
Introduction Generalizing Backdoors Related works Conclusions

Generalizing Backdoors

Roberto Rossi1

Steven D. Prestwich1

S. Armagan Tarim2

Brahim Hnich3

1Cork Constraint Computation Centre, University College Cork, Ireland
2Department of Management, Hacettepe University, Ankara, Turkey

3Faculty of Computer Science, Izmir University of Economics, Izmir, Turkey

5th International Workshop on Local Search Techniques in
Constraint Satisfaction



Introduction Generalizing Backdoors Related works Conclusions

Outline

1 Introduction
Formal Background

2 Generalizing Backdoors
Pseudo-Backdoors
Heuristic-Backdoors
A complex optimization problem

3 Related works
Related works

4 Conclusions
Conclusions



Introduction Generalizing Backdoors Related works Conclusions

Abstract

A powerful intuition in the design of search methods is that one
wants to proactively select variables that simplify the problem
instance as much as possible when these variables are
assigned values. The notion of “Backdoor” variables follows this
intuition.



Introduction Generalizing Backdoors Related works Conclusions

Abstract

A powerful intuition in the design of search methods is that one
wants to proactively select variables that simplify the problem
instance as much as possible when these variables are
assigned values. The notion of “Backdoor” variables follows this
intuition.

We generalize Backdoors in such a way to allow more
general classes of sub-solvers, both complete and heuristic



Introduction Generalizing Backdoors Related works Conclusions

Abstract

A powerful intuition in the design of search methods is that one
wants to proactively select variables that simplify the problem
instance as much as possible when these variables are
assigned values. The notion of “Backdoor” variables follows this
intuition.

We generalize Backdoors in such a way to allow more
general classes of sub-solvers, both complete and heuristic

Pseudo-Backdoors



Introduction Generalizing Backdoors Related works Conclusions

Abstract

A powerful intuition in the design of search methods is that one
wants to proactively select variables that simplify the problem
instance as much as possible when these variables are
assigned values. The notion of “Backdoor” variables follows this
intuition.

We generalize Backdoors in such a way to allow more
general classes of sub-solvers, both complete and heuristic

Pseudo-Backdoors
Heuristic-Backdoors



Introduction Generalizing Backdoors Related works Conclusions

Abstract

A powerful intuition in the design of search methods is that one
wants to proactively select variables that simplify the problem
instance as much as possible when these variables are
assigned values. The notion of “Backdoor” variables follows this
intuition.

We generalize Backdoors in such a way to allow more
general classes of sub-solvers, both complete and heuristic

Pseudo-Backdoors
Heuristic-Backdoors

We applied these techniques to



Introduction Generalizing Backdoors Related works Conclusions

Abstract

A powerful intuition in the design of search methods is that one
wants to proactively select variables that simplify the problem
instance as much as possible when these variables are
assigned values. The notion of “Backdoor” variables follows this
intuition.

We generalize Backdoors in such a way to allow more
general classes of sub-solvers, both complete and heuristic

Pseudo-Backdoors
Heuristic-Backdoors

We applied these techniques to
A Multiple Knapsack Problem



Introduction Generalizing Backdoors Related works Conclusions

Abstract

A powerful intuition in the design of search methods is that one
wants to proactively select variables that simplify the problem
instance as much as possible when these variables are
assigned values. The notion of “Backdoor” variables follows this
intuition.

We generalize Backdoors in such a way to allow more
general classes of sub-solvers, both complete and heuristic

Pseudo-Backdoors
Heuristic-Backdoors

We applied these techniques to
A Multiple Knapsack Problem
An Inventory Control Problem



Introduction Generalizing Backdoors Related works Conclusions

Formal Background

Constraint Satisfaction Problem

A slightly formal definition

A Constraint Satisfaction Problem is a triple 〈V , D, C〉.



Introduction Generalizing Backdoors Related works Conclusions

Formal Background

Constraint Satisfaction Problem

A slightly formal definition

A Constraint Satisfaction Problem is a triple 〈V , D, C〉.

V = {v1, . . . , vn} is a set of variables



Introduction Generalizing Backdoors Related works Conclusions

Formal Background

Constraint Satisfaction Problem

A slightly formal definition

A Constraint Satisfaction Problem is a triple 〈V , D, C〉.

V = {v1, . . . , vn} is a set of variables

D is a function mapping each variable vi to a domain D(vi)
of values



Introduction Generalizing Backdoors Related works Conclusions

Formal Background

Constraint Satisfaction Problem

A slightly formal definition

A Constraint Satisfaction Problem is a triple 〈V , D, C〉.

V = {v1, . . . , vn} is a set of variables

D is a function mapping each variable vi to a domain D(vi)
of values

C is a set of constraints



Introduction Generalizing Backdoors Related works Conclusions

Formal Background

Constraint Satisfaction Problem

A slightly formal definition

A Constraint Satisfaction Problem is a triple 〈V , D, C〉.

V = {v1, . . . , vn} is a set of variables

D is a function mapping each variable vi to a domain D(vi)
of values

C is a set of constraints

Sample CSP

V = {x , y}

D(x) = {1, 3, 4, 5} D(y) = {4, 5, 8}

C = {x + 3 = y}

A possible solution for the CSP is x = 1 and y = 4.



Introduction Generalizing Backdoors Related works Conclusions

Formal Background

Hidden Structures: Backdoors

A powerful intuition in the design of search methods is that
one wants to proactively select variables that simplify the
problem instance as much as possible when these
variables are assigned values.



Introduction Generalizing Backdoors Related works Conclusions

Formal Background

Hidden Structures: Backdoors

A powerful intuition in the design of search methods is that
one wants to proactively select variables that simplify the
problem instance as much as possible when these
variables are assigned values.

This intuition leads to the common heuristic of branching
on the most constrained variable first .



Introduction Generalizing Backdoors Related works Conclusions

Formal Background

Hidden Structures: Backdoors

A powerful intuition in the design of search methods is that
one wants to proactively select variables that simplify the
problem instance as much as possible when these
variables are assigned values.

This intuition leads to the common heuristic of branching
on the most constrained variable first .

In Williams et al. [9] discuss a formal framework inspired
by these techniques.



Introduction Generalizing Backdoors Related works Conclusions

Formal Background

Hidden Structures: Backdoors

A powerful intuition in the design of search methods is that
one wants to proactively select variables that simplify the
problem instance as much as possible when these
variables are assigned values.

This intuition leads to the common heuristic of branching
on the most constrained variable first .

In Williams et al. [9] discuss a formal framework inspired
by these techniques.

One of the main contributions in this work is the notion of
“Backdoor ” variables.



Introduction Generalizing Backdoors Related works Conclusions

Formal Background

Hidden Structures: Backdoors

Backdoor
Backdoor Set : a set of variables for which there is a value
assignment such that the simplified problem can be solved by a
poly-time algorithm called the “sub-solver”



Introduction Generalizing Backdoors Related works Conclusions

Formal Background

Hidden Structures: Backdoors

Backdoor
Backdoor Set : a set of variables for which there is a value
assignment such that the simplified problem can be solved by a
poly-time algorithm called the “sub-solver”

Strong Backdoor

Strong Backdoor Set : a set of variables for which any
assignment leads to a poly-time solvable subproblem



Introduction Generalizing Backdoors Related works Conclusions

Formal Background

Hidden Structures: Backdoors

Sub-solver
A sub-solver A given as input a CSP, C:



Introduction Generalizing Backdoors Related works Conclusions

Formal Background

Hidden Structures: Backdoors

Sub-solver
A sub-solver A given as input a CSP, C:

either rejects the input C, or “determines” C correctly (as
unsatisfiable or satisfiable), returning a solution if
satisfiable



Introduction Generalizing Backdoors Related works Conclusions

Formal Background

Hidden Structures: Backdoors

Sub-solver
A sub-solver A given as input a CSP, C:

either rejects the input C, or “determines” C correctly (as
unsatisfiable or satisfiable), returning a solution if
satisfiable

runs in polynomial time



Introduction Generalizing Backdoors Related works Conclusions

Formal Background

Hidden Structures: Backdoors

Sub-solver
A sub-solver A given as input a CSP, C:

either rejects the input C, or “determines” C correctly (as
unsatisfiable or satisfiable), returning a solution if
satisfiable

runs in polynomial time

can determine if C is trivially true (has no constraints) or
trivially false (has a contradictory constraint)



Introduction Generalizing Backdoors Related works Conclusions

Formal Background

Hidden Structures: Backdoors

Sub-solver
A sub-solver A given as input a CSP, C:

either rejects the input C, or “determines” C correctly (as
unsatisfiable or satisfiable), returning a solution if
satisfiable

runs in polynomial time

can determine if C is trivially true (has no constraints) or
trivially false (has a contradictory constraint)

if A determines C, then for any variable x and value v , then
A determines the simplified CSP where x is assigned to v



Introduction Generalizing Backdoors Related works Conclusions

Formal Background

Backdoors in practice...

An example

Backdoors can be exploited to dynamically switch the
propagation logic and achieve a higher level of consistency
during the search



Introduction Generalizing Backdoors Related works Conclusions

Formal Background

Backdoors in practice...

An example

Backdoors can be exploited to dynamically switch the
propagation logic and achieve a higher level of consistency
during the search

Let us consider the following CSP=〈V , C, D〉:
V ≡ {X1, X2, ..., Xm, N},
D ≡ {X1, X2, ..., Xm, N ∈ {1, . . . , m}},
C ≡ {NValue([X1, X2, ..., Xm], N), N = m}.



Introduction Generalizing Backdoors Related works Conclusions

Formal Background

Backdoors in practice...

An example

Backdoors can be exploited to dynamically switch the
propagation logic and achieve a higher level of consistency
during the search

Let us consider the following CSP=〈V , C, D〉:
V ≡ {X1, X2, ..., Xm, N},
D ≡ {X1, X2, ..., Xm, N ∈ {1, . . . , m}},
C ≡ {NValue([X1, X2, ..., Xm], N), N = m}.

Propagating the NValue constraint is NP-hard (Bessiere et al.
[2]) and thus its propagator, which we shall call P, does not
achieve hyper-arc consistency since this would be computation-
ally too expensive



Introduction Generalizing Backdoors Related works Conclusions

Formal Background

Backdoors in practice...

An example

Backdoors can be exploited to dynamically switch the
propagation logic and achieve a higher level of consistency
during the search

Let us consider the following CSP=〈V , C, D〉:
V ≡ {X1, X2, ..., Xm, N},
D ≡ {X1, X2, ..., Xm, N ∈ {1, . . . , m}},
C ≡ {NValue([X1, X2, ..., Xm], N), N = m}.

Nevertheless it is clear that in the given CSP, once constraint
N = m is propagated, constraint NValue([X1, X2, ..., Xm], N) be-
comes equivalent to allDiff([X1, X2, ..., Xm])



Introduction Generalizing Backdoors Related works Conclusions

Formal Background

Backdoors in practice...

An example

Backdoors can be exploited to dynamically switch the
propagation logic and achieve a higher level of consistency
during the search

Let us consider the following CSP=〈V , C, D〉:
V ≡ {X1, X2, ..., Xm, N},
D ≡ {X1, X2, ..., Xm, N ∈ {1, . . . , m}},
C ≡ {NValue([X1, X2, ..., Xm], N), N = m}.

Let A be the poly time algorithm that achieves hyper-arc con-
sistency for allDiff, then N → m is a Backdoor with respect
to A



Introduction Generalizing Backdoors Related works Conclusions

Formal Background

Backdoors in practice...

An example

Backdoors can be exploited to dynamically switch the
propagation logic and achieve a higher level of consistency
during the search

Let us consider the following CSP=〈V , C, D〉:
V ≡ {X1, X2, ..., Xm, N},
D ≡ {X1, X2, ..., Xm, N ∈ {1, . . . , m}},
C ≡ {NValue([X1, X2, ..., Xm], N), N = m}.

In this regard an interesting discussion is carried on in Bessiere
et al. [1], where the parameterized complexity of global con-
straints is discussed.



Introduction Generalizing Backdoors Related works Conclusions

Formal Background

Hidden Structures: Backdoors

A given sub-solver A must run in polynomial time and must
reject (in polynomial time) the input if it is not able to either
conclude satisfiability or unsatisfiability.



Introduction Generalizing Backdoors Related works Conclusions

Formal Background

Hidden Structures: Backdoors

A given sub-solver A must run in polynomial time and must
reject (in polynomial time) the input if it is not able to either
conclude satisfiability or unsatisfiability.

Backdoor Condition
Given a CSP, C, a Backdoor Condition with respect to a
sub-solver A is a (global) constraint P on the subset S ⊆ V of
the decision variables in C that are currently instantiated, such
that if the partial assignment aS : S ⊆ V → D satisfies P, then
aS is a Backdoor in C for A. Determining if aS satisfies P must
be performed in polynomial time.



Introduction Generalizing Backdoors Related works Conclusions

Generalizing Backdoors

Having an efficient (polynomial) algorithm for handling a
subproblem that arises when some of the decision
variables are fixed is indeed desirable



Introduction Generalizing Backdoors Related works Conclusions

Generalizing Backdoors

Having an efficient (polynomial) algorithm for handling a
subproblem that arises when some of the decision
variables are fixed is indeed desirable

Nevertheless, often it may be the case that, after some
decision variables have been fixed, the remaining
subproblem is still NP-hard, but it has some additional
structure that the original problem does not have



Introduction Generalizing Backdoors Related works Conclusions

Generalizing Backdoors

Having an efficient (polynomial) algorithm for handling a
subproblem that arises when some of the decision
variables are fixed is indeed desirable

Nevertheless, often it may be the case that, after some
decision variables have been fixed, the remaining
subproblem is still NP-hard, but it has some additional
structure that the original problem does not have

If this is the case, it is possible that specialized algorithms,
such as dedicated propagators or heuristic procedures,
may be able to exploit this additional structure in order
to either achieve a stronger filtering or quickly produce
promising or optimal assignments for all or some of the
remaining decision variables



Introduction Generalizing Backdoors Related works Conclusions

Pseudo-Backdoors

Pseuso-Backdoors

Informally...

We relax the assumption stating that a sub-solver A must
run in polynomial time



Introduction Generalizing Backdoors Related works Conclusions

Pseudo-Backdoors

Pseuso-Backdoors

Informally...

We relax the assumption stating that a sub-solver A must
run in polynomial time

Therefore we may accept sub-solvers having an
exponential worst-case run time required to “determine”
a solution for the CSP



Introduction Generalizing Backdoors Related works Conclusions

Pseudo-Backdoors

Pseuso-Backdoors

Informally...

We relax the assumption stating that a sub-solver A must
run in polynomial time

Therefore we may accept sub-solvers having an
exponential worst-case run time required to “determine”
a solution for the CSP

Nevertheless the sub-solver should still be able to reject
the input in polynomial time if satisfiability or
unsatisfiability cannot be inferred



Introduction Generalizing Backdoors Related works Conclusions

Pseudo-Backdoors

Pseuso-Backdoors

Informally...

We relax the assumption stating that a sub-solver A must
run in polynomial time

Therefore we may accept sub-solvers having an
exponential worst-case run time required to “determine”
a solution for the CSP

Nevertheless the sub-solver should still be able to reject
the input in polynomial time if satisfiability or
unsatisfiability cannot be inferred

The key idea then is that, although a given sub-solver is
not guaranteed to produce a solution in polynomial time, it
should be able to produce competitive run times in
practice .



Introduction Generalizing Backdoors Related works Conclusions

Pseudo-Backdoors

Pseuso-Backdoors

Formally...



Introduction Generalizing Backdoors Related works Conclusions

Pseudo-Backdoors

Pseuso-Backdoors

Formally...
We consider a sub-solver Â that is able to reject an input in
polynomial time , but that may require exponential time
to “determine” a solution for the CSP or to conclude unsatisfiabil-
ity.



Introduction Generalizing Backdoors Related works Conclusions

Pseudo-Backdoors

Pseuso-Backdoors

Formally...
We consider a sub-solver Â that is able to reject an input in
polynomial time , but that may require exponential time to
“determine” a solution for the CSP or to conclude
unsatisfiability.

Pseudo-Backdoor
A nonempty subset S of the variables is a Pseudo-Backdoor in
C for Â if for some as : S → D, Â returns a satisfying
assignment of C[aS] or concludes unsatisfiability of C[aS].



Introduction Generalizing Backdoors Related works Conclusions

Pseudo-Backdoors

Pseuso-Backdoors

Formally...
We consider a sub-solver Â that is able to reject an input in
polynomial time , but that may require exponential time to
“determine” a solution for the CSP or to conclude
unsatisfiability.

Strong Pseudo-Backdoor

A nonempty subset S of the variables is a Strong
Pseudo-Backdoors in C for Â if for all as : S → D, Â returns a
satisfying assignment or concludes unsatisfiability of C[aS].



Introduction Generalizing Backdoors Related works Conclusions

Pseudo-Backdoors

Pseuso-Backdoors

Formally...
We consider a sub-solver Â that is able to reject an input in
polynomial time , but that may require exponential time to
“determine” a solution for the CSP or to conclude
unsatisfiability.

Pseudo-Backdoor Condition

A Pseudo-Backdoor Condition with respect to a sub-solver Â is
a (global) constraint P on the subset S ⊆ V of the decision
variables in C that are currently instantiated, such that if the
partial assignment aS : S ⊆ V → D satisfies P, then aS is a
Pseudo-Backdoor in C for Â. Determining if aS satisfies P must
be performed in polynomial time.



Introduction Generalizing Backdoors Related works Conclusions

Pseudo-Backdoors

Pseuso-Backdoors

An example: Multiple Knapsack

BIN 1

BIN 2

We consider a multiple knapsack problem with two bins into
which objects can be fitted. A set of objects is given, for each
object a profit and a weight are also given. Each bin is assigned
a certain capacity . We want to fit as many objects as possible
in the bins in such a way to maximize profit and to not exceed
the capacity available for each bin.



Introduction Generalizing Backdoors Related works Conclusions

Pseudo-Backdoors

Pseuso-Backdoors

An example: Multiple Knapsack

BIN 1

BIN 2

A simple observation directly leads to an effective Pseudo-
Backdoor Condition . As soon as the objects fitted in one of
the two containers occupy enough capacity so that none of the
remaining objects can be fitted in it, the remaining problem is
then to fit the unassigned objects to a “virtual bin” having a ca-
pacity equal to the residual capacity of the other bin.



Introduction Generalizing Backdoors Related works Conclusions

Pseudo-Backdoors

Pseuso-Backdoors

An example: Multiple Knapsack

BIN 1

BIN 2

Once a given partial assignment aS satisfies the Pseudo-
Backdoor Condition described, the remaining problem is obvi-
ously a simple 0-1 Knapsack .



Introduction Generalizing Backdoors Related works Conclusions

Pseudo-Backdoors

Pseuso-Backdoors

An example: Multiple Knapsack

BIN 1

BIN 2

Tree Search

x1=1



Introduction Generalizing Backdoors Related works Conclusions

Pseudo-Backdoors

Pseuso-Backdoors

An example: Multiple Knapsack

BIN 1

BIN 2

Tree Search

x1=1

x2=1



Introduction Generalizing Backdoors Related works Conclusions

Pseudo-Backdoors

Pseuso-Backdoors

An example: Multiple Knapsack

BIN 1

BIN 2

Tree Search

x1=1

x2=1

x3=1



Introduction Generalizing Backdoors Related works Conclusions

Pseudo-Backdoors

Pseuso-Backdoors

An example: Multiple Knapsack

BIN 1

BIN 2

Tree Search

x1=1

x2=1

x3=1



Introduction Generalizing Backdoors Related works Conclusions

Pseudo-Backdoors

Pseuso-Backdoors

An example: Multiple Knapsack

BIN 2

Tree Search

x1=1

x2=1

x3=1

DP



Introduction Generalizing Backdoors Related works Conclusions

Pseudo-Backdoors

Pseuso-Backdoors

An example: Multiple Knapsack

Items KP-DFS KP-DFS-DP
10 0.02 0.03
15 0.45 0.04
20 14 0.100
25 210 0.270

Table: Multiple Knapsack Problem. Comparison between the run
times (in seconds) of a pure depth-first search strategy (KP-DFS) and
of the hybrid depth-first/dynamic programming search strategy based
on the Pseudo-Backdoor discussed (KP-DFS-DP).



Introduction Generalizing Backdoors Related works Conclusions

Heuristic-Backdoors

Heuristic-Backdoors

Another requirement we could relax for a given sub-solver A is
completeness . This means that the sub-solver may adopt a
heuristic strat-
egy .



Introduction Generalizing Backdoors Related works Conclusions

Heuristic-Backdoors

Heuristic-Backdoors

Another requirement we could relax for a given sub-solver A is
completeness . This means that the sub-solver may adopt a
heuristic strategy .

In CSPs the former observation leads to the following
approach:

A solution method in which the sub-solver is used for
heuristically produce a feasible assignment for some or
all the remaining decision variables.



Introduction Generalizing Backdoors Related works Conclusions

Heuristic-Backdoors

Heuristic-Backdoors

Another requirement we could relax for a given sub-solver A is
completeness . This means that the sub-solver may adopt a
heuristic strategy .

In COPs the former observation can lead to two different
approaches:

A complete solution method in which the heuristic
sub-solver is used to generate a near-optimal solution
that provides a good bound during the search. This
approach is typically used in branch and bound algorithms
(Lawler and Wood [7]).

A heuristic solution method in which the heuristic
sub-solver is used for assigning “promising” values to
some or all the remaining decision variables.



Introduction Generalizing Backdoors Related works Conclusions

Heuristic-Backdoors

Heuristic-Backdoors

More formally a heuristic sub-solver Ã given as input a CSP,
C, either



Introduction Generalizing Backdoors Related works Conclusions

Heuristic-Backdoors

Heuristic-Backdoors

More formally a heuristic sub-solver Ã given as input a CSP,
C, either

rejects the input C in polynomial time, or “may induce ” a
(partial) assignment on it



Introduction Generalizing Backdoors Related works Conclusions

Heuristic-Backdoors

Heuristic-Backdoors

More formally a heuristic sub-solver Ã given as input a CSP,
C, either

rejects the input C in polynomial time, or “may induce ” a
(partial) assignment on it

if Ã “may induce” a (partial) assignment on C, then for any
variable x and value v , then Ã “may induce” a (partial)
assignment on the simplified CSP where x is assigned to
v



Introduction Generalizing Backdoors Related works Conclusions

Heuristic-Backdoors

Heuristic-Backdoors

More formally a heuristic sub-solver Ã given as input a CSP,
C, either

rejects the input C in polynomial time, or “may induce ” a
(partial) assignment on it

if Ã “may induce” a (partial) assignment on C, then for any
variable x and value v , then Ã “may induce” a (partial)
assignment on the simplified CSP where x is assigned to
v

In order to clarify, “may induce” means that the sub-solver will
actually induce an assignment if the heuristic strategy
employed is able to produce such an assignment within the
given time/runs limit , otherwise the sub-solver will simply
reject the input .



Introduction Generalizing Backdoors Related works Conclusions

Heuristic-Backdoors

Heuristic-Backdoors

Heuristic-Backdoor
A nonempty subset S of the variables is a Heuristic-Backdoor
in C for Ã if for some as : S → D, Ã may return a feasible
assignment for C[aS].



Introduction Generalizing Backdoors Related works Conclusions

Heuristic-Backdoors

Heuristic-Backdoors

Strong Heuristic-Backdoor

A nonempty subset S of the variables is a Strong
Heuristic-Backdoor in C for Ã if for all as : S → D, A may return
a feasible assignment for C[aS].



Introduction Generalizing Backdoors Related works Conclusions

Heuristic-Backdoors

Heuristic-Backdoors

Heuristic-Backdoor Condition
Given a CSP, C, a Heuristic-Backdoor Condition with respect to
a heuristic sub-solver Ã is a (global) constraint P on the subset
S ⊆ V of the decision variables in C that are currently
instantiated, such that if the partial assignment aS : S ⊆ V → D
satisfies P, then aS is a Heuristic-Backdoor in C for Ã.
Determining if aS satisfies P must be performed in polynomial
time.



Introduction Generalizing Backdoors Related works Conclusions

Heuristic-Backdoors

Heuristic-Backdoors

Discussion
(Strong) Heuristic-Backdoors are particularly suitable for
developing structured ways of heuristically solving
complex problems .



Introduction Generalizing Backdoors Related works Conclusions

Heuristic-Backdoors

Heuristic-Backdoors

Discussion
(Strong) Heuristic-Backdoors are particularly suitable for
developing structured ways of heuristically solving
complex problems .

In what follows we will show that using this novel concept it
is possible to develop effective heuristic approaches to
complex combinatorial optimization problems by employing
very simple heuristic strategies, such as Hill Climbing
procedures.



Introduction Generalizing Backdoors Related works Conclusions

Heuristic-Backdoors

Heuristic-Backdoors

Discussion
(Strong) Heuristic-Backdoors are particularly suitable for
developing structured ways of heuristically solving
complex problems .

In what follows we will show that using this novel concept it
is possible to develop effective heuristic approaches to
complex combinatorial optimization problems by employing
very simple heuristic strategies, such as Hill Climbing
procedures.

The main reason for this is that, by using tree search, the
original problem is split into much smaller problems . On
these smaller problems simple heuristic rules such as
iterative improvement often produce high quality
assignments in almost no time.



Introduction Generalizing Backdoors Related works Conclusions

Heuristic-Backdoors

Heuristic-Backdoors

An example: Multiple Knapsack

BIN 1

BIN 2

Let Ã be a simple Greedy Algorithm for solving 0-1 Knapsack problems. In this algo-
rithm objects are ordered by decreasing profit over weight . Once ordered, objects
are scanned sequentially and put into the knapsack if the residual capacity allows the
insertion. This can be seen as a simple Hill Climbing strategy in which at each step
we perform an “improving” move (insertion of an object in the bin) until a local maximum
is achieved (no more objects can be fit in the bin).



Introduction Generalizing Backdoors Related works Conclusions

Heuristic-Backdoors

Heuristic-Backdoors

An example: Multiple Knapsack

BIN 1

BIN 2

In the former example the Pseudo-Backdoor Condition described incidentally is also a
Heuristic-Backdoor Codition with respect to this Greedy algorithm Ã. Thus as soon as
this condition is met by a given partial assignment aS the remaining subproblem can be
solved in a heuristic way by using Ã.



Introduction Generalizing Backdoors Related works Conclusions

Heuristic-Backdoors

Heuristic-Backdoors

An example: Multiple Knapsack

BIN 1

BIN 2

Tree Search

x1=1

x2=1

x3=1



Introduction Generalizing Backdoors Related works Conclusions

Heuristic-Backdoors

Heuristic-Backdoors

An example: Multiple Knapsack

BIN 1

BIN 2

Tree Search

x1=1

x2=1

x3=1



Introduction Generalizing Backdoors Related works Conclusions

Heuristic-Backdoors

Heuristic-Backdoors

An example: Multiple Knapsack

BIN 1

BIN 2

Tree Search

x1=1

x2=1

x3=1



Introduction Generalizing Backdoors Related works Conclusions

Heuristic-Backdoors

Heuristic-Backdoors

An example: Multiple Knapsack

BIN 1

BIN 2

Tree Search

x1=1

x2=1

x3=1

GREEDY



Introduction Generalizing Backdoors Related works Conclusions

Heuristic-Backdoors

Heuristic-Backdoors

An example: Multiple Knapsack
Items KP-DFS KP-DFS-DP KP-DFS-LS % of real optimum
10 0.02 0.03 <0.001 100
15 0.45 0.04 <0.001 97.9
20 14 0.100 0.01 100
25 210 0.270 0.02 99.2

Table: Multiple Knapsack Problem. Comparison between the run
times (in seconds) of a pure depth-first search strategy (KP-DFS), of
the hybrid depth-first/dynamic programming search strategy based on
the Pseudo-Backdoor discussed (KP-DFS-DP), and of the hybrid
depth-first/local search strategy based on the Heuristic-Backdoor
discussed (KP-DFS-LS). % of real optimum denotes the fraction (in
percentage) of the optimum profit achieved by the heuristic approach.



Introduction Generalizing Backdoors Related works Conclusions

A complex optimization problem

Inventory Control

An example

ii-1i-L

in
v
e

n
to

ry
 p

o
s
it
io

n

periods

Replenishment Cycles

L+1 periods

Figure: Replenishment Cycles corresponding to the following partial
assignment for replenishment decisions: δi−L−1 = 1, δi−L = 0,
δi−L+1 = 1, δi−L+2 = 0, δi−L+3 = 0, δi−1 = 1, δi = 0. Since at least L
periods before period i are covered by this set of consecutive cycles it
is possible to determine the service level at period i.



Introduction Generalizing Backdoors Related works Conclusions

Related works

Related Works

The concept of Backdoors has been originally introduced
in Williams et al. [9].



Introduction Generalizing Backdoors Related works Conclusions

Related works

Related Works

The concept of Backdoors has been originally introduced
in Williams et al. [9].

Since then, much of the work on Backdoors has been
focused on SAT problems , see for instance Lynce and
Silva[8].



Introduction Generalizing Backdoors Related works Conclusions

Related works

Related Works

The concept of Backdoors has been originally introduced
in Williams et al. [9].

Since then, much of the work on Backdoors has been
focused on SAT problems , see for instance Lynce and
Silva[8].

In Cambazard et al. [3] the authors propose an
explanation-based approach exploiting Backdoors for
dynamically identifying and exploiting structures in
CSPs.



Introduction Generalizing Backdoors Related works Conclusions

Related works

Related Works

The concept of Backdoors has been originally introduced
in Williams et al. [9].

Since then, much of the work on Backdoors has been
focused on SAT problems , see for instance Lynce and
Silva[8].

In Cambazard et al. [3] the authors propose an
explanation-based approach exploiting Backdoors for
dynamically identifying and exploiting structures in
CSPs.

Nevertheless, to the best of our knowledge, in the literature
Bakdoors have not been used so far for switching the
search strategy either to a complete or incomplete
different strategy not necessarily polynomial (such as
Dynamic Programming).



Introduction Generalizing Backdoors Related works Conclusions

Related works

Related Works

The integration of Operations Research and Constraint
Programming techniques for combinatorial optimization is
a very active research field (Focacci et al. [6])



Introduction Generalizing Backdoors Related works Conclusions

Related works

Related Works

The integration of Operations Research and Constraint
Programming techniques for combinatorial optimization is
a very active research field (Focacci et al. [6])

Nevertheless, operations research techniques are typically
employed for generating valid relaxations used for
performing domain filtering and, with the exception of
Bender’s Decomposition in Cambazard et al. [3], they are
not employed as alternative search strategies that can
take over the control of the search process when a given
condition is met.



Introduction Generalizing Backdoors Related works Conclusions

Related works

Related Works

The integration between Constraint Programming and
Local Search has been discussed in a variety of works (a
review by Focacci et al. [5]):



Introduction Generalizing Backdoors Related works Conclusions

Related works

Related Works

The integration between Constraint Programming and
Local Search has been discussed in a variety of works (a
review by Focacci et al. [5]):

Local search engine is used to “guide ” the search, while
Constraint Programming is used for exploring promising
neighborhood.



Introduction Generalizing Backdoors Related works Conclusions

Related works

Related Works

The integration between Constraint Programming and
Local Search has been discussed in a variety of works (a
review by Focacci et al. [5]):

Local search engine is used to “guide ” the search, while
Constraint Programming is used for exploring promising
neighborhood.

Alternatively, local search techniques can be introduced
within a constructive global search algorithm (Cesta et al.
[4]).



Introduction Generalizing Backdoors Related works Conclusions

Related works

Related Works

The integration between Constraint Programming and
Local Search has been discussed in a variety of works (a
review by Focacci et al. [5]):

Local search engine is used to “guide ” the search, while
Constraint Programming is used for exploring promising
neighborhood.

Alternatively, local search techniques can be introduced
within a constructive global search algorithm (Cesta et al.
[4]).

The technique we propose is of this second kind, but the
notion of Heuristic-Backdoor makes our approach novel and
more general compared to other specialized approaches
presented in the literature.



Introduction Generalizing Backdoors Related works Conclusions

Conclusions

Conclusions



Introduction Generalizing Backdoors Related works Conclusions

Conclusions

Conclusions

We generalized Backdoors in such a way to allow
sub-solvers that do not run in polynomial time.



Introduction Generalizing Backdoors Related works Conclusions

Conclusions

Conclusions

We generalized Backdoors in such a way to allow
sub-solvers that do not run in polynomial time.

This led to Pseudo-Backdoors and to
Heuristic-Backdoors , that let us switch the search logic
(or the propagation logic of a given global constraint) as
soon as a known structure in the remaining subproblem
that has to be solved is revealed by a given partial
assignment.



Introduction Generalizing Backdoors Related works Conclusions

Conclusions

Conclusions

We generalized Backdoors in such a way to allow
sub-solvers that do not run in polynomial time.

This led to Pseudo-Backdoors and to
Heuristic-Backdoors , that let us switch the search logic
(or the propagation logic of a given global constraint) as
soon as a known structure in the remaining subproblem
that has to be solved is revealed by a given partial
assignment.

We applied both Pseudo-Backdoors and
Heuristic-Backdoors to a simple Multiple Knapsack
Problem taken as running example.



Introduction Generalizing Backdoors Related works Conclusions

Conclusions

Conclusions

We generalized Backdoors in such a way to allow
sub-solvers that do not run in polynomial time.

This led to Pseudo-Backdoors and to
Heuristic-Backdoors , that let us switch the search logic
(or the propagation logic of a given global constraint) as
soon as a known structure in the remaining subproblem
that has to be solved is revealed by a given partial
assignment.

We applied both Pseudo-Backdoors and
Heuristic-Backdoors to a simple Multiple Knapsack
Problem taken as running example.

We have also discussed the effectiveness of
Heuristic-Backdoors on a complex combinatorial
optimization problem.



Introduction Generalizing Backdoors Related works Conclusions

Conclusions

The End

The End

Questions?

??

?
?

Acknowledgments: this work was supported by Science Foundation Ireland under
Grant No. 03/CE3/I405 as part of the Centre for Telecommunications Value-Chain
Research (CTVR) and Grant No. 05/IN/I886. S. Armagan Tarim and Brahim Hnich are
supported by the Scientific and Technological Research Council of Turkey (TUBITAK)
under Grant No. SOBAG-108K027



Introduction Generalizing Backdoors Related works Conclusions

Conclusions

C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, C.-G.
Quimper, and T. Walsh.
The parameterized complexity of global constraints.
In Proceedings of the Twenty-Third AAAI Conference on
Artificial Intelligence, 2008.

C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh.

Filtering algorithms for the nvalue constraint.
Constraints, 11(4):271–293, 2006.

H. Cambazard and N. Jussien.
Identifying and exploiting problem structures using
explanation-based constraint programming.
Constraints, 11(4):295–313, 2006.

A. Cesta, G. Cortellessa, A. Oddi, N. Policella, and A. Susi.
A constraint-based architecture for flexible support to
activity scheduling.



Introduction Generalizing Backdoors Related works Conclusions

Conclusions

Lecture Notes in Computer Science, 2175:369+, 2001.

F. Focacci, F. Laburthe, and A. Lodi.
Local Search and Constraint Programming.
In F. Glover and G. Kochenberger, editors, Handbook of
Metaheuristics, volume 57 of International Series in
Operations Research and Management Science. Kluwer
Academic Publishers, Norwell, MA, 2002.

F. Focacci and M. Milano.
Connections and integrations of dynamic programming and
constraint programming.
In Proceedings of the International Workshop on
Integration of AI and OR techniques in Constraint
Programming for Combinatorial Optimization Problems
CP-AI-OR 2001, 2001.

E. L. Lawler and D. E. Wood.
Branch-and-bound methods: A survey.



Introduction Generalizing Backdoors Related works Conclusions

Conclusions

Operations Research, 14(4):699–719, 1966.

I. Lynce and J. Marques-Silva.
Hidden structure in unsatisfiable random 3-sat: An
empirical study.
In ICTAI ’04: Proceedings of the 16th IEEE International
Conference on Tools with Artificial Intelligence, pages
246–251, Washington, DC, USA, 2004. IEEE Computer
Society.

R. Williams, C. P. Gomes, and B. Selman.
Backdoors to typical case complexity.
In Georg Gottlob and Toby Walsh, editors, IJCAI-03,
Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence, Acapulco, Mexico,
August 9-15, 2003, pages 1173–1178. Morgan Kaufmann,
2003.


	Introduction
	Formal Background

	Generalizing Backdoors
	Pseudo-Backdoors
	Heuristic-Backdoors
	A complex optimization problem

	Related works
	Related works

	Conclusions
	Conclusions


