positive mathematical programmin@®MP, see e.g. that all elements dd are non-negative

[10] or [11]) that is intended to capture the aggted
influence of economic factors that are not explicit
included in the model [6]. It is the objective dfig

work to estimate the behavioural parameters.

! In fact, we will use a stronger restriction df = & > 0 in
estimations to avoid numerical problems when egtga
elasticities.
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A. Outline of a Bayesian estimator relating z to W, and derive the unconditional (prior)

_ _ ) _ density function ¢ from prior beliefs regarding
The Bayesian estimator outlined below is based OBjasticites and dual values of the (implied) model.
a measurement error model (see e.g. [2]), where in

general, no parameter values are known with ceytain B, Data sampling process

We do not include errors in optimisation, however,

we assume that the agent modelled has perfectThe distribution ofZ is based on the following
information about the true parameters, and is &ble assumptions:

determine the optimal production decision exactly.

Thus no such errors enter the model equationsetiiger 1. All elements irZ are independent

influencing production. A more general error model2- Subsidies, price index, set-aside rate and total

as discussed by in [13] and [16] would also take in land constraint are known with certainty. Thus,
account the possibility that the producer may not outcomes of those items in the random veator
correctly appreciate the true parameters and/mots will be the corresponding items & itself, and
able to determine exactly the optimal supply dedisi from now on removed fronZ. An outcome oZ

. . . H : - b b b b b
Since the general error model requires an increased IS thus writterz = (x*5p w5 Y 5 A%).

amount of prior information and is anyway diffictdt 3. Errors are additive. We write an outcomeZohs

distinguish from the measurement error model in the sum of its conditional expectation

many cases, we choose to only consider measurement H(P) = (Ho Mo, Hw,Hy,Ha), (with appropriate

errors. dimensions), and the random error veaprso
The basic assumption underlying the data sampling thatZ = p(y) +&.

model is that there exists a set of true paramdiers 4. Producers have naive price expectations. The

(p,Y,sAw,q,l,c,D,B,R,v) of the model, satisfying the (statistical) expectation of the price measurement
second order conditions (4-5), a vector of truepéa in period t-1 equals the producer price in that
acreagex and a vector of dual valu@s such that period, or conversely,

(x',\) is the unique optimal solution to the model

parametrized bW. We may thus implicitly write<” = Pt = (Hp)i1

X(p) and A = )\*(LE). Furthermore, the values Wi = (M)

7= (XObS,DObS,YObS,SObS,AO S,WObS,q0b3,|ObS,RObS,VOb3 in the
CAPRI database are considered the outcome of a
random variable vectaf that is conditional oW, i.e.
there exists a probability density functitfn|\V).

If we express our prior information and “beliefs”
about the parameter vectdP as a prior density

where the expression on the right hand side
denotes the expected value of the output and input
prices for all crops in periodl.

Expected yields and input requirements follow
linear trends. We thus have

function &W), we may use Bayes's rule to derive the Yi= (W) =Po+ BT (6)
posterior density function oW conditional on the
outcomez: A; = (Ua) = 0o + a1 T,

§(W[z) O f(z|W) (W) with T being a linear trend ari= (Bo,.) anda =

. L (cp,01) Nnew parameters to estimate. Prior means
We desire an estimation method that chooses as an or input allocation come from estimates°’s

estimate the parameter vect$r that maximises the available in the CAPRI data base.
conditional density &W|z). DeGroot [3] calls this

estimator the generalised maximum likelihoodC. Augmented parameter vector and its prior
estimatof and it extensively discussed in [8]. In whatdistribution
follows, we derive the functiohfrom an error model

When observations have been made, the out@mme
2 Other authors have called it the posterior modanasor, the of the em_)r vectoe has also be’en determined, but the
maximum a-posteriori estimator or the highest pustedensity —outcome is unknown—we don’t know what part of an
estimator. We consider this estimator superior taxivhum or  observation is error and what part is parameter. We

Cross Entropy formulations in our context for cottgional and  ~gn thus choose to consideryet another unknown
transparency reasons.

12" Congress of the European Association of Agricaltéiconomists — EAAE 2008



parameter, the distribution of which may be subfject 4. We asssume that the parameter vector is suth tha

prior information. If the density functioh for the the implied point price elasticity of supply matrix
random vectoZ is conditional also oe and the yield n(W,a,B) is normally distributed with mean
and input parameter, and a defined above, then depending on the crop mix (rotational shares) and
there are no random components left, &lmecomes standard deviation independent for each item.
the degenerate density function, Means and standard deviations are derived below.
z=w(y,pa)+e Most studies (see comparison to other studies
f(z|y.p.a.e)= : [ gly,x ):0} ] below) find supply elasticities in the range ofy,sa.1

to 5, and that the elasticity typically around wrfior
major crops, but higher for crops that occupy alkma
. share of the total area. The main argument for such
A large number of different _parameter Veclor§eation js that expanding a major crop by a given
(WB.a.e) give the density value "1” for almost any nercentage under land and rotational constraints is
outcomez of Z. Without further information, there is difficult compared to expanding a crop with small
no way of discriminating between any two suchyyrent acreage by the same percentage. Letiing
vectors by saying that one is any more likely te®  jonote the share of land allocated to qrope assume
other to be the true parameter vector. Thus, weif€q 4t the own price supply elasticities have means
a prior distribution {W,ea,B) that assigns a
probability to each parameter vector, i.e. allows f
unique identification of the parameters, and that wresults section. Standard deviations are suchttine¢

define based on the following assumptions: standard deviations cover 1000% of the mean. The
standard deviation relative to mean is thus fiftyets

1. &W.eap) = &N (W.a,B)&n(W.a,p), with that of the acreages, prices or yields.
n(¥,a,B) denoting the vector of implied own The explicit expression for supply elasticitiesour
price supply elasticities. That is, we assign prioconstrained model can be obtained by solving tts¢ fi
distributions to error terms, dual values andrder conditions for x; (repeated here for
implied point price elasticities of supply, andconvenience),
assume that those are functionally independent.

2. The errorse are independent and normally X;(p;,%, )=
distributed with standard deviations equal to a fix, 1 i1 _ b 1
share of the observed value of the respecti\)/(lé [D+GBG] [Y‘p‘ TS TAW mge R‘}“]

parameter. Specifically we assursel] N(0.2) Let E, :It[D+GBG'] and insert that expression

with 3. a diagonal matrix witho2 =(020¢/3z. )> . . . .
“h g : ¢ =(020/37) into the constraints to obtain a solution Aor
on thei™ position. This means that we assume that
errors are independent normally distributed with, « _

: - IN(E
mean zero covariance matrix such that thre
standard deviations cover 20% of the observe%l:ztEt‘lR;]_l[RtEt‘l(\(tpt +s, — AW, _qtc)_vt
value (or prior mode) of the related parameter.

3. The dgal valued are independent, with means  Computing X «(p,A"(py)) by inserting (8) into (7),
proportional to average observed gross margingking derivatives and multiplying the result byl
over all crops in each region each year, angives us the expression for marginal produdtion

standard deviations proportional to a fix share ofyhich finally can be used in the general definitafra
that. Specifically, the prior mode is assumed to bgyice elasticity to obtain:

25% of the average observed gross marginin

the respective year taken over all crops excepltl =X‘1(E‘1Y —E'lR’[R E'lR’]_lR E-ly jp (9)
sugar beét and that three standard deviations = =~ '\ ' 't Tt o thrtmtol mmeme e
cover 20% of the prior mode. (compare empirics)

0: else

O.5rj%. That assumption further discussed in the

(1)

. (8)
]

“In this case, the marginal production could beesbfor directly.
In the general case with continuous derivativeg tmplicit
% Because sugar quota rents are missing in the model function theorem may be used instead.
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where upper cas&X; means the square diagonal Rx;=V;
matrix with x; on the diagonal, and similar for upper B=U'U
caseP; andY:. d;j =0 forj = 1..J (andd; = O fori #j)
This expression is strongly non-linear lhand B XPS=x + ¢,
(via E) and thus difficult to include as constraintieth  yoS=y +¢,
estimation. In some models, the expression has beeny =g, +p,T,
simplified by neglecting the second term in thecked = p9S 4 (padm _ padmy 4 o
and only computing diagonal elements En That Pt =Py * (P Pt ot
simplification was previously used in different nedd ~ A“*=A +ea
to compute only diagonal elements Bf e.g. in the A =dao+a;T
CAPRI model (not published), and by Helming (2005) , =X’1(E’1Y _ E—er[R E—er]_lR E-ly ]P
in the DRAM model. ‘ CTE T e YA
Nevertheless, with appropriate initialisation o€ th
solution algorithm (CONOPT for GAMS) together The dummy variable MACG with associated
with reasonable bounds for the variables, equadion parameterd in the first order condition was added to
turns out to be possible to solve simultaneouslthex control for additional effects of the MacSharryareh.
estimation (with inversion and Cholesky factoriaati It is equal to 1 for year 1992 and earlier for o
of the Hessian), thus enabling us to include oiorpr that were member of the EU then, and zero from 1993
regarding elasticities of supply in a transpareay’w and oA.
The estimator resembles the Bayesian analysis of
D. Definition of the estimator the measurement error model in [18], but is more
. _ complex since it instead of the linear model in][18
Putting all the pieces together, we can nowWeq. 5.31) has a system of equations represerttieg t
formulate the estimation problem using Bayes'gptimality conditions of CAPRI, includes nonlinear

theorem as above and write curvature constraints, and instead of the additive
. measurement error model for the "exogenous" ([18]
¥ =argmax$(,B.a,elz) O f(z|y,B,a,e)(P,B,a.e) eq. 5.30) it relates some model parameters to

observations through a simple expectation model
With the degenerate density function, this is
equivalent to solving " DATA
max $(W,B,a.e)

subject to 7= u(y.B.a) +e Data for the estimation is provided by the CAPRI

) database. The part of the dataset relevant for this
g(y.,x ,A)=0 research has been compiled from tEeonomic
Accounts for AgricultureandNew Cronos Regjdoth
Taking the logarithm of the objective function andfrom Eurostat, completed with policy information
replacing the constraints with the equations derivefrom regulations and expert data where necesséy. T
above, we arrive at the following extremum estimati dataset has been processed by econometric/heuristic

problem: software of the CAPRI system to be made complete
o (no holes in time series) and consistent (with eesfo

Minimise ' physical and economical interrelations) on NUTS2

vec(ex e .e, ,eW,eA,(k _ 3, prier ),(diagv)—?)) level [1]. Despite those efforts, the CAPRI databiss

' still an unbalanced panel.
><):t'c1m,jﬂ\/e((ex,eY,ep,ew,eA,(x—)JJ”Or ),(diag(v)—%)) The panel being unbalanced poses no problem to
the estimator, but the estimations require dat®eo

subject to processed prior to estimation by omitting crops,

Ytpt +S _AtWt -qcC
-1,[D+GBG']x, -R{A, ~MAC,6=0

% A special case of this estimator—if the economindei were a
linear equation, the vector e normally distribufed only one of

the variables and for the other either uninfornetiv degenerate
® See [7] for an illustrative example. zero—is equivalent to an OLS.
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regions and years for which the data cube does nBlapeseed and sunflower occupy small rotational
satisfy minimum standards. Furthermore, a simplshares, less than 5%, and as a consequence the prio
routine for replacing outliers with series mean wasre higher, about 1.5. The elasticity estimatesifose
applied prior to estimation. crops are also much higher, 1.28 and 2.96, than
GBC96, which finds values of 0.42 and 0.22, and
more in line with HBOO, which finds elasticities
greater than unity. All of the three studies findhh
elasticities for soya, for which the rotational shis
r(less than 0.5%.

For the Netherlands, [14] (OLP96) estimate twelve
rm type models producing three outputs (CO =
ereals and oilseeds, Rootcrops = Potatoes and suga
beet, and Other = all other crops). They estimbage t
model using panel data on individual farms, anad als
have a land constraint and a fixed area of rootrbp
){heir table A3 they present supply elasticitesywhbifch

Ot'he own price effects are compared to our estinfates

V. RESULTS

The results are evaluated according to the resulti
model behaves in simulation, by comparing th
estimated supply elasicities to estimates fro
literature. Although there are several studies thl%
present elasticities on national level, no otherdgt
that the author is aware of publishes elasticifms
individual crops on regional level with this crop
coverage. Below we compare our point elasticit
estimates (for 2002) as well as our priors two issid
for France, one for the Netherlands and one f . )
Denmark. the Netherlands for similar product aggrega_tteamet

For France, table (1) compares our results to tho§ )- _Tc_)_ make the comparison, our |nd_|V|duaI_ crop
in [5] (HBOO) and [4] (GBC96). GBC96 estimates 28 asticities have been aggregated with estimated

model with seven outputs and three inputs baseal Onplanned rot_ational shares for 2002. The “othe_r stop
restricted profit function, using annual data foarkce. aggregate in OLP96 could not be formed, since we

HBOO estimate a similar model as ours, but theyaJsehaVe three crops, (voluntary and compulsory seleasi

cross-section data set of French regions for ther yeand fallow land) for which there is no output price
1994 instead of time series for individual regiass Table 2. Comparison with other own price supplysttity
we do. estimates for the Netherlands

Table 1. Comparison with other studies of own psiagply Crop group Land share Prior Estimate OLP96

elasticities in France CcoO 0.266 0.778 0.937 0.90
- - Root crops 0.342 0.715 0.909 0.24

Crop Land shafe Prior® Estimate GBC96' HBOOe Z:0ude Lansink and Peeriings (1996)
Coarse grairfs 0.034 1.547 2.531 0.758
Soft wheat 0.273 0.771 1.009 0715 1.322 OQur estimates for CO (0.94) are quite close to
Maize 0.102 1.070 1.680  1.630  0.653 OLP96 (0.90), but considerably higher for root cop
Barley 0.092 1.109 2243 0351  2.647 (OLP96 find 0.34, our estimate 0.91). We must then
Rapeseed 0.045 1.405 1.284  0.418  1.457keep in mind that in OLP96, the area used in root
Sunflower 0.027 1.664 2.959  0.223  1.126 crops was fixed, so that the price elasticity came
Soya 0.004 3276 2.020 3701 1.861 only from a change in intensity. It then seems
a: Aggregated from rye, oats and other cereals. reasonable that their estimates for that aggregyate
b: Computed from the data in CAPRI for 2002 |
c: Using the formula for priors reported above out lower.
d: Guyomard et al. (1996)
e: Heckelei and Britz (2000) Table 3. Comparison with other own price supphsgdity

estimates for Denmark

We see that GBC96 finds smaller elasticities for

. . c Land sharePrior _Estimate J 1996
barley (0.35) and other coarse grains (0.76) than t ob and sharePrior _Estimate Jensen ( )

Cereal 0.575 0.6011.073  0.60
study (2.24 and 2.53), HBOO (2.65 for barley) ae th o=

riors (1.11 and 1.55). For soft wheat the resaits Pulses + rapeseed  0.037 1.498999  0.66
P ' ~29). Root crops 0.035 1528772 3.80

much more in line, with the priors (0.77) quitesgdo
GBC96 (0.72) and the estimates (1.01) in between

GBC96 and HBOO (1.32). For maize the estimates jJensen [12] estimates an econometric model of
(1.68) are close to GBC96 (1.63) but much highanth Danish agriculture, and also presents aggregated
HBOO (0.65), whereas the priors lie in between{L.0 supply elasticities for three selected crop groups.
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table (3) we have reprinted those elasticities alsd

our implied estimates for the corresponding
aggregates. We see that for the first two groups, o1-
elasticities are higher than those of Jensen. ginour
prior for cereals is similar to Jensen’s estimakas.

the last group, root crops, the elasticities arey ve
similar and more than twice as high as our prior.

V. CONCLUSIVE REMARKS 3

We conclude that the estimated elasticities compar4é
well with estimates from literature in the four eas
studied. Nevertheless, only a handful of elasésiti
from three member states could be compared. The vas
amount of estimates are for individual crops in
NUTS2 regions, and for them, we have nothing to
compare to. Many parameters for small crops at
regional level (not published here) are rather higtf-
Such parameter settings will result in a model that
reacts strongly on shocks in simulation compared
the current CAPRI model that in the past had inielas
supply.

No confidence regions for the estimates are
established. Exact analytical confidence regiors ar
very difficult to deduce. Approximations would in 8.
theory be possible. [17] compute approximate
probability contours of the posterior in a non-ane
errors-in-variables model by iterated linearisagiom
our case, analytical deduction of approximate
confidence regions is more difficult than in ibale
to the curvature constraints. Numerical computatioﬁ'
by Monte Carlo simulations is not feasible becanise
the amount of computation time required with the
present setup (several hours for a single simulaifo 1q.
all regions).

The estimation produced a large number of results:
1917 elements of the key parametessand D  11.
respectively, and 5457 elements of the cross group
effects matrix B. Furthermore, 329092 price
elasticities were computed, including the crossepri
elasticities. To this comes a very large number of
fitted values and all other parameters. The esiimat
program, data set and full results are shared by th
author upon request (electronic). With future
application of CAPRI with the new parameters,
experiences will be gained regarding the perforraancl4.
of the estimates.

15.
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APPENDIX 1. ACTIVITIES IN ESTIMATION

Table 1. Crop groups and activities modelled

Group Crops
Cereals: Soft wheat, durum wheat, Rye, Barley,
Oats

Cereals2: Maize, Other cereals

Oil seeds: Rapeseed, Sunflower, Soya, Other
oilseeds, Non-food rapeseed

Other arable Potatoes, Pulses, Sugar beet, Fibre crops

crops:

Fodder on Fodder maize, Silage grass, Fodder root

arable land: crops

Non-yield Obligatory set-aside, Voluntary set-

crops: aside, Fallow land

List of inputs in the estimation:

Seeds, fuel, pesticides, electricity, lubricants,
fertilizers, gas for drying, repairs machinery, aep
buildings, other inputs.
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