
OR Spectrum (2009) 31:679–705
DOI 10.1007/s00291-008-0133-8

REGULAR ARTICLE

On a branch-and-bound approach for a Huff-like
Stackelberg location problem

M. Elena Sáiz · Eligius M. T. Hendrix ·
José Fernández · Blas Pelegrín

Published online: 12 March 2008
© The Author(s) 2008

Abstract Modelling the location decision of two competing firms that intend to
build a new facility in a planar market can be done by a Huff-like Stackelberg loca-
tion problem. In a Huff-like model, the market share captured by a firm is given by
a gravity model determined by distance calculations to facilities. In a Stackelberg
model, the leader is the firm that locates first and takes into account the actions of
the competing chain (follower) locating a new facility after the leader. The follower
problem is known to be a hard global optimisation problem. The leader problem is
even harder, since the leader has to decide on location given the optimal action of the
follower. So far, in literature only heuristic approaches have been tested to solve the
leader problem. Our research question is to solve the leader problem rigorously in
the sense of having a guarantee on the reached accuracy. To answer this question, we
develop a branch-and-bound approach. Essentially, the bounding is based on the zero

This work has been supported by the Ministry of Education and Science of Spain through grant
SEJ2005/06273/ECON. M. Elena Sáz was supported by a junior research grant of Mansholt Graduate
School (Wageningen Universiteit).

M. Elena Sáiz (B)
Radboud Universiteit Nijmegen, Thomas van Aquinostraat 3.01.04, P.O.Box 9108,
6500 HK, Nijmegen, The Netherlands
e-mail: E.Saiz@fm.ru.nl

E. M. T. Hendrix
Wageningen Universiteit, Hollandseweg 1, 6706 KN Wageningen, The Netherlands
e-mail: Eligius.Hendrix@wur.nl

J. Fernández · B. Pelegrín
Universidad de Murcia, Campus Universitario de Espinardo, 30071 Espinardo, Murcia, Spain
e-mail: josefdez@um.es

B. Pelegrín
e-mail: pelegrin@um.es

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Wageningen University & Research Publications

https://core.ac.uk/display/29253527?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

680 M. Elena Sáiz et al.

sum concept: what is gain for one chain is loss for the other. We also discuss several
ways of creating bounds for the underlying (follower) sub-problems, and show their
performance for numerical cases.

Keywords Continuous location · Nonlinear programming · Global optimisation
algorithms · Stackelberg competitive location

1 Introduction

Many factors must be taken into account when locating a new facility which provides
goods or a service to the customers of a given area. One of the most important points is
the existence of competitors in the market providing the same goods or service. When
no other competitor exists, the facility to be located will have the monopoly of the
market in that area. However, if in the area there already exist other facilities offering
the same goods, then the new facility will have to compete for the market.

Many competitive location models are available in the literature, see for instance
the survey papers Eiselt and Laporte (1996); Eiselt et al. (1993); Plastria (2001) and the
references therein. They vary in the ingredients which form the model. For instance,
the location space may be the plane, a network or a discrete set. We may want to locate
just one or more than one new facility. The competition may be static, which means
that the competitors are already in the market and the owner of the new facility knows
their characteristics, or with foresight, in which the competitors are not in the market
yet but they will be soon after the new facility enters. In this case it is necessary to
make decisions with foresight about this competition, leading to a Stackelberg-type
model (competition model in which a leader firm moves first and then the follower
firm moves sequentially). Demand is usually supposed to be concentrated in a discrete
set of points, called demand points.

The patronising behaviour of the customers must also be taken into account, since
the market captured by the facilities depends on it. In some models customers select
among the facilities in a deterministic way, i.e., the full demand of the customer is
served by the facility to which he/she is attracted most. In other cases, the customer
splits his/her demand among more than one facility, leading to probabilistic patron-
ising behaviour. On the other hand, it is also necessary to specify what the attraction
(or utility) function of a customer towards a given facility is. Usually, the attraction
function depends on the distance between the customer and the facility, as well as on
other characteristics of the facility which determine its quality.

In this paper, we consider a planar facility location problem with foresight, having a
so-called Huff-like probabilistic consumer behaviour, based on an attraction function
depending on both the locations and the qualities of the facilities to be located. The
demand quantities are assumed to be known and fixed. For the current study, also the
quality values of the new facilities to be located are assumed to be given. There are
two competitors (chains) that act as in a so-called Stakelberg model. First, the leader
makes a decision on where to locate its facility in the plane (the location of the facility
is considered the variable of the problem). Second, the follower makes a decision with
full knowledge of the decision of the leader. The objective of the leader is to maximise
its market share after the entrance of the follower.

123

Huff-like Stackelberg location problem 681

The follower problem has been studied in Drezner (1994) and Plastria (1997) under
deterministic customer behaviour, using attraction functions of gravity type, and in
Plastria and Carrizosa (2004) using different kinds of attraction functions. For prob-
abilistic customer behaviour, the problem has been studied in Drezner and Drezner
(1994), where the location problem is solved for a wide range of quality values (see
also Drezner and Drezner 2004).

However, due to its difficulty, the literature on the leader problem is rather scarce. To
our knowledge, the leader problem with deterministic behaviour on the plane has only
been addressed in Drezner (1982) and Bhadury et al. (2003), and with probabilistic
behaviour only in Drezner and Drezner (1998), where three heuristics are described
for a variant of the model considered in this paper. The question addressed in this
paper is whether the leader problem can be solved up to a guaranteed accuracy. We
will show in the current paper that one can make use of the zero-sum perspective to
construct a branch-and-bound method that achieves that aim.

In Sect. 2, the notation is introduced and both the leader and the follower problem
are formulated. In Sects. 3 and 4, a detailed description of the branch-and-bound algo-
rithms to solve the follower and leader problem (respectively) is given. The algorithms
are illustrated by instances in Sect. 5 and the efficiency is investigated for different
parameter settings. Conclusions and future work are discussed in Sect. 6.

2 Description of the problem

The following notation will be used throughout:

Indices
i index of demand points, i = 1, . . . , n
j index of existing facilities, j = 1, . . . , m (the first k of those m facilities,

0 ≤ k ≤ m, belong to the leader chain, and the rest to the follower)
l index for the new facilities, l = 1, 2.

Variables
xl = (xl1, xl2) location of the leader (l = 1) and follower (l = 2)

Data
αl quality of the leader (l = 1) and follower (l = 2)
pi location of the i-th demand point
wi demand (or buying power) at pi

q j location of the j-th existing facility
di j distance between pi and q j

a j quality of facility j
g(·) a positive non-decreasing function
a j/g(di j) attraction that i feels for facility j
S location space where the leader and the follower will locate the

new facility.

Miscellaneous
δil distance between pi and xl , l = 1, 2
αl/g(δil) attraction that i feels for new facility l
Ml(x1, x2) market capture by the leader (l = 1) and follower (l = 2).

123

682 M. Elena Sáiz et al.

The best location in attraction models is usually situated in the convex hull of the
demand points. In this paper we consider as the feasible location space S a rectangle
enclosing that convex hull. Notice that M1(x1, x2) + M2(x1, x2) = ∑n

i=1 wi . This
‘zero-sum’ character of the model is essential in the method used to solve it. In the
model, the market share captured by the leader chain after the leader locates in x1 and
the follower in x2 is

M1(x1, x2) =
n∑

i=1

ωi

α1

g(δi1)
+

∑k

j=1

a j

g(di j)
α1

g(δi1)
+ α2

g(δi2)
+

∑m

j=1

a j

g(di j)

and the corresponding market share captured by the follower chain is

M2(x1, x2) =
n∑

i=1

ωi

α2

g(δi2)
+

∑m

j=k+1

a j

g(di j)
α1

g(δi1)
+ α2

g(δi2)
+

∑m

j=1

a j

g(di j)

(1)

Given x1, problem (F P(x1)) of the follower is the so-called (1|x1)-medianoid
problem introduced by Hakimi (1983)

max
x2∈S

{G(x2) = M2(x1, x2)} (2)

Since M1(x1, x2) + M2(x1, x2) = ∑n
i=1 wi , (F P(x1)) in (2) is equivalent to

min
x2∈S

M1(x1, x2) (3)

Let x∗
2 (x1) represent an optimal solution of (F P(x1)). Problem (L P) for the leader

is the (1|1)-centroid problem (see Hakimi 1983)

max
x1∈S

{F(x1) = M1(x1, x∗
2 (x1))}

In Drezner and Drezner (2004) and Fernández et al. (2007), procedures are given
to maximise the market share captured by a given chain when the facility locations
of the competitors are fixed as in problem (F P(x1)). As studied by Fernández et al.
(2007), we are dealing with a global optimisation problem; see Fig. 1, which shows
the multimodal behaviour of problem (F P(x1)).

In the solution procedure that we have designed to cope with the leader problem,
we are also interested in solving a similar problem to that of the follower, in which
the leader wants to locate a new facility at x1, given the location and the quality of
all the facilities of the competitor (the follower). In this case, the leader has to solve
a medianoid problem in which the roles of leader and follower are interchanged. We
will call this problem a reverse medianoid problem.

123

Huff-like Stackelberg location problem 683

Fig. 1 Plot of the objective function of a follower problem

The leader problem (L P) is much more difficult to solve than the follower prob-
lem. To the extent of our knowledge, the leader problem with probabilistic behaviour
on the plane has only been addressed in Drezner and Drezner (1998), where heuris-
tic procedures were presented for a similar version of the problem considered here.
Among others, they applied variants of multistart and grid search to generate solutions
of the leader and follower problems. In Sect. 3, a branch-and-bound algorithm for the
medianoid (follower) and reverse medianoid problems with four different ways of
obtaining an upper bound are introduced. In Sect. 4, a branch-and-bound algorithm
for the (1|1)-centroid problem (leader) is described.

3 A branch-and-bound algorithm for the medianoid (follower) problem

In the medianoid problem (F P(x1)), the follower wants to locate a new facility, know-
ing the location and the quality of all the facilities of the competitor (the leader). Next
we describe the details of the algorithm for the follower problem. For the reverse
medianoid problem of the leader, the algorithm is similar.

The basic idea in B&B methods consists of a recursive decomposition of the original
problem into smaller disjoint subproblems until the solution is found. The method
avoids visiting those subproblems which are known not to contain a solution. B&B
methods can be characterised by four rules: branching, selection, bounding, and elimi-
nation (see Ibaraki 1976; Mitten 1970). For problems where the solution is determined
with a desired accuracy, a Termination rule has to be incorporated. The method works
as follows. The initial set C1 = S is subsequently partitioned in more and more refined
subsets (branching) over which upper and lower bounds of the objective function are
determined (bounding). In a maximisation problem, subsets with upper bounds lower
than the best lower bound are eliminated for subsequent partitions (pruning), since
these subsets cannot contain the maximum. At every iteration, the B&B method has a

123

684 M. Elena Sáiz et al.

list Λ of subsets Ck of C1. The method stops when the list is empty. For every subset
Ck in Λ, upper bounds zkU of the objective function on Ck are determined. Moreover,
a global lower bound zL is updated. Next, we give a more detailed description of the
steps of the algorithm.

3.1 The algorithm

To take both the medianoid and the reverse medianoid problems into account, we will
denote by M the objective function of the problem at hand and by C its feasible set.

Algorithm 1 : Branch-and-Bound algorithm for the (reverse) medianoid problem
Funct B&B(M, x, C, ε f)

1. Λ := ∅
2. C1 := C
3. Determine an upper bound z1U on C1
4. Compute y1:=midpoint(C1), Best Point := y1

5. Determine lower bound: z1 := M(y1), zL := z1

6. Put C1 on list Λ, r := 1
7. while (Λ �= ∅)
8. Take a subset C (selection rule) from list Λ and bisect into Cr+1 and Cr+2
9. for t := r + 1 to r + 2

10. Determine upper bound ztU

11. if ztU > zL + ε f
12. Compute yt :=midpoint(Ct) and zt := M(yt)

13. if zt > zL

14. zL := zt , Best Point := yt and remove all Ci from Λ with ziU < zL

15. if ztU > zL + ε f
16. save Ct in Λ

17. r := r + 2
18. endwhile
19. OUTPUT: {Best Point, zL }

The B&B method is described in Algorithm 1. Its output is the best point found
during the process and its corresponding function value. The best point is guaranteed
to differ less than ε f in function value from the optimal solution of the problem (by
considering the difference between lower and upper bounds).

3.2 Branching rule

The branching rule applied uses rectangles and new rectangles are generated by bisect-
ing a subset C over its longest edge. Two variants are implemented. Either we start
with the initial rectangle S, or we start with an initial partition of it into rectangles
such that none of the demand points is interior with respect to a rectangle. As will be
outlined, this may improve the upper bounding applied, but on the other hand may
generate more partition sets than strictly necessary.

123

Huff-like Stackelberg location problem 685

3.3 Selection rule

The selection rule is important in the sense of efficiency measured by computational
time and memory requirements. Within selection rules, one can find: depth-first-search,
breadth-first-search and best-bound-search. In Sect. 5.1, the effect on efficiency of
those rules is measured.

3.4 Lower bound

The classical lower bound is obtained as the best objective value at a finite set of
feasible solutions {x1

2 , . . . , xr
2}

zL = max{G(x1
2), . . . , G(xr

2)}.

for the follower problem. For the reverse medianoid problem, instead of taking G(x2)

one should take M1(x1, x2). A good initial lower bound can be obtained by applying
the (local search) Weiszfeld-like algorithm described in Drezner and Drezner (1994)
from 20 or 50 starting random points. We simply use the best objective function value
found at the evaluated points.

3.5 Upper bounds for the follower problem (F P(x1))

The idea of the upper bound is to overestimate M2 over a rectangle C . The market
share captured by the follower (Eq. 1) can be rewritten as

M2(x1, x2) =
n∑

i=1

ωi

1 + 1

α2

(∑m

j=k+1

a j

g(di j)

)

g(δi2)

1 + 1

α2

(
α1

g(δi1)
+

∑m

j=1

a j

g(di j)

)

g(δi2)

. (4)

Introducing

hi = 1

α2

m∑

j=k+1

a j

g(di j)

ki = 1

α2

⎛

⎝ α1

g(δi1)
+

m∑

j=1

a j

g(di j)

⎞

⎠

and defining

fi (g(δi2)) = 1 + hi g(δi2)

1 + ki g(δi2)
(5)

123

686 M. Elena Sáiz et al.

Eq. (4) becomes

M2(x1, x2) =
n∑

i=1

ωi fi (g(δi2)).

An upper bound for M2 is

M2(x1, x2) =
n∑

i=1

ωiU Bi (C)

where U Bi (C) is an overestimation of fi (g(δi2)) over rectangle C . Notice that hi < ki

and fi is monotonously decreasing in g(δi2) with a limit of hi
ki

.
We now describe various possible variants of the upper bounding. We will also

evaluate numerically which bound is sharper than the others. The first upper bound is
simply based on underestimating distance. The second and third upper bounds exploit
the D.C. (difference of convex functions) structure of the objective function. The fourth
upper bound builds a convex overestimating function based on the third one.

3.5.1 Upper bound 1

A first upper bound for fi (g(δi2)) over a rectangle C is calculated in the following way.
For demand point pi , the distance to the follower x2 is underestimated by assuming
that x2 delivers from the complete rectangle C . In this way the market share of the
demand point for the follower is overestimated. The demand points within rectangle C
have a distance �i (C) = 0 from C . For demand points out of rectangle C , pi /∈ C , the
shortest distance �i (C) of pi to the rectangle is calculated. An upper bound U B1

i (C)

for fi (g(δi2)) over rectangle C for demand point pi is given by

U B1
i (C) = 1 + hi g(�i (C))

1 + ki g(�i (C))

where �i (C) is the distance from demand point pi to rectangle C , �i (C) = minx∈C

d(x, pi). The distance �i (C) can be determined as follows. Rectangle C is defined by
two points: lower-left point L = (L1, L2) and upper-right point U = (U1, U2). The
shortest distance from demand point pi to the rectangle C = [L , U] can be computed
by:

�i1 = max{L1 − pi1, pi1 − U1, 0}
�i2 = max{L2 − pi2, pi2 − U2, 0}
�i =

√
�2

i1 + �2
i2

Summarising,

�i (C) =
{

0 if pi ∈ C
√

�2
i1 + �2

i2 if pi /∈ C
(6)

123

Huff-like Stackelberg location problem 687

This distance calculation is easily extendible to higher dimensions. A similar
description is used in Plastria (1992). Equation (6) underestimates the distance from
demand point pi to facilities in C . Since the new facility is only located at one point
within the rectangle, we obtain an overestimation (upper bound) of the market capture
of the new facility (fi (g(δi2)) is decreasing in δi2).

3.5.2 Upper bound 2

The second upper bound is more sophisticated and it is based on convexity of the func-

tions fi and g. From now on, we will use the convex function g(δi2) =
√

δ2
i2 + K 2

i
that was suggested in Drezner and Drezner (1997), where Ki is a constant representing
demand agglomeration. Equation (5) can be seen as a composition of functions fi and
g. We will define an upper bound by using D.C. decomposition. A d.c. decomposition
of a function s defined on a convex C ⊂ R

n can be expressed, for all x ∈ C , in the
form

s(x) = s1(x) − s2(x)

where s1 and s2 are convex functions on C . The following lemma is adapted from
Lemma 1 in Tuy et al. (1995). Let f ′+(x) be the right derivative of f (x), x ∈ R.

Lemma 1 Let g(δ(x)) be a convex function on a convex and compact subset C ⊂ R
2

such that g(δ(x)) ≥ 0 for all x ∈ C. If f : R+ 	→ R is a convex nonincreasing
function such that f ′+(0) > −∞, then f (g(δ(x))) is a d.c. function in C and can be
expressed as:

f (g(δ(x))) = b(x) − Rg(δ(x))

where b(x) = f (g(δ(x))) + Rg(δ(x)) is a convex function for each positive constant
R satisfying R ≥ | f ′+(0)|.

By using Lemma 1 we can obtain a d.c. decomposition for each fi . In particular, if

g(δi2) =
√

δ2
i2 + K 2

i , a d.c. decomposition for fi (g(δi2)) is defined by

fi (g(δi2)) = bi (x) − Ri g(δi2) = bi (x) − Ri

√
δ2

i2 + K 2
i

where bi (x) = fi (g(δi2)) + Ri

√
δ2

i2 + K 2
i and Ri = ki − hi . Market capture for the

follower can be expressed by

G(x) = M2(x1, x) =
n∑

i=1

ωi fi (g(δi2)) =
n∑

i=1

ωi

[

bi (x) − Ri

√
δ2

i2 + K 2
i

]

123

688 M. Elena Sáiz et al.

=
n∑

i=1

ωi

⎧
⎨

⎩

1 + hi

√
δ2

i2 + K 2
i

1 + ki

√
δ2

i2 + K 2
i

+ (ki − hi)

√
δ2

i2 + K 2
i

⎫
⎬

⎭

−
n∑

i=1

ωi (ki − hi)

√
δ2

i2 + K 2
i .

Let δ2
i (x) = (‖x − pi‖2)

2 be the squared Euclidean distance between x and demand
point pi and V (C) be the set of vertices (corners) v of rectangle C . An upper bound
is defined as

U B = max
v∈V (C)

⎧
⎨

⎩

n∑

i=1

ωi

⎧
⎨

⎩

1 + hi

√
δ2

i (v) + K 2
i

1 + ki

√
δ2

i (v) + K 2
i

+ (ki − hi)

√
δ2

i (v) + K 2
i

⎫
⎬

⎭

⎫
⎬

⎭

− min
x∈C

{
n∑

i=1

ωi (ki − hi)

√
δ2

i2 + K 2
i

}

U B is a valid upper bound of M2 over C . To facilitate computation, one can underes-

timate minx∈C

{
∑n

i=1 ωi (ki − hi)

√
δ2

i2 + K 2
i

}

by
∑n

i=1 ωi (ki − hi)

√
�2

i (C) + K 2
i .

Then, U B2 is defined as

U B2(C) = max
v∈V (C)

⎧
⎨

⎩

n∑

i=1

ωi

⎧
⎨

⎩

1 + hi

√
δ2

i (v) + K 2
i

1 + ki

√
δ2

i (v) + K 2
i

+ (ki − hi)

√
δ2

i (v) + K 2
i

⎫
⎬

⎭

⎫
⎬

⎭

−
n∑

i=1

ωi (ki − hi)

√
�2

i (C) + K 2
i

3.5.3 Upper bound 3

For the ease of notation, let zi (x) = g(δi2). In this way, G(x) = M2(x1, x) can be
written as

G(x) = M2(x1, x) =
n∑

i=1

ωi fi (zi (x)) =
n∑

i=1

ωi
1 + hi zi (x)

1 + ki zi (x)

Let x0 be the midpoint of rectangle C and z0
i = zi (x0). According to Taylor’s theorem

there exist g(�i) ≤ z̃i such that

G(x) = G(x0) +
n∑

i=1

ωi

[
hi − ki

(1 + ki z0
i)

2
(zi (x) − z0

i) + ki (ki − hi)

(1 + ki z̃i)3 (zi (x) − z0
i)

2

]

123

Huff-like Stackelberg location problem 689

The first bounding operation is based on replacing z̃i by g(�i),

G(x) ≤ G(x0) +
n∑

i=1

ωi

[
hi − ki

(1 + ki z0
i)

2
(zi (x) − z0

i) + ki (ki − hi)

(1 + ki g(�i))3 (zi (x) − z0
i)

2

]

By introducing

ri = wi
ki − hi

(1 + ki z0
i)

2

si = wi
ki (ki − hi)

(1 + ki g(�i))3

ti = ri + 2si z
0
i

and rearranging terms we obtain

G(x) ≤ G(x0) +
n∑

i=1

(ri z
0
i + si (z

0
i)

2) −
n∑

i=1

ti zi (x) +
n∑

i=1

si zi (x)2 (7)

Although zi is convex, the function in the right part of (7) is not. However, it is
clearly a D.C. function. Let V (C) be the set of vertices (corners) v of rectangle C .
Then, one can overestimate (7) by taking

U B = Const1 − min
x∈C

n∑

i=1

ti zi (x) + max
v∈V (C)

n∑

i=1

si zi (v)2

where Const1 = G(x0)+∑n
i=1(ri z0

i + si (z0
i)

2). As with upper bound U B2, one can
underestimate minx∈C

∑n
i=1 ti zi (x) by

∑n
i=1 ti g(�i (C)). Then, U B3 is defined as

U B3(C) = Const1 −
n∑

i=1

ti g(�i (C)) + max
v∈V (C)

n∑

i=1

si zi (v)2

3.5.4 Upper bound 4

In this section, a convex overestimation ΓC (x) of G(x) over a rectangle C is derived
starting from (7). One can linearly overestimate the term −ti zi (x) due to convexity of
function zi (x) as follows

zi (x) ≥ z0
i + ∇z0

i (x − x0)

123

690 M. Elena Sáiz et al.

Substitution gives

G(x) ≤ G(x0) +
n∑

i=1

(ri z
0
i + si (z

0
i)

2) −
n∑

i=1

ti z
0
i −

n∑

i=1

ti∇z0
i (x − x0) +

n∑

i=1

si zi (x)2

= G(x0) −
n∑

i=1

si (z
0
i)

2 −
n∑

i=1

ti∇z0
i (x − x0) +

n∑

i=1

si zi (x)2 = ΓC (x)

Function ΓC (x) is convex. An upper bound over rectangle C , U B4(C), can be
expressed by

U B4(C) = Const2 + max
v∈V (C)

{
n∑

i=1

si zi (v)2 −
n∑

i=1

ti∇z0
i (v − x0)

}

where Const2 = G(x0) − ∑n
i=1 si (z0

i)
2.

4 A branch-and-bound algorithm for the leader problem

In this section, a new method based on Branch-and-Bound is formulated to generate
a solution of the (1|1)-centroid problem. The final outcome is guaranteed to differ
less in function value than a preset accuracy εl from the optimum solution. Next, we
introduce the algorithm and its ingredients.

4.1 The algorithm

The branching and selection rules used were the same as in Algorithm 1. The output
of the B&B method (see Algorithm 2) is again the best point found during the process
and its corresponding function value, which differs less than εl from the optimum
value of the problem.

4.2 Lower bound

The classical lower bound is obtained as the best objective value at a finite set of
feasible solutions {x1

1 , . . . , xr
1} for the leader problem,

zL = max{F(x1
1), . . . , F(xr

1)}

One can follow the objective function value F(x p
1) of the iterates, or alternatively

define an initial lower bound zL based on running another algorithm that generates a
good approximate solution.

123

Huff-like Stackelberg location problem 691

Algorithm 2 : Branch-and-Bound algorithm for Leader problem
Funct B&BLeader(εl , ε f)

1. Λ := ∅
2. C1 = S
3. Compute x1

1 :=midpoint(C1), Best Point := x1
1

4. Solve the problem for the follower: {x1
2 , z} := B&B(M2, x1

1 , C1, ε f)

5. Determine an upper bound z1U
1 on C1 solving a reverse medianoid problem: {y, z1U

1 } :=
B&B(M1, x1

2 , C1, εl)

6. Determine lower bound: z1 := F(x1
1) = M1(x1

1 , x1
2), zL := z1

7. Put C1 on list Λ , r := 1
8. while (Λ �= ∅)
9. Take a subset C (selection rule) from list Λ and bisect into Cr+1 and Cr+2

10. for t := r + 1 to r + 2
11. Compute xt

1:=midpoint(Ct)

12. Solve the problem for the follower: {xt
2, z} := B&B(M2, xt

1, C1, ε f)

13. Determine upper bound ztU
1 solving a reverse medianoid problem: {y, ztU

1 } :=
B&B(M1, xt

2, Ct , εl)

14. if ztU
1 > zL + εl

15. Determine zt := F(xt
1) = M1(xt

1, xt
2)

16. if zt > zL

17. zL := zt , Best Point := xt
1, and remove all Ci from Λ with ziU

1 < zL

18. if ztU
1 > zL + εl

19. save Ct in Λ

20. r := r + 2
21. endwhile
22. OUTPUT: {Best Point, zL }

4.3 Upper bounds

Let C ⊆ R
2 denote a subset of the search region of (L P), and assume that x2 is

given. An upper bound of F(x1) over C can be obtained by having the leader solve
the reverse medianoid problem.

Lemma 2 U B(C, x2) = maxx1∈C M1(x1, x2) is an upper bound of F(x1) over C.

Proof According to (3), F(x1) = M1(x1, x∗
2 (x1)) ≤ M1(x1, x2) such that

max
x1∈C

F(x1) ≤ max
x1∈C

M1(x1, x2) = U B(C, x2).

��
Given a finite set {x1

2 , . . . , xr
2} of feasible solutions for the follower, then

min{U B(C, x1
2), . . . , U B(C, xr

2)}

is an upper bound of F(x1) over C.

For a specific rectangle C , the choice of x2 for the upper bound calculation is done
as follows. We take xC = midpont(C) as the midpoint of the rectangle. Now one

123

692 M. Elena Sáiz et al.

solves (F P(xC)) obtaining x̂2. An upper bound is determined by solving the problem

ub1(C) = U B(C, x̂2) = max
x1∈C

{M1(x1, x̂2)}

Another easy possibility is to set x2 equal to x1 (that is, to assume co-location). In
that way, one obtains the following upper bound.

Lemma 3 ub2(C) = U B(C, x1) = maxx1∈C M1(x1, x1) is an upper bound of F(x1)

over C.

In the next two sections, we use numerical cases to illustrate the outcomes and effi-
ciency of the algorithm.

5 Numerical examples

The effectiveness and efficiency of the algorithms are investigated with the aid of
numerical cases. In a first case, we experiment with algorithm settings (variants of the
algorithm) and study the performance. In the following cases, the performance is stud-
ied with a good algorithm setting. The effectiveness question concerns the algorithms
and several ways of upper bounding. Performance indicators of the efficiency are the
number of iterations used by the algorithms and the memory requirement. In general,
branch-and-bound algorithms deliver a guarantee of detecting the global optimum up
to a pre-set accuracy, but the cost of the memory requirement may be high if the dimen-
sion is going up or the accuracy is increasing, see e.g. Casado et al. (2007). In the first
study, we will vary carefully the selection rule and the accuracy and inspect values of
the performance indicators and effectiveness of the different bounds. Moreover, we
evaluate a variant where an initial partition is generated to improve bound number 4.
The second case is an illustration from literature. In the last case, we generate many
instances at random where the size of the problem is varied to validate the viability of
the approach with increasing number of demand points and existing facilities.

5.1 Case I: varying algorithm setting

This case has been generated randomly with n = 10 demand points, m = 4 existing
facilities and a varying number k of those facilities belonging to the leader’s chain,
k = 0, . . . , 4. The generated demand points can be found in Appendix A (Table 11).
The other parameters are chosen as follows:

– buying power: wi = 100, i = 1, . . . , 10
– quality of existing facilities: a j = 5.5, j = 1, . . . , 4
– quality of new facilities: αl = 5, l = 1, 2

– g(di j) =
√

(q j1 − pi1)2 + (q j2 − pi2)2 + (10−5)2, i = 1, . . . , 10, j = 1, . . . , 4

– g(δil) = √
(xl1 − pi1)2 + (xl2 − pi2)2 + (10−5)2, l = 1, 2

– accuracy for leader and follower: εl = ε f = 10−2.

123

Huff-like Stackelberg location problem 693

Table 1 Optimal locations and market capture for different number of leader facilities, k = 0, . . . , 4.
Parameter z∗

l = market capture for the leader after locating facility, Mbl before; locations and market
captures are rounded to two decimals

k = 0 k = 1 k = 2 k = 3 k = 4

Optimal location

Leader

(
2.44
3.97

) (
5.03
0.69

) (
5.33
4.34

) (
5.33
4.34

) (
5.03
0.69

)

Follower

(
2.44
3.97

) (
5.03
0.69

) (
1.41
4.65

) (
1.75
3.79

) (
1.75
3.79

)

Market capture
Leader 186.29 367.87 497.70 611.07 773.44
Follower 813.71 632.13 502.30 388.93 226.56

z∗
l − Mbl 186.29 100.67 14.17 –72.46 –226.56

(gain or loss for the leader)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

Fig. 2 Generated partition by the algorithm. Cases with k = 1 (left) and k = 3 (right)

The resulting optimal locations are shown in Table 1, which also gives the market
capture of both chains, when the number k of existing facilities of the leader chain is
increasing. One can observe a characteristic of the model, where leader and follower
tend to co-locate when the number of existing facilities of the leader is low. In fact,
the follower by locating at the same position, mitigates the effect of the relatively
newcomer in the market who is going to compete for market capture. Notice also that
when the leader is dominant in the market (it owns k = 3 of the m = 4 existing
facilities, or all of them, k = 4) then the leader suffers a decrease in market share
after the location of the two new facilities (see the negative values in the last line of
Table 1). This is because in those cases the follower increases its market share more
than the leader.

Figure 2 illustrates how the algorithm proceeds. It gives: location of the demand
points (squares); location of the existing facilities (triangle up, belongs to the follower,
triangle down, belongs to the leader); the optimum for the locations of leader (dia-
mond) and the follower (circle) and the final partition of the search space for the leader
for the cases when the number of existing facilities of the leader are k = 1 and k = 3.
Each of the boxes has been evaluated and it has been proven by bounding that the
optimum location of the leader cannot be there.

123

694 M. Elena Sáiz et al.

Table 2 Efficiency of base case algorithm. Iterations. Upper bound U B1 in Algorithm 1, selection rule:
breadth-first-search in both algorithms

k Leader problem Medianoid problems

Follower medianoid problems Reverse medianoid problems

Max Avg Max Avg

0 1325 503 308.62 3645 215.48

1 1017 427 313.98 3107 248.09

2 1161 545 439.71 2709 166.13

3 209 501 447.42 2421 296.95

4 131 675 515.11 1009 190.15

In Tables 2 and 3 we focus on the efficiency of the algorithm and the different ways
of bounding. Table 2 concerns the base case, where only U B1 is used as upper bound
in Algorithm 1, and breadth-first-search is used as selection rule in both Algorithms 1
and 2. It shows the number of iterations for the leader problem and the maximum
and average number of iterations for Algorithm 1 when it is called at each iteration of
Algorithm 2 to solve the corresponding (reverse) medianoid problems. First of all, one
can observe from the number of iterations, that it is relatively easier for the algorithm
to detect what is the global optimum for the leader when it has already many existing
facilities. The intuition is as follows. When the leader is a newcomer, it has many
options to gain market capture by going close to existing facilities of the competitor;
there are many local optima. The result is that it is harder for the algorithm (requires
more splitting) to verify that an already found location is the best one. Typically, this
is easier when the leader has already several facilities. The global optimum is far more
pronounced and defined by staying away from its own facilities. Accordingly, the
number of iterations required for solving the follower medianoid problems increases
with k.

In Table 3, we focus on the effectiveness of the upper bounds of Algorithm 1.
At each iteration, it computes the four upper bounds described in Section 3.5 and
chooses the minimum of the upper bounds. In all the cases, upper bounds U B1 and
U B4 were used. Upper bounds U B2 and U B3 which are based on the d.c. concept
appeared not to be efficient since they were never lower than U B1 or U B4. Observ-
ing the computations during the process, we found that U B4 mainly improves the
bounding of U B1 when the partition sets get small. In this way, it contributes to
speeding up the algorithm compared to only using U B1. As in the previous table,
the first two columns of Table 3 give the maximum and average number of itera-
tions for Algorithm 1 when it is called at each iteration of Algorithm 2 to solve the
corresponding (reverse) medianoid problems . The next four columns show the max-
imum and average number of iterations that the bounds U B1 and U B4 were the ones
giving the minimum upper bound when solving the medianoid problems, whereas
the last four columns give similar values when solving the reverse medianoid prob-
lems. Comparing Tables 2 and 3 we can see that the use of the both bounds reduces

123

Huff-like Stackelberg location problem 695

Ta
bl

e
3

N
um

be
r

of
ite

ra
tio

ns
an

d
up

pe
r

bo
un

ds
us

ed
.S

el
ec

tio
n

ru
le

:
br

ea
dt

h-
fir

st
-s

ea
rc

h
in

bo
th

al
go

ri
th

m
s.

G
iv

es
nu

m
be

r
of

tim
es

U
B

1
is

th
e

sh
ar

pe
st

an
d

U
B

4
is

th
e

sh
ar

pe
st

k
U

pp
er

bo
un

ds
us

ed

It
er

at
io

ns
Fo

llo
w

er
m

ed
ia

no
id

R
ev

er
se

m
ed

ia
no

id

Fo
llo

w
er

m
ed

ia
no

id
R

ev
er

se
m

ed
ia

no
id

pr
ob

le
m

s
pr

ob
le

m
s

pr
ob

le
m

s
pr

ob
le

m
s

U
B

1
U

B
4

U
B

1
U

B
4

M
ax

A
vg

M
ax

A
vg

M
ax

A
vg

M
ax

A
vg

M
ax

A
vg

M
ax

A
vg

0
49

7
29

5.
70

36
45

21
8.

32
47

9
27

8.
62

49
17

.0
8

36
45

20
8.

39
69

5
9.

93

1
41

1
30

2.
16

31
07

24
1.

31
39

2
28

0.
92

40
21

.2
4

31
07

22
2.

89
14

71
18

.4
2

2
52

7
41

4.
59

27
09

16
4.

11
49

6
39

0.
28

58
24

.3
1

27
09

16
0.

59
24

1
3.

52

3
46

7
41

0.
79

24
21

29
1.

36
41

8
36

7.
99

60
42

.8
0

23
98

27
5.

37
32

8
15

.9
9

4
57

1
47

1.
90

10
09

19
0.

91
49

5
41

2.
98

91
58

.9
2

10
09

18
4.

93
17

2
5.

98

123

696 M. Elena Sáiz et al.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

Fig. 3 Initial partition generated for the follower medianoid

Table 4 Efficiency changing to best bound selection. Iterations. Upper bound U B1 in Algorithm 1,
selection rule: best-bound-search in both algorithms

k Leader problem Medianoid problems

Follower medianoid problems Reverse medianoid problems

Max Avg Max Avg

0 689 613 184.25 2945 115.70

1 675 497 241.24 2893 71.21

2 1739 539 299.91 2519 58.59

3 463 401 362.57 8363 120.87

4 85 561 434.12 3871 140.64

the number of iterations required for solving the corresponding (reverse) medianoid
problems.

In a next computational analysis we vary two rules of the algorithm. First of all,
we compare the efficiency of the selection rule changing from breadth-first-search
to best-bound-search, i.e., the rectangle Ck such that zkU = max{ziU : Ci ∈ �} is
selected to be split next in Step 8 of Algorithm 1 and Step 9 of Algorithm 2. Secondly,
we evaluate the performance when initially a partition is generated such that none of
the demand points is interior as illustrated in Fig. 3. The idea is that the upper bounds
U B4 get sharper.

Comparing Tables 2 and 4, one can observe that Algorithm 1 clearly improves over
the thousands of problems solved with the selection rule best-bound-search. Algo-
rithm 2 for the leader problem does not always improve for this particular case. For
the algorithm variant where the best upper bound is used, comparison of Tables 3

123

Huff-like Stackelberg location problem 697

Ta
bl

e
5

E
ffi

ci
en

cy
w

he
n

th
e

be
st

of
th

e
4

up
pe

r
bo

un
ds

is
us

ed
.S

el
ec

tio
n

ru
le

:b
es

t-
bo

un
d-

se
ar

ch
.G

iv
es

nu
m

be
r

of
tim

es
U

B
1

is
th

e
sh

ar
pe

st
an

d
U

B
4

is
th

e
sh

ar
pe

st

k
U

pp
er

bo
un

ds
us

ed

It
er

at
io

ns
Fo

llo
w

er
m

ed
ia

no
id

R
ev

er
se

m
ed

ia
no

id

Fo
llo

w
er

m
ed

ia
no

id
R

ev
er

se
m

ed
ia

no
id

pr
ob

le
m

s
pr

ob
le

m
s

pr
ob

le
m

s
pr

ob
le

m
s

U
B

1
U

B
4

U
B

1
U

B
4

M
ax

A
vg

M
ax

A
vg

M
ax

A
vg

M
ax

A
vg

M
ax

A
vg

M
ax

A
vg

N
o

in
iti

al
pa

rt
iti

on

0
58

9
18

4.
13

29
43

11
6.

72
53

7
16

3.
97

81
20

.1
6

29
43

10
5.

41
23

4
11

.3
1

1
47

9
20

9.
67

28
91

70
.0

7
46

6
19

2.
50

54
17

.1
7

28
91

64
.0

5
80

6.
02

2
38

9
24

9.
43

25
17

50
.9

5
32

5
22

6.
04

76
23

.3
9

25
17

49
.3

6
10

6
1.

59

3
27

7
23

6.
35

83
63

11
6.

47
23

3
21

4.
83

44
21

.5
2

83
63

11
2.

45
22

1
4.

02

4
47

1
28

2.
69

38
71

14
1.

90
39

0
24

9.
48

84
33

.2
0

38
71

13
8.

23
29

3.
67

W
ith

in
iti

al
pa

rt
iti

on

0
49

5
30

8.
14

28
56

14
6.

22
47

3
26

9.
90

10
1

38
.2

4
28

56
13

4.
96

23
3

11
.2

6

1
51

7
35

6.
47

29
38

76
.8

1
41

5
29

7.
37

11
5

59
.1

0
29

38
70

.8
8

80
5.

93

2
70

7
49

2.
82

25
78

53
.5

4
61

7
40

7.
77

14
8

85
.0

5
25

78
51

.9
4

77
1.

60

3
52

5
44

3.
36

83
63

12
6.

74
48

0
39

2.
15

79
51

.2
1

83
63

12
3.

50
22

1
3.

24

4
64

7
45

5.
16

38
71

14
3.

81
52

5
39

1.
40

14
2

63
.7

6
38

71
13

7.
94

30
5.

87

123

698 M. Elena Sáiz et al.

Table 6 Memory requirement. The best of the 4 upper bounds is used. Selection rule: best-bound-search
and εl = 0.01 and ε f = 0.01

k Leader Follower medianoid Reverse medianoid
problem problems problems

No. Rec. Max Avg Max Avg

0 15 22 9.92 26 7.43

1 20 15 11.84 24 6.23

2 23 30 13.04 27 5.08

3 17 15 14.00 26 9.10

4 5 22 14.56 22 8.38

and 5 confirms that best-bound-search is better for Algorithm 1 than breadth-first-
search.

Comparing efficiency between generating an initial partition or not, Table 5 shows
that the case “No initial partition” is better for the medianoid problems. This effect
is less for the reverse medianoid problems, because for this problem Algorithm 1 is
applied to smaller rectangles.

We now focus on the memory requirement as performance indicator. As said,
branch-and-bound algorithms are usually hindered by huge search trees that need
to be stored in memory. This part of complexity usually increases rapidly with dimen-
sion and with accuracy. Table 6 shows the memory requirements when the best of the
four upper bounds is used. Selection rule applied is best-bound-search for both algo-
rithms and the accuracies are εl = 0.01 and ε f = 0.01. The second column shows
the number of rectangles required by Algorithm 2 as the maximum number stored
during the iterations. In the columns 3 to 6 the maximum and average number (over
the solved problems) are given of memory requirement for the medianoid and reverse
medianoid problems, respectively.

One can observe that the memory requirement of the branch-and-bound approach
for these continuous location problems is not dramatic for the used accuracy; there
are never more than 30 subsets in the storage tree. Is this still the case if we increase
accuracy? Notice that to have valid upper and lower bounds of the leader problem,
the follower problem (giving lower bounds) and reverse medianoid (giving upper
bounds) should be solved with an accuracy that is at least as tight as that of the leader
problem. We evaluate the number of iterations as well as the memory requirement
if the accuracy is tightened for the case where the number of existing facilities is
taken as k = 4. The results in Table 7 show that the number of iterations of the
algorithms increases less than linear with the used accuracy in terms of 1/ε. The
memory requirement hardly goes up, showing that the best bound selection rule is
efficient.

Given the evaluations of different variants of the algorithm on this case, in the next
cases we apply a best-bound selection rule, the best upper bound at each iteration and
no initial partitioning of the domain is generated.

123

Huff-like Stackelberg location problem 699

Table 7 Efficiency when accuracy is increasing. Case with k = 4. Selection rule: best-bound-search

Accuracy of the leader

εl = 0.01 εl = 0.001 εl = 0.0001

Accuracy of the medianoid and reverse medianoid problems

ε f

0.01 0.001 0.0001 0.001 0.0001 0.0001

Iterations
Leader 85 95 95 143 151 219

Follower med. (Avg) 282.69 314.6 416.54 305.10 397.19 386.20

Reverse med. (Avg) 141.90 433.55 1186.64 296.20 784.34 549.65

Memory

Leader 5 6 6 8 9 9

Follower med. (Avg) 14.56 15.54 18.6 15.36 18.38 18.26

Reverse med. (Avg) 8.38 11.21 14.44 9.02 12.01 9.71

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Fig. 4 Generated partition by the algorithm. Case from Drezner and Drezner (1998): k = 1 (left), k = 3
(right)

5.2 Case II: from literature

In the second case where n = 16 and m = 6, data have been taken from Drezner
and Drezner (1998). In that paper, the existing facilities all belong to other chains
different from the leader or follower. Thus, to adjust the data to our model, we have
assigned the first k existing facilities to the leader and the rest to the follower. The
data is different from randomly generated examples, as many points are situated along
coordinate lines as can be observed from Fig. 4. The exact location of demand points
and other facilities can be found in Appendix B (Tables 12, 13). Table 8 shows the
results of the algorithm for k = 0, . . . , m. The optimal locations and resulting market
capture for both chains are given.

One can observe the co-location effect when the number of existing facilities of
the leader is low. Notice that this effect can also be observed when the leader is a
newcomer with less facilities than the follower. Co-location of the new facilities does
not occur when the follower is a newcomer, albeit co-location occurs with an existing

123

700 M. Elena Sáiz et al.

Table 8 Optimal locations Case II, market capture and number of iterations for both chains. Parameter
z∗
l = market capture after locating facility, Mbl before; locations and market captures are rounded to two

decimals

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

Optimal location

Leader

(
1.99
1.99

) (
1.99
1.99

) (
1.99
1.99

) (
1.99
1.99

) (
2.00
2.00

) (
2.00
2.00

) (
2.00
2.00

)

Follower

(
1.99
1.99

) (
1.99
1.99

) (
1.99
1.99

) (
3.00
5.00

) (
3.00
5.00

) (
3.00
5.00

) (
3.00
4.99

)

Market capture
Leader 203.36 368.82 455.09 661.24 872.68 1037.21 1087.25

Follower 1143.14 977.68 891.41 685.26 473.82 309.29 259.25

z∗
l − Mbl (gain or loss)

203.36 157.31 129.67 48.31 −140.26 −234.34 −259.25

facility of the competitor. Figure 4 gives an impression of the final partition generated
by the branch-and-bound algorithm for the leader (cases with k = 1 and k = 3),
together with the locations of demand points, existing facilities and new facilities.

Table 9 shows the number of iterations and the use of the 4 upper bounds. As in
Case I, only upper bounds U B1 and U B4 were used.

Finally, Table 10 shows the memory requirements for Case II. The second column
shows the maximum number of rectangles stored during the iterations by Algorithm
2. Columns 3 to 6 show the maximum and average number of rectangles stored for
the follower medianoid and reverse medianoid, respectively.

5.3 Case III: varying problem dimension

In this section, numerical results of the evaluation of the Algorithms 1 and 2 are dis-
cussed. The wider question is whether the algorithms are able to solve larger problems
in reasonable time. To study the performance of the algorithms, we have generated
different types of problems, varying the number n of demand points, the number m
of existing facilities and the number k of facilities belonging to the leader chain. For
every type of setting, ten problems were randomly generated. The settings are defined
by choosing:

– n = 20, 30, . . . , 110
– m = 5, 10, 15
– k = [m/2].

For each n, m-combination parameter values of ten problems were uniformly chosen
within the following intervals:

– pi , q j ∈ ([0, 10], [0, 10]), i = 1, . . . , n, j = 1, . . . , m
– wi ∈ [1, 10], i = 1, . . . , n
– a j ∈ [0.5, 5], j = 1, . . . , m.

123

Huff-like Stackelberg location problem 701

Ta
bl

e
9

N
um

be
ro

fi
te

ra
tio

ns
w

he
n

th
e

be
st

of
th

e
4

up
pe

rb
ou

nd
s

ar
e

co
ns

id
er

ed
.S

el
ec

tio
n

ru
le

:b
es

t-
bo

un
d-

se
ar

ch
in

A
lg

or
ith

m
1

an
d

A
lg

or
ith

m
2.

G
iv

es
nu

m
be

ro
ft

im
es

U
B

1
is

th
e

sh
ar

pe
st

an
d

U
B

4
is

th
e

sh
ar

pe
st

k
It

er
U

pp
er

bo
un

ds
us

ed

L
ea

de
r

It
er

at
io

ns
Fo

llo
w

er
m

ed
ia

no
id

R
ev

er
se

m
ed

ia
no

id

Fo
llo

w
er

m
ed

ia
no

id
R

ev
er

se
m

ed
ia

no
id

pr
ob

le
m

s
pr

ob
le

m
s

pr
ob

le
m

s
pr

ob
le

m
s

U
B

1
U

B
4

U
B

1
U

B
4

M
ax

A
vg

M
ax

A
vg

M
ax

A
vg

M
ax

A
vg

M
ax

A
vg

M
ax

A
vg

0
14

17
91

3
45

0.
32

46
33

16
5.

23
83

9
41

3.
93

11
9

36
.3

9
46

33
12

8.
21

21
07

37
.0

2

1
11

27
29

7
23

2.
14

15
17

54
.4

0
28

8
22

2.
85

25
9.

29
15

17
48

.0
0

12
1

6.
40

2
71

5
27

7
21

7.
93

20
01

82
.9

7
26

9
20

9.
05

19
8.

88
20

01
81

.6
2

11
7

1.
35

3
24

9
26

1
17

4.
36

15
13

11
8.

04
24

3
16

0.
58

20
13

.7
8

15
13

10
7.

06
31

5
10

.9
8

4
17

7
23

9
18

3.
17

57
3

83
.2

5
21

4
15

3.
96

33
29

.2
1

57
3

75
.6

5
10

3
7.

60

5
18

1
24

9
19

0.
83

40
5

63
.1

9
21

9
15

5.
67

38
35

.1
6

40
5

59
.5

8
37

3.
61

6
12

5
38

9
24

8.
33

55
7

61
.7

7
34

5
21

5.
78

44
32

.5
5

55
7

56
.7

6
29

5.
01

123

702 M. Elena Sáiz et al.

Table 10 Memory requirement Case II. Max number of stored rectangles

k Leader Follower medianoid Reverse medianoid

Problem Max Avg Max Avg

0 22 29 18.32 27 9.80

1 24 12 11.15 26 6.11

2 16 11 10.92 28 6.18

3 10 12 11.16 28 7.15

4 10 12 11.77 17 6.58

5 10 12 12.00 21 6.14

6 10 15 12.73 22 6.45

0
100
200
300
400
500
600
700
800
900

1000

20 30 40 50 60 70 80 90 100 110

Number of Iterations

m=5
m=10

m=15

Follower

m=5

m=10

m=15

Leader

Number of Demand Points

0

5

10

15

20

25

30

20 30 40 50 60 70 80 90 100 110

m=5

m=10

m=15
Follower

m=5

m=10

m=15
Leader

Number of Stored Rectangles

Number of Demand Points

Fig. 5 Average number of iterations and memory requirement (rectangles) over ten random cases varying
number of demand points n = 20, . . . , 110, existing facilities m = 5, 10, 15 and k = m/2. Selection rule:
best-bound-search and εl = ε f = 0.01

From Fig. 5, one can observe that an increasing number of demand points does
not make the problem more complex in terms of the memory requirement for the
branch-and-bound. The leader problem neither needs more iterations. The follower
problem however, needs more iterations on average to reach the predefined accuracy.
The experiment suggests that no exponential effort is required to solve the problems
with increasing number of demand points. This confirms the viability of the approach.

6 Conclusions and future work

In this paper, we described a competitive Huff-like Stackelberg location model for mar-
ket share maximisation. There are two competitors (chains); first the leader locates
and then the follower makes a decision with full knowledge of choices of the leader.
We consider competition with foresight and probabilistic behaviour. Attraction of a
customer is depending on the location and the quality of the facility. The location of
the leader facility is the variable of the problem. The problem is known to be a Global
Optimisation problem. In order to solve it, we have constructed a branch-and-bound
algorithm for the follower problem and for the leader problem. The branch-and-bound
algorithms guarantee a global optimum within a given accuracy (gap between lower

123

Huff-like Stackelberg location problem 703

and upper bound). The introduced bound of the leader problem is based on the zero sum
concept where gain of one chain is loss for its competitor. We have developed and com-
pared four different upper bounds for the algorithm of the (reverse) medianoid problem.

The algorithms were illustrated with several cases. In a first case, the algorithm
settings and performance were studied. The selection rule and accuracy were varied to
study the performance and effectiveness of the different bounds. A variant where an
initial partition is generated was also studied. In a second case taken from literature,
good algorithm settings from the first case were used. In the last case, many instances
were generated at random where the size and the number of existing facilities is varied
to validate the viability of the approach.

Looking at effectiveness, one can observe the co-location behaviour of the optimum
strategy as one can expect. Also the difficulty on multimodal behaviour is reflected
when measuring the efficiency as the number of iterations to solve the problem up to
desired accuracy ε. Efficiency has been measured computationally. Comparing bounds
and several variants with respect to selection rule and generating an initial partition
to improve bounds, we found the following. More sophisticated bounds are not nec-
essarily more effective than simple bounds based on distance comparison over the
complete run of the algorithm. One can best focus on measuring the quality of the
bound during the run and take the sharpest one. For the selection rule, the focus on the
best bound (most promising) selection of the next subset to be split has the tendency
to result in minimum effort on number of function evaluations. However, one always
has to keep in mind that a depth first search may lead to less memory requirement of
a branch-and-bound algorithm. Where memory requirement is usually a problem for
higher dimensions, it is not necessarily a focus point for the location problem in two
dimensional space.

Future research will include the quality of the leader and follower as variables of
the problem.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix A: Test problems

Table 11 Locations and distances from demand points to facilities

Facility Demand points 1 2 3 4 5 6 7 8 9 10

X axis Y axis 2.44 5.33 0.57 5.03 4.66 5.72 5.41 1.75 4.93 5.45
3.97 4.34 5.27 0.69 5.75 0.25 1.65 3.79 1.44 3.59

1 2 5 1.12 3.40 1.45 5.27 2.76 6.04 4.78 1.24 4.61 3.72

2 3 2 2.05 3.30 4.07 2.42 4.10 3.24 2.43 2.18 2.01 2.92

3 1 3 1.73 4.53 2.31 4.65 4.58 5.47 4.61 1.09 4.23 4.49

4 5 4 2.56 0.47 4.61 3.31 1.79 3.82 2.39 3.25 2.56 0.61

123

704 M. Elena Sáiz et al.

Appendix B: Input data for example from Drezner and Drezner (1998)

Table 12 Distances from demand points to facilities

Facility Demand points

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1.82 0.36 1.06 4.81 2.48 0.85 2.82 4.85 5.32 7.22 5.94 3.09 1.53 4.02 4.44 3.40

2 1.03 2.66 2.42 2.66 2.94 1.75 1.03 3.14 2.73 4.68 3.50 0.51 1.50 1.50 1.86 2.58

3 1.00 2.86 2.41 2.28 2.72 1.90 0.63 2.72 2.61 4.67 3.22 0.45 1.84 1.26 1.84 3.00

4 2.81 4.80 3.98 0.28 3.56 3.81 1.81 1.22 1.81 3.98 1.44 1.97 3.88 1.13 1.97 4.72

5 3.64 5.59 4.92 1.12 4.61 4.61 2.69 2.06 1.12 3.04 0.50 2.50 4.50 1.50 1.80 4.92

6 4.90 6.58 6.31 3.20 6.36 5.71 4.18 4.18 1.36 0.92 2.11 3.50 5.24 2.77 2.11 4.80

Table 13 Location and buying power for demand points and location and attractiveness for existing facil-
ities

Number Facility points

q1 q2 a j

1 2.7 6.8 7

2 3.9 4.5 3

3 3.6 4.2 7

4 3.2 2.2 10

5 4.0 1.5 7

6 6.1 1.2 3

Number Demand points

p1 p2 wi

1 3 5 163.8

2 3 7 28.8

3 2 6 39.0

4 3 2 77.4

5 1 5 42.0

6 3 6 107.0

7 3 4 64.5

8 2 2 250.6

9 5 2 101.4

10 7 1 57.6

11 4 1 132.0

12 4 4 77.6

13 4 6 29.6

14 4 3 67.5

15 5 3 50.7

16 6 6 57.0

123

Huff-like Stackelberg location problem 705

References

Bhadury J, Eiselt H, Jamarillo J (2003) An alternating heuristic for medianoid and centroid problems in the
plane. Comput Operat Res 30:553–565

Casado LG, Hendrix EMT, García I (2007) Infeasibility spheres for finding robust solutions of blending prob-
lems with quadratic constraints. J Global Optimi 39(2):577–593. doi:10.1007/s10.898-007-9157-x

Drezner T (1994) Locating a single new facility among existing unequally attractive facilities. J Reg Sci
34(2):237–252

Drezner T, Drezner Z (1994) Optimal continuous location of a retail facility, facility attractiveness and
market share: an interactive model. J Retail 70:49–64

Drezner T, Drezner Z (1997) Replacing continuous demand with discrete demand in a competitive location
model. Naval Res Logist 44:81–95

Drezner T, Drezner Z (1998) Facility location in anticipation of future competition. Location Sci 6:155–173
Drezner T, Drezner Z (2004) Finding the optimal solution to the huff based competitive location model.

Comput Manage Sci 1:193–208
Drezner Z (1982) Competitive location strategies for two facilities. Reg Sci Urban Econ 12:485–493
Eiselt H, Laporte G (1996) Sequential location problems. Eur J Opera Res 96:217–231
Eiselt H, Laporte G, Thisse JF (1993) Competitive location models: a framework and bibliography. Transp

Sci 27:44–54
Fernández J, Pelegrín B, Plastria F, Tóth B (2007) Solving a huff-like competitive location and design model

for profit maximization in the plane. Eur J Oper Res 179:1274–1287
Hakimi S (1983) On locating new facilities in a competitive environment. Eur J Oper Res 12:29–35
Ibaraki T (1976) Theoretical comparisons of search strategies in branch and bound algorithms. Int J Comput

Inform Sci 5:315–344
Mitten LG (1970) Branch and bound methods: general formulation and properties. Oper Res 18:24–34
Plastria F (1992) Gbsss, the generalized big square small square method for planar single facility location.

Eur J Oper Res 62:163–74
Plastria F (1997) Profit maximising single competitive facility location in the plane. Stud Locat Anal

11:115–126
Plastria F (2001) Static competitive facility location: an overview of optimisation approaches. Eur J Oper

Res 129:461–470
Plastria F, Carrizosa E (2004) Optimal location and design of a competitive facility. Mathe Program

100:247–265
Tuy H, Al-Khayyal F, Zhou F (1995) A d.c. optimization method for single facility location problems.

J Global Optim 7:209–227

123

http://dx.doi.org/10.1007/s10.898-007-9157-x

	On a branch-and-bound approach for a Huff-like Stackelberg location problem
	Abstract
	1 Introduction
	2 Description of the problem
	3 A branch-and-bound algorithm for the medianoid (follower) problem
	3.1 The algorithm
	3.2 Branching rule
	3.3 Selection rule
	3.4 Lower bound
	3.5 Upper bounds for the follower problem (FP(x1))

	4 A branch-and-bound algorithm for the leader problem
	4.1 The algorithm
	4.2 Lower bound
	4.3 Upper bounds

	5 Numerical examples
	5.1 Case I: varying algorithm setting
	5.2 Case II: from literature
	5.3 Case III: varying problem dimension

	6 Conclusions and future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

