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Abstract— The primary objective of this paper is to 
estimate behavioural parameters of the quadratic 
regional supply models in the modelling system CAPRI, 
using the time series data in the CAPRI database. A 
Bayesian highest posterior density estimator is 
developed to address the primary objective. After 
discarding regions with insufficient data, parameters for 
up to 23 crop production activities with related inputs, 
outputs, prices and behavioural functions are estimated 
for 165 regions in EU-15. The results are systematically 
compared to the outcomes of other studies. For crop 
aggregates (e.g. cereals, oilseeds etc.) at the national level 
of nations, the estimated own price elasticities of supply 
are found to be in a plausible range. On a regional level 
and for individual crops, the picture is much more 
diverse. Whether the regional results are plausible or 
not is difficult to judge, since no other study of similar 
regional and product coverage is known to the authors. 

Keywords— Bayesian estimation, errors-in-variables, 
PMP 

I.  INTRODUCTION 

Large scale optimization models typically contain 
parameters from a multitude of sources, including 
statistics, outcomes of estimations, and assumptions. 
The parameters and data are made consistent with the 
assumed model by some calibration procedure which 
operates on a single or a handful of parameters (e.g. 
[11], [15]). This article demonstrates a consistent and 
transparent method for estimating parameters of a 
large scale agricultural optimization model (the 
CAPRI model, see [1]) using econometric techniques 
to time series of observations. By consistent we mean 
that the estimating equations are equivalent to the 
equations of the economic model (its optimality 
conditions, see also [7], [8]). The transportability of 
the parameter from the estimation to the simulation 
model is ensured, in contrast to many situations where 
parameters are gathered from literature. By 
transparent we mean that a uniform methodology is 
applied to the whole data set. In the case at hand, this 
means that the same algorithm is applied to each of 
252 regional models, with results for 23 different 
agricultural crops. Transparency also means that prior 

information and plausibility considerations are 
formally included in the estimator. 

Heckelei and Britz [5] estimated supply parameters 
of the regional supply models in CAPRI using cross 
section data for all regions in a single year, and 
introducing prior information via generalized cross 
entropy. This work improves on their approach in 
several ways: Firstly, a more general Bayesian 
estimator is developed, secondly, time series data is 
used in the estimation, and thirdly, the regional 
coverage is extended to EU27. As in Heckelei and 
Britz, some limitations apply: The estimation only 
considers the arable annual crop producing part of the 
representative regional farm, keeping other parts 
(husbandry, permanent grassland and permanent 
crops) fixed when necessary or leaving them out 
altogether when possible. We also ignore the 
fertilization constraints of the full model, working 
with Leontief fertilizer input coefficients. 

The remaining part of this report contains four 
sections. Section two describes the structure of the 
template regional representative farm model that is 
used for all regions. Section three formulates the 
Bayesian estimation model and discusses the use of 
prior information. In section four, results are presented 
for selected regions, and compared to the results of 
other studies. Section five concludes the paper. 

II.  A REGIONAL SUPPLY MODEL 

The regional representative farm is assumed to act 
as if solving a linearly constrained quadratic 
programming problem (1) in every time period t. 
Throughout this paper we generally use lower case 
bold face letters to represent items that are column 
vectors for each t, upper case bold face letters to 
represent matrices and italic letters to represent 
scalars. The dimensions of vectors and matrices are 
denoted by upper case letters, where a lower case 
version of the same letter denotes the indices of the 
elements in that dimension, so that for instance the “J-
vector of acreages x” means a vector of length J, with 
elements xj, j = 1…J. The prime character (′) denotes 
the ordinary transpose of a vector or a matrix. 



12th Congress of the European Association of Agricultural Economists – EAAE 2008 

All regional models have identical structure, and no 
cross-regional constraints or relationships are 
assumed, in order to keep the regional estimation 
rather flexible and to limit the complexity of the 
estimation. Thus, indices for regions can be omitted. 
The producer is assumed to solve the optimization 
problem in each period independently of other periods, 
and items that change across periods obtain an index t. 
For example xt denotes the vector x in period t, but x 
(without index) denotes the whole 3-dimensional array 
with dimensions (J,1,T), where the “1” indicates that 
that dimension is not used in this case. 

The model can then be written for each period as 
 

Maximise w.r.t. x 
[ ] [ ][ ]tttttttttt lq xGGBDcxwAspYx ′+−′−−+′

2
1

 
    (1) 
subject to 

  ttt vxR =  

where for each t, 
xt vector of acreages for each of J land uses 
Y t J × J diagonal matrix of yields 
pt J vector of prices 
st J vector of direct subsidies 
A t J × I matrix of input coefficients for I inputs 
wt I vector of input prices 
qt price index 
c J vector of parameters 
l t land availability index (described below) 
D J × J diagonal matrix of parameters 
G J × M matrix that sums up land use by each of M = 

6 crop groups, i.e. with gjm = 1 if crop j belongs to 
group m, else gjm = 0 

B 6 × 6 matrix of parameters 
Rt 2 × J matrix of constraint coefficients, where r1j = 1 

for j = 1…J and r2j is the net set-aside contribution 
of crop j 

vt 2 vector with v1 total land available, v2 = 0. 
The model implies that the producer maximises the 

sum of gross margins (the first term) minus a quadratic 
function (the second term), subject to a land constraint 
and set-aside requirement. The quadratic function in 
the objective function is a behavioural function (and c, 
D and B behavioural parameters) in the tradition of 
positive mathematical programming (PMP, see e.g. 
[10] or [11]) that is intended to capture the aggregated 
influence of economic factors that are not explicitly 
included in the model [6]. It is the objective of this 
work to estimate the behavioural parameters. 

In order to reduce the number of behavioural 
parameters to estimate, we assume that cross-crop 
effects are only permitted between groups of crops. 
That is achieved using a vector c of linear effects, a 
diagonal matrix D of quadratic own-crop effects, and a 
matrix B of cross-group effects. The J × M matrix G is 
used to sum the acreages within each group, 
substantially reducing the number of parameters 
compared to estimation of a full J × J matrix. The 
appendix lists groups, crops and inputs. 

The prices p and w in the model are nominal, and 
since the quadratic function is assumed to capture, 
among other things, the opportunity cost of resources 
not explicitly modelled, it should be inflated. This is 
obtained by multiplication of c by the general price 
index qt. 

The total amount of land fluctuates slightly between 
years, in general with a downward trend due to 
migration of land into other sectors (fallow land is 
modelled explicitly as a land use activity). We do not 
know if it is productive or unproductive land that 
migrates, so to avoid that land migration strongly 
influences land rent (the dual value of the first 
constraint), we use land shares in the quadratic term. 
This is equivalent to scaling the matrix [D + GBG′] by 
the square inverse of total land available in each 
period. For scaling purposes, it is also multiplied by ½ 
times square of total land available in year 2000, or 
(v1)2000. Thus l t = ((v1)2000/(v1)t)². 

The optimization model (1) can be equivalently 
described by the following first- and second order 
conditions for optimal x 

 [ ] 0λRxGGBD

cwAspY

=′−′+−
−−+
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tttttt
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 (2) 

  Rtxt = vt  (3) 

  UUB ′=   (4) 

  djj ≥ 0 for j = 1…J (and dij = 0 for i ≠ j) (5) 

λλλλt is the 2 × 1 vector of dual values for the 
constraints. Note that for positive semi-definiteness of 
the Hessian matrix, it is sufficient that B is positive 
semi-definite, which is satisfied by the Cholesky 
factorisation with the upper triangular matrix U, and 
that all elements of D are non-negative1. 

                                                 
1 In fact, we will use a stronger restriction of djj ≥ δij > 0 in 
estimations to avoid numerical problems when estimating 
elasticities. 
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A. Outline of a Bayesian estimator 

The Bayesian estimator outlined below is based on 
a measurement error model (see e.g. [2]), where in 
general, no parameter values are known with certainty. 
We do not include errors in optimisation, however, i.e. 
we assume that the agent modelled has perfect 
information about the true parameters, and is able to 
determine the optimal production decision exactly. 
Thus no such errors enter the model equations, thereby 
influencing production. A more general error model, 
as discussed by in [13] and [16] would also take into 
account the possibility that the producer may not 
correctly appreciate the true parameters and/or is not 
able to determine exactly the optimal supply decision. 
Since the general error model requires an increased 
amount of prior information and is anyway difficult to 
distinguish from the measurement error model in 
many cases, we choose to only consider measurement 
errors. 

The basic assumption underlying the data sampling 
model is that there exists a set of true parameters ψψψψ = 
(p,Y,s,A,w,q,l,c,D,B,R,v) of the model, satisfying the 
second order conditions (4-5), a vector of true planned 
acreages x* and a vector of dual values λλλλ* such that 
(x*,λλλλ*) is the unique optimal solution to the model 
parametrized by ΨΨΨΨ. We may thus implicitly write x* = 
x*(ψψψψ) and λλλλ* = λλλλ*(ψψψψ). Furthermore, the values 
z = (xobs,pobs,Yobs,sobs,Aobs,wobs,qobs,lobs,Robs,vobs) in the 
CAPRI database are considered the outcome of a 
random variable vector Z that is conditional on ΨΨΨΨ, i.e. 
there exists a probability density function f(z|ΨΨΨΨ). 

If we express our prior information and “beliefs” 
about the parameter vector ΨΨΨΨ as a prior density 
function ξ(ΨΨΨΨ), we may use Bayes's rule to derive the 
posterior density function of ΨΨΨΨ conditional on the 
outcome z: 

 ξ(ΨΨΨΨ|z) ∝ f(z|ΨΨΨΨ)ξ(ΨΨΨΨ) 

We desire an estimation method that chooses as an 
estimate the parameter vector ΨΨΨΨ that maximises the 
conditional density ξ(ΨΨΨΨ|z). DeGroot [3] calls this 
estimator the generalised maximum likelihood 
estimator2 and it extensively discussed in [8]. In what 
follows, we derive the function f from an error model 
                                                 
2 Other authors have called it the posterior mode estimator, the 
maximum a-posteriori estimator or the highest posterior density 
estimator. We consider this estimator superior to Maximum or 
Cross Entropy formulations in our context for computational and 
transparency reasons. 

relating z to ΨΨΨΨ, and derive the unconditional (prior) 
density function ξ from prior beliefs regarding 
elasticites and dual values of the (implied) model.  

B. Data sampling process 

The distribution of Z is based on the following 
assumptions: 

1. All elements in Z are independent  
2. Subsidies, price index, set-aside rate and total 

land constraint are known with certainty. Thus, 
outcomes of those items in the random vector Z 
will be the corresponding items of ΨΨΨΨ itself, and 
from now on removed from Z. An outcome of Z 
is thus written z = (xobs,pobs,wobs,Yobs,Aobs). 

3. Errors are additive. We write an outcome of Z as 
the sum of its conditional expectation 
µµµµ(ψψψψ) = (µµµµx,µµµµp,µµµµw,µµµµY,µµµµA), (with appropriate 
dimensions), and the random error vector εεεε, so 
that Z = µµµµ(ψψψψ) + εεεε. 

4. Producers have naïve price expectations. The 
(statistical) expectation of the price measurement 
in period t-1 equals the producer price in that 
period, or conversely, 

  pt = (µµµµp)t-1  
  wt = (µµµµw)t-1  

 where the expression on the right hand side 
denotes the expected value of the output and input 
prices for all crops in period t-1. 

5. Expected yields and input requirements follow 
linear trends. We thus have 

  Y t = (µµµµy)t = ββββ0 + ββββ1Tt (6) 

  A t = (µµµµA)t = αααα0 + αααα1Tt 

 with T being a linear trend and ββββ = (ββββ0,ββββ1) and αααα = 
(αααα0,αααα1) new parameters to estimate. Prior means 
or input allocation come from estimates Aobs 
available in the CAPRI data base. 

C. Augmented parameter vector and its prior 
distribution 

When observations have been made, the outcome e 
of the error vector εεεε has also been determined, but the 
outcome is unknown—we don’t know what part of an 
observation is error and what part is parameter. We 
can thus choose to consider e yet another unknown 
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parameter, the distribution of which may be subject to 
prior information. If the density function f for the 
random vector Z is conditional also on e and the yield 
and input parameters ββββ, and αααα defined above, then 
there are no random components left, and f becomes 
the degenerate density function, 
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A large number of different parameter vectors 
(ψψψψ,ββββ,αααα,e) give the density value “1” for almost any 
outcome z of Z. Without further information, there is 
no way of discriminating between any two such 
vectors by saying that one is any more likely than the 
other to be the true parameter vector. Thus, we require 
a prior distribution ξ(ΨΨΨΨ,e,αααα,ββββ) that assigns a 
probability to each parameter vector, i.e. allows for 
unique identification of the parameters, and that we 
define based on the following assumptions: 

1. ξ(ΨΨΨΨ,e,αααα,ββββ) = ξ(e)ξ(λλλλ*(ΨΨΨΨ,αααα,ββββ))ξ(ηηηη(ΨΨΨΨ,αααα,ββββ)), with 
ηηηη(ΨΨΨΨ,αααα,ββββ) denoting the vector of implied own 
price supply elasticities. That is, we assign prior 
distributions to error terms, dual values and 
implied point price elasticities of supply, and 
assume that those are functionally independent. 

2. The errors e are independent and normally 
distributed with standard deviations equal to a fix 
share of the observed value of the respective 
parameter. Specifically we assume e ∼ N(0,ΣΣΣΣe) 

with ΣΣΣΣe a diagonal matrix with ( )22 320.0 iei z=σ  
on the i th position. This means that we assume that 
errors are independent normally distributed with 
mean zero covariance matrix such that three 
standard deviations cover 20% of the observed 
value (or prior mode) of the related parameter. 

3. The dual values λλλλ are independent, with means 
proportional to average observed gross margins 
over all crops in each region each year, and 
standard deviations proportional to a fix share of 
that. Specifically, the prior mode is assumed to be 
25% of the average observed gross margin tm  in 
the respective year taken over all crops except 
sugar beet3, and that three standard deviations 
cover 20% of the prior mode. (compare empirics) 

                                                 
3 Because sugar quota rents are missing in the model 

4. We asssume that the parameter vector is such that 
the implied point price elasticity of supply matrix 
ηηηη(ΨΨΨΨ,αααα,ββββ) is normally distributed with mean 
depending on the crop mix (rotational shares) and 
standard deviation independent for each item. 
Means and standard deviations are derived below. 
 

Most studies (see comparison to other studies 
below) find supply elasticities in the range of, say, 0.1 
to 5, and that the elasticity typically around unity for 
major crops, but higher for crops that occupy a small 
share of the total area. The main argument for such a 
relation is that expanding a major crop by a given 
percentage under land and rotational constraints is 
difficult compared to expanding a crop with small 
current acreage by the same percentage. Letting r j 
denote the share of land allocated to crop j, we assume 
that the own price supply elasticities have means 

3
1

5.0
−

jr . That assumption further discussed in the 

results section. Standard deviations are such that three 
standard deviations cover 1000% of the mean. The 
standard deviation relative to mean is thus fifty times 
that of the acreages, prices or yields. 

The explicit expression for supply elasticities in our 
constrained model can be obtained by solving the first 
order conditions for xt (repeated here for 
convenience), 

[ ] [ ]ttttttttt
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Let [ ]GGBDE ′+= tt l  and insert that expression 

into the constraints to obtain a solution for λλλλ, 
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Computing x*
t(pt,λλλλ*

t(pt)) by inserting (8) into (7), 
taking derivatives and multiplying the result by yield 
gives us the expression for marginal production4, 
which finally can be used in the general definition of a 
price elasticity to obtain: 

[ ] ttttttttttttt PYERRERREYEXη 




 ′′−= −−−−−− 111111  (9) 

                                                 
4 In this case, the marginal production could be solved for directly. 
In the general case with continuous derivatives, the implicit 
function theorem may be used instead. 
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where upper case X t means the square diagonal 
matrix with xt on the diagonal, and similar for upper 
case Pt and Y t. 

This expression is strongly non-linear in D and B 
(via E) and thus difficult to include as constraint in the 
estimation. In some models, the expression has been 
simplified by neglecting the second term in the bracket 
and only computing diagonal elements in E. That 
simplification was previously used in different model 
to compute only diagonal elements of E, e.g. in the 
CAPRI model (not published), and by Helming (2005) 
in the DRAM model. 

Nevertheless, with appropriate initialisation of the 
solution algorithm (CONOPT for GAMS) together 
with reasonable bounds for the variables, equation 9 
turns out to be possible to solve simultaneously in the 
estimation (with inversion and Cholesky factorization 
of the Hessian), thus enabling us to include our priors 
regarding elasticities of supply in a transparent way5. 

D. Definition of the estimator 

Putting all the pieces together, we can now 
formulate the estimation problem using Bayes's 
theorem as above and write 

maxargˆ =Ψ ξ(ψψψψ,ββββ,αααα,e|z) ∝ f(z|ψψψψ,ββββ,αααα,e)ξ(ψψψψ,ββββ,αααα,e) 

With the degenerate density function, this is 
equivalent to solving 

 max  ξ(ψψψψ,ββββ,αααα,e)  
 subject to eαβψµz += ),,(   

  0λxψg =),,( **   

Taking the logarithm of the objective function and 
replacing the constraints with the equations derived 
above, we arrive at the following extremum estimation 
problem: 

Minimise
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5 See [7] for an illustrative example. 

 Rtxt = vt   
 UUB ′=    
 djj ≥ 0 for j = 1…J (and dij = 0 for i ≠ j)  
 xobs = x + ex 
 Yobs = Y + eY 
 Y t = ββββ0 + ββββ1Tt 
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 Aexp = A + eA 
 A = αααα0 + αααα1Tt 
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The dummy variable MACt with associated 
parameter δ in the first order condition was added to 
control for additional effects of the MacSharry reform. 
It is equal to 1 for year 1992 and earlier for regions 
that were member of the EU then, and zero from 1993 
and on6. 

The estimator resembles the Bayesian analysis of 
the measurement error model in [18], but is more 
complex since it instead of the linear model in [18] 
(eq. 5.31) has a system of equations representing the 
optimality conditions of CAPRI, includes nonlinear 
curvature constraints, and instead of the additive 
measurement error model for the "exogenous" ([18] 
eq. 5.30) it relates some model parameters to 
observations through a simple expectation model 

III.  DATA 

Data for the estimation is provided by the CAPRI 
database. The part of the dataset relevant for this 
research has been compiled from the Economic 
Accounts for Agriculture and New Cronos Regio, both 
from Eurostat, completed with policy information 
from regulations and expert data where necessary. The 
dataset has been processed by econometric/heuristic 
software of the CAPRI system to be made complete 
(no holes in time series) and consistent (with respect to 
physical and economical interrelations) on NUTS2 
level [1]. Despite those efforts, the CAPRI database is 
still an unbalanced panel. 

The panel being unbalanced poses no problem to 
the estimator, but the estimations require data to be 
processed prior to estimation by omitting crops, 

                                                 
6 A special case of this estimator—if the economic model were a 
linear equation, the vector e normally distributed for only one of 
the variables and for the other either uninformative or degenerate 
zero—is equivalent to an OLS. 
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regions and years for which the data cube does not 
satisfy minimum standards. Furthermore, a simple 
routine for replacing outliers with series mean was 
applied prior to estimation. 

IV.  RESULTS 

The results are evaluated according to the resulting 
model behaves in simulation, by comparing the 
estimated supply elasicities to estimates from 
literature. Although there are several studies that 
present elasticities on national level, no other study 
that the author is aware of publishes elasticities for 
individual crops on regional level with this crop 
coverage. Below we compare our point elasticity 
estimates (for 2002) as well as our priors two studies 
for France, one for the Netherlands and one for 
Denmark. 

For France, table (1) compares our results to those 
in [5] (HB00) and [4] (GBC96). GBC96 estimates a 
model with seven outputs and three inputs based on a 
restricted profit function, using annual data for France. 
HB00 estimate a similar model as ours, but they use a 
cross-section data set of French regions for the year 
1994 instead of time series for individual regions as 
we do. 

Table 1. Comparison with other studies of own price supply 
elasticities in France 

Crop Land shareb Priorc Estimate GBC96d HB00e 

Coarse grainsa 0.034 1.547 2.531 0.758 -.--- 

Soft wheat 0.273 0.771 1.009 0.715 1.322 

Maize 0.102 1.070 1.680 1.630 0.653 

Barley 0.092 1.109 2.243 0.351 2.647 

Rapeseed 0.045 1.405 1.284 0.418 1.457 

Sunflower 0.027 1.664 2.959 0.223 1.126 

Soya 0.004 3.276 2.020 3.701 1.861 
a: Aggregated from rye, oats and other cereals. 
b: Computed from the data in CAPRI for 2002 
c: Using the formula for priors reported above 
d: Guyomard et al. (1996) 
e: Heckelei and Britz (2000) 

We see that GBC96 finds smaller elasticities for 
barley (0.35) and other coarse grains (0.76) than this 
study (2.24 and 2.53), HB00 (2.65 for barley) or the 
priors (1.11 and 1.55). For soft wheat the results are 
much more in line, with the priors (0.77) quite close to 
GBC96 (0.72) and the estimates (1.01) in between 
GBC96 and HB00 (1.32). For maize the estimates 
(1.68) are close to GBC96 (1.63) but much higher than 
HB00 (0.65), whereas the priors lie in between (1.07). 

Rapeseed and sunflower occupy small rotational 
shares, less than 5%, and as a consequence the priors 
are higher, about 1.5. The elasticity estimates for those 
crops are also much higher, 1.28 and 2.96, than 
GBC96, which finds values of 0.42 and 0.22, and 
more in line with HB00, which finds elasticities 
greater than unity. All of the three studies find high 
elasticities for soya, for which the rotational share is 
less than 0.5%. 

For the Netherlands, [14] (OLP96) estimate twelve 
farm type models producing three outputs (CO = 
Cereals and oilseeds, Rootcrops = Potatoes and sugar 
beet, and Other = all other crops). They estimate the 
model using panel data on individual farms, and also 
have a land constraint and a fixed area of rootcrops. In 
their table A3 they present supply elasticites, of which 
the own price effects are compared to our estimates for 
the Netherlands for similar product aggregates in table 
(2). To make the comparison, our individual crop 
elasticities have been aggregated with estimated 
planned rotational shares for 2002. The “other crops” 
aggregate in OLP96 could not be formed, since we 
have three crops, (voluntary and compulsory set-aside 
and fallow land) for which there is no output price. 

Table 2. Comparison with other own price supply elasticity 
estimates for the Netherlands 

Crop group Land share Prior Estimate OLP96a 

CO 0.266 0.778 0.937 0.90 

Root crops 0.342 0.715 0.909 0.24 
a:Oude Lansink and Peerlings (1996) 

Our estimates for CO (0.94) are quite close to 
OLP96 (0.90), but considerably higher for root crops 
(OLP96 find 0.34, our estimate 0.91). We must then 
keep in mind that in OLP96, the area used in root 
crops was fixed, so that the price elasticity can come 
only from a change in intensity. It then seems 
reasonable that their estimates for that aggregate turn 
out lower. 

Table 3. Comparison with other own price supply elasticity 
estimates for Denmark 

Crop Land share Prior Estimate Jensen (1996) 

Cereals 0.575 0.601 1.073 0.60 

Pulses + rapeseed 0.037 1.498 1.999 0.66 

Root crops 0.035 1.522 3.772 3.80 
 

Jensen [12] estimates an econometric model of 
Danish agriculture, and also presents aggregated 
supply elasticities for three selected crop groups. In 
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table (3) we have reprinted those elasticities and also 
our implied estimates for the corresponding 
aggregates. We see that for the first two groups, our 
elasticities are higher than those of Jensen., though our 
prior for cereals is similar to Jensen’s estimates. For 
the last group, root crops, the elasticities are very 
similar and more than twice as high as our prior.  

V.  CONCLUSIVE REMARKS 

We conclude that the estimated elasticities compare 
well with estimates from literature in the four cases 
studied. Nevertheless, only a handful of elasticities 
from three member states could be compared. The vast 
amount of estimates are for individual crops in 
NUTS2 regions, and for them, we have nothing to 
compare to. Many parameters for small crops at 
regional level (not published here) are rather high. 
Such parameter settings will result in a model that 
reacts strongly on shocks in simulation compared to 
the current CAPRI model that in the past had inelastic 
supply. 

No confidence regions for the estimates are 
established. Exact analytical confidence regions are 
very difficult to deduce. Approximations would in 
theory be possible. [17] compute approximate 
probability contours of the posterior in a non-linear 
errors-in-variables model by iterated linearisations. In 
our case, analytical deduction of approximate 
confidence regions is more difficult than in ibid. due 
to the curvature constraints. Numerical computation 
by Monte Carlo simulations is not feasible because of 
the amount of computation time required with the 
present setup (several hours for a single simulation of 
all regions). 

The estimation produced a large number of results: 
1917 elements of the key parameters c and D 
respectively, and 5457 elements of the cross group 
effects matrix B. Furthermore, 329 092 price 
elasticities were computed, including the cross price 
elasticities. To this comes a very large number of 
fitted values and all other parameters. The estimation 
program, data set and full results are shared by the 
author upon request (electronic). With future 
application of CAPRI with the new parameters, 
experiences will be gained regarding the performance 
of the estimates. 
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APPENDIX 1. ACTIVITIES IN ESTIMATION 

Table 1. Crop groups and activities modelled 

Group Crops 
Cereals:  Soft wheat, durum wheat, Rye, Barley, 

Oats 
Cereals2:  Maize, Other cereals 
Oil seeds:  Rapeseed, Sunflower, Soya, Other 

oilseeds, Non-food rapeseed 
Other arable 
crops:  

Potatoes, Pulses, Sugar beet, Fibre crops 

Fodder on 
arable land:  

Fodder maize, Silage grass, Fodder root 
crops 

Non-yield 
crops:  

Obligatory set-aside, Voluntary set-
aside, Fallow land 

 
List of inputs in the estimation: 
Seeds, fuel, pesticides, electricity, lubricants, 

fertilizers, gas for drying, repairs machinery, repairs 
buildings, other inputs. 


