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ABSTRACT: The development of meso-γ scale numerical weather prediction (NWP) models requires a substantial
investment in research, development and computational resources. Traditional objective verification of deterministic model
output fails to demonstrate the added value of high-resolution forecasts made by such models. It is generally accepted from
subjective verification that these models nevertheless have a predictive potential for small-scale weather phenomena and
extreme weather events. This has prompted an extensive body of research into new verification techniques and scores aimed
at developing mesoscale performance measures that objectively demonstrate the return on investment in meso-γ NWP.

In this article it is argued that the evaluation of the information in mesoscale forecasts should be essentially connected
to the method that is used to extract this information from the direct model output (DMO). This could be an evaluation by
a forecaster, but, given the probabilistic nature of small-scale weather, is more likely a form of statistical post-processing.
Using model output statistics (MOS) and traditional verification scores, the potential of this approach is demonstrated both
on an educational abstraction and a real world example. The MOS approach for this article incorporates concepts from
fuzzy verification. This MOS approach objectively weighs different forecast quality measures and as such it is an essential
extension of fuzzy methods. Copyright  2008 Royal Meteorological Society
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1. Introduction

The failure of traditional objective verification methods
when applied to high-resolution direct model output
(DMO) generally is demonstrated using the double
penalty that results from a displacement or phase error.
Simply put, a high-resolution forecast that contrary to a
low-resolution forecast produces a small-scale weather
feature, but slightly displaced in space or time, will be
penalized for not having the feature where it is observed
and for having that feature where it is not observed. This
double penalty fails to recognize the added value of the
information in high-resolution forecasts that is often quite
clear from a subjective evaluation.

Another major hurdle for mesoscale verification is
what may be loosely termed the data problem. Veri-
fying observations for small-scale weather phenomena
are not always available, are unevenly distributed, pro-
vide incomplete coverage and sample at a different
scale. The information contained in the observations may
not give the same information as the model without
some preconditioning (cf Cherubini et al., 2002). While
mesoscale numerical weather prediction (NWP) models
are by their formulation still deterministic, the small-
scale weather phenomena they are predicting are not.
Their predictability horizon generally does not exceed
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their short lifetime. This implies that DMO at the small-
est scales should always be interpreted probabilistically.
If, then, the information at these scales is essentially prob-
abilistic, a deterministic interpretation and verification is
inappropriate.

The analysis of this failure of traditional verification
methods immediately points at ways of overcoming their
inability to capture the essential characteristics of high-
resolution forecasts. In recent years this has prompted
an extensive body of research into alternative mesoscale
verification methods. Much of this work has concentrated
on some form of feature identification and associated per-
formance measures that rate displacement, phase, volume
and amplitude error (Davis et al., 2006a). Hoffman et al.
(1995) coined the term distortion error for a combination
of displacement and amplitude error. They suggested an
application of this description of forecast error as a con-
tinuous field transformation to be used in a variational
data assimilation framework. Du et al. (2000) applied this
to ensemble forecasting. In application to precipitation
verification, the contiguous rain area approach defined
by Ebert and McBride (2000) has found wide applica-
tion, (cf Davis et al., 2006a). This method can be applied
not only to the rainfall distribution per se, but also to
general statistical aspects of the rainfall pattern (Baldwin
and Lakshmivarahan, 2003; Davis et al., 2006b). Other
authors have concentrated on the scale issues associated
with verification in general and mesoscale verification
of precipitation in particular (Zepeda-Arce et al., 2000;
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Tustison et al., 2001; Casati et al., 2004; Mittermaier,
2006). Roberts and Lean (2008) propose an evaluation of
the scale dependence of forecast quality using the frac-
tion skill score. The evaluation of NWP forecast using
spectra (Skamarock, 2004) in a similar way deals with
the concept of scale, though more as a model valida-
tion tool. Wavelet decomposition for forecast verification
as proposed by Briggs and Levine (1997) can perhaps
be seen as a cross between scale decomposition and
feature extraction. Nachamkin (2004) proposes meteoro-
logical composites as a solution to the disparity between
forecast and observational data, and applies this method
to a distribution-oriented verification of heavy precip-
itation forecasts (Nachamkin et al., 2005). Theis et al.
(2005) promote a pragmatic approach to deriving pre-
cipitation probabilities from spatial rainfall distributions.
Mittermaier (2007), in a similar vein, proposes to use
time-lag ensemble techniques to assess the behaviour of
high-resolution precipitation forecasts.

Ebert provides a comprehensive overview of verifica-
tion methods and literature on the WWRP/WGNE verifi-
cation website (http://www.bom.gov.au/bmrc/wefor/staff
/eee/verif/verif web page.html). Recently, Ebert has
reviewed mesoscale verification efforts (Ebert, 2008). In
this article, Ebert (2008) proposes fuzzy verification as a
general framework for evaluating mesoscale forecasts. As
Ebert’s review indicates there is a desire to consolidate
the work on mesoscale verification. A great variety of
methods hampers comparisons of verification and model
results and introduces subjectivity in the choice of verifi-
cation scores. These scores value different quality aspects
of forecasts but provide no intrinsic weighting of these
aspects. Of course, this variety is a consequence of the
fact that mesoscale forecasts, more than synoptic fore-
casts, are situation dependent and application oriented.
Often the conditions and applications are implicit in the
design of the verification method. These methods, then,
are not general, but have their value provided a skilled
verification practitioner uses them prudently.

It is unsatisfactory that such mesoscale methods do
not provide a clear indication of the intrinsic value of the
considerable investment in the development of mesoscale
models. It may be argued, following Murphy (1993),
that value and information are not intrinsic properties
of a forecast, but depend on the application and on
the availability of other information. Mesoscale forecasts
should thus always be verified in comparison to other
forecasts available to the forecaster or customer. Callies
(2000) has presented a method for comparative forecast
verification. The application dependence of forecast value
seems to prohibit any general method of verification.
However, given that there is a system that extracts
information from the DMO, it is an obvious choice to
use the same system in comparative forecast verification.

In recent years, the use of ensemble prediction to derive
probabilistic information based on mesoscale models has
attracted much attention. Molteni et al. (2001) and Mar-
sigli et al. (2001) used a mesoscale model to downscale
medium range coarse resolution forecasts. They showed

that in the medium range, where synoptic predictability
is predominantly determined by the uncertainty in initial
conditions, downscaling precipitation over orography can
be successful because of the improved resolution in the
small-scale forcing. Orrell et al. (2001) have shown that
in the short range, model error is a major component of
forecast uncertainty. The approach to the ensemble pre-
diction of model uncertainty is still very much an issue in
the successful application of ensemble prediction to short-
range forecasting. Ensemble prediction is not a method
that is further explored in this article. Instead we focus
on the more traditional method of model output statistics
(MOS; Glahn and Lowry, 1972)

MOS is a widely accepted and generally applicable tool
for the extraction of probabilistic information from DMO.
Expressing the uncertainty in model forecasts, provided it
can be done skilfully, can be of great value to professional
users. They can use probabilistic information in their own
decision making in accordance with their own cost-loss
ratio (Murphy, 1977; Katz and Murphy, 1997). While
MOS is a general method, it can be tailored to a particular
application through a skilled choice of the predictands.

In this article, it is proposed that using MOS in the
context of comparative forecast verification provides a
general method for valuing information from mesoscale
forecasts. This line of reasoning is demonstrated in the
next section using an abstract educational example: the
cosine model. To illustrate this theory in practice a real
world example is presented in Section 3. In this section,
the precipitation at a station is modelled with MOS using
model precipitation in the neighbourhood in a manner
similar to fuzzy verification methods. This demonstrates
that this method is an, probably essential, addition to
such methods. In particular, it is shown that it provides
an intrinsic weighting of different quality aspects of a
numerical weather forecast and an intrinsic way of deal-
ing with scale issues. Precipitation is chosen as predictand
in the example for reasons of comparison, giving that
most mesoscale verification research deals with precipi-
tation. In the verification, the familiar Brier score (BS) is
used as an example of probabilistic verification (Wilks,
2006). The BS and its decomposition are widely used and
are well-understood measures of forecast quality (Brier,
1950; Murphy, 1973). In Section 4 the findings are sum-
marized and the merits, pitfalls and shortcomings of the
proposed method are discussed. Section 5 concludes the
article with the main findings.

2. The cosine model: an educational example

In this article, the attention is focussed on differences
between high-resolution and low-resolution models. To
illustrate the deterioration of deterministic verification
scores if the additional high-resolution information is
not perfect, this section describes a theoretical example.
It follows ideas outlined in Kok (2002). This example
explores the impact of known error statistics of amplitude
and phase (intensity and position) of small-scale features

Copyright  2008 Royal Meteorological Society Meteorol. Appl. 15: 103–111 (2008)
DOI: 10.1002/met



VALUING INFORMATION FROM MESOSCALE FORECASTS 105

and how this knowledge can be incorporated into a
probabilistic forecasting system.

To simplify things consider a predictand in only one
dimension. Look for instance at two model versions, their
only difference being the resolution. In this section they
are referred to as high-resolution model (HRM) and low-
resolution model (LRM). The HRM can deal with one
additional small-scale cosine-like wave that cannot be
resolved by the LRM. So the only difference is that
of a single small-scale wave. The observations (OBS)
have exactly the same scales as HRM, so no smaller
scales are present in the OBS. To focus on the effects
of the differences in resolution, further assume that the
larger scales are always perfectly predicted. So the LRM
gives perfect forecasts for the scales it can resolve. The
verification results of the HRM depend on the correctness
of the forecasts of the smallest scale wave. The HRM,
LRM and OBS are defined as follows:

HRM = A1 cos x + A2 cos(2x + α2)

LRM = A1 cos x

OBS = A1 cos x + C2 cos(2x) (1)

Now look at the consequences of various prescribed
(known) uncertainties in phase and amplitude of the
smaller scale wave. Suppose that the predictions of phase
and amplitude are correct to within a certain range.
More specifically, suppose that phase predictions α2 are
correct to ± phase uncertainty c, and further assume that
every value within this interval is equally probable. In
Figure 1 the expected correlation coefficient is plotted
as a function of phase uncertainty for the case A1 = 4
and A2 = C2 = 2. Unless there is a considerable degree
of certainty, the high-resolution part of the forecast will
deteriorate the verification. Other deterministic metrics
show similar behaviour.

Now consider the probability of a precipitation amount
above a certain threshold. As an example, this threshold
is chosen in such a way that the observed frequency for
arbitrary forecasts will be 1/3. This can be regarded as
the climatology of the event. This is an arbitrary number

Figure 1. Expected correlation coefficient as a function of phase
uncertainty c of the smallest scale waves for the high-resolution model,

HRM (full line) and low-resolution model, LRM (dashed line).

that does not influence the conclusions of the experiment.
The results for a ‘high-resolution forecaster’ in terms of
the expected BS are shown in Figure 2. It is assumed that
both LRM and HRM are well calibrated.

First look at the uncertainties in phase without incor-
porating amplitude uncertainties. The bottom thick line
gives the results. When the position is exactly known
and the phase uncertainty is zero, the BS is zero. On the
other hand, if there is no skilful information in the pre-
diction of the phase this information can be ignored and
predictions are simply determined by the ‘climatologi-
cal’ frequency resulting in an expected BS of 2/9. This
situation corresponds exactly to the situation of the ‘low-
resolution forecaster’ who does not have any information
at all about the smallest scales and will ‘always’ issue
the climatological probability of the event.

However, the figure also indicates that as soon as there
is information contained in the prediction of the phase,
no matter how small, the expected BS will only improve.
In terms of the comparison between the HRM and LRM,
this means that as soon as there is skilful information
in the prediction of the smallest wave then the expected
BS of HRM is better than the one for LRM. This is
quite in contrast with deterministic verification of the
DMO: phase predictions have to be significantly better
than random before deterministic verification results are
better for the HRM than for the LRM.

The inclusion of uncertainties in the amplitude of the
smallest cosine wave yields the dashed and dotted lines.
These have higher expected BS for all values of the phase
uncertainties (and higher for increasing uncertainty about
the value of the amplitude).

Figures 1 and 2 contrast the deterministic verification
of DMO with the probabilistic interpretation and verifi-
cation of the information contained within that output.
The latter appears to be a more appropriate tool for valu-
ing information from mesoscale forecasts, with the added
bonus that uncertainties in phase and amplitude can be
evaluated together in their combined effect on the prob-
ability of an event to occur.

Figure 2. Expected Brier score for the high-resolution model (HRM)
as a function of phase uncertainty c and for different degrees of
amplitude uncertainty A2: amplitude known (full line); by a factor√

2 (dashed line); by a factor 2 (dash-dot-dashed line); by a factor
4 (dash-dot-dotted line). The expected Brier score for LRM (dotted

line) is 2/9.
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This abstract example has been constructed to eluci-
date the strength of probabilistic verification applied to
mesoscale forecasts. Reality is often resilient to such
abstract notions. To verify the proposed approach its
implications in a real world application are explored.

3. Thresholds of precipitation at a single station: a
real world example

The theoretical example shows that as soon as there is
knowledge about the uncertainty of the not fully pre-
dictable scales, this knowledge can in principle be used
to improve the forecast. The real world experiment this
section describes, does not explicitly deal with the dif-
ferent scales that are present in a predicted precipitation
field but instead deals with the total forecast precipitation
field and searches for any information relevant for the
predictand at hand. This information may be different of
course for different choices of the predictand. The infor-
mation is obtained from the forecast field using statistical
post-processing, more specifically MOS.

MOS predictions are routinely used to post-process
and enhance the results of NWP forecasts at operational
weather forecasting centres around the world, and are
considered essential guidance products to aid weather
forecasters. An important feature of statistical forecasting
methods is the capacity to produce probability forecasts.
They provide explicit expressions of the inherent uncer-
tainty that is present in weather forecasts. It seems an
obvious technique, therefore, to assess and objectively
quantify the probabilistic information present in deter-
ministic model output. Owing to the intrinsically prob-
abilistic nature of the smaller length and timescales it
seems even more appropriate in high-resolution forecast-
ing. Another advantage of probabilistic forecasts is that
they allow users to extract more value from them when
making decisions (e.g. Thompson, 1962; Murphy, 1977;
Katz and Murphy, 1997).

3.1. Setup of the experiment

The concept outlined above is tested on atmospheric
data. The numerical outputs of two models whose grid
distances differ by a factor of two are compared. The
property investigated is the predictive potential of pre-
dicted total precipitation fields for observed precipitation
in a single station, in particular for the probability of
exceeding certain amounts of precipitation. The thresh-
olds considered are >0, ≥1.0, ≥2.5 and ≥4 mm in 3 h. It
is important to note that no numerical information other
than precipitation forecasts is used. The models used
in the comparison are the operational European Centre
for Medium-Range Weather Forecasts (ECMWF) model
and the control model of the ensemble prediction sys-
tem (EPS) of ECMWF on which since February 2006,
precipitation is calculated on a N400 and N200 reduced
Gaussian grid, respectively. This corresponds to a grid
distance of 0.225° and 0.450° in the north–south direc-
tion, which is close to 25 and 50 km respectively. The

experiment uses extracted forecast data from the two
models of 3-h accumulated precipitation for lead times
from +3 to +72 in steps of 3 h on latitude–longitude
grids closely resembling the Gauss grids of the models
(Figure 3). The extent of the grids in the east–west direc-
tion is approximately 500 km, in the north–south direc-
tion it is 600 km but only neighbourhoods with a radius
of 250 km are used (indicated by asterisk in Figure 3).
The centre of the Gauss grids is 52.2 °N, 4.95 °E very
close to the observing station De Bilt, located in the cen-
tre of the Netherlands. The data set contains 1200 UTC
forecasts only, for the period February 2006 through to
July 2007. No stratification into seasons is performed.

3.2. Potential predictors

On these grids, a large number of potential predictors
are calculated. They are constructed in such a way
as to incorporate all the relevant features that can be

50° 50°

52° 52°

54° 54°

0° 2° 4° 6° 8°

50° 50°

52° 52°

54° 54°

0°

(a)

(b)

2° 4° 6° 8°

Figure 3. Grids of the low (a) and high-resolution model (b) on which
the predictors are calculated. Only the points indicated by asterisk are
used. Near the centre these grids resemble the Gaussian grids of the
EPS and of the operational model of ECMWF respectively. Station De

Bilt is indicated by a large asterisk.
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derived from precipitation fields that may be of relevance
for exceedance probabilities at the observing site. A
statistical analysis is performed on the total data set and
yields a set of selected predictors that ‘explains’ the
occurrence of the event as best as possible. This does
not mean of course that predictors not selected are not
good predictors, but it simply means that they do not
provide additional information over the combination of
the selected ones.

The potential predictors can be divided into the fol-
lowing four categories:

The central grid box value. This is usually referred to
as the DMO.

Predictors regarding general features of the forecast
field. A first predictor is the vicinity of predicted pre-
cipitation to the central gridpoint. This is calculated by
the distance to the first gridpoint with 3-h precipitation.
In addition, the extent of the rain area is considered (if
there was rain predicted in the central gridpoint) and the
square root of the total amount of precipitation in this
area. The distance to the first dry gridpoint determines
the extent. The square root is taken because precipitation
forecasts tend to be non-normally distributed. Sometimes
even the cube root or the fourth root is used (Hamill
et al., 2004).

Predictors defined on different-sized neighbourhoods.
Five neighbourhoods are considered defined as circular
areas with radii of 50, 100, till 250 km. These steps
are approximately equal to the grid spacing of the
lower resolution model (control). The maximum extent
of the neighbourhood is limited to 250 km because
it is expected that at greater distances from De Bilt,
forecasts do not bear skilful (additional) information. The
predictors that are considered on each neighbourhood are
the mean precipitation, the square root of the maximum
precipitation amount and the fraction of gridpoints with
precipitation.

Distance-weighted predictors. A number of predictors
are constructed by weighing the forecast precipitation
with distance to the central grid box. This construction
rates the general notion that a large precipitation amount
close to the predictand location probably may yield a
higher probability of occurrence than the same amount
predicted further away from the station. Or likewise,
a small precipitation amount predicted close to the
predictand location might have the same effect as a larger
amount predicted at larger distances.

The area on which these predictors are calculated is
a circular area with radius of 250 km. On this area, the
weighted average and the weighted maximum precipi-
tation (anywhere within the area) is calculated. Three
weighting functions have been applied, one linear and
two exponential ones, all going to zero at 250 km dis-
tance.

In addition, all these weighted predictors were also
calculated on elliptical regions oriented in an east–west
direction with a width of 250 km in the east–west and
125 km in the north–south direction. The idea behind
this is that most of the precipitation in The Netherlands

comes from the west and positional errors in the forecast
are therefore larger in the east–west direction.

All the above predictors are calculated on the output
of both models. There is only one additional set of
predictors that can only be calculated on the high-
resolution grid. This set of predictors is defined on a
neighbourhood of 25 km radius and is the same as on the
other neighbourhoods. This set is included to investigate
whether the smallest scales not present in the lower
resolution model bear additional information. All other
predictors are calculated exactly in the same manner on
the two models and therefore differences in resolution are
included in the predictors only implicitly.

In the experiment, only information that is contained in
the precipitation fields at verification time is considered.
This was done to mimic the way a forecaster subjectively
uses a predicted precipitation field. Furthermore, in this
manner it is made to resemble the way fuzzy verification
is usually performed.

This approach does not use all the information con-
tained in the model output that is relevant to observed pre-
cipitation. Additional information comes from instability
measures derived from the model’s vertical structure,
from (larger scale) circulation features like convergence
and from forecasts for different verification times. These
are therefore generally included in objective probability
forecast equations.

3.3. Selection procedure

The predictors are selected using logistic regression
with a forward stepwise selection method (Brelsford and
Jones, 1967; Wilks, 2006). At each step, a predictor is
chosen that produces the best regression in conjunction
with the predictors chosen on previous steps; thereby, a
significance threshold of 0.05 is specified. Each chosen
predictor is kept in the equation unless the specified
significance threshold of 0.10 is exceeded at a following
step. The regression coefficients are determined using the
maximum likelihood method. This is an iterative method
that maximizes the product of all computed probabilities
of the (non) occurrence of the event in the dependent data
set. Overfitting is avoided as much as possible, e.g. by
limiting the number of predictors selected from a single
predictor category defined in Section 3.2.

3.4. Results

Although it is often said that the small-scale information
from high-resolution forecasts is very valuable it is hard
to show that in ordinary verification (scores). This is
again illustrated by comparing the central grid box values
of the control and operational forecasts against station
observations at De Bilt. In Figure 4, this is done in terms
of the root mean square (RMS) error but other metrics
show the same behaviour. The smaller scale operational
model performs much less than the control forecasts even
at the earlier forecast ranges. The large fluctuations of the
RMS error from one lead time to the next are strongly
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related to differences in observed frequencies. The misses
of the higher precipitation events dominate the RMS
errors. The high-resolution model suffers more from the
double penalty than the low-resolution model.

The two central grid box forecast values can be
regarded as dichotomous (or categorical) forecasts, i.e.
an event will or will not happen. In Figure 5, the results
are shown for the events of having any precipitation
(Figure 5(a)) and of having at least 4 mm of precipitation
in 3 h (Figure 5(b)). For the lowest threshold there is
hardly any difference between the two models, whereas
for the relatively extreme case the operational model is
clearly much worse. This is true for the shorter lead times
already. Once again the small-scale information of the
high-resolution model deteriorates the skill in terms of
deterministic (or categorical) verification scores. Note the
large dependence on the time of day with highest values
during daytime. This is probably related to the higher
frequency of convective events.

The apparent smaller skill for the high-resolution DMO
completely vanishes after statistical post-processing has
extracted as much information as possible from the
precipitation forecast fields. This is shown in Figure 6
in which the BS is presented for the probabilities of
exceeding each of the four thresholds. The operational
model seems to contain at the least the same amount of
skilful information over most of the lead times for all
thresholds. A possible exception may be the shorter lead
times at the two highest thresholds. This may be due to
spin-up problems and it might also be due to the fact
that the analysis has failed to include the most suitable
predictor(s). The BSs are of course much smaller than
in the categorical case as can be seen in Figure 5 for
the corresponding thresholds. Note that the predictive
potential of the post-processed forecast equations has
not been tested on independent data. Exceedance of the
highest threshold of 4 mm in 3 h is a rather extreme event
in The Netherlands (occurring in the data set in about 3%
of the cases) and therefore the statistical significance of
the results for this threshold is less than for the other
thresholds.
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Figure 4. Root mean square difference as a function of lead time
between the observed precipitation at De Bilt and the direct model
output (the central gridpoint value) of the operational (dotted line,

closed squares) and control forecast (full line, open triangles).
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Figure 5. Brier score as a function of lead time for the categorical
DMO forecasts of the operational (dotted line, closed squares) and
control model (full line, open triangles) for the dichotomous events
with thresholds (a) >0 mm and (b) ≥4 mm of precipitation in 3 h at

station De Bilt.

The number of predictors selected by the regression
is in the order of two to four. There is a considerable
variation in the specific choice due to the fact that a large
number of highly correlated expressions of the predictors
are included. However, a few tendencies can be observed.
First of all, for both of the models the central grid box
value was never selected, not even in the first step of the
selection procedure. This means that the DMO is not the
best indicator of precipitation accumulation exceedances,
not even at the earlier lead times.

In all cases a combination of predictors from at least
two of the other categories is selected. Wider neighbour-
hoods become important with increasing forecast lead
time, in accordance with a decrease in deterministic pre-
dictability. Predictors on the largest defined neighbour-
hood are increasingly important beyond lead times of
48 h. This is in agreement with findings of Theis et al.
(2005) who constructed from deterministic +48-h fore-
casts an ensemble of forecasts by taking into account also
precipitation amounts that were predicted at gridpoints in
a neigbourhood of the observation. Verification of their
ensemble on three different neighbourhoods showed that
the best results were obtained on the largest neighbour-
hood of about 140 km.

There is also a slight shift from distance-weighted
predictors to predictors defined on neighbourhoods with
increasing lead time indicating that precipitation predicted
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Figure 6. Brier score as a function of lead time for the post-processed forecasts of the operational (dotted line, closed squares) and control model
(full line, open triangles) for 4 dichotomous events with thresholds (a) >0 mm, (b) ≥1.0 mm, (c) ≥2.5 mm and (d) ≥4 mm in 3 h at station

De Bilt.

anywhere within a neighbourhood becomes more impor-
tant than the closeness to the observing station. No dis-
tinction can be made between the importance of predic-
tors defined on circular areas and those on elliptical areas.
Finally, the explicit high-resolution predictors defined on
a 25 km circular area are never selected, so all differences
between post-processed operational and control forecasts
are due to differences in the information contained in the
predictors with the same formulation.

4. Discussion

A probabilistic interpretation of DMO from NWP
systems is an essential step in creating valuable infor-
mation from mesoscale forecasts. This is due to the
uncertainty that is an inherent trait of the weather and
it is due to the uncertain nature of decision processes of
the end user, in terms of the precision with which these
processes are known, the undetermined variation among
users in the sensitivity of their decisions to weather con-
ditions and their willingness to comply with the outcome
of a cost-loss analysis (Roulston and Smith, 2004). This
is particularly true of precipitation forecasts. Indeed, the
analysis of the real world example presented shows that
DMO at an observation point does not feature as a pre-
dictor for precipitation thresholds.

Consequently the evaluation of the (added) value of
high-resolution forecasts should use probabilistic verifi-
cation techniques.

Fuzzy verification methods in one way or another
attempt to take into account the probabilistic nature of

precipitation forecasts by using all precipitation amounts
that are predicted in the vicinity of an observation.
Usually the extent of the neighbourhood is not objectively
determined. Sometimes the fraction of grid boxes inside
a predefined neighbourhood with predicted precipitation
greater than a given exceedance threshold is interpreted
as probability of exceeding the threshold at an observing
site (Theis et al., 2005). In scale-recursive methods,
varying sizes of neighbourhoods are used to determine
the scale dependence of forecast quality. The choice of
verification method, scoring rule and most importantly
the interpretation and weighting of verification results
require a good understanding of the implicit statistical
assumptions inherent in the verification method and the
intended application of the forecasts and the verification
results. As such fuzzy methods depend on skill and
subjective preference.

Using MOS on a real world example of precipita-
tion at an observation site has demonstrated the pos-
sibility of assessing objectively the predictive potential
of high-resolution models in a comparative verification
with low-resolution models. This confirms the advan-
tage of probabilistic interpretation and verification over
deterministic model output verification that is found in
a constructed theoretical example. A large number of
quantities resembling those that are used in fuzzy ver-
ification are used as predictors in the given example.
This shows MOS to be an essential extension of fuzzy
methods. The MOS method objectively weighs and com-
bines the effect of general features of the forecast field,
the size of neighbourhoods and the effect of distortion
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errors on forecast quality. Predictors other than the pre-
cipitation field itself may contain useful information on
the exceedance probability of rainfall thresholds (Lemcke
and Kruizinga, 1988; Glahn et al., 1991). Such predictors
were excluded from the presented analysis. Nevertheless
the precipitation field itself contains sufficient informa-
tion to demonstrate the value of a resolution increase on
precipitation forecasts.

The real world example uses forecasts on 25- and
50 km grids. The resolution of advanced mesoscale
models nowadays is much higher, in the order of 1 km.
The challenge of mesoscale verification is to value
information at this resolution. The limited deterministic
predictability of weather phenomena at this scale and
thus the need for probabilistic verification is an even
bigger issue than it is at the meso-β scale. There are
no principal objections to applying the methodology of
this article to kilometre-scale forecasts. The application of
MOS is not restricted to station forecasts. When MOS is
applied to areal forecasts the availability and conditioning
of verifying observations increasingly becomes a problem
as resolution goes up.

The present analysis is based on a smaller data set
than would be used in operations. The analysis has been
economical with the data by not testing the forecast
equations on independent data. However, this lack of
normal rigor should not affect the main conclusions.

To get the most from MOS both in forecast mode
and in a comparative valuation of information content
can be a laborious task. It requires a wider search
for relevant predictors in the spatio-temporal domain,
data stratification to incorporate seasonal variation of
the relationships between predictors and predictand, the
pooling of stations to achieve statistical significance
especially in the case of rare predictands and, last but not
least, a thorough testing of the derived forecast equations
on independent data. Even then there is no mathematical
proof that the selected predictors are in any sense the
optimal description of the information in the model. The
same, however, may be said of any form of forecast
interpretation or post-processing.

In addition, the application of MOS usually requires
a large set of data, preferably from a model with a
formulation and resolution that is unchanged over the
training period. For rare events such as exceedances of
large precipitation thresholds and for predictands with a
strong seasonal dependence training periods of several
years are required. Operationally several techniques are
employed to overcome these drawbacks: predictor selec-
tion on pooled station or spatial data (Glahn et al., 1991;
Schmeits et al., 2005), updating schemes, such as recur-
sive regression, Kalman filtering and weighted blending
of old and new model data (Wilson and Vallée, 2002)
and reforecasting with a new model (Hamill et al., 2004).
Probabilistic forecast equations have to be developed for
each predictand, i.e. for each station or area, threshold,
accumulation period and forecast range.

These characteristics of the MOS scheme seem unap-
pealing if it is used purely for the purpose of verification,

in particular in the case of the introduction of a new
model. The basic premise behind this article’s advocacy
of this method for verification is that MOS is already
available as the operational scheme for producing proba-
bilistic forecasts. Put alternatively, it is the way informa-
tion is extracted from deterministic model data and using
it as a method to evaluate this information then seems
only natural. The requirement of statistical significance
and thus the requirement of large sets of training data are
explicit in the design of a MOS scheme. These are just
as much requirements of any form of forecast evaluation,
be it subjective or objective. Not realizing this, or even
ignoring this, may lead to large verification data sets, but
little information on forecast value.

5. Conclusion

In this article it has been demonstrated that probabilis-
tic verification of mesoscale forecasts, based on the same
statistical post-processing that is used to derive proba-
bilistic information from deterministic NWPs, is able to
capture the added value of increased model resolution, in
contrast to traditional deterministic verification.

This concept has been explored in a theoretical exam-
ple and its feasibility has been demonstrated in a real
world application to the prediction of precipitation at a
station. This application uses the general method of MOS.
The analysis has made use of fuzzy verification concepts
such as neighbourhoods and distance weighting as predic-
tors. It was found that MOS is able to combine and weigh
these predictors objectively. The argument has been put
forward that therefore it is an essential extension to fuzzy
verification methods.

The finding that DMO is not selected by the regression
as a predictor can be related to the probabilistic nature
of precipitation as a prime example of the limited
predictability of small-scale weather and supports the
contention that probabilistic forecasting and subsequently
probabilistic verification are essential in the extraction
and valuation of mesoscale forecasts.

The discussion of the practical implications, the merits
and drawbacks of applying MOS to mesoscale verifica-
tion has led to the conclusion that the considerable effort
required to implement MOS for verification essentially
comes free if MOS is already used as a forecasting tool.
Moreover, this effort is intrinsic to all mesoscale verifi-
cation, if its aim is not just to produce vast amounts of
verification data, but a proper valuation of the information
contained in mesoscale forecasts.
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