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[1] The land surface heterogeneity has a very significant impact on atmospheric
variables (air temperature Ta, wind speed u, and humidity q), the aerodynamic roughness
length z0m, thermodynamic roughness length z0h, and the excess resistance to heat
transfer kB�1. First, in this study the land surface heterogeneity has been documented
through the comparison of surface reflectance r0, surface temperature T0, net radiation flux
Rn, and sensible heat flux H partitioning over the different land cover types in the
experimental areas of the Global Energy and Water Cycle Experiment (GEWEX) Asian
Monsoon Experiment on the Tibetan Plateau (GAME/Tibet), the Coordinated Enhanced
Observing Period (CEOP) Asia-Australia Monsoon Project on the Tibetan Plateau
(CAMP/Tibet), the Heihe Basin Field Experiment (HEIFE), the Arid Environment
Comprehensive Monitoring Plan, 95 (AECMP’95), and the Dun Huang Experiment
(DHEX). The results show that the surface heterogeneity was very significant in the areas
of the HEIFE, the AECMP’95, and the DHEX and that it was less significant in the
areas of CAMP/Tibet and GAME/Tibet. Second, the vertical profiles of Ta, u, and q in the
near-surface layer and above the blending height zb have been analyzed using the
atmospheric boundary layer (ABL) tower data, radiosonde data, and tethered balloon data
observed during the HEIFE, the DHEX, and the CAMP/Tibet. The results show that
the land surface heterogeneity leads in the near-surface layer to different vertical profiles
of u, Ta, and q overlying the surfaces of the Gobi and the oasis in the areas of the
HEIFE and DHEX. The values of u, Ta, and q become well mixed above a height of about
300 m at the HEIFE and 150 m at the DHEX. z0m, z0h, and kB�1 over the different
land surfaces have also been determined in this study. The results show that the land
surface heterogeneity leads to different aerodynamic and thermodynamic parameters over
the areas of the HEIFE, the AECMP’95, and the GAME/Tibet.
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1. Introduction

[2] The land surface in the experimental areas of the
Global Energy and Water Cycle Experiment (GEWEX)
Asian Monsoon Experiment on the Tibetan Plateau
(GAME/Tibet), the Coordinated Enhanced Observing Period

(CEOP) Asia-Australia Monsoon Project on the Tibetan
Plateau (CAMP/Tibet), the Heihe Basin Field Experiment
(HEIFE), the Arid Environment Comprehensive Monitoring
Plan, 95 (AECMP’95), and the Dun Huang Experiment
(DHEX) is heterogeneous [Ma et al., 2002, 2003a, 2003b,
2004]. This results in the heterogeneity of the energy parti-
tioning at the surface, and further more, may result in the
different structure of the convective atmospheric boundary
layer (CABL) near the land surface. In this paper the land
surface heterogeneity will be documented through the eval-
uation of spatial patterns of surface reflectance r0, surface
temperature T0, net radiation flux Rn, and sensible heat fluxH
partitioning over the different land cover types in the exper-
imental areas.
[3] The airflow and state over a heterogeneous land

surface is influenced by surface heterogeneity, and it leads
to spatial variability in the ABL state near the land surface.
In the surface layer (SL) this results in different vertical
profiles of air temperature Ta (or potential temperature q),
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wind speed u, and humidity q in response to changes in land
surface properties. But the development of CABL tends to
smooth out the at-surface variability at the ‘‘blending
height,’’ where atmospheric characteristics such as q, u,
and q become spatially uniform [Wieringa, 1986; Mason,
1988; Claussen, 1990, 1991]. The different vertical profiles
of Ta, u, and q in the near-surface layer and above the
blending height zb will also be analyzed using the atmo-
spheric boundary layer (ABL) tower data, radiosonde data,
and tethered balloon data in this paper.
[4] The land surface heterogeneity leads to differences in

the aerodynamic roughness length z0m, the thermodynamic
roughness length z0h, and the excess resistance to heat
transfer kB�1 over the different land surfaces. These near-
surface boundary layer parameters over the different land
surfaces will also be determined in this paper.

2. Land Surface Heterogeneity and Its Influences
on the Overlying Surface Layer and Atmospheric
Boundary Layer

[5] The land surface condition and the sites layout during
the HEIFE, the CAMP/Tibet, and the DHEX are shown in
Figure 1. The land surface heterogeneity and its influences
on the overlying atmospheric layer over the different land
surfaces of the HEIFE, the CAMP/Tibet, and the DHEX
will be documented in this section by using the surface and
ABL observational data in these experiments.

2.1. Diurnal Variation of Surface Reflectance, Surface
Temperature, and Surface Heat Fluxes Over
Heterogeneous Land Surfaces

[6] Figure 2 gives the diurnal variation of r0, T0, Rn and
H over the oasis and the Gobi desert in the HEIFE area on
9 July 1991. The diurnal variations of r0, T0, Rn, and H over
the CAMP/Tibet area in the months January, June, and
August are shown in Figure 3. All the curves were obtained
under clear-sky conditions. In Figures 2 and 3, T0 was
measured by an infrared radiometer, and r0 was calculated
from

r0 ¼
K"

K#
�ð Þ; ð1Þ

where K# (W m�2) and K" (W m�2) are the measured
downward and upward short-wave radiation fluxes, respec-
tively. Rn (W m�2) in Figures 1 and 2 was calculated from

Rn ¼ K# � K" þ L# � L" W m�2
� �

; ð2Þ

where L# (W m�2) and L" (W m�2) are the measured
downward and upward long-wave radiation fluxes, respec-
tively. H (W m�2) in Figures 2 and 3 was calculated from
the ABL tower data, which is

H ¼ rcpCHN uz2 � uz1ð Þ Tz2 � Tz1ð Þ W m�2
� �

; ð3Þ

where r is air density, cp is air specific heat at constant
pressure, uz1 and uz2 are the wind speed at heights z1 and z2,
respectively, and Tz1 and Tz2 are air temperature at the

height z1 and z2, respectively. CHN denotes the bulk transfer
coefficient in the neutral state:

CHN ¼ k2

ln z=z0mð Þ½ 	2
�ð Þ; ð4Þ

where k is Von Karman constant and z is the reference
height.
[7] The following can be concluded:
[8] 1. The surface heterogeneity resulted in different

values of r0, T0, Rn and H over the HEIFE area. The values
of r0, T0 and H over the oasis (Linze station in Figure 1a)
surface are much lower than those over the Gobi desert
surfaces. Rn over the oasis is much higher than that over the
Gobi and desert owing to its lower r0 and lower T0. The
values of r0, T0, Rn and H in the Gobi zone and the desert
zone are different, but the differences are not large.
[9] 2. Surface heterogeneity was observed at the stations

in the CAMP/Tibet area: the MS3478 station has a rela-
tively high vegetation fractional cover, while BJ and D105
have sparse vegetation covers. The land surface properties
at the stations D105, MS3478, and BJ in the CAMP/Tibet
are different; that is, r0 is lower and Rn is higher over the
MS3478 station. But the differences are not as large as those
between oasis and desert; that is, surface heterogeneity is
not very large in the CAMP/Tibet area as compared to that
in the HEIFE area.
[10] 3. The intermonthly variations of r0, T0, Rn and H

over the CAMP/Tibet area are very clear: T0, Rn in summer
(June and August) are higher than in winter (January), and
r0 and H in summer (June and August) are lower than in
winter (January). The reason is that in summer the land
surface is wet and the grass grows, and in winter the surface
is covered by snow and ice and the grass is dry.

2.2. Influences of Surface Heterogeneity on the
Overlying Convective Atmospheric Boundary Layer

[11] In order to show the influences of land surface
heterogeneity on the overlying CABL, the vertical profiles
of Ta, u, and q will be shown in this section.
[12] Figure 4 shows the vertical profiles of u, Ta, and q

over the very different surfaces of the Gobi and the oasis
(Linze station in Figure 1a) of the HEIFE area. Data used in
Figure 4a were measured at an ABL tower, and the ones
shown in Figure 4b were measured by means of a Tethered
balloon. Figure 5 gives the vertical profiles of u, Ta, and
q over the Gobi desert and the oasis (PAM station in
Figure 1c) of the DHEX as measured by means of radio
soundings (oasis) and Tethered balloon (Gobi), respectively.
The vertical profiles of u, Ta, and q observed from the
radiosonde system at the BJ station of the CAMP/Tibet are
shown in Figure 6. The results show the following:
[13] 1. Owing to the different surface properties, the

vertical profiles of u, Ta, and q overlying the surfaces of
the Gobi and the oasis (Linze station in Figure 1a) in the
HEIFE area are very different in the near-surface layer.
The values of u and Ta below a height of about 300 m over
the Gobi surface are higher than those over the oasis; q over
the Gobi surface is lower than that over the oasis. The
values of u, Ta, and q become almost the same at (and
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above) a height of about 300 m overlying the two very
different land surfaces of the Gobi and the oasis. It means
that u, Ta, and q have become well mixed at (and above) the
height of about 300 m. In other words, the surface hetero-
geneity has no influence above 300, and this height can be
regarded as a blending height zb.
[14] 2. The vertical profiles of u, Ta, and q overlying the

surfaces of the Gobi d nd the oasis (PAM station in

Figure 1c) in the DHEX area are different in the near-
surface layer owing to the different surface properties. The
values of u and Ta below a height of about 150 m over the
Gobi desert surface are higher than those over the oasis; q
over the Gobi desert surface is lower than that over the
oasis. The values of u, Ta, and q become almost the same at
(and above) a height of about 150 m overlying the two very
different land surfaces of the Gobi and the oasis. It means

Figure 1. (a–c) The land surface condition and sites layout during the Heihe Basin Field Experiment
(HEIFE), the Dun Huang Experiment (DHEX), and the Coordinated Enhanced Observing Period Asia-
Australia Monsoon Project on the Tibetan Plateau (CAMP/Tibet). In Figure 1a, the red part is oasis or
irrigated farm and the rest is the Gobi desert. In Figure 1c, the green and blue parts are oasis or irrigated farm
and the rest is the Gobi desert. AWS is automatic weather station, and PAM is portable automated mesonet.
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that the ABL variables have become well mixed above the
height of about 150 m. It can also be seen very clearly that
the blending height (150 m) over the DHEX area is lower
than that over the HEIFE area. The reason is that the oasis
spatial scale in the DHEX area is smaller than that in the
HEIFE area [Ma et al., 2002, 2003b] (Figure 1). Therefore
the vertical structure of the airflow in the DHEX adjusted
quickly to changes in the surface properties. The relation
between vertical and horizontal scales was analyzed by
Raupach and Finnigan [1995].
[15] 3. Although only one radiosonde system was set up

in the CAMP/Tibet area, the variability of the profiles of u,
Ta, and q overlying the grassland surface of the BJ station
can also be seen clearly when we compare observations on
2 d under the different atmospheric conditions, that is, 17
and 25 August 2004. The day 17 August 2004 was a day of
dry, stronger wind and lower humidity, and 25 August 2004
was a day of little wet, weaker wind and higher humidity.
Wind speed u increases with height at 1200 (Beijing
Standard Time, BST, 8 h earlier than universal time) on
2 d, and it becomes almost constant between 250 m and
550 m (u is about 4.5 m s�1 at 1200 on 17 August 2004 and
u is about 1.8 m s�1 at 1200 on 25 August 2004). Ta
decreases with height th days. The q at 1200 on

17 August 2004 decreases with height in the near-surface
atmospheric layer, and it becomes almost constant (about
2.9 g Kg�1) between 250 m and 550 m. On the other hand,
q at 1200 in 25 August 2004 increases with height in the
near-surface layer (it was called ‘‘inverse humidity’’), and it
becomes almost constant (about 7.2 g Kg�1) between 250 m
and 480 m. Therefore, the height of about 250 m can be
regarded as a blending height zb over the BJ station of the
CAMP/Tibet area. The area of the experiment consists of
typical pattern of very similar landscape units [Ma et al.,
2003a] (Figure 1). Each unit consists of a flat extensive area
where the instrumented tower is located, surrounded by
lower hills. The blending height derived at the BJ station
can, therefore, be considered representative of the entire
experimental area of CAMP/Tibet.

3. Aerodynamic and Thermodynamic Variables
Over the Different Land Surfaces

[16] Land surface heterogeneity leads to different thermo-
aerodynamic atmospheric parameters (z0m, z0h and kB�1)
of the surface layer. Methods for estimating these param-
eters and the results obtained will be described in this
section.

Figure 2. Comparisons of diurnal variations of surface reflectance r0, surface temperature T0, net
radiation flux Rn, and sensible heat flux H on 9 July 1991 above desert, oasis, and Gobi surfaces obtained
in the Heihe Basin Field Experiment (HEIFE) stations.
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Figure 3. Comparisons of diurnal variations of surface reflectance r0, surface temperature T0, net
radiation flux Rn, and sensible heat flux H over the CAMP/Tibet stations D105, MS3478, and BJ.
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Figure 4. The profiles of horizontal wind speed u, air temperature Ta, and specific humidity q over the
Gobi and the oasis of the Heihe Basin Field Experiment (HEIFE). (a) Data are from the atmospheric
boundary layer (ABL) tower observations at 1200 Beijing Standard Time on 8 August 1991. (b) Data are
from the tethered balloon observations at 1200 Beijing Standard Time on 15 August 1991.
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3.1. Aerodynamic Roughness Length z0m
[17] The aerodynamic roughness length for momentum,

z0m, can be derived using two methods, that is, the so-called
independent method [Chen et al., 1993] and the profile
method.
3.1.1. Independent Method Using a Single Sonic
Anemometer-Thermometer
[18] According to the Monin-Obukhov similarity theory

[Monin and Obukhov, 1954], the gradient of nondimen-
sional wind speed is written as

kz

u*

@u

@z
¼ 8m

z

L

� �
�ð Þ: ð5Þ

Equation (5) is integrated to obtain the averaged wind speed
U at height z as

U ¼
u*
k

ln
z

z0m

� �
� ym

z

L

� �� �
ms�1
� �

; ð6Þ

where 8m (z
L
) is the similarity universal function and ym (z

L
)

is the stability function of the wind profile, which becomes
0 under neutral conditions. The aerodynamic roughness
length z0m was derived from [Chen et al., 1993]

z0m ¼ ze
�kU

u*
�ym

z
Lð Þ mð Þ: ð7Þ

Through the same procedure the thermodynamic (heat
transport) roughness length z0h can be derived as

z0h ¼ ze
�k Ta�T0ð Þ

T0
�yh

z
Lð Þ mð Þ; ð8Þ

where yh (z
L
) is the stability function of the temperature

profile and yh (
z
L
) = 0 under neutral conditions.

3.1.2. Profile Method
[19] When the atmosphere is under near-neutral condi-

tions, equation (6) can be simplified to

U ¼
u*
k

ln
z

z0m

� �
ms�1
� �

: ð9Þ

According to equation (9), if the averaged wind speed is
observed at two different levels (z1, z2), the following
expressions can be derived:

U1 ¼
u*
k

ln
z1

z0m

� �
ms�1
� �

; ð10Þ

U2 ¼
u*
k

ln
z2

z0m

� �
ms�1
� �

: ð11Þ

Finally, z0m can be derived as

z0m ¼ e
U2 ln z1�U1 ln z2

U2�U1

� �
mð Þ: ð12Þ

Figure 5. The profiles of horizontal wind speed u, air
temperature Ta, and specific humidity q on 3 June 2002 over
the Gobi desert and the oasis (PAM in Figure 1c) of the Dun
Huang Experiment (DHEX).
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3.1.3. Results of z0m
[20] Observations of the nondimensional wind speed

kU/u* versus the stability parameter z = z/L over the Amdo
and NPAM stations of the GAME/Tibet are shown in
Figures 7 and 9. Figure 8 shows the aerodynamic roughness
length z0m derived from the wind profile at the Amdo
station. Using equations (7) and (12), the aerodynamic
roughness length z0m at the NPAM and Amdo stations in
the GAME/Tibet area can be determined. The stability
parameter z = z/L bet �0.100 and 0.100 applies to

neutral conditions. The values of z0m in the HEIFE and
AECMP’95 areas were derived by the same method. All the
results are shown in Table 1.
[21] The following can be seen from Figures 7–9 and

Table 1: (1) z0m is significantly different for grassland, sand
desert, the Gobi, and the oasis (bean, wheat, and corn crop).
(2) z0m at the Amdo and NPAM stations of the GAME/Tibet
is higher than the value obtained for Gobi and sand desert
(HEIFE) but is lower than those obtained for the oasis
(HEIFE: bean, wheat, and corn crop); z0m at the NPAM
station is larger than that at the Amdo station. (3) The values
of z0m obtained at the Amdo station with different methods
(the results from the independent method in Figure 7 and the
results from the profile method in Figure 8) are comparable.
(4) z0m at the NPAM station has a different value in different
months (May, July, and August) owing to the high vegetation
fractional cover in the station. The observation shows that the
height of the grass at the NPAM station is about 5 cm in May,
about 15 cm in July, and about 20 cm inAugust. It is clear that
canopy height determines the aerodynamic roughness length
z0m at this station.

3.2. Thermodynamic Roughness Length z0h
[22] Figure 10 shows the nondimensional air temperature

k(Ta � T0)/T* versus the stability parameter z = z/L at the

Figure 7. Nondimensional wind speed kU/u* versus the
stability parameter z = z/L as derived by the independent
method over the Amdo station at the Tibetan Plateau
(GAME/Tibet).

Figure 8. The surface momentum roughness length z0m
derived from the wind profile at the Amdo station in the
Tibetan Plateau (GAME/Tibet).

Figure 6. The profiles of horizontal wind speed u, air
temperature Ta, and specific humidity q on 17 and 25
August 2004 at the BJ station in the Tibetan Plateau
(CAMP/Tibet).
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Amdo station in the Tibet Plateau. These observations yield
z0h-Amdo = 0.000409 m with z = z/L between �0.100 and
0.100 applying to neutral conditions. The thermodynamic
roughness length z0h of grassland, sand desert, the Gobi, and
the oasis are given in Table 2. They were obtained by the

same method as mentioned in the previous section. It
indicates that z0h has very different values for different land
cover types and z0h is 1 order of magnitude smaller than z0m
in the GAME/Tibet area. The reason is that the thermody-
namic roughness length z0h is not only a function of
temperature gradient, but is also affected by the canopy
height and fractional vegetation cover.

3.3. Excess Resistance to Heat Transfer kB�1

[23] The excess resistance to heat transfer kB�1 is used to
parameterize the sensible heat exchange between the land
surface and atmosphere. It appears as a variable in many
numerical models and satellite remote-sensing parameteri-
zation methods [Su et al., 2001; Su, 2002; Jia, 2004] and
can be derived from the following equation [Owen and
Thomson, 1963; Chamberlain, 1968]:

kB�1 ¼ ln
z0m

z0h

� �
�ð Þ: ð13Þ

[24] An alternative expression for kB�1 can be obtained
from the bulk transfer equation as [Monteith, 1973]

kB�1 ¼ ku
 T0 � Tað Þ
Hobs=rcp

� ln
z� d0

z0m
� yh

�
z

L

�� �
�ð Þ; ð14Þ

where u*, Hobs, and L can be derived from the data observed
by using a ABL tower and sonic anemometer-thermometer.
On the basis of turbulent measurements and k = 0.40, z0m
was derived from equations (7) and (12); zero-plane
displacement d0 was obtained from d0 = (2/3) hv [Brutsaert,
1984] for every station, with hv being the canopy height.
The kB�1 values derived from equation (13) for different
land cover types are shown in Table 3.
[25] The following conclusions can be drawn:
[26] 1. kB�1 values are different on the different land

surfaces. The reason was explained by Su et al. [2001], who
made a detailed study on this issue.
[27] 2. The average values of kB�1

NPAM = 2.50 and
kB�1

Amdo = 2.36 derived from equation (13) are very close
to the results of kB�1

NPAM = 2.56 and kB�1
Amdo = 2.40

derived from equation (14). The latter two values were
averaged over 10 observations from 900 A.M. Beijing
Standard Time (BST) to 600 P.M. BST.
[28] 3. The averaged kB�1 of the GAME/Tibet area agree

with the well-known result kB�1 = 2.3 [Choudhury, 1989],
but it is larger than 2.3 in the areas of the HEIFE and the
AECMP’95. Some values in Table 3 are almost the same as

Table 1. Aerodynamic Roughness Length z0m Derived From Different Land Surfaces by Using the Independent Method

Amdo NPAM HEIFE HEIFE HEIFE HEIFE AECMP’95

Land surface grassland,
�5 cm

grassland,
�15 cm

sand desert very sparse
vegetation (Gobi)

bean, �0.4 m wheat, �1.0 m corn, �1.8 m

Observation
height, m

2.90 5.60 2.90 2.90 2.90 2.90 4.90

z0m, m 0.00436 ± 0.00040 0.00564 (May),
0.0139 (July),
0.0324 (August)

0.00267 ± 0.0003 0.00280 ± 0.00030 0.06100 ± 0.00400 0.16800 ± 0.03000 0.30200 ± 0.0200

Figure 9. Nondimensional wind speed kU/u* versus the
stability parameter z = z/L at the NPAM (MS3478) station
in the Tibetan Plateau (GAME/Tibet) in the months May,
July, and August.
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the model results derived by Su et al. [2001], owing to the
same land surface conditions.

4. Summary and Conclusions

[29] Understanding the surface layer (SL) and atmospheric
boundary layer (ABL) processes over heterogeneous land
surfaces is very important in the procedure of scaling up
heat fluxes from the observational station, that is, ‘‘point’’
level to the regional scale. The land surface heterogeneity
and its influences on the overlying atmospheric layer and
the aerodynamic and thermodynamic parameters have been
analyzed by using SL and ABL observations during the
GAME/Tibet, the CAMP/Tibet, the HEIFE, the DHEX, and
the AECMP’95. The results described in this paper can be
summarized as follows:
[30] 1. Very different values of surface reflectance r0,

surface temperature T0, net radiation flux Rn, and sensible
heat flux H between the Gobi desert and the oasis show that
land surface heterogeneity is very significant in the HEIFE
area. Surface heterogeneity at the CAMP/Tibet area is less
significant than that in the HEIFE area.
[31] 2. The land surface heterogeneity leads in the near-

surface layer to different vertical profiles of horizontal wind
speed u, air temperature Ta, and specific humidity q over-
lying the surfaces of the Gobi and the oasis in the areas of
the HEIFE and DHEX. The values of u, Ta, and q become
well mixed above a height of about 300 m at the HEIFE and
150 m at the DHEX. It means that a clearly defined
blending height zb can be observed over both experimental
areas. The difference of zb results from the different oasis
horizontal scale of heterogeneity and the different wind
speed [Mason, 1988]. In other words, the larger oasis scale

will lead to a higher zb value. Although only one radiosonde
system data were available, on a normal summer day about
250 m can be regarded as a blending height over the whole
CAMP/Tibet area. It is also very clear that zb determined by
the ABL observations over the experimental areas is a direct
and correct way.
[32] 3. The aerodynamic roughness length z0m and the

thermodynamic roughness length z0h are significantly dif-
ferent over the different land surfaces of grassland, the
Gobi, sand desert, and the oasis. For the GAME/Tibet area,
z0h is one magnitude smaller than z0m. It means that both the
aerodynamic and thermodynamic characteristics of the land
surface have effects on z0m and z0h.
[33] 4. The excess resistance to heat transfer, kB�1, has

obvious characteristics over different land cover types. It
has different values for grassland, the Gobi, sand desert, and
the oasis. It is very clear that a kB�1-value of 2.3 cannot be
used as a general value for the areas of the HEIFE and the
AECMP’95.
[34] Additional general conclusions that can be drawn are

the following:
[35] 1. Very different land cover types and hydrological

conditions (e.g., the oasis and the Gobi desert over the
HEIFE area and the DHEX area) lead to different vertical
structures in the surface layer (SL) and atmospheric bound-
ary layer (ABL). These layers, however, adjust to land
surface properties over spatial scales varying from 1 to
10 km. It means that different ABL vertical profiles and
different resistances exist near the land surface over quite
different land surfaces.
[36] 2. Limited land surface heterogeneities such as the

grassland and topography over the areas of the GAME/Tibet
and the CAMP/Tibet, results, however, in the same SL and

Table 2. Thermodynamic Roughness Length z0h Derived From Different Land Surfaces

Amdo NPAM HEIFE HEIFE HEIFE HEIFE AECMP’95

Land surface grassland, �5 cm grassland, �15 cm sand desert very sparse
vegetation (Gobi)

bean, �0.4 m wheat, �1.0 m corn, �1.8 m

Height of
observation, m

2.90 5.60 2.90 2.90 2.90 2.90 4.90

z0h, m 0.00041 ± 0.00005 0.00051 (May),
0.00114 (July),
0.00231 (August)

0.000049 0.000011 0.000685 0.00132 0.00227

Figure 10. Nondimensional air temperature k(Ta � T0)/T* versus the stability parameter z = z/L at the
Amdo station in the Tibetan Plateau (GAME/Tibet).
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ABL over the whole area. In other words, in these areas the
land surface is statistically homogeneous and the ABL
adjusts to a mixture combination of small-scale heteroge-
neities. Therefore, effective variables and one resistance
may for such conditions be used to determine the sensible
and latent heat fluxes.
[37] The above mentioned concepts, as well as the aero-

dynamic and thermodynamic parameters determined in this
paper, may further be used to parameterize the near-surface
heat fluxes used in addition to satellite measurements.
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Table 3. Excess Resistance to Heat Transfer kB�1 of Different Land Cover Types

Amdo NPAM HEIFE HEIFE HEIFE HEIFE AECMP’95

Land surface grassland �5 cm grassland �15 cm sand desert very sparse
vegetation (Gobi)

bean �0.4 m wheat �1.0 m corn �1.8 m

Observed height, m 2.90 5.60 2.90 2.90 2.90 2.90 4.90

kB�1 2.36 2.50 4.00 5.50 4.49 4.85 4.89
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