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Abstract 

 

Plants defend themselves against herbivorous insects with the induced produc-

tion of volatiles that attract the enemies of the herbivores. In this thesis I used 

an ecogenomic approach to study the role of signal-transduction pathways that 

regulate the induction of herbivore-induced plant volatiles (HIPV) and the ef-

fects of HIPVs on parasitoid host-finding behavior. To this end, I have combined 

transcriptomics, metabolite analyses and insect behavioral analyses. 

 

Nine Arabidopsis thaliana accessions were screened for the emission of HIPVs. 

The accessions varied in the emission rate of Pieris rapae–induced volatiles after 

folivory or treatment with the herbivory-mimicking plant hormone jasmonic acid 

(JA). The relevance of this observed variation in the emission of JA-induced 

volatiles for host location was tested with Diadegma semiclausum parasitoids. 

Furthermore, the accessions also varied in transcript levels of genes that are 

(putatively) involved in the production of some of the recorded HIPV-

compounds. 

The oxylipin JA is the key plant hormone involved in the induction of the HIPV-

blend emitted in response to caterpillar folivory. Mutant plants affected in the 

oxylipin signal-transduction pathway were studied to assess the effects of JA 

and its oxylipin intermediates 12-oxo-phytodienoate (OPDA) and dinor-OPDA 

(dnOPDA) on HIPV emission and attraction of the parasitoid D. semiclausum. In 

contrast to the effect of JA on the induced production of HIPVs, dnOPDA and 

OPDA were found to have no and little effect, respectively. The HIPV-compound 

methyl salicylate was shown to be JA-regulated and its abundance in the head-

space varied among accessions. The contribution of methyl salicylate to parasi-

toid attraction was investigated. Bioassays with P. rapae-infested transgenic 

plants, lacking MeSA production, showed that MeSA negatively influenced 

D. semiclausum host-finding behavior. 

Mutant plants were also studied to assess whether JA and its intermediates af-

fected the induction of genes potentially involved in defense. The different 

oxylipins were shown to have distinct roles in induced defense signaling. Jas-

monic acid had the strongest effect on transcript levels of defense-related genes 

from the oxylipin- and shikimate signal-transduction pathway. Minor roles were 

observed for OPDA and dnOPDA in the induction of one of these genes. 

 

Utilizing an ecogenomic approach has provided new insight into the mechanisms 

underlying insect-plant interactions and holds promising opportunities.  
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Chapter 1 

General introduction 

 

To fend off attacks by herbivorous insects, plants have evolved various defense 

mechanisms that can be divided into two distinct strategies. The first strategy 

is constitutively present. This involves physical bariers such as thorns, wax  

layers or trichomes. After breaking through this barrier, herbivores face the 

next constitutive barrier, consisting of secondary metabolites such as digestibi-

lity reducers, repellents, and toxins. In addition, plants can enhance the pre-

sence of natural enemies of herbivorous insects by providing them shelter 

(Karban and Baldwin, 1997; Schoonhoven et al., 2005). The second defense 

strategy that plants can utilize is defense that is activated after actual herbi-

vore feeding-damage. Plants may increase their barriers, for instance, by an 

increased trichome density (Agrawal et al., 2002; Traw and Dawson, 2002), or 

an increased concentration of secondary metabolites that are already present 

at lower concentrations (Karban and Baldwin, 1997; Walling, 2000). Herbivory 

can also induce the de novo production of secondary metabolites, such as vola-

tile infochemicals (Dicke and Sabelis, 1988). Volatile infochemicals can be indi-

rectly beneficial for the plant, since they can provide natural enemies of the 

herbivores, i.e. predators and parasitoids, with detectable and reliable informa-

tion for localization of their prey or host (Vet and Dicke, 1992).  

 

In this thesis, I focus on induced indirect plant defense mechanisms involving 

herbivore-induced plant volatile (HIPV) production. I studied the effects of alte-

ring underlying mechanisms that affect HIPV production and the role of HIPVs 

in attracting natural enemies to infested plants. 

 

My PhD project was embedded in an NWO-VICI-project that used an ecoge-

nomic approach to address the role of infochemicals in insect-plant interac-

tions. To study induced indirect plant defense, a plant-insect system composed 

of crucifer plants and their related insect fauna, i.e. biting-chewing herbivores 

and parasitoids, was adopted as the experimental study system. Extensive 

knowledge is already available on characteristics and interactions of the in-

volved species, see e.g. Steinberg et al., 1993; Geervliet et al., 2000; Bukovin-

szky et al., 2005; Bruinsma et al., 2007; Smid et al., 2007; Van Leur et al., 

2008. In particular, the roles of HIPVs in host-finding behavior of parasitoid 

wasps that attack the larval stages of the herbivores are well-studied for cruci-

fers (Gols and Harvey, 2009). Additionally, the cruciferous plant Arabidopsis 

thaliana, well established as tool in molecular genetics, shows similar re-

sponses to herbivory as other members of the brassicaceous family (Mitchell-

Olds, 2001; Van Poecke and Dicke, 2004). Furthermore, many Arabidopsis 

genotypes (wild-types and mutants) that are altered in various defense traits 
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are readily available. Combined with the relatively easy generation of transge-

nics, this makes Arabidopsis a very interesting species to study induced indirect 

defense traits. The use of Arabidopsis has already resulted in the partial eluci-

dation of signal-transduction pathways as well as biosynthetic pathways under-

lying the production of HIPVs. Also, Arabidopsis 

can be used as a stepping stone towards other 

crucifer species. The knowledge obtained from 

using Arabidopsis as a model-system for plant-

insect interactions (Fig. 1) can be utilized in 

studies of related crops, e.g. when cloning 

genes of Brassica spp. (Zheng et al., 2007). 

Furthermore, microarrays developed for Arabi-

dopsis can be exploited to investigate global 

gene expression in Brassica (Lee et al., 2004; 

Broekgaarden et al., 2007, 2008).  

 

Within the NWO-VICI-project I took a molecular 

genetic approach to study the role of HIPVs in 

parasitoid attraction using Arabidopsis. Al-

though the production of HIPVs is orchestrated 

by at least three signal-transduction pathways, 

the jasmonic acid (JA), the salicylic acid (SA), 

and the ethylene (ET) pathways (Dicke and Van 

Poecke, 2002), it is mainly the jasmonic acid 

pathway that is induced after herbivory by bi-

ting-chewing herbivores (Kessler and Baldwin, 

2002; Liechti and Farmer, 2002; De Vos et al., 

2005). Therefore, the role of the jasmonate 

pathway and effects of its modifications on 

parasitoid host-finding behavior is the main 

objective of investigation in this thesis. Using 

well-defined Arabidopsis genotypes (i.e. wild-

types, mutants and transgenics) I gained more 

insight in the mechanisms that underlie HIPV 

production and the ecological effects of HIPVs 

on parasitoids.  

 

Thesis outline 

 

Chapter 2 reviews the current approaches to studying the role of HIPVs in  

insect-plant interactions. Furthermore, it discusses the future prospects of link-

Figure 1. Tritrophic model sys-
tem used in this thesis. A: Arabi-
dopsis thaliana with folivory da-
mage, B: Pieris rapae (L1/L2) 
caterpillar feeding, C: Parasitoid 
wasp Diadegma semiclausum that 
attempts to parasitize a P. rapae-
larva 
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Chapter 1 

ing new developments in functional genomics with ecology, which may provide 

novel tools to study infochemicals and plant-insect interactions in a food web 

context.   

Chapter 3 presents a study of the genetic variation in Pieris rapae-induced 

indirect defense mechanisms among nine Arabidopsis accessions that originate 

from different geographic origins. We analyzed whether there is phenotypic 

variation among accessions in terms of herbivore-induced emission of volatiles. 

Furthermore, variation was screened for transcript levels of genes that are 

(putatively) assigned to the biosynthesis of volatile compounds. Finally, bioas-

says were performed to assess whether the observed variation among acces-

sions is reflected in host-finding behavior of the parasitoid Diadegma semi-

clausum.  

Chapter 4 describes the multidisciplinary approach I took to unravel the jas-

monic acid pathway that underlies the induction of HIPVs in response to 

P. rapae folivory. The approach taken combines analyses of oxylipin titers, 

headspace analyses and investigations of parasitoid behavior. Plants mutated 

in different genes involved in the jasmonate pathway were studied to assess 

the effect of JA and its intermediates on HIPV-production and attraction of the 

parasitoid D. semiclausum. 

Chapter 5 addresses the question whether JA and intermediates of the jas-

monate signal-transduction pathway affect the induction of genes involved in 

induced defense. The mutants studied in chapter 4 were now analyzed for 

variation in P. rapae-induced transcript levels of genes in both the JA and SA 

signal-transduction pathways.  

In Chapter 6, I took a slightly different molecular genetic approach. In this 

chapter, I used a transgenic Arabidopsis line altered in the biosynthesis of an 

HIPV compound, i.e. methyl salicylate. The emission rate of the selected vola-

tile compound varied among Arabidopsis accessions (chapter 3) and was also 

found to be influenced by alterations of the jasmonate pathway (chapter 4). 

Therefore, variation in the emission of this compound might influence parasi-

toid behavior. In this chapter, I investigated the contribution of methyl salicy-

late to the attraction of the parasitoid D. semiclausum towards the caterpillar-

induced plant volatile blend.  

Chapter 7 summarizes and discusses the most important results from this the-

sis. In this chapter I also consider the future perspectives for this molecular 

genetic approach to the ecology of HIPV.  
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Abstract 

 

Linking novel developments in genomics with ecology provides interesting novel 

tools to address ecological questions in ways that have not been possible up to 

now. In this paper we address this issue for the ecology of infochemicals and 

plant-insect interactions in a food web context. Plants are at the basis of most 

terrestrial food webs and insects are a dominant animal group interacting with 

plants. Insect-plant communities are characterized by direct and indirect inter-

actions, many of which are mediated by infochemicals. Plants respond to insect 

herbivory with the production of volatiles that attract the enemies of the herbi-

vores, such as insect predators and parasitoids. Moreover, the plant volatiles 

may be exploited by any organism in the environment and this results in many 

more infochemically-mediated interactions. Thus, a food web is overlaid with an 

infochemical web. In the past, several manipulative tools have been developed 

to investigate the role of infochemicals. The rapid advancement of molecular 

genetics and „–omics‟ technologies results in interesting new tools. A recent de-

velopment is the use of well-characterized genotypes that are modified in the 

mechanisms underlying the induced plant volatiles. These genotypes produce 

precisely manipulated phenotypes, that often differ in only a single gene, and 

can be used to investigate the effect of particular genes on specific interactions. 

Moreover, these genotypes can be introduced into a natural community to as-

sess the effects of the genetic change and its resulting phenotypic change on 

interactions with the entire natural community. Furthermore, with the progress 

in microarray technology it becomes possible to assess the expressed genotype 

of plants in the field, which can be exploited to investigate expressed genetic 

variation under field conditions. These developments are expected to be only 

the beginning of a successful integration of –omics technologies, such as tran-

scriptomics and metabolomics, with community ecology into the new research 

field of ecogenomics. In this review we present the current status and discuss 

the prospects for the future of an ecogenomic approach to the role of herbivore-

induced plant volatiles in insect-plant community ecology. 

Key words:  

Phenotypic plasticity, insect-plant interactions, induced defense, infochemicals, ma-

nipulative approach, community genetics 
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Introduction 

 

A principal aim of ecologists is to understand the mechanisms shaping popula-

tion and community processes. The evolution of species interactions, and 

hence their impact on the community, can only be fully understood by the 

study of the genetics and dynamic processes underlying such interactions. Du-

ring the last decade, developments in the study of the organization and func-

tioning of genomes have resulted in the acquisition of novel insights in the ef-

fects of individual genetic variation and plasticity on community processes. 

Among the plethora of –omics, the relatively recent branch of ecogenomics 

holds promise for major breakthroughs in linking these two fields (Van Straalen 

and Roelofs, 2006). 

 

Chemical information 

 

Chemical cues are a major source of information for very different organisms 

ranging from micro-organisms to mammals (e.g. Roitberg and Isman, 1992; 

Kats and Dill, 1998; Tollrian and Harvell, 1999; Dicke and Grostal, 2001) that 

affect various behaviors underlying population dynamics and food web interac-

tions (e.g. Roitberg and Isman, 1992; Kats and Dill, 1998; Turlings and Ben-

rey, 1998; Dicke and Vet, 1999; Sabelis et al., 1999; Hilker and Meiners, 

2002). However, the study of chemical information conveyance has been 

mostly restricted to studies at the level of individual organisms and the identifi-

cation of the chemicals that convey the information. The influence of chemical 

information on food web processes has received little attention (Vet, 1998; Van 

der Meijden and Klinkhamer Peter, 2000; Hunter, 2002), in contrast to the in-

fluence of direct trophic interactions (Morin, 1999). Yet, circumstantial evi-

dence indicates that chemical information from phenotypically plastic plants 

can have important influences on food web dynamics through indirect effects 

that combine bottom-up and top-down effects (Dicke and Vet, 1999; Sabelis et 

al., 1999; Kessler and Baldwin, 2001).  

Herbivore-induced plant volatiles are infochemicals that mediate many interac-

tions in a plant-insect community, both above- and below-ground (Dicke and 

Vet, 1999; D'Alessandro and Turlings, 2005; Rasmann et al., 2005). These 

volatiles that plants produce in response to damage inflicted by herbivores af-

fect various interactions of the plant with community members (Dicke and Vet, 

1999; Dicke, 2000; Strauss et al., 2001). For instance, herbivore-induced plant 

volatiles may deter or attract herbivores, but they also indirectly affect carni-

vore-herbivore interactions through attraction of carnivores. Differential re-

sponses by different carnivore species may mediate the degree to which they 

compete for the same resource or interact through intraguild predation on each 

other. Carnivorous arthropods largely rely on herbivore-induced plant volatiles 

in locating herbivores or their microhabitat from a distance. Moreover, herbi-

vore-induced plant volatiles can also affect herbivore-plant and carnivore-
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herbivore interactions on neighboring plants through their effect on the 

neighbor‟s phenotype (Dicke and Vet, 1999; Sabelis et al., 1999; Dicke et al., 

2003a). These herbivore-induced plant volatiles (HIPV) represent phenotypi-

cally plastic responses of plants to herbivory that result in changes in interac-

tions among individuals in the insect-plant community. 

 

Insect-plant communities 

 

Approximately 50% of all insect species feed on plants and the other half con-

sists of carnivores and detritivores (Schoonhoven et al., 2005). Insect-plant 

communities are complex entities that consist of hundreds of species (Rott and 

Godfray, 2000). In addition to the large number of species, genetic variation 

among species members as well as phenotypic plasticity of individuals add to 

the complexity of insect-plant interactions in communities (Agrawal, 2001).  

Insect-plant communities are highly dynamic. Population sizes of insects may 

quickly change and food webs can show drastic quantitative changes within a 

season (Rott and Godfray, 2000). Moreover, interactions between two commu-

nity members may influence interactions between various others. Many species 

show phenotypic plasticity that is induced by the interaction with community 

members and phenotypic changes may be specific for the interaction that in-

duces them (Agrawal, 2001). Thus, dynamic food web changes can be ampli-

fied through their effects on interactions between members of the food web. 

When studying a plant-insect community, ecologists may focus on the food 

web that connects different species in a direct way according to trophic rela-

tionships exclusively. Communities also contain indirect interactions between 

species from different trophic levels, mediated by a third species. For instance, 

plants may attract the enemies of herbivorous insects with plant volatiles that 

are induced by feeding damage inflicted by the herbivores.  

Both direct and indirect interactions in a community are mediated by chemical 

information (infochemicals, (Dicke and Sabelis, 1988)). Every member of a 

community produces infochemicals that can influence direct interactions be-

tween the producer of the cues and the organisms that have a trophic relation-

ship with the producer. Moreover, an infochemical that is released into the en-

vironment can be exploited by any organism of the community to meet its own 

needs. As a result, infochemicals mediate ample indirect interactions as well 

(Turlings and Benrey, 1998; Dicke and Vet, 1999; Sabelis et al., 1999). Thus, 

a food web is overlaid with an infochemical web. This infochemical web is more 

reticulate than the food web as the food web only comprises direct interactions 

whereas the infochemical web also comprises indirect interactions (Dicke and 

Vet, 1999; Shiojiri et al., 2001). 

 

A major challenge for biology in the 21st century is to integrate research ap-

proaches that address different levels of biological organization: i.e. from sub-

cellular processes all the way to community processes (Fig. 1). A pressing issue 

in ecology is to understand how interactions among individual organisms  
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influence food webs and community dynamics. Evolutio-

nary ecologists aim at understanding how genetic diffe-

rences affect the fitness of individuals in complex com-

munities. This can now be addressed through a novel 

integration of approaches: from ecogenomics, through 

behavioral ecology to community ecology. The major 

question of evolutionary ecology, i.e. how individual 

genes affect an individual‟s performance, can now for 

the first time be investigated as such without the con-

founding influence of other genetic differences between 

individuals. This is the topic of this review in which we 

focus on infochemicals and the community ecology of 

plant-insect interactions. 

 

Manipulative tools for investigating the  

infochemical web 

 

To develop manipulative tools, knowledge of underlying 

mechanisms is of great importance. Investigating com-

munity dynamics and the role of the infochemical web 

requires precise manipulative tools. Ideally one should 

be able to modify individual components of the in-

fochemical web and assess the resulting effects on com-

munity processes. Various manipulative tools have been 

developed over the past decades. Each of these tools is 

based on mechanistic information on the production of, 

and response to, the infochemicals (Dicke et al., 2003b). 

Here we will briefly review the different tools developed. 

Ecologists initially started to investigate the effects of   

individual chemicals and mixtures of specific cues (Dicke 

et al., 1990c; Whitman and Eller, 1990; Turlings et al., 

1991; Birkett et al., 2000). The chemicals used were 

derived from analytical studies that deciphered the composition of HIPV blends. 

Surprisingly, individual compounds from HIPV blends were found to attract car-

nivorous arthropods although the compounds were not specific indicators of 

their herbivorous prey or hosts (Dicke et al., 1990c; Whitman and Eller, 1990). 

This was followed by experiments where more compounds from the HIPV blend 

were offered simultaneously (Turlings et al., 1991). More recently, HIPV blends 

were fractionated and the fractions were investigated for their effects on ar-

thropods (Turlings and Fritzsche, 1999; Van den Boom, 2003; D'Alessandro 

and Turlings, 2005). 

For investigating the effects of infochemicals on individual interactions or ove-

rall community effects, the use of (blends of) pure chemicals can be a first 

step, if the compounds of interest are available as pure compounds. This allows 

well-defined application of stimuli (Dicke et al., 1990c; Whitman and Eller, 

Figure 1. Molecular 
genetics and com-
munity ecology are 
involved at different 
levels of biological 
integration and 
overlap at the level 
of the individual.  
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1990; Turlings et al., 1991; Kessler and Baldwin, 2001; D'Alessandro and 

Turlings, 2005; D'Alessandro et al., 2006). Yet, although this can provide valu-

able information, the application of synthetic chemicals cannot mimic the natu-

ral dynamics of volatile emission. For compounds that are not synthetically 

available or for complex blends the use of elicitors may be a valuable tool to 

investigate the effect on individual interactions (Dicke et al., 1999). Elicitors 

can induce a subset of the blend of herbivore-induced plant volatiles (Koch et 

al., 1999). This allows to assess the role of individual compounds against a 

complex odor background by supplementing the partially induced blend with 

individual compounds (De Boer and Dicke, 2004; De Boer et al., 2004). Yet, 

also in this case the natural dynamics of volatile emission will not be mimicked. 

The use of inhibitors that block specific steps in the signaling- or biosynthetic 

pathways (Zeidler et al., 1998; Koch et al., 1999) is more likely to leave the 

non-inhibited signaling and biosynthetic pathways intact. Therefore, the non-

affected pathways are likely to retain their natural dynamics. However, a disad-

vantage may be that chemicals that accumulate in the last step before the in-

hibited step have physiological side-effects or are redirected into another bio-

synthetic pathway. A metabolomic analysis may provide more insight into this 

(Bezemer and van Dam, 2005).  

Plant physiological- and biochemical knowledge revealed that induced plant 

defenses are orchestrated by three main signaling pathways, the octadecanoid 

pathway, the shikimate pathway and the ethylene pathway (Dicke and Van 

Poecke, 2002; Kessler and Baldwin, 2002). These three signaling pathways are 

also involved in the induction of infochemicals (Horiuchi et al., 2001; Dicke and 

Van Poecke, 2002; Kessler and Baldwin, 2002; Van Poecke and Dicke, 2004). 

Mechanistic knowledge of the biosynthetic and signaling pathways provides 

interesting options for manipulating the emission of plant volatiles through spe-

cific elicitors and inhibitors (Koch et al., 1999). During the last decade molecu-

lar genetic information on the induction of plant volatiles has rapidly accumu-

lated. This allows the use of mutants or plants that have been genetically 

modified in the biosynthetic (Kappers et al., 2005; Schnee et al., 2006) or sig-

naling pathways (Thaler et al., 2002; Van Poecke and Dicke, 2002; Ament et 

al., 2004; Kessler et al., 2004) with consequences for the emission of volatiles. 

The most interesting genotypes are those that differ in a limited number of well

-defined genes. Such genotypes have often been unavailable, but recent mo-

lecular genetic developments are changing this drastically. With the rapidly ex-

panding knowledge of genomics and molecular genetics specific genotypes are 

being developed in which the expression of a single gene is modified. These 

genotypes provide exciting new tools to ecologists. To a large extent this is 

already true for model plant species of molecular biologists such as Arabidopsis 

thaliana. However, these tools are rapidly being developed for ecological model 

species as well (Kessler et al., 2004; Schmidt et al., 2004).  
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Molecular ecological approach to community ecology 

 

All manipulative tools mentioned in the previous paragraph have been derived 

from information on mechanisms. In this paragraph we will specifically address 

the potential of a molecular genetic approach. It has yielded interesting results 

already (Baldwin et al., 2001; Degenhardt et al., 2003; Dicke et al., 2004) and 

holds many promises for the future. 

Novel transcriptomic developments have allowed the assessment of global re-

sponses of plants to environmental changes at the level of gene expression. 

This has shown that the attack by biotic agents can lead to drastic rearrange-

ments of gene expression (Reymond et al., 2000; Schenk et al., 2000; Herms-

meier et al., 2001; Reymond et al., 2004; De Vos et al., 2005). Attack results 

in up-regulation of defence-related genes and down-regulation of genes in-

volved in photosynthesis (Hermsmeier et al., 2001), which provides a mecha-

nistic explanation for the growth-defense trade-off that is well-known to ecolo-

gists (Herms and Mattson, 1992). Furthermore, it has become clear that re-

sponses of the same plant species to different attacker species can be very dif-

ferent and that induced signal-transduction pathways influence each other 

(Voelckel and Baldwin, 2004a; De Vos et al., 2005). As a consequence, the ef-

fects of combinations of species that attack the same plant can have quite sur-

prising effects on the expressed plant phenotype (De Vos, 2006). 

The analysis of plant volatiles is undergoing developments that extensively im-

prove our knowledge of the metabolomic changes in plants in response to at-

tack. With the application of more sensitive analytical equipment the composi-

tion of the induced blends appears to be more complex than was known before 

and with novel real-time techniques for data sampling and analysis also the 

dynamics of plant volatile emission can be registered in much more detail (for 

review see, Tholl et al., 2006). Moreover, the technological developments in 

metabolomics result in the recording of large sets of metabolites (Fiehn, 2002). 

Combining transcriptomic and metabolomic analyses in plants that are not a 

genomic model species can lead to the identification of genes involved in the 

biosynthetic pathways that lead to the production of herbivore-induced plant 

volatiles (Mercke et al., 2004). Two subtractive cDNA libraries, enriched in 

cDNA fragments up- or down-regulated by herbivore infestation can be made 

from the leaves of infested and uninfested conspecific plants. Randomly se-

lected clones from these libraries can be used to make a cDNA microarray. 

Subsequently, cDNAs prepared from mRNA from plants of several different 

treatments at different time points can be hybridized to the clones on the mi-

croarray. When induced volatile compounds were collected from the same 

leaves from which the mRNA was collected gene expression profiles can be 

analyzed in combination with volatile production data in order to gain insight in 

the possible involvement of the studied genes in the synthesis of those vola-

tiles. By grouping clones on the microarray and the herbivore-induced volatiles 

into a number of clusters, biosynthetic genes clustered with the product of that 

pathway can be found. The cDNA fragments on the microarray can then be 
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used to screen the cDNA library to clone the gene (Mercke et al., 2004).  

A logical next step in the -omics development is to link transcriptomics and 

metabolomics to the assessment of the ecological function of the identified 

genes and resulting infochemicals (Fig. 2). Transgenics and natural mutants in 

the genes of ecological interest can be important tools to study the effect of 

characteristics on the plant-insect community. This can be done by investigat-

ing the expression of phenotypes of an organism under different conditions, 

also termed „phenomics‟ (Edwards and Batley, 2004; Kahraman et al., 2005). 

First steps in this research field have been made, e.g. related to the behavioral 

responses by arthropod predators and parasitoids towards altered herbivore-

induced volatile production (Van Poecke and Dicke, 2002; Bouwmeester et al., 

2003; Ament et al., 2004; Kessler et al., 2004; Kappers et al., 2005; Schnee 

et al., 2006). Approaches in this research can roughly be divided into two 

groups. The first consists of alterations in the biosynthesis of induced plant 

volatiles (Bouwmeester et al., 2003; Fäldt et al., 2003; Kappers et al., 2005; 

Schnee et al., 2006). The second group consists of alterations in the signal-

transduction pathways that regulate volatile biosynthesis (Van Poecke and 

Dicke, 2002; Ament et al., 2004; Kessler et al., 2004). 

 

Biosynthetic manipulations  

Molecular genetic information on biosynthetic pathways has accumulated rap-

idly in recent years (Dudareva et al., 2004; Aharoni et al., 2005; Fridman and 

Pichersky, 2005). This allows for the manipulation of the plant phenotype in 

terms of infochemical production (Bouwmeester et al., 2003; Degenhardt et 

al., 2003; Arimura et al., 2004a; Kappers et al., 2005; Tholl et al., 2005; 

Schnee et al., 2006). 

For instance, identification of genes encoding key enzymes in the biosynthesis 

of herbivore-induced terpenoids has been exploited to transfer these genes to  

Arabidopsis thaliana (Kappers et al., 2005; Schnee et al., 2006). As a result 

the transgenic plants emitted one or two (Kappers et al., 2005), or six or more 

terpenoids (Schnee et al., 2006). The transgenic plants attracted significantly 

more carnivorous arthropods such as the predator Phytoseiulus persimilis 

(Kappers et al., 2005) and the parasitoid Cotesia marginiventris (Schnee et al., 

2006) than the wild-type. These studies clearly demonstrated the ecological 

effects of particular terpenoids that are components of a complex blend of HIPV 

and thus revealed an ecological function for the genes involved. These results 

are likely to be a starting point for future studies on the role of these genes in 

a community context rather than in an isolated ecological interaction. For such 

studies individuals of the original plant species, varying in the degree of gene 

expression dynamics will be of great value. 

 

Signal-transduction manipulations 

The signal-transduction pathways underlying induced plant responses, includ-

ing herbivore-induced volatile production, have been intensively studied in sev-

eral plant species, especially Arabidopsis, tomato and tobacco (Pieterse and 
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Van Loon, 1999; Dicke and Van Poecke, 2002; Kessler and Baldwin, 2002). The 

natural tomato mutant def-1 is deficient in jasmonic acid as a result of a muta-

tion early in the octadecanoid pathway. This mutant does not produce induced 

metabolites such as proteinase inhibitors involved in direct defense (Howe et 

al., 1996) or volatile terpenoids involved in indirect defense (Thaler et al., 

2002; Ament et al., 2004). The def-1 mutant is compromised in the attraction 

of carnivorous arthropods and this can be restored by the application of exoge-

nous jasmonic acid (Thaler et al., 2002; Ament et al., 2004). Knowledge of the 

molecular genetics of signal-transduction pathways can be used to generate 

transgenic genotypes that are altered in the underlying mechanism leading to 

induced plant volatiles. For instance, genotypes changed in certain steps in the 

octadecanoid (Van Poecke and Dicke, 2002; Halitschke and Baldwin, 2003) or 

shikimate pathway (Van Poecke and Dicke, 2002) have been used in studies on 

the attraction of arthropods to HIPV. Arabidopsis plants compromised in the 

octadecanoid or shikimate pathway that were infested with caterpillars of the 

small cabbage white (Pieris rapae) were less attractive to the parasitoid Cotesia 

rubecula than caterpillar-infested wild-type plants (Van Poecke and Dicke, 

2002). 

Figure 2. The application of –omics technologies, such as transcriptomics and me-
tabolomics, and analyses of the range of phenotype expression in individual interactions 
(phenomics) to the study of community ecology of insect-plant communities. Herbivore 
damage to plants results in the emission of volatiles that can influence interactions of the 
plant with organisms at different trophic levels.  
Interactions (arrows) between members of the same or different trophic levels may be 
affected by the induced volatiles and this may have consequences for the quantitative 
food web, in which each species is represented by a circle (circle size indicates population 
size and the width of the lines connecting species indicates the relative degree of trophic 
interaction between the two connected species). 
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Molecular ecology of HIPVs: two examples 

 

Herbivore-induced plant volatiles have been well-studied in crucifers. This in-

cludes behavioral ecology of crucifer-caterpillar-parasitoid interactions 

(Wiskerke and Vet, 1994; Geervliet et al., 2000; Vos et al., 2001; Shiojiri et 

al., 2002), as well as molecular genetics and analytical chemistry of induced 

crucifer volatiles (Mattiacci et al., 1995; Geervliet et al., 1997; Van Poecke et 

al., 2001). Over the last decade A. thaliana, the model plant of molecular ge-

neticists, has been increasingly used by ecologists (for reviews see Mitchell-

Olds, 2001; van Poecke and Dicke, 2004). This has yielded novel insight into 

the role of specific genes in ecological interactions of the crucifer Arabidopsis 

with insects (e.g., Stotz et al., 2000; Van Poecke and Dicke, 2002; Aharoni et 

al., 2003). With respect to induced plant volatiles interesting genotypes are 

being developed, which can no longer produce certain induced plant volatiles 

(e.g. Chen et al., 2003).  

However, from an ecological point of view Arabidopsis may not be the most 

interesting plant because of its short life cycle very early in the season. Yet, 

interesting ecological field work on Arabidopsis-attacker interactions has been 

carried out (Yano and Ohsaki, 1993; Mauricio, 1998; Arany, 2006). Moreover, 

this plant is a valuable species as a stepping stone towards other brassicaceous 

plants. For instance, certain types of microarrays developed for Arabidopsis can 

be used to investigate global gene expression in Brassica (Lee et al., 2004). 

Moreover, there are many parallels between Arabidopsis and other brassica-

ceous species in the context of HIPVs (van Poecke and Dicke, 2004). Therefore, 

Arabidopsis is an interesting species for investigating the role of induced plant 

volatiles on community ecology both from a methodological and a conceptual 

point of view. In our laboratory we have intimately integrated projects on 

Arabidopsis-attacker interactions with projects on the community ecology of 

brassicaceous plants and their associated insects. For Brassica we compare the 

effects of genotypes that differ in the degree of parasitoid attraction on com-

munity composition (Poelman et al., in press.) and investigate the differences 

between the genotypes in the underlying mechanisms at the molecular and 

metabolite level (Broekgaarden et al., 2007; Poelman et al., 2008). 

An excellent example demonstrating the value of a molecular approach to com-

munity ecology is the work by Kessler, Baldwin and colleagues (Baldwin et al., 

2001; Kessler et al., 2004; Kessler, 2006). They have taken the solanaceous 

species Nicotiana attenuata as their ecological model plant and have developed 

extensive molecular tools to investigate and manipulate mechanisms underly-

ing induced responses to attackers. Their methods and tools include cloned 

genes, dedicated microarrays, anti-sense (as) knock-out genotypes, in addition 

to methods to assess changes in secondary metabolites such as nicotine, vola-

tiles and others (Paschold et al., 2006). They have made three plant lines that 

are knocked out for one of three different genes of the octadecanoid signal-

transduction pathway and placed these in a common garden in their native 

habitat (Kessler et al., 2004). This showed that eliminating the functional ex-
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pression of the LOX-3 gene results in drastic changes in interactions with the 

natural insect community: the amount of herbivory increased substantially and 

the invasion of a new herbivore species, Empoasca sp., was the main cause for 

this. This herbivore did not feed on wild-type plants under natural conditions. 

Another new herbivore that had never before been recorded from N. attenuata, 

is the western cucumber beetle Diabrotica undecimpunctata tenella. In labora-

tory tests Empoasca sp. and D. undecimpunctata preferred to feed on as-lox 

plants over wild-type N. attenuata plants. The as-lox plants had a lower emis-

sion rate of the herbivore-inducible terpenoid cis-α-bergamotene. However, it 

remains to be investigated whether the change in herbivore-induced cis-α-

bergamotene is the cause of the change in acceptance by herbivorous insects. 

Yet, previous research employing the application of synthetic volatiles or JA as 

elicitor has shown that plant volatiles are important in the interactions of N. 

attenuata with herbivorous and carnivorous insects under field conditions and 

result in direct and indirect protection against herbivores (Kessler and Baldwin, 

2001). 

 

Future prospects 

 

Although the ecogenomics approach clearly holds promise to ecologists, there 

are some important developments to be made. The most important of these 

questions plus the ecological questions to which they relate are given below: 

 

1. The most important hurdle to be taken is that, to date, the best genomic 

model systems do not include the best ecological model systems, either be-

cause the ecology of the genomics models is little studied or because important 

ecological questions cannot be addressed by using the genomics models. More-

over, the ecogenomic approach has so far been applied to a limited number of 

systems. Two main solutions to this problem exist. One is to investigate an 

ecological model species that is closely related to a molecular genetic model 

species and use the latter as a stepping stone. This has been explained for  

using Arabidopsis to develop an ecogenomic approach to Brassica species. In-

formation on Arabidopsis gene sequences can be used to help in cloning of 

genes for Brassica (Zheng et al., 2007) and 70-mer oligonucleotide microar-

rays developed for Arabidopsis can be exploited to investigate global gene ex-

pression in Brassica (Lee et al., 2004). The other solution is to use Suppression 

Subtractive Hybridization (SSH) to build a library of differentially expressed 

clones that can be used to develop a dedicated microarray and to clone genes 

involved in the expression of an induced plant phenotype (Mercke et al., 2004). 

 

2. The technological developments of molecular biology have provided ecolo-

gists with a „digital‟ tool to compare two genotypes in which a certain gene is 

either functionally expressed or not. Using the variation between independently 

transformed lines allows studying variation of phenotypic expression for candi-

date genes (Halitschke and Baldwin, 2003). Yet, ecologists are ultimately inte-
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rested in quantitative natural variation. A major challenge for molecular ecolo-

gists is to identify genotypes that differ quantitatively in the expression of spe-

cific genes. This may be done by developing molecular expression markers 

based on sequence information for the gene(s) of interest. When genotypes 

have been selected that express quantitative variation in gene expression, 

novel tools will become available to be used in manipulative experiments under 

field conditions. The relative effects of community members on these geno-

types can be used to assess the effects of the gene on an individual‟s fitness. 

This will yield significant information beyond that gained from current qualita-

tive manipulations resulting from knocking out genes. 

 

3. New methodology in quantitative food web analysis has been developed in 

recent years (Rott and Godfray, 2000; Lewis et al., 2002; Forup and Memmott, 

2005). This quantitative food web analysis provides valuable information be-

yond connectance food webs. This methodology captures community dynamics 

in space and time (Rott and Godfray, 2000) and has proven to be a useful tool 

for comparative analysis where the effects of particular phenotype changes are 

addressed (Omacini et al., 2001). This methodology can be used to address 

issues such as the effect of a single gene on community composition and dy-

namics. Genotypes that have been characterized in terms of transcriptomic and 

metabolomic profiles can be quantitatively compared in terms of food web 

structure. This can be used to evaluate the effects of single genes on food web 

structure similarly to the evaluation of the effects of an endophytic fungus on 

the parasitoid-host food web (Omacini et al., 2001). 

 

4. In this review, we have illustrated the potential of ecogenomics to under-

stand the consequences of (plasticity in) expression of genes for community 

processes, assuming that the shape of a particular interspecific interaction is 

ubiquitous. Whereas this approach enables the linking of sub-cellular processes 

to particular community processes or structures, a challenge for the future lies 

in the implementation of these results in a spatial framework. Populations are 

generally highly structured, giving rise to complex mosaic-patterns of species 

interactions (Thompson, 2005). This will have consequences for variation 

across local communities. To address this issue, ecogenomics may again pro-

vide important tools. Association- and correlation studies (Epperson, 1993; Si-

nervo and Svensson, 2002; Purugganan and Gibson, 2003), „natural selection 

mapping‟ (Kohn et al., 2000), and population genomics (Black et al., 2001) 

enable the estimation of variable selection at (sets of) loci, distinguishing this 

from processes that act on the whole genome, such as migration and genetic 

drift. Such an ecogenomics approach provides insights that complement those 

of the community- and ecosystem genetics approach as proposed by (Whitham 

et al., 2003). Whereas the latter focuses on the study of patterns of inheritance 

of traits involved in „extended phenotypes‟ (i.e. traits that are likely to have 

community and ecosystem consequences), ecogenomics provides an experi-

mental approach, enabling the testing of the involvement of candidate genes in 
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processes affecting the community. It is the integration of these types of  

studies with the previously described careful dissection of species interactions 

and their effect on communities that is likely to form both a highly fruitful ap-

proach and a major challenge in the search for a unified explanation of commu-

nity dynamics. 
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Abstract 

 

Naturally-occurring genetic variation in the emission of plant volatiles that are 

released upon herbivory by the biting-chewing caterpillar Pieris rapae or in re-

sponse to jasmonic acid (JA) treatment in leaves of Arabidopsis thaliana was 

studied by investigating nine accessions (ecotypes). A total of 73 compounds in 

the headspace were compared, which resulted in quantitative differences in the 

emission rates of individual compounds among the accessions. Moreover, 

variation in the emission of volatile compounds after JA treatment was re-

flected in the behavior of the parasitoid Diadegma semiclausum when they 

were offered the headspace volatiles of several combinations of accessions in 

two-choice experiments. Yet, we could not correlate wasp behavior to the 

emission rates of individual compounds. The complex variation in odor blends 

is likely to interfere with identifying the contribution of individual compounds. 

Accessions also differ in transcript levels of genes that are (putatively) associ-

ated with the emission of plant volatiles. Genes BSMT1 and Cyp72A13 could be 

connected to the emission of methyl salicylate and (E,E)-4,8,12-

trimethyltrideca-1,3,7,11-tetraene (TMTT), respectively. 

Key words 

Herbivory, herbivore-induced volatile, qRT-PCR, gene transcript level 
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Introduction 

 

In nature, plants are challenged by a wide range of herbivorous insects. Herbi-

vory can severely reduce survivorship and reproduction of native plants, and 

in crops insect herbivore infestation can result in severe yield losses. Plants 

have developed a multitude of defense strategies, which include pre-existing 

physical and chemical barriers, induced defenses that are activated upon at-

tack, and tolerance mechanisms. Plants exhibit variation in these traits, which 

comprises both intra-individual phenotypic plasticity, and genetic polymor-

phisms among individuals and populations. The plasticity of inducible defenses 

allows individual plants to adapt to changing environments (Agrawal, 2001). 

Polymorphism in traits for resistance against herbivory may result from vary-

ing selection pressures among populations (Meyers et al., 2005). Induced re-

sponses allow plants to be cost-effective and also to diminish the risk that her-

bivores adapt to plant defenses (Agrawal and Karban, 1999; Heil, 2008; Step-

puhn and Baldwin, 2008).  

 

Herbivore-induced defense responses can be subdivided into direct defense 

and indirect defense. Induced direct defense encompasses the production of 

anti-digestive proteins or toxic secondary metabolites such as glucosinolate 

derivatives that influence the performance and survival of the herbivore 

(Karban and Baldwin, 1997; Walling, 2000). Induced indirect defense com-

prises the production of, for instance, herbivore-induced plant volatiles (HIPV) 

that attract the natural enemies of the herbivore (Dicke and Hilker, 2003).  

A central issue in ecology is to understand how interactions among individual 

organisms influence food webs and community dynamics. Therefore, evolutio-

nary ecologists aim to understand how genetic variation affects the fitness of 

individuals in plant-insect communities. Its major underlying question, i.e. how 

the expression of individual genes affects an individual‟s phenotype and its 

performance, can nowadays be investigated without the confounding influence 

of other genetic variation between individuals by using specific mutants. This 

approach has also been addressed for defense genes, e.g. genes involved in 

HIPV and glucosinolate production (Kessler and Baldwin, 2004; Kappers et al., 

2005; Schnee et al., 2006; Mumm et al., 2008a).  

 

Herbivore-induced production of plant volatiles has been studied in a wide va-

riety of plant species. These studies include the behavioral ecology of plant-

herbivore-carnivore interactions, as well as molecular genetics and analytical 

chemistry of HIPVs (D'Alessandro and Turlings, 2006; Snoeren et al., 2007). 

Plant physiological and biochemical explorations have revealed that herbivore-

induced plant defenses are orchestrated by at least three interconnecting sig-

nal-transduction pathways, the jasmonic acid (JA), the salicylic acid (SA), and 

the ethylene pathways (Pieterse and Dicke, 2007; Kazan and Manners, 2008). 

Induction of infochemicals (Dicke and Sabelis, 1988) also depends upon these 

three signaling pathways (Horiuchi et al., 2001; Kessler and Baldwin, 2002; 
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Van Poecke and Dicke, 2002). The signal-transduction pathways underlying 

HIPV production have been studied for several plant species, e.g. Arabidopsis 

thaliana, tomato, Lima bean and tobacco (Dicke et al., 1999; Dicke and Van 

Poecke, 2002; Kessler and Baldwin, 2002; Ament et al., 2004). The available 

knowledge of the molecular genetics of signal-transduction pathways has been 

used to generate transgenic genotypes that are altered in the underlying 

mechanisms leading to induced plant volatiles, which are studied in the context 

of the attraction of carnivorous arthropods (Van Poecke and Dicke, 2002; 

Halitschke and Baldwin, 2003; Kessler et al., 2004; Snoeren et al., 2009 chap. 

4). In addition, molecular insight into the herbivore-induced biosynthesis of 

plant volatiles, allowed for the modification of the emission of volatile com-

pounds. These modified plants were used to study arthropod behavior in re-

sponse to plants differing in just a single gene (Bouwmeester et al., 2003; Kap-

pers et al., 2005; Tholl et al., 2005; Schnee et al., 2006; Loivamäki et al., 

2008).  

 

Arabidopsis is an important model plant to study herbivore-induced plant de-

fense responses (Mitchell-Olds, 2001; Van Poecke and Dicke, 2004; Snoeren et 

al., 2007). However, to date, functional analysis of genes and the dissection of 

traits are mostly limited to three Arabidopsis accessions, i.e. the laboratory 

accessions Columbia (Col), Landsberg erecta (Ler), and Wassilewskija (WS). 

Although presently a range of screening techniques have resulted in the func-

tional analysis of many genes, defining new gene functions is limited by the 

range of variation that is explored, including variation in HIPV-blend. So far, 

exploring genetic variation among accessions was limited because most atten-

tion had been given to mutants that express qualitative variation and not to 

quantitative variation. 

 

Phenotypic variation between Arabidopsis accessions is abundant for various 

traits and enables almost every Arabidopsis accession to be distinguished from 

others when they are grown together and compared under similar environ-

mental conditions (Alonso Blanco and Koornneef, 2000; Kliebenstein et al., 

2001; Kover and Schaal, 2002; Koornneef et al., 2004). Genetic variation has 

increasingly been associated with gene transcription in early defense signaling 

and secondary metabolism (Gao et al., 2008; Steppuhn et al., 2008; Wu et al., 

2008), and has been reported for resistance to herbivores (Kusnierczyk et al., 

2007; Broekgaarden et al., 2008; Steppuhn et al., 2008). Also, variation in 

gene transcription was demonstrated for Arabidopsis accessions treated with 

the phytohormone methyl jasmonate (Matthes et al., 2008).  

 

To our knowledge, exploring genetic variation in HIPV emission with respect to 

their role in indirect defense has so far primarily been explored for crop culti-

vars (see e.g. (Loughrin et al., 1995; Krips et al., 2001; Scutareanu et al., 

2003; Hoballah et al., 2004; Bukovinszky et al., 2005; Nissinen et al., 2005; 

Lou et al., 2006). Studying this kind of traits is particularly complex, as the 
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defense trait involves many chemical compounds (Dicke et al., 1990c; Turlings 

et al., 1991; Mattiacci et al., 1995). In several studies, mutants and transgen-

ics have been used to unravel signal-transduction and biosynthetic pathways in 

indirect defense (Van Poecke and Dicke, 2002; Aharoni et al., 2003; Ament et 

al., 2004; Shiojiri et al., 2006a; Snoeren et al., 2009 chap. 4). However, in 

order to be able to use newly available marker technologies that allow charac-

terization and positioning of loci that control these types of traits (Lambrix et 

al., 2001; Kliebenstein et al., 2002), exploring the range of genetic variation 

for HIPVs is a prerequisite.  

  

Here, we address the genetic variation in caterpillar-induced indirect defense, 

i.e. HIPV emission, among nine Arabidopsis accessions originating from differ-

ent geographic origins. The objectives of this study were: (1) to screen for 

variation in the herbivore-induced emission of volatiles, (2) to study the varia-

tion in transcription levels of genes putatively involved in volatile production, 

and (3) to assess the effects of induced volatile emission on the attraction of 

parasitoid wasps. 

 

Materials and Methods 

 

Plant and insect material 

Nine Arabidopsis thaliana (L.) Heynh. accessions, either obtained from NASC 

(http://nasc.nott.ac.uk/) (An-1= N944, C-24= N906, Cvi= N8580, Kond= 

CS6175, Ler= NW20, the Sendai stock centre in Japan (Kyo-1= JW137) or col-

lected in Sweden by members of the Wageningen Genetics Laboratory (Eri-1= 

CS22548) were used. Seeds from Col-0 and WS were provided by P. Reymond 

(Lausanne, Switserland). Seeds were germinated in sandy Arabidopsis soil 

(Lentse potgrond BV, Lent, Netherlands), and cultivated in a growth chamber 

at 21 ± 2 °C , 50-60% relative humidity (RH), and a L8:D16 photoperiod with 

80-110 µmol m-2 s-1 PPF. The soil was heated to 90 °C for at least two hours 

prior to sowing of the plants. Two-week-old seedlings were transferred from 

seed trays to plastic cups (5 cm in diameter) filled with similar soil. Plants were 

watered twice a week. When plants were full-grown vegetative plants, i.e. after 

6 to 8 weeks since sowing, they were used for experiments. To prevent infesta-

tion by sciarid larvae, the soil was treated weekly with Steinernema feltiae en-

tomopatogenic nematodes (Koppert B.V. Berkel en Rodenrijs, the Netherlands). 

 

The herbivore Pieris rapae, the small cabbage white, was reared on Brussels 

sprouts plants (Brassica oleracea var. gemmifera, cv Cyrus) in a growth cham-

ber (L16:D8; 20 ± 2 °C and 70% RH). 

Parasitoid wasps, Diadegma semiclausum, were reared as described by 

Bukovinszky et al. (2005). Emerging wasps were provided ad libitum with wa-

ter and honey, and are referred to as „naïve‟ wasps as they had neither re-

ceived exposure to plant material, nor obtained oviposition experience. The 

parasitoid is known to be attracted to the volatiles that are emitted by P. rapae

-infested Arabidopsis Col-0 plants (Loivamäki et al., 2008). 

http://nasc.nott.ac.uk/
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Plant treatment 

Defense responses were induced by 24 h of herbivore-feeding or by spraying 

the plant with the phytohormone jasmonic acid (JA) 24 h before the experi-

ment. Plants were infested by equally distributing 20 first-instar P. rapae larvae 

per plant over the fully expanded leaves. To check for variation in induced 

volatiles due to differences in leaf tissue consumption by caterpillars, we in-

cluded a treatment that mimicked the effect of herbivory by spraying with a JA 

solution. Plants were completely sprayed with a total volume of 5 ml of 1.0 mM 

(±)-JA (Sigma-Aldrich) aqueous solution.  

 

Caterpillar-feeding  

To assess the areas of leaf tissue consumed by the caterpillars, on three ex-

perimental days five plants of each accession were infested by equally distrib-

uting 20 first-instar P. rapae larvae over the fully expanded leaves of each 

plant. Twenty-four hours after infestation individual leaves were cut, taped on 

paper and scanned with a Hewlett-Packard scan jet 3570c. Original leaf shapes 

were reconstructed using drawing software Paint.NET v3.30, Microsoft Corpora-

tion. Quantification of consumed leaf tissue area was performed using Winfolia 

pro 2006a, Regent Instruments (Québec, Canada). A one-way ANOVA with an 

LSD post-hoc test was used to test whether the consumed leaf areas differed 

between the accessions (SPSS 15.0, Chicago, USA).  

 

Headspace collection and volatile analysis 

Dynamic headspace sampling was carried out in a climate room (20 ± 2 °C, 

70% RH; L8:D16 photoperiod and 90-110 µmol photons m-2 s-1 PPFD at canopy 

height). Twenty-four hours before sampling, pots were removed, roots and soil 

were carefully wrapped in aluminum foil, and four plants were placed together 

in a 2.5 L glass jar. The glass jars were then covered with insect-proof gauze. 

Just before headspace collection, the gauze was removed and jars were closed 

with a Viton-lined glass lid having an inlet and outlet. Inlet air was filtered by 

passing through stainless steel cartridges (Markes, Llantrisant, UK) filled with 

200 mg Tenax TA (20/35 mesh; Grace-Alltech, Deerfield, USA). Volatiles were 

trapped by sucking air out of the jar at a rate of 100 ml min-1 through a similar 

cartridge filled with 200 mg Tenax TA. Headspace volatiles for all treatments 

were collected during 3.5 h. Fresh weights of all rosettes were determined im-

mediately after the experiments. On each experimental day, headspace sam-

ples of three or four accessions of each treatment were collected simultane-

ously. For each accession, 5 (An-1, C-24, Cvi, Eri-1, Kond, Kyo-1, Ler) or 6 

(Col-0, WS) replicates for each experimental condition (control, caterpillar-

infested, or JA-treated) were collected and analyzed. 

 

Headspace samples were analyzed with a Thermo Trace GC Ultra (Thermo 

Fisher Scientific, Waltham, USA) connected to a Thermo Trace DSQ (Thermo 

Fisher Scientific, Waltham, USA) quadrupole mass spectrometer. Before de-

sorption of the volatiles, the Tenax cartridges were dry-purged with nitrogen at 
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30 ml min-1 for 20 min at ambient temperature to remove water. Volatiles were 

desorbed from the cartridges using a thermal desorption system at 250 °C for 

3 min (Model Ultra Markes Llantrisant, UK) with a helium flow of 30 ml min-1. 

Analytes were focused at 0 °C on an electronically-cooled sorbent trap (Unity, 

Markes, Llantrisant, UK). Volatiles were transferred in splitless mode to the 

analytical column (Rtx-5ms, 30 m, 0.25 mm i.d., 1.0 µm film thickness, 

Restek, Bellefonte, USA) by rapid heating of the cold trap to 250 °C. The GC 

was held at an initial temperature of 40 oC for 3.5 min followed by a linear 

thermal gradient of 10 oC min-1 to 280 oC and held for 2.5 min with a column 

flow of 1 ml min-1. The column effluent was ionized by electron impact ioniza-

tion at 70 eV. Mass spectra were acquired by scanning from 45-400 m/z with a 

scan rate of 3 scans s-1. Compounds were identified using the deconvolution 

software AMDIS (version 2.64, NIST, USA) in combination with NIST 98 and 

Wiley 7th edition spectral libraries and by comparing their retention indices 

with those from the literature (Adams, 1995). For quantification, characteristic 

quantifier ions were selected for 84 compounds (SOM Table 1). Metalign soft-

ware (PRI-Rikilt, Wageningen, the Netherlands) was used to align peaks of 

chromatograms of all samples and integrate peak areas for the quantifier ions. 

Peak areas of all compounds were corrected for the fresh weight of the leaf 

rosettes. Overall volatile profiles were analyzed using Principal Component 

Analysis (GeneMath XT 2.0) after log10 transformation of the data and subtract-

ing the average value of all treatments. PCA involves the calculation of the  

Eigenvalue decomposition of a data covariance matrix and we used it to visua-

lize differences between accessions and treatments based on the total volatile 

profile.  

Emitted quantities of individual volatile components were analyzed for signifi-

cant changes between plant treatments using a t-test. Individual volatiles were 

analyzed for significant differences in emission rates between accessions within 

each of the treatments, using one-way ANOVA followed by a Dunnett T3 post-

hoc analysis (SPSS 15.0). Differences in emission of volatile compounds be-

tween treatments for each accession were analyzed for significance using a one

-way ANOVA. 

 

Quantitative RT-PCR analysis 

A qRT-PCR analysis was used to screen for differences in the expression of JA 

and P. rapae-induced genes putatively involved in volatile production in Arabi-

dopsis. Leaf material was collected by selecting two almost fully expanded 

leaves with feeding damage, from which caterpillars and their products were 

removed. For JA- and non-treated plants, similar leaves were collected. Five 

plants, i.e. ten leaves, were used per replicate. Collected leaf material was im-

mediately flash frozen in liquid nitrogen and stored at -80 °C. As control plants 

we used uninfested plants that were sprayed with water and that were other-

wise treated similar to the infested plants.  

Pooled leaf samples were ground in liquid nitrogen and total RNA was isolated 

using the RNeasy Plant Mini Kit (Qiagen, Valencia, CA, USA). One μg of total 
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RNA was treated with DNaseI (Invitrogen, Carlsbad, CA, USA) according to the 

manufacturer's instructions. DNA-free total RNA was subsequently converted 

into cDNA using the iScript cDNA synthesis kit (Bio-Rad, Hercules, CA, USA). 

Gene-specific primers were designed using Beacon Designer 7.0 (Premier Bio-

soft Int) for seven Arabidopsis genes based on sequences obtained from the 

TIGR Arabidopsis database. Primer sequences are shown in Table 1. Primers 

were tested for gene specificity by performing melt curve analysis on a MyIQ 

Single-Color Real-Time PCR Detection System (BioRad). PCR products were 

sequenced to confirm the amplification of the gene of interest. Sequence re-

sults were checked by a BLAST search in the Arabidopsis TIGR database (data 

not shown).  

Quantitative RT-PCR analysis was carried out in optical 96-well plates with a 

MyIQ Single-Color Real-Time PCR Detection System (BioRad), using SYBR 

Green to monitor dsDNA presence. Each reaction contained 10 µl 2x SYBR 

Green Supermix Reagent (BioRad), 10 ng cDNA and 300 nM of the gene-

specific primers in a final volume of 20 µl. All qRT-PCR experiments were per-

formed in duplicate. The following PCR programme was used for all PCR analy-

ses: 95 °C for 3 min; 40 cycles of 95 °C for 30 s and 60 °C for 45 s. Threshold 

cycle (Ct) values were calculated using the MyIQ Optical System software 

(version 2.0, BioRad). Subsequently, Ct values were normalized for differences 

in cDNA synthesis by subtracting the Ct value of the constitutively expressed 

gene β-actin from the Ct value of the gene of interest. β-Actin is widely used as 

a reference gene in expression studies and its absolute expression level was 

not influenced by P. rapae-infestation nor by JA-application in our study (data 

not shown). Experiments were repeated four times and the differences in nor-

malized gene expression (2-δCt) between treatments were statistically analyzed 

using a one-way ANOVA with an LSD post-hoc test (SPSS 15.0). 

 

 

Gene  AGI-codes  Forward primer (5’ à 3’)  Reverse primer (5’ à 3’)  

β-Actin  At3g46520  GGAGAAGATTTGGCATCACAC  TGGCAACATACATAGCAGGAG  

HPL1  At4g15440  ACATCGCTGAGAACGGTTG  CAAGAGGCTGAGGAACTACG  

BSMT1  At3g11480  TGGTCACTACTACGAAGAAGATG  GAGCATTGGTTCACTAACAGC  

TPS03  At4g16740  GCCACCATCCTCCGTCTC  CCAAGCCACACCGATAATTCC  

TPS04  At1g61120  TCGCAGCACACACCATTG  GAGCAGCACGGAGTTCATC  

CYP72A13  At3g14660  GATGGCAATGACACTGATTCTAC  GATAAGAGGAGCACCGAACTG  

CYP82G1  At3g25180  ATCAGACAGCACATCCATCAC  GCCGACACTATTATCAATCTCTTC  

Table 1. Sequences of Arabidopsis thaliana-derived primers used in quantitative Real 
Time-PCR analyses.  
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Behavioral assays using parasitoid wasps 

The effect of JA-induced volatile production on parasitoid behavior was com-

pared for different accessions in a closed-system Y-tube olfactometer as des-

cribed by Bukovinszky et al. (2005). In short, filtered air was led through acti-

vated charcoal and split into two air streams (4 L min-1) that were led through 

five-liter glass cuvettes containing the odor source each consisting of four 

plants. The olfactometer was illuminated with artificial light from above at an 

intensity of 60 ± 5 µmol m-2 sec-1 PPFD. All experiments were conducted in a 

climatized room (20 ± 2 °C).  

Naive, 3-7 days-old female D. semiclausum were individually transferred from 

the cage into the Y-tube olfactometer using a glass tube. Upon release in the 

olfactometer, parasitoid behavior and parasitoid choice for one of the two odor 

sources was observed. Parasitoids that did not make a choice within ten mi-

nutes after release or did not choose for one of the two arms of the olfactome-

ter within five minutes were considered as non-responding individuals, and 

were excluded from preference analysis. After every three parasitoids tested, 

the odor sources were interchanged to compensate for any unforeseen asym-

metry in the set-up.  

Parasitoid preference for accessions treated with JA was statistically analyzed 

using a Chi-square test, with the null-hypothesis that parasitoids did not have a 

preference for any of the two odor sources.  

 

Results 

 

Leaf damage by Pieris rapae 

P. rapae caterpillars consumed 3.5 ± 0.2% (WS) to 7.4 ± 0.5% (C-24) of the 

total leaf area in 24 hours (Table 2). As the accessions differed in total leaf 

area per plant (varying from 1935 ± 98 mm2 for C-24 to 4427 ± 179 mm2 for 

WS; mean ± SE) we also determined the absolute amount of leaf tissue area 

consumed per plant, which varied from 88 ± 7.5 mm2 (An-1) to 195 ± 10.2 

Accession  Mean area remaining  

per plant (%) ± SE  

Mean leaf area consumed 

per plant (mm2) ± SE   

An-1 96.4 ± 0.5  88 ± 7.5  a 

C-24 92.6 ± 0.5  139 ± 5.2  ce 

Col-0 94.2 ± 0.4  165 ± 7.9  d 

Cvi 95.2 ± 0.5  135 ± 8.5  c 

Eri-1 94.8 ± 0.3  195 ± 10.2  b 

Kond 93.6 ± 0.5  190 ± 6.9  b 

Kyo-1 94.8 ± 0.4  158 ± 8.6  de 

Ler 94.0 ± 0.4  157 ± 6.7  de 

WS 96.5 ± 0.2  152 ± 5.3  cde 

Table 2. Leaf damage 
by Pieris rapae-feeding 
on plants from nine 
accessions of Arabidop-
sis thaliana. Data show 
the percentage of leaf 
that remained after 24 
h of infestation, and 
the leaf area that was 
consumed by the cater-
pillars. Mean leaf areas 
consumed per plant 
were statistically ana-
lyzed using a one-way 
ANOVA followed by LSD 
post-hoc. Accessions 
followed by different 
letters indicate a sig-
nificant difference 
(P<0.05). 
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mm2 (Eri-1) (mean ± SE)(Table 2). Accession An-1 had the lowest area of leaf 

tissue consumed per plant compared to all other accessions (ANOVA LSD: 

P<0.001). From accessions Eri-1 and Kond significantly more leaf area was 

consumed when compared to accessions An-1, C-24, Col-0, Cvi, Kyo-1, Ler, 

and WS (Table 2). To exclude variation in induced volatiles as a result of differ-

ences in the amount of damage, we included the JA-treatment to expose plants 

to a similar level of induction.  

 

Volatile profiling in different accessions 

A principal component analysis (PCA) for the total volatile profile showed that 

the first three principal components explain 60% of the observed variation.  

Figure 1 shows the principal component analysis for the total volatile profile of 

all accessions and treatments based on a loading plot of 73 different com-

pounds. The data show that the overall volatile profile alters when plants are 

induced by P. rapae herbivory or JA treatment compared to non-treated plants. 

No clear difference is observed for volatile emission patterns induced by JA 

treatment or Pieris infestation when all 73 compounds are taken into account 

for all nine accessions (Fig. 1).  

To get an impression of the 

natural variation among ac-

cessions in herbivore-

induced volatiles, accessions 

were analyzed separately 

for P. rapae infestation or JA 

treatment (Fig. 2). The first 

PC is not included, since it 

mainly separated samples 

according to the day of 

headspace collection (batch variation) more than to biological variation. We 

therefore present the graph of the second and third principal component for 

both treatments. For P. rapae infestation (Fig. 2A), principal components 2 to 6 

explain 52.5% of the variation in the total dataset, whereas for JA-treated 

plants (Fig. 2B), 59.3% of the variation can be explained by the principal com-

ponents 2-7. The remaining variation could not be assigned to biological varia-

tion as individual data points did not cluster per accession anymore. The PCA 

analysis in both treatments shows that individual samples of each accession 

Figure 1. Principal Component 
Analysis (PCA) of volatiles 
emitted by nine Arabidopsis 
thaliana accessions infested 
with Pieris rapae (), treated 
with JA (),or left untreated 
(control, ). The PCA shows 
the first and second PC.   
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cluster together, although 

the relative position of the 

accessions is different for 

plants in the P. rapae infes-

tation and JA treatment 

groups. It implies that P. 

rapae herbivory and JA 

treatment have different ef-

fects on individual volatile 

compounds. This is also sup-

ported by ANOVA analysis 

(α=0.05) for differences in 

induction of individual com-

pounds between both treat-

ments (SOM Table 4).   

 

To identify those volatile 

compounds that are emitted 

in different rates between 

accessions within a treat-

ment, one-way ANOVA 

analysis (α=0.05) was car-

ried out for each compound, 

followed by a Dunnett T3 

post-hoc test. Table 3 shows 

those compounds that are 

significantly different be-

tween accessions within a 

treatment. The differences are also presented in SOM Table 2, but then from 

the perspective of a comparison among accessions. The 28 (out of 73) com-

pounds in Table 3 belong to various chemical classes, including green leaf vola-

tiles (GLV) [(E)-2-hexenal, (E)-3-hexenal, (Z)-3-hexenyl acetate, (Z)-2-penten

-1-ol, (Z)-3-hexen-1-ol, pentan-2-ol], terpenoids [(E)-ß-ocimene, (Z)-ß-

ocimene, 3-carene, ß-myrcene, α-pinene, α-phellandrene (monoterpenes); (E)-

nerolidol, ß-sesquiphellandrene, ß-acoradiene, ß-bisabolene, (E)-ß-farnesene, 

(E,E)-α-farnesene, α-humulene (sesquiterpenes), (E)-4,8-dimethyl-1,3,7-

nonatriene (DMNT), (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT) 

Figure 2. Principal Component 
Analysis (PCA) of volatiles emit-
ted by nine Arabidopsis thaliana 
accessions infested with Pieris 
rapae (A) or treated with JA (B). 
The PCA shows the second and 
third PC. m, An-1; l, C-24; o, 
Cvi; n, Col-0; ◊, Eri-1; u, Kond; 
∆, Ler; p, Kyo-1; x, WS. The 
PCA shows the second and third 
PC.   

2A) 

2B) 
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Compound    Control  Sign.    P. rapae   Sign.    JA  Sign. 

(E)-2-hexenal     An-1 > Ler *     

      C-24 > Ler *     

(E)-3-hexenal WS > Col-0 **         

  WS > C-24 *         

(Z)-3-hexenyl acetate     Cvi > An-1 ***     

      Cvi > C-24 ***     

(Z)-2-penten-1-ol WS > Col-0 *         

(Z)-3-hexen-1-ol     An-1 > Col-0 ***     

      An-1 > Cvi *     

      Cvi > Col-0 *     

      Eri-1 > Col-0 **     

      Kond > C-24 *     

      Kond > Col-0 ***     

      Kond > Cvi **     

      WS > Col-0 ***     

      WS > Cvi *     

hexanoic acid C-24 > Ler ***         

pentan-2-ol C-24 > Kyo-1 *         

  Cvi > Kyo-1 *         

(E)-nerolidol C-24 > Col-0  * Col-0 > WS *     

      Kond > WS *     

(E)-ß-ocimene     Kond > C-24 *** An-1 > Col-0 * 

      Kond > Col-0 ** An-1 > Kyo-1 ** 

      WS > Col-0 * C-24 > Kyo-1 * 

      WS > C-24 ** Cvi > Kyo-1  * 

          Eri-1 > Kyo-1 * 

          Kond > Col-0 *** 

          Kond > Cvi * 

          Kond > Eri-1 *** 

          Kond > Kyo-1 *** 

          WS > Col-0 *** 

          WS > Eri-1 ** 

          WS > Kyo-1  *** 

(Z)-ß-ocimene Kond > An-1 ** An-1 > Col-0 * An-1 > Kyo-1 * 

  Kond > Cvi * Kond > Col-0 * C-24 > Col-0 * 

      Ler > C-24 * C-24 > Kyo-1 * 

      Ler > Col-0 ** Cvi > Col-0 * 

      WS > Col-0 * Cvi > Kyo-1  ** 

      WS > C-24 * Kond > Col-0  ** 

          Kond > Eri-1 * 

          Kond >Kyo-1 *** 

          Kond > Ler * 

          WS > Col-0 * 

          WS > Kyo-1  ** 

decanal   Col-0 > An-1 *   

   Col-0 > Cvi *   

   Eri-1 > An-1 *   

   Eri-1 > Cvi *   

   WS > An-1 ***   

   WS > Cvi **   

3-carene An-1 > Col-0 ***         

ß -acoradiene     Cvi > Kyo-1 *     

DMNT C-24 > Col-0 ***     C-24 > Col-0 ** 

  Kond > Col-0 ***     Kond > Col-0 * 

  WS > Col-0 **     WS > Col-0 *** 

ß-bisabolene     An-1 > Kond *** C-24 > WS * 

      C-24 > Kond *** Eri-1 > WS * 

      Kyo-1 >Kond ***     

Table 3. Volatile compounds that are emitted in significantly different rates among nine ac-
cessions of Arabidopsis thaliana infested with 20 first instar larvae of Pieris rapae, treated with 
JA or left untreated (control). Individual volatiles were analyzed for significant differences 
between accessions within one treatment, by using one-way ANOVA followed by a Dunnett T3 
post-hoc analysis. Significance: * P<0.05; ** P<0.01; *** P<0.001.  
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Compound     Control  Sign.    P. rapae  Sign.    JA   Sign. 

(E)-ß-farnesene Col-0 > Ler ** Col-0 > C-24 ***     

  Kond > Ler * Cvi > C-24 *     

      Cvi > C-24  *     

      Kond > C-24 **     

      Kyo-1 > C-24 ***     

      WS > C-24 *     

ß-myrcene     Cvi > An-1 * Cvi > An-1 * 

      Eri-1 > An-1 * Cvi > Col-0 * 

      Kond > An-1 * Cvi > Ler  * 

      Ler > An-1 * Eri-1 > Col-0  * 

ß-myrcene         Eri-1 > Ler * 

          Kond > An-1 *** 

          Kond > C-24 ** 

          Kond > Col-0 *** 

          Kond > Ler ** 

          Kond > WS  * 

ß-sesquiphellandrene     An-1 > Eri-1 * An-1 > Cvi * 

      An-1 > Col-0 * An-1 > Eri-1  * 

      An-1 > C-24 * Kond > Cvi * 

          Kond > Eri-1 * 

TMTT     Col-0 > C-24 ** An-1 > Cvi * 

      Col-0 > Cvi ** Kond > Cvi ** 

      Kond > C-24 * Kyo-1 > Cvi  *** 

      Kond > Cvi * Ler > Cvi ** 

      WS > Cvi **     

      WS > C-24 *     

(E,E)-α-farnesene     An-1 > Cvi ** Eri-1 > C-24 ** 

      An-1 > Col-0  * Eri-1 > WS ** 

      An-1 > C-24 * Kond > C-24 * 

      Eri-1 > Cvi **     

      Kyo-1 > C-24 *     

      Kyo-1 > Col-0 *     

      Kyo-1 > Cvi  ***     

      Kyo-1 > Ler  *     

α-humulene     C-24 > Kyo-1 **     

α-phellandrene Cvi > Col-0 *         

  Kond > Col-0 *         

α-pinene         Kond > An-1 * 

          Ler > An-1 * 

benzaldehyde     An-1 > C-24 **     

      Col-0> C-24 *     

      Kond > C-24 *     

      Ler > C-24 **     

ethyl salicylate         Cvi > An-1 *** 

          Cvi > Eri-1  *** 

          Ler > An-1 *** 

          Ler > Eri-1 *** 

geranyl acetone     Kond > Col-0 * WS > Eri-1 * 

indole     Cvi > C-24 ***     

MeSA  An-1 > WS * An-1 > Eri-1 * Col-0 > Cvi *** 

  Eri-1 > WS * An-1 > Kond ** Col-0 > Eri-1 * 

  Kyo-1 > WS ** An-1 > Kyo-1 * Kond > Cvi ** 

      An-1 > Cvi *** Kyo-1 > Cvi  ** 

      C-24 > Cvi *** Ler > Cvi *** 

      Col-0 > Cvi *** Ler > Eri-1 ** 

      Col-0 > Eri-1 * Ler > Kond * 

      Col-0 > Kond ** Ler > Kyo-1  * 

      Col-0 > Kyo-1 * WS > Cvi *** 

      Eri-1 > C-24 *** Ws > Eri-1 ** 

      Kyo-1 > Cvi  **     

      Ler > Cvi ***     

      Ler > Kond  *     

      WS > Cvi ***     
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(homoterpenes)], phenolic compounds (MeSA, ethyl salicylate) and indole, 

benzaldehyde, hexanoic acid, decanal and geranyl acetone.  

 

The total amount of volatiles emitted after herbivory increased for all acces-

sions from 1.1 fold (P. rapae-infested C-24) to 4.6 fold (JA-treated Kond) the 

amount emitted by the non-treated controls. The total amount of volatiles 

emitted after P. rapae infestation or JA treatment was highest in accessions 

Ler, Kond and WS. The composition of the volatiles blends, i.e. the relative 

contribution of compounds that belong to different chemical classes, differed 

substantially between different accessions. P. rapae-infestation increased the 

proportion of GLVs in the total blend in all accessions, except for Kond and WS, 

although the absolute amount of GLVs did increase in these accessions. JA 

treatment increased GLV emission in all accessions, except An-1, C-24 and 

Kond, resulting in a relatively lower amount of GLVs emitted by JA-treated 

plants of these accessions. The highest proportion of GLVs was found in the 

blend of JA-treated Kyo-1 plants, amounting to more than 25% of the total 

volatiles. All accessions showed a higher contribution of GLVs in the blend of P. 

rapae-infested plants compared to JA-treated plants. 

Both Kond and WS showed a stronger increase in the emission of monoter-

penes than the other accessions. After JA-treatment more than half of the total 

blend consisted of monoterpenes in WS and even more (68%) in Kond. After P. 

rapae infestation 39% and 54% of the volatile blend consisted of monoter-

penes in WS and Kond, respectively. In contrast, although P. rapae infestation 

and JA treatment increased the absolute emission of monoterpenes, the contri-

bution of this class of compounds to the total blend was lowest in Kyo-1, 10% 

and 7% for P. rapae-infested and JA-treated plants, respectively.  

Herbivory increased the absolute emission of sesquiterpenes in most acces-

sions, except for P. rapae-infested C-24 and Col-0 and JA-treated Cvi plants. 

About 20% of the volatile blend of JA-treated plants of accessions Eri-1 and 

Kyo-1 consisted of sesquiterpenes, which is the highest proportion of sesquiter-

penes found in the accessions included in this study. In contrast, P. rapae in-

festation resulted in only 3% (Eri-1) and 9% (Kyo-1) of sesquiterpenes in the 

total volatile blend. Remarkably, JA treatment failed to increase sesquiterpene 

emission in the blend of Cvi, whereas P. rapae feeding did increase sesquiter-

pene emission in Cvi (10%). 

 

Six of the volatile compounds that may be related to the genes for which we 

analyzed expression levels in this study are discussed in more detail below. Fig. 

3 shows the induced emission rates of these compounds for both treatments 

(P. rapae and JA) in the nine accessions. 

Several GLVs are emitted in larger amounts from P. rapae-infested plants than 

from non-treated plants (Fig. 3A; SOM Table 3). JA treatment resulted in only 

small increases in the emission of the GLV compounds compared with non-

treated controls. The GLV (Z)-3-hexen-1-ol contributed most to the observed 

variation among the accessions (Fig. 3). In particular accessions An-1, that had 
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the highest emission rate of (Z)-3-hexen-1-ol, and Col-0, that showed lowest 

emission, contributed to the observed variation among accessions after herbi-

vory. 

 

All accessions, except Cvi, showed significantly higher MeSA emission after P. 

rapae-infestation than from uninfested plants (Fig. 3B; SOM Table 3), and all 

plants treated with JA emitted MeSA in higher amounts than non-treated plants 

except for accessions An-1, Cvi and Eri-1 (Fig. 3B; SOM Table 3). Accessions 

varied significantly in the emission rates of MeSA after herbivore damage, par-

ticularly accession An-1 emitted more and accession Cvi less than the others 

(Fig. 3B). After JA treatment, the largest amount of MeSA was emitted by ac-

cession Ler while the lowest amount was emitted by accession Cvi (Fig. 3B). 

 

Emission of various monoterpenes varied between accessions after P. rapae 

infestation and JA treatment. Figure 3 shows data for two of them, i.e. ß-

myrcene and (Z)-ß-ocimene. P. rapae infestation induced ß-myrcene in acces-

sions C-24, Cvi and Kond and JA treatment did so in Cvi, Kond and WS. (Z)-ß-

ocimene was induced in all accessions by P. rapae infestation and JA treatment, 

except in Kyo-1 and in Col-0 after JA treatment (Fig. 3D; SOM Table 3). The 

highest emission rates of ß-myrcene, (Z)-ß-ocimene, and several other 

monoterpenes occurred in induced Kond plants (Fig. 3C, D). The lowest emis-

sion of (Z)-ß-ocimene occurred in P. rapae-infested and JA-treated Kyo-1 

plants. P. rapae-infested Kyo-1 plants were also lowest in emission of ß-

myrcene, whereas JA-treated Col-0 plants showed lowest ß-myrcene emission. 

Other monoterpenes that were emitted quantitatively differently between the 

two treatments were α-terpineol (An-1, C-24,), nerol (C-24, Eri-1), 3-carene, 

limonene, α-phellandrene (all in Cvi) and linalool (Eri-1, WS) (SOM Table 4). 

 

The emission rates of the homoterpene TMTT were significantly higher in P. 

rapae-infested Col-0, Eri-1, and WS plants and JA-treated An-1, Col-0, and Eri-

1 plants than in non-treated plants (Fig. 3E; SOM Table 3). Within each treat-

ment group accessions did differ in the emission of TMTT. After herbivory Col-0 

plants emitted the largest amount of TMTT and Cvi the lowest. Treatment of 

plants with JA resulted in highest TMTT emission rates in Ler and lowest in Cvi 

(Fig. 3E).  

 

The emission of (E,E)-α-farnesene was significantly induced after herbivory in 

accessions An-1, Eri-1, and Kyo-1, whereas after JA-treatment accessions An-

1, Col-0, Eri-1, and Kyo-1 emitted more (E,E)-α-farnesene than non-treated 

control plants (Fig. 3F; SOM Table 3). Herbivory induced the highest emission 

rate of (E,E)-α-farnesene in An-1 plants while WS plants had the lowest emis-

sion rate of (E,E)-α-farnesene after herbivory. JA-treatment resulted in Eri-1 

plants emitting most (E,E)-α-farnesene and Cvi plants the lowest amount (Fig. 

3F).  
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Transcript profiling in different accessions 

To investigate whether variation in emission of volatiles can be explained by 

differences in transcript levels of genes involved in their biosynthesis, transcript 

profiling of six genes that are putatively involved in the biosynthesis of plant 

volatiles was performed for the nine accessions after P. rapae-feeding or JA-

treatment (Fig. 4). 

 

For HPL1, which encodes a hydroperoxide lyase and is a member of the CYP74B 

cytochrome P450 family (Bate et al., 1998), induced transcript levels were ob-

served after JA as well as after herbivore treatment for most accessions. The 

accessions An-1 and Ler showed only just insignificantly P. rapae-induced tran-

script levels, whereas the accessions Cvi and Eri-1 only induced HPL1 transcript 

levels after JA treatment (Fig. 4A). The HPL1 transcript levels after herbivory 

did not differ among the accessions. In contrast, JA-treatment resulted in tran-

script level variation among the accessions. JA-induced HPL1 transcript levels 

were highest in accession WS and lowest in accession Cvi. 

 

Transcript levels of BSMT1, encoding a SABATH enzyme that methylates both 

salicylic acid and benzoic acid (Chen et al., 2003), were significantly induced in 

all accessions after 24 h of P. rapae feeding (Fig. 4B). JA treatment also led to 

higher transcript levels of BSMT1 when compared to non-treated plants in all 

accessions. Quantitative differences among the accessions were found in BSMT1 

transcript levels after P. rapae treatment. The highest transcript level was ob-

served in Cvi, and the lowest in WS. In contrast, no variation in JA-induced 

BSMT1 transcript levels was observed among accessions.  

  

The terpene synthase gene TPS3 was selected for transcriptional analysis as 

this gene is annotated to be a (E)-ß-ocimene, (Z)-ß-ocimene, and β-myrcene 

synthase (Fäldt et al., 2003). Transcript levels of TPS3 were higher in treated 

plants compared to control plants in most accessions (Fig. 4C). However, this 

was not the case for P. rapae-damaged Kyo-1 and Ler as well as for JA-treated 

C-24, Cvi and Eri-1 plants. Irrespective of plant treatment, accessions did not 

differ among each other in induced TPS3 transcript levels.  

 

Another terpene synthase, TPS4 encodes a geranyllinalool synthase, which is 

supposed to catalyze the formation of geranyllinalool, the intermediate in the 

biosynthesis of TMTT (Herde et al., 2008). In addition, two Cytochrome P450 

genes were included in this analysis that have been postulated to be involved in 

the conversion of geranyllinalool to TMTT, i.e. CYP72A13 (Bruce et al., 2008) 

Figure 3. Volatile emission (Log10(peak area units.FW-1.h-1)+6 + SE)(5-6 replicates) of 
nine Arabidopsis thaliana accessions infested with Pieris rapae (Pr.) infested (black bars), 
treated with JA (grey bars), or left untreated (control bars). Behind bars that represent 
P. rapae and JA-induced emission of volatiles, P values are given for the induction (t-
test). Accessions followed by a different letters - given for both treatments separately - 
differ significantly (P<0.05) (determined by post-hoc analysis). 
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and CYP82G1, that show high co-expression with TPS4 using the Correlated 

Gene Search Tool (http://prime.psc.riken.jp/?action=coexpression_index) of 

the RIKEN Plant Science Centre. TPS4 transcript levels were significantly en-

hanced after P. rapae infestation or JA treatment in most of the accessions. In 

An-1 and Kyo-1 plants, TPS4 transcript levels were marginally insignificantly 

induced after P. rapae feeding. Transcript levels in JA-treated Kyo-1 and Ler 

plants were not induced. Accessions differed in their transcript levels after P. 

rapae infestation or JA treatment. Accession Kond had the highest TPS4 tran-

script level after herbivory and An-1 showed the lowest. Treating plants with JA 

resulted in highest TPS4 transcript levels for WS and the lowest for Kyo-1  

(Fig. 4D). 

CYP72A13 transcript levels showed a significant increase after P. rapae infesta-

tion in accessions Col-0, Kyo-1, Ler and a marginally insignificant increase in 

Eri-1. JA treatment resulted in a significant increase in the transcript level of 

CYP72A13 in accessions Kyo-1 and WS, whereas the transcript levels in C-24 

and Eri-1 were not significant different from that in non-treated plants (Fig 4E). 

CYP82G1 showed induced transcript levels after P. rapae-infestation and JA-

treatment for all of the accessions except P. rapae-infested An-1 and C-24, and 

JA-treated Eri-1. No variation was observed among the accessions for either 

treatment (Fig 4F).  

 

Consequences of variation in volatile profiles for parasitoid attraction  

To investigate whether differences found in induced volatile blends between 

accessions affect the searching behavior of natural enemies of herbivores, bio-

assays were conducted using the parasitoid wasp D. semiclausum. This parasi-

toid wasp is known to respond to P. rapae-induced Arabidopsis volatiles 

(Loivamäki et al., 2008). To exclude variation in herbivore-induced emission 

due to differences in leaf damage, we chose to use JA for volatile induction 

only. Due to logistic limitations, we randomly selected six out of the nine ac-

cessions used in this study for the behavioral assays.  

The volatiles emitted by accessions Cvi, Eri-1, Kond, Ler and WS plants treated 

with JA attracted more D. semiclausum wasps than volatiles from non-treated 

control plants of the same accession. For Col-0, parasitoids did not discriminate 

between JA-treated and control plants, although there was a tendency of at-

traction towards the JA-treated plants (P=0.087; Fig 5A). 

In two-choice experiments, JA-treated plants from different accessions were 

tested against each other (Fig. 5B). The JA-induced volatile blend from acces-

sion Kond was more attractive than those of Col-0 and Eri-1, but it was equally 

Figure 4. Expression changes of six Arabidopsis thaliana genes in untreated (white 
bars), Pieris rapae infested (black bars) or JA-treated (grey bars) plants of nine Arabi-
dopsis accessions. Bars represent relative expression levels (2-dCt) (mean + SE), calcu-
lated from four biological replicates. Behind bars that represent P. rapae and JA-induced 
transcript levels of genes, the P values are given for the induction. Letters represent 
groups of accessions that did not significantly differ after ANOVA followed by post-hoc 
analysis, given for each treatment separately.  

http://prime.psc.riken.jp/?action=coexpression_index
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attractive as the blend of JA-treated WS and Cvi. Parasitoids preferred JA-

induced volatiles from Col-0 when tested against Cvi, but Col-0 volatiles were 

less preferred than volatiles from JA-treated Ler plants (Fig. 5B). A tendency 

was observed in parasitoid preference for Col-0 plants over Eri-1 plants 

(P=0.077; Fig. 5B). JA-induced WS volatiles were equally attractive as JA-

induced Kond, Cvi, Col-0, and Eri-1 volatiles, and JA-induced Cvi volatiles were 

also as attractive as JA-induced Eri-1 and Kond volatiles.  

 

Discussion 

 

Currently, functional analysis of Arabidopsis genes is largely based on mutants 

that are selected in forward and reverse genetic studies. Alternatively, a com-

plementary source of genetic variation is available, i.e. the naturally occurring 

variation among accessions. The multigenic nature underlying most of this 

variation has limited its analysis and applications until recently. However, the 

use of genetic methods developed to map quantitative trait loci (QTLs), in com-

bination with the characteristics and resources available for molecular biology 

in Arabidopsis, allow this variation to be exploited up to the molecular level. 

Thus, the systematic exploitation of naturally occurring variation provides a 

complementary resource for the functional analysis of the Arabidopsis genome. 

Here, we present the results of an extensive study of the genetic variation in 

caterpillar-induced indirect defense mechanism, i.e. HIPV emission, among 

nine Arabidopsis accessions originating from different geographic origins. 

 

The first line of defense that herbivores encounter upon contact with the plant, 

i.e. epicuticular wax loads and trichomes, was already proven to be subject to 

genetic variation (Larkin et al., 1996; Rashotte et al., 1997; Luo and Oppen-

heimer, 1999; Reymond et al., 2004). The differences in leaf area consumption 

by P. rapae larvae among accessions that were observed in the present study 

might have resulted from these first lines of direct plant defenses. For instance 

Plutella xylostella larvae show differences in neonate behavior on Arabidopsis 

wax-mutants (personal communication J.J.A. van Loon) and trichome density 

was reported to be directly correlated with radish resistance against P. rapae 

(Agrawal et al., 2002). Furthermore, the existing variation in glucosinolate  

levels among accessions (Kliebenstein et al., 2002) might explain the variation 

Figure 5. Responses of naïve Diadegma semiclausum females to the volatiles of two sets 
of Arabidopsis thaliana accessions, as assessed in a Y-tube olfactometer. All plants were 
treated with 1mM aqueous JA-solution (JA) or left non-treated (C). Each bar represents 
the percentage of choices for each of the two odor sources as determined in 3-4 replicate 
experiments; if JA treated accessions were compared (section 5B) 12 parasitoids were 
tested on each replicate day, and six parasitoids when JA and non-treated treated plants 
were compared (section 5A): error bars indicate SE. The higher part of the figure 
(section 5A) depicts the percentage of choices for all tested wasps used as controls for 
the separate JA-treated accession comparisons. Grey bars indicate the percentage of no 
choice in each experiment; total number of tested parasitoids are given next to these 
bars (X2 test, P values). 
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in leaf tissue consumption we observed (Mauricio, 1998; Kliebenstein et al., 

2005; Mewis et al., 2005). To exclude that the variation in volatile induction 

was caused by variation in leaf tissue consumption by larvae, we included an 

herbivory-mimicking treatment. Given that P. rapae caterpillars mainly induce 

the jasmonate pathway in Arabidopsis (De Vos et al., 2005), we chose for JA-

treatment to induce plant volatile emission. 

 

The indirect defense mechanism of plants, i.e. HIPV emission, has been studied 

in many plant species (Arimura et al., 2005). To date, the occurrence of varia-

tion in HIPV emission was primarily explored for crop varieties, including cotton 

(Loughrin et al., 1995), gerbera (Krips et al., 2001), pear (Scutareanu et al., 

2003), maize (Hoballah et al., 2004), carrot (Nissinen et al., 2005), rice (Lou 

et al., 2006), and cruciferous crops (Bukovinszky et al., 2005). In some of 

these studies, the authors have demonstrated that variation in emission of 

HIPVs among cultivars also influences carnivorous arthropod behavior (Dicke et 

al., 1990b; Krips et al., 2001; Hoballah et al., 2002; Bukovinszky et al., 2005). 

Here, we demonstrate that plants from the nine tested accessions of Arabidop-

sis, i.e. An-1, C-24, Col-0, Cvi, Eri-1, Kond, Kyo-1, Ler, and WS, emit different 

odor blends in response to damage inflicted by the biting-chewing caterpillar P. 

rapae or the herbivory-mimicking JA-treatment. Furthermore, we observed dis-

criminative host-finding behavior for the parasitoid wasp D. semiclausum be-

tween the odor blends of some of the offered accessions. Variation in HIPV 

emission was observed for distinct compounds in different chemical classes, 

e.g. GLVs, terpenoids, and phenolic compounds. HIPVs that were particularly 

variable among accessions after P. rapae herbivory were: (Z)-3-hexen-1-ol, ß-

myrcene, (E)-ß-ocimene, (Z)-ß-ocimene, (E,E)-α-farnesene, (E)-ß-farnesene, 

TMTT and MeSA. These HIPVs contributed to a large extent to the observed 

variation in the odor blend among accessions An-1, Col-0, C-24, and Cvi. In 

contrast, the odor blends emitted by Eri-1, Kyo-1, Ler, and WS plants are more 

similar, since the total number of HIPV-compounds emitted in different rates 

between these accessions was relatively small. Table 4 shows the number of 

compounds that differ between accessions after P. rapae herbivory and JA-

treatment. Volatiles induced in response to JA-treatment that contributed most 

to the variation among all tested accessions were: ß-myrcene, ß-

sesquiphellandrene, (E)-ß-ocimene, (Z)-ß-ocimene, TMTT, MeSA, and ethyl 

salicylate. 

Most of the variation found between accessions is quantitative, i.e. all acces-

sions emit the compounds analyzed, but in various amounts, resulting in diffe-

rent odor blends. In contrast, some sesquiterpenes were absent or only pre-

sent around detection limits in individual samples of accession Cvi, such as α-

cuparene and β-bisabolene. In addition to the findings of Tholl and co-workers 

(Tholl et al., 2005), who reported that the transcript levels of At5g23960 in 

inflorescence was comparable in both Cvi and Col-0, we do detect sesquiter-

penes that have been reported as products of the terpene synthase encoded by 

At5g23960 (Tholl et al., 2005) such as α-humulene and (E)-β-caryophyllene in 

the headspace of P. rapae- infested or JA-treated leaves of Cvi.  
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Up to now, most experiments using Arabidopsis to study induced defenses 

were conducted with one of the three laboratory lines Col-0, Ler, or WS. Only 

few studies compared these accessions for induced defense traits such as vola-

tile production (Duan et al., 2005; Snoeren et al., 2009 chap. 4). The study 

presented here is an important contribution, as it compares the three above-

mentioned accessions together with six other accessions for HIPV emission and 

its effects on natural enemy behavior. Since laboratory studies are currently 

mostly conducted with Col-0, Ler or WS (Van Poecke and Dicke, 2002; Duan et 

al., 2005; Shiojiri et al., 2006a; Snoeren et al., 2009 chap. 6), we looked more 

closely at differences among these accessions which may be overlooked when 

only one accession is used. The consumption of leaf tissue by caterpillars did 

not differ among Col-0, Ler, or WS. However, the emitted volatiles of these 

three accessions do exhibit variation. Yet, variation between these three acces-

sions in HIPV emission is rather moderate when compared to the variation that 

is present among all nine studied accessions (Fig. 2). For instance Col-0 and 

Ler only differed in the presence of (Z)-ß-ocimene, and accessions Ler and WS 

did not significantly differ in the emission of any of the compounds screened for 

after P. rapae herbivory. In contrast, accessions Col-0 and WS differed signifi-

cantly for the herbivore-induced compounds (Z)-3-hexen-1-ol, (E)-nerolidol, 

(E)-ß-ocimene, and (Z)-ß-ocimene. The use of JA to induce the emission of 

volatiles only resulted in differences between Col-0 and WS - for the com-

pounds (E)-ß-ocimene, (Z)-ß-ocimene, and DMNT - that were all present in 

higher amounts in the headspace of WS. The induced odor blend of accession 

Ler did not differ from that of Col-0, nor from that of WS after JA-treatment. 

Furthermore, when the overall volatile profile of each accession was visualized 

 An-1 C-24 Col-0 Cvi Eri-1 Kond Kyo-1 Ler WS 

An-1  3 5 5 4 3 1 2 1 

C-24 0  2 5 1 6 3 3 4 

Col-0 1 3  4 2 5 2 1 4 

Cvi 4 0 3  2 2 3 1 4 

Eri-1 1 1 2 1  0 0 0 0 

Kond 2 2 4 4 3  0 1 2 

Kyo-1 2 2 0 4 1 2  1 0 

Ler 2 0 0 3 3 3 1  0 

WS 0 1 3 1 5 1 2 0  

Table 4. Total number of compounds that are significantly different between accessions. 
In bold are the number of compounds depicted that are significantly different after her-
bivory between two accessions, these numbers are given in italics for the JA-treated 
plants.  
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using PCA, accessions Col-0, Ler and WS partly overlap in both treatments and 

are separated to some extent from the other accessions (Fig. 2). Thus, when 

using one of these lines for studying e.g. behavior of parasitoids, it should be 

noted that these lines do not very well represent the genetic variation in in-

duced volatile formation present in the species Arabidopsis thaliana.  

 

The variation found between the induced headspace volatiles of e.g. Col-0 and 

WS suggests that foraging behavior of carnivorous arthropods might be influ-

enced by these differences. However, these differences did not influence the 

naïve parasitoid D. semiclausum when they were exposed to odors from JA-

treated Col-0 versus JA-treated WS plants. As parasitoids did not discriminate 

between accessions Col-0 and WS, when treated with JA, this might suggest 

that the compounds (E)-ß-ocimene, (Z)-ß-ocimene, and DMNT are not of im-

portance for this parasitoid. We, therefore, tried to further identify which com-

pounds in the headspace of JA-treated plants influence the attraction of parasi-

toid wasps while searching for hosts. The initial assumption was that com-

pounds with a significantly higher emission rate between two accessions could 

explain the differential attraction. If so, β-myrcene, (E)-β-ocimene, (Z)-β-

ocimene, DMNT and β-sesquiphellandrene, which are emitted in significantly 

larger amounts in accession Kond than in Col-0 and Kyo-1, would explain the 

attractiveness of this accession when compared to accessions Col-0 and Eri-1. 

However, the emission rates of β-myrcene and (Z)-β-ocimene are also higher 

in accession Cvi compared to Col-0, but here this did not result in a stronger 

attraction of D. semiclausum wasps towards Cvi (Fig 5). Our study, in which we 

compared volatiles from genetically different accessions, therefore does not 

allow us to allocate individual HIPV compounds to effects on parasitoid beha-

vior. The complex variation in odor blends is likely to interfere with drawing 

conclusions on the contribution of individual compounds. It is more likely that 

the contribution of individual compounds to the total headspace composition of 

the plant after induction is crucial for the parasitoid (Mumm and Hilker, 2005). 

For instance, TMTT is not attractive to the predatory mite Phytoseiulus persimi-

lis when offered as a single compound but when added to a complex blend it 

does affect the predator‟s behavior (De Boer et al., 2004). Moreover, we have 

not included quantitative aspects. Possibly the discrimination between blends is 

affected by absolute emission rates rather than only the relative emission 

rates. 

 

At present, only a few genes have been functionally associated to the produc-

tion of specific plant volatiles in Arabidopsis (e.g. (Bate et al., 1998; Chen et 

al., 2003; Fäldt et al., 2003). For several other genes, a function has been pro-

posed in plant volatile production, such as TPS4 and CYP72A13 genes (Bruce et 

al., 2008; Herde et al., 2008). Using the co-expression database from RIKEN, 

we identified that TPS4 correlated highly with CYP82G1 (r=0.639). Variation in 

transcript levels of genes potentially involved in the biosynthesis of volatiles in 

response to herbivory has already been demonstrated (Arimura et al., 2004b; 
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Gomez et al., 2005). However, these studies used a single hybrid or plant line. 

In the present study we screened for variation among nine accessions in stress

-induced transcript levels of six genes that are (putatively) involved in the bio-

synthesis of volatile compounds. We demonstrated differences in transcript 

levels among the accessions for BSMT1, TPS4, CYP72A13, and HPL1 after her-

bivory and/or JA-treatment. Transcript levels of TPS3 and CYP82G1, however, 

did not vary among accessions after caterpillar feeding or JA treatment. TPS3 

has been shown to encode a terpene synthase involved in the biosynthesis of 

(E)-ß-ocimene, (Z)-β-ocimene , and ß-myrcene (Fäldt et al., 2003). Although 

TPS3 transcript levels did not vary between accessions, volatile analyses 

showed that ß-myrcene, (E)-ß-ocimene, and (Z)-ß-ocimene contributed signifi-

cantly to variation among the induced headspace compositions of the acces-

sions. Possibly, variation among the accessions in substrate availability or the 

involvement of another TPS responsible for the production of ß-myrcene, (E)-ß-

ocimene, and (Z)-ß-ocimene may explain this discrepancy.  

Herbivory induced the emission of TMTT in accessions Col-0, Eri-1, and WS, but 

not in the other accessions. The TPS4 gene has been shown to encode a 

geranyllinalool synthase. Geranyllinalool is an intermediate in the formation of 

TMTT (Herde et al., 2008). Yet, none of the three mentioned accessions with 

an herbivore-induced increase in TMTT emission displayed significantly higher 

TPS4 transcript levels than the other accessions. Furthermore, for accessions 

with a high TPS4 transcript level, i.e. Cvi and Kond, no significantly induced 

TMTT emission was observed. The results suggest that TPS4 is not involved in 

the key regulatory step in TMTT formation or that TMTT emission is not directly 

correlated with its transcript level. So far it is not known which enzymes con-

vert geranyllinalool into TMTT. As Bruce et al. (2008) postulate a possible in-

volvement of CYP72A13, we also monitored transcript levels of this gene after 

herbivore damage and JA application. We observed that Col-0 and WS, which 

exhibited a higher emission rate of TMTT compared to other accessions, also 

showed higher transcript levels of CYP72A13. This finding indicates an involve-

ment of CYP72A13 in the conversion of geranyllinalool into TMTT. The other 

Cytochrome P450 gene, CYP82G1, that we included in our study showed high 

correlation with TPS4 transcript levels using the RIKEN Correlated Gene Search 

Tool and was previously shown to be induced in Arabidopsis by Botrytis cine-

rea, nematodes (www.genevestigator.ethz.ch), Pseusomonas syringae, Frank-

liniella occidentalis and to a lesser extent by P. rapae (De Vos et al., 2005). In 

most accessions CYP82G1 was induced by P. rapae infestation and JA treat-

ment, but no differences were found between accessions. Although, we could 

not link TMTT emission directly to either CYP72A13 or CYP82G1 transcription, 

the results suggest that it is worthwhile to study this more in depth, for exam-

ple by analyzing the (induced) TMTT emission of knock-out mutants of these 

genes. 

 

Accessions An-1, Col-0, Eri-1 and Kond showed induced emission of (Z)-3-

hexen-1-ol after herbivore damage. The GLV (Z)-3-hexen-1-ol is one of the 

http://www.genevestigator.ethz.ch
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compounds ascribed to result from HPL1 activity (Bate et al., 1998). Further-

more, most accessions have increased emission of (E)-2-hexenal in P. rapae 

infested plants (SOM Table 3), which is another product of the CYP74B enzyme 

that is encoded by HPL1. Transcript levels of HPL1 were induced by P. rapae 

feeding in most accessions compared to non-treated controls. In contrast, for 

accession An-1 and Ler we did not detect induced HPL1 transcript levels, 

whereas emission of (Z)-3-hexen-1-ol (Fig 3A) and (E)-2-hexenal (SOM Table 

3) increased in P. rapae infested plants. Therefore, our study does not fully 

support earlier findings (Duan et al., 2005) that only HPL1 transcript abun-

dance correlates with the emission of GLVs. Moreover, since we observed HPL1 

expression and (Z)-3-hexen-1-ol emission in accession Col-0 we cannot con-

firm the findings of a loss of HPL1 functioning in Col-0 as a result from a 10-

nucleotide deletion in the HPL1 gene as reported by (Duan et al., 2005). 

Whether this is specific for our population of Col-0 or for that of Duan et al. 

(2005), remains to be investigated. The involvement of HPL1 in the biosynthe-

sis of GLVs was originally shown for accession „Columbia‟ (Bate and Rothstein, 

1998), which really was Col-0 (S. Rothstein, pers. comm.). 

All accessions, except Cvi, showed an induced emission of MeSA after P. rapae 

feeding, and also transcript levels of BSMT1 were significantly higher in all ac-

cessions including Cvi after induction when compared to control plants. Overall 

it can be stated that the emission of MeSA is reflected in the BSMT1 transcript 

levels.  

 

In this study we also induced plant volatile emission with the phytohormone JA, 

since JA is the key hormone involved in volatile induction by caterpillar leaf-

tissue-feeding (Dicke et al., 1999; Ozawa et al., 2000). This methodology of 

mimicking herbivore damage to study several plant defense traits has already 

been extensively used. However, for several carnivorous arthropods it is known 

that they prefer the headspace from an herbivore-infested plant over the head-

space from a JA-treated plant (Dicke et al., 1999; Van Poecke and Dicke, 

2002; Bruinsma et al., 2008). Transcript profiling of Arabidopsis showed that 

55% of P. rapae-induced genes were also responsive to MeJA (De Vos et al., 

2005). We observed that accessions not only differed in the emission of HIPVs 

and transcript levels of tested genes, but also showed a different induction in 

response to the two treatments. The emitted headspace differed quantitatively 

and qualitatively for P. rapae-infested plants compared to JA-treated plants. 

Nevertheless, D. semiclausum parasitoids still preferred plants sprayed with JA 

over non-treated plants. We also observed differences between JA-treated and 

P. rapae-infested plants in transcript levels for the genes that are putatively 

involved in the emission of a number of volatiles. Therefore, our study confirms 

that JA-application can only partly mimic herbivory damage.  

 

Chemical ecology addresses the effects of chemical information on interactions 

within a plant-insect community. Here, we have explored the natural variation 

in herbivore-induced plant volatiles between nine accessions of Arabidopsis 

thaliana obtained from different geographical origins.  
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In addition, we investigated whether this variation is also reflected in the tran-

script levels of the genes that are associated with the formation of some of 

these volatiles. We demonstrated genotypic variation in indirect defense traits, 

both at the metabolite level as well as the gene transcript level. This enables 

the use of newly available marker technologies that allow characterization and 

positioning of loci that control these types of traits. It would be very interesting 

to screen recombinant inbred line (RIL) populations of those accessions that 

have very distinct volatile patterns for their individual volatile compounds and 

to subsequently perform (expression) quantitative trait locus (e)QTL analysis. 

These RIL-populations would allow clarification of genetic regulation of HIPV- 

formation. Finally, we showed that the genetic variation in induced volatile 

blends indeed also has consequences for the interactions at the third trophic 

level, i.e. the attraction of carnivorous parasitoids.  
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Abstract 

 

The jasmonic acid (JA) pathway is commonly involved in induced plant de-

fenses, and is the main signal-transduction pathway induced by insect folivory. 

JA, as well as pathway intermediates are known to induce plant defenses. Indi-

rect defense against herbivorous insects comprises the production of herbivore-

induced plant volatiles (HIPVs). To unravel the precise signal-transduction un-

derlying the production of HIPVs in Arabidopsis thaliana and the resulting at-

traction of parasitoid wasps, we have used a multidisciplinary approach that 

includes molecular genetics, metabolite analysis and behavioral analysis. Mu-

tant plants affected in the jasmonate pathway (18:0 and/or 16:0 -oxylipin 

routes; mutants dde2-2, fad5, opr3) were studied to assess the effects of JA 

and its oxylipin intermediates 12-oxo-phytodienoate (OPDA) and dinor-OPDA 

(dnOPDA) on HIPV emission and parasitoid (Diadegma semiclausum) attrac-

tion. Interference with the production of the oxylipins JA and OPDA altered the 

emission of HIPVs, in particular terpenoids and the phenylpropanoid methyl 

salicylate, which affected parasitoid attraction. Our data show that the herbi-

vore-induced attraction of parasitoid wasps to Arabidopsis plants depends on 

HIPVs that are induced through the 18:0 oxylipin-derivative JA. Furthermore, 

our study shows that the 16:0-oxylipin route towards dnOPDA does not play a 

role in HIPV induction, and that the role of 18:0 derived oxylipin-intermediates, 

such as OPDA, is either absent or very limited. 
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Introduction 

 

Plants have evolved direct and indirect defenses to effectively combat attack by 

herbivorous insects (Kessler and Baldwin, 2002). Direct defense mechanisms 

comprise the production and storage of metabolites that negatively influence 

herbivore performance (Wittstock and Gershenzon, 2002). In contrast, indirect 

defense mechanisms encompass the production of metabolites that benefit the 

natural enemies of herbivores (Dicke et al., 1999; Wäckers et al., 2001; 

Halitschke et al., 2008; Kost and Heil, 2008). Both defense mechanisms can be 

constitutively present or induced after herbivore feeding. Induced defenses al-

low plants to be more cost effective and also to diminish the risk that herbi-

vores adapt to the defenses (Agrawal and Karban, 1999; Pieterse and Dicke, 

2007; Steppuhn and Baldwin, 2008). Plant responses to different herbivore 

species vary as mediated by different feeding modes and defense elicitors in 

herbivore regurgitant or saliva (Walling, 2000; Voelckel and Baldwin, 2004a; 

De Vos et al., 2005; Felton and Tumlinson, 2008).  

Here, we address induced indirect plant defense at different levels of biological 

integration. An example of an induced indirect defense mechanism is the pro-

duction of volatiles by plants in response to herbivory. These volatiles are used 

by parasitoids or predators to locate their herbivorous victims. Herbivore-

induced plant volatiles (HIPVs) mainly comprise green leaf volatiles (GLVs), 

terpenoids, and phenolics (Dudareva et al., 2006). The composition of induced 

volatile blends can vary qualitatively or quantitatively (Dicke and Hilker, 2003). 

With this variation in HIPV composition, the plant can provide the natural ene-

mies of herbivores with detectable and reliable information (Vet and Dicke, 

1992; Dicke, 1999a). The induced volatile production is orchestrated by at 

least three main signal-transduction pathways: the jasmonic acid (JA), salicylic 

acid (SA), and ethylene (ET) pathways (Dicke and Van Poecke, 2002; Kessler 

and Baldwin, 2002). These pathways can be differentially induced by different 

herbivore species (Heidel and Baldwin, 2004; De Vos et al., 2005; Schmidt et 

al., 2005), leading to the emission of an herbivore-specific volatile blend (Vet 

and Dicke, 1992; Ozawa et al., 2000; Walling, 2000; Leitner et al., 2005).  

 

Jasmonic acid (JA) is a member of a family of compounds collectively known as 

jasmonates or oxylipins, produced by the jasmonate pathway (Fig. 1). Tissue-

feeding insects, such as the larvae of herbivorous Lepidoptera especially induce 

the jasmonate pathway (Kessler and Baldwin, 2002; De Vos et al., 2005). The 

production of jasmonates from linolenic acid (18:3) and linoleic acid (18:2) is 

initiated in the plastid and completed in the peroxisome and cytosol (Schaller 

et al., 2005). Lipases that release linolenic acid from membrane lipids, mainly 

originating from damaged cell walls, are thought to play an important role in 

regulating the response to herbivore-derived cues (Farmer and Ryan, 1992; 

Schaller et al., 2005). Linolenic acid and linoleic acid are subsequently con-

verted by lipoxygenase (LOX) (Bell et al., 1995), allene-oxide synthase (AOS) 

(Laudert and Weiler, 1998) and allene-oxide cyclase (AOC) (Ziegler et al., 
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1997) into 12-oxophyto-dienoic acid (OPDA). A parallel cascade converts hexa-

decatrienoic acid (16:3) to dinor-oxophytodienoic acid (dnOPDA) (Weber et al., 

1997). After the activity of 12-oxophytodienoic acid reductase (OPR) (Stintzi 

and Browse, 2000) and three ß-oxidation steps, the oxylipins OPDA and 

dnOPDA are metabolized to form JA (Schaller et al., 2005). Another branch, 

starting at 9- or 13-hydroperoxide formed by the lipoxygenase, leads to the 

production of GLVs through the action of hydroperoxide lyase (HPL) (Bate et 

al., 1998).  

Evidence for the involvement of 

jasmonates in herbivore-induced 

responses does not only stem 

from the induction of JA and its 

intermediates upon herbivory. 

Exogenous application of jas-

monates mimics the effects of 

herbivory. For example, exoge-

nous application of methyl jas-

monate (MeJA) and caterpillar-

feeding induce similar, but not 

identical, transcriptional re-

sponses (Reymond et al., 2004). 

De Vos et al. (2005) demon-

strated that there is roughly a 50 

percent overlap in gene induction 

in Arabidopsis after MeJA treat-

ment and herbivory by caterpil-

lars or thrips. Besides MeJA, also 

other jasmonates trigger tran-

scriptional changes. Interes-

tingly, exogenous treatment 

with OPDA, JA, or MeJA results 

in overlapping but not identical 

gene-expression profiles in 

Arabidopsis (Taki et al., 2005).  

Similar to their effects on gene-

expression profiles, jasmonates 

also influence the emission of 

volatiles by plants. The produc-

tion of volatiles by JA-treated 

plants is quantitatively and 

qualitatively similar compared to 

induction by herbivory (Dicke et al., 1999; Ozawa et al., 2000). Application of 

OPDA has similar effects on secondary metabolite production as applying MeJA 

(Gundlach and Zenk, 1998). However, exogenously applied OPDA but not JA 

induces diterpenoids in lima bean plants (Koch et al., 1999). 

Figure 1. Biosynthetic route of jasmonates in 
infested Arabidopsis thaliana leaves. FA= Fatty 
Acid; 16:0= hexadecanoic acid; 16:3= 7Z, 
10Z,13Z-hexadecatrienoic acid; 18:0= octa-
decanoic acid; 18:2=9Z,12Z-octadecadienoic 
acid (linoleic acid); 18:3= 9Z,12Z,15Z-
octadecatrienoic acid (linolenic acid); dn-OPDA= 
dinor-oxo-phytodienoic acid; OPDA= oxo-
phytodienoic acid; JA= jasmonic acid; GLVs= 
green leaf volatiles. Mutations affecting the bio-
synthesis are indicated in italics. 
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A third line of evidence for the involvement of jasmonates in herbivore-induced 

responses comes from mutant analyses. For example, Arabidopsis opr3 and 

aos mutants show different gene-expression profiles in response to JA, MeJA, 

OPDA and mechanical damage compared to wild-type plants, indicating distinct 

signaling roles for dnOPDA, OPDA and JA (Stintzi et al., 2001; Taki et al., 

2005). Indeed, opr3 mutants, lacking JA, still show oxylipin-dependent resis-

tance to pathogens and herbivores, implying a role for jasmonates other than 

JA in plant defense (Stintzi et al., 2001).  

Mutations in the jasmonate pathway also affect indirect defense. In tobacco for 

example, AOS-silenced plants (as-aos), display a reduced JA accumulation and 

terpenoid emission and antisense-hpl mutants release fewer GLVs (Halitschke 

et al., 2004). Similarly, two antisense-hpl-mutants show an altered production 

of GLVs in Arabidopsis (Shiojiri et al., 2006a). These oxylipin-mediated effects 

on volatile emissions were accompanied by effects on interactions of plants 

with carnivorous insects (Shiojiri et al., 2006b; Halitschke et al., 2008).  

  

Thus, several lines of evidence demonstrate the involvement of jasmonic acid 

in herbivore-induced responses including indirect defense, yet also suggest 

roles for other intermediates of the jasmonate pathway such as dnOPDA or 

OPDA. As predators and parasitoids are able to discriminate JA-induced from 

herbivore-induced volatiles (Dicke et al., 1999; Gols et al., 1999; Van Poecke 

and Dicke, 2002), other signals besides JA are likely required for the induction 

of indirect defenses. Mutant plants altered in signaling pathways with a 

changed volatile emission represent some of the most powerful tools of testing 

the mechanisms that underlie HIPV production. Investigating the effects of al-

tered HIPV production in behavioral assays is then a valuable key to unravel 

the ecological relevance of these signaling pathways. Here, we followed a mo-

lecular genetic approach to study the involvement of several intermediates 

from the jasmonate pathway in the induction of plant volatiles by tissue-

feeding herbivores. We used Arabidopsis thaliana to dissect the jasmonate 

pathway and analyze the effects on indirect defense after attack by tissue-

feeding herbivores. In particular, we are interested in the contribution of the 

two sub-pathways, originating from galactolipids (16:0) or phospholipids 

(18:0) (Schaller et al., 2005), with special interest in dnOPDA, OPDA, and JA. 

For this, we selected mutants with altered production levels of dnOPDA, OPDA, 

and JA (Weber et al., 1997; Stintzi and Browse, 2000; Stintzi et al., 2001; Von 

Malek et al., 2002). For caterpillar-infested mutants and their corresponding 

wild-type plants, the levels of dnOPDA, OPDA and JA were quantified. Subse-

quently, HIPVs were collected and volatile blend composition was quantitatively 

analyzed. Finally, we quantified caterpillar-feeding rate and conducted behav-

ioral bioassays with parasitoid wasps to determine the effects of the observed 

differences in oxylipin profiles and HIPV blend composition after caterpillar-

feeding on species interactions.  
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Materials and methods 

 

Plants and insect material 

Arabidopsis seeds (A. thaliana; genotypes Columbia (Col-0), Wassilewskija 

(WS), fad5, opr3, and dde2-2) were germinated on an autoclaved mixture of 

commercially available potting soil and 33% sand, and cultivated in a growth 

chamber at 21 ± 2 °C, 50 to 60% relative humidity (RH), and L8:16D photope-

riod with 80 to 110 µmol m-2 s-1 PPF. The selected mutant fad5 has a Col-0 

background and is incapable of biosynthesizing 7Z,10Z,13Z-hexadecatrienoic 

acid (16:3) (Weber et al., 1997); the mutant dde2-2 also has a Col-0 back-

ground and is defective in allene oxide-synthase (AOS) (Von Malek et al., 

2002). The mutant opr3 has a WS background and lacks the most relevant 

isozyme of 12-oxo-phytodienoate reductase (OPR) (Schaller et al., 2000; 

Stintzi and Browse, 2000; Stintzi et al., 2001). Two-week-old seedlings were 

transferred to plastic cups (5 cm in diameter) filled with the earlier described 

soil mixture. Plants were watered twice a week. When plants were full-grown 

vegetative plants, i.e. 6 to 8 weeks after sowing, they were used for experi-

ments.  

 

Herbivore-induced defense responses were initiated by caterpillars from 

Pieris rapae, the small cabbage white. Pieris rapae was reared on Brussels 

sprouts plants (Brassica oleracea var. gemmifera, cv Cyrus) in a climatized 

room (16L:8D; 20 ± 2 °C and 70% RH). 

The parasitoid wasp Diadegma semiclausum was reared on Plutella xylostella 

caterpillars feeding on Brussels sprouts in a climatized room (16L:8D; 20 ± 2 °

C and 70% RH). Emerging wasp species were provided ad libitum with water 

and honey, and are referred to as „naïve‟ wasps as they had received no expo-

sure to plant material, nor an oviposition experience.  

 

Plant treatments 

Defense responses were induced by herbivore feeding, or by spraying the plant 

with JA. Plants were infested by equally distributing 20 first-instar P. rapae lar-

vae over the fully expanded leaves. Herbivore feeding was mimicked by spray-

ing JA. Four plants were sprayed with 5 ml of 1.0 mM (±)-JA (Sigma-Aldrich) 

aqueous solution. 

In all experiments, plants were treated 24 h before the experiments and kept 

in a climate room (21 ± 2 °C, 50-60% RH; L8:D16 photoperiod and 80 to 110 

µmol m-2 s-1 PPFD). 

 

Quantitative analysis of jasmonate family members 

The abundance of dnOPDA, OPDA, and JA, was determined for each of the used 

Arabidopsis genotypes. After 24 h, P. rapae larvae were removed. Leaf rosettes 

from infested and uninfested control plants were harvested, immediately 

weighed and frozen in liquid nitrogen for storage. Extraction of the oxylipins 

was performed according to the protocol described by Weber et al., 1997 
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(Weber et al., 1997). For quantifying the derivatized oxylipins, a gas chromato-

graph (Hewlett-Packard 5890) equipped with a 30m x 0.25mm HP-MS column 

(Hewlett-Packard) coupled to a mass-spectrometer (model 5972, Hewlett-

Packard) was used. Helium was used as carrier gas with a flow of 1ml/min. The 

column temperature at the moment of injection was 100 °C. The temperature 

gradient was 100 °C to 160 °C at 20 °C min-1, 160 °C to 238 °C at 3 °C min-1, 

and 238 °C to 300 °C at 30 °C min-1. Quantification was done by measuring 

selective ions (m/z=224 for methyl jasmonate, m/z=278 for methyl dnOPDA, 

m/z=238 for methyl OPDA, m/z=226 for methyl dihydrojasmonate (Internal 

Standard used for methyl JA) and m/z=240 for methyl tetrahydro-OPDA 

(Internal Standard used for methyl dnOPDA and methyl OPDA).  

Titers of dnOPDA, OPDA, and JA were calculated per gram fresh weight and 

were log10 transformed. The following fixed effects-model was used for each 

oxylipin to screen for differentiation per genotype: log10(Oij)~Gi+Tj+G:Tij+εij , 

where O=oxylipin quantity per gram fresh weight, G=genotype; T=treatment; 

ε=residual; i=1,…,4; and j=1,2. Subsequently, two-tailed t–tests, for the 2004 

data followed by a Benjamini and Hochberg false discovery rate (BH-FDR) mul-

tiple comparison correction, were conducted per oxylipin for the genotypes 

(significance: q/p<0.05) (Benjamini and Hochberg, 1995). All linear models 

were performed in the R environment (R Development Core Team, 2007) with 

R packages for linear mixed-effects models. 

 

Headspace collection and volatile analysis 

Dynamic headspace sampling was done for sets of four plants in a climate 

room (20 ± 2 °C, 70% RH; L8:D16 photoperiod and 90 to 110 µmol m-2 s-1 

PPFD). Twenty-four hours before trapping, the pots were removed, soil with 

the roots were carefully wrapped in aluminum foil, and the four plants were 

placed together in 2.5 L glass jar. Plants either were left uninfested or were 

infested with 20 first-instar (L1) P. rapae larvae per plant. Just before trapping 

jars were closed with a Viton-lined inert glass lid having an inlet and outlet. Air 

was sucked out with a vacuum pump at 100 ml min-1 with the incoming air pu-

rified through a steel cartridge filled with 200 mg Tenax-TA (20/35-mesh, 

Grace-Alltech, Deerfield, USA). A same kind of cartridge was used to trap emit-

ted plant volatiles at the outlet. After 3.5 h of trapping at continuous light, 

fresh weight of the four plants was measured. Headspace collections of unin-

fested and infested plants, for all the genotypes, were carried out in parallel on 

one experimental day. 

 

Headspace samples were analyzed with a Thermo TraceGC UltraTM (Thermo 

Fisher Scientific, Waltham, USA) connected to a Thermo TraceDSQ quadrupole 

mass spectrometer (Thermo Fisher Scientific, Waltham, USA). Before desorp-

tion of the volatiles, the cartridges were dry-purged with helium at 30 ml min-1 

for 20 min at ambient temperature to remove moisture. Samples were de-

sorbed from the cartridges using a thermal desorption system at 250 oC for 3 

min (Model Ultra Markes Llantrisant, UK) with a helium flow at 30 ml min-1. 
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Analytes were focused at 0 oC on an electronically-cooled sorbent trap (UnityTM, 

Markes International LTD, Llantrisant, UK). Volatiles were transferred without 

split to the analytical column (Rtx 5MS, 30 m 0.25 mm i.d., 1.0 µm film thick-

ness, Restek, Bellefonte, USA) by ballistic heating of the cold trap to 300 oC. 

The GC was held at an initial temperature of 40 oC for 3.5 min followed by a 

linear thermal gradient of 10 oC min-1 to 280 oC and held for 2.5 min with a 

column flow of 1 ml min-1. The column effluent was ionized by electron impact 

ionization at 70 eV. Mass spectra were acquired by scanning from 45-400 m/z 

with a scan rate of 3 scans s-1.  

 

Compounds were identified by using the deconvolution software (AMDIS ver-

sion 2.64, NIST, USA) in combination with NIST 98 and Wiley 7th edition spec-

tral libraries and by comparing their retention indices with those from literature 

(Adams, 1995). Characteristic quantifier ions were selected for each compound 

of interest. Metalign software (PRI-Rikilt, Wageningen, The Netherlands) was 

used to align chromatograms of all samples and integrate peak areas for the 

signals of the quantifier ions. Peak areas were converted to peak area per gram 

fresh weight of leaf material.  

 

Areas of quantifier ions per gram fresh weight were log10 transformed, and for 

each HIPV compound the following mixed model was used to screen for HIPV 

compound differentiation per genotype: log10(Vijk) ~ Gi + Tj + G:Tij + Rk + 

εijk , where V=area of quantifier ions per gram fresh weight; G=genotype; 

T=treatment; R=replicate; ε=residual; i=1,…,5; j=1,2; and k=1, …,5. Both G 

and T were used as fixed effects and R as a random effect. Subsequently, two-

tailed t-tests followed by a Benjamini and Hochberg false discovery rate (BH-

FDR) multiple comparison correction were conducted per compound for the 

genotypes (significance: q<0.05; (Benjamini and Hochberg, 1995)). 

Similarities among plant genotypes based on volatile profiles were analyzed 

using LEGG, a nonlinear dimensionality reduction method based on uncentered 

Pearson correlations among volatile profiles, which are used to generate 3-

dimensional networks, for details see Van Poecke et al. (2007). 

 

Behavioral assays 

The effects of HIPV alterations as a result of mutations in the jasmonate path-

way on behavioral responses were tested for the parasitoid species D. semi-

clausum. Behavioral assays were carried out in a closed Y-tube olfactometer 

system as described in detail by Takabayashi and Dicke (1992). To investigate 

the behavioral responses of 3 to 7 day old mated D. semiclausum females, a 

modified Y-tube olfactometer has been used (Bukovinszky et al., 2005). In 

short, filtered air was led through activated charcoal and split into two air 

streams (4 L min-1) that were led through five-liter glass vessels containing the 

odor sources consisting of four plants each. Plants were infested with 20 L1 

P. rapae or sprayed with 1.0 mM JA solution 24 h before starting the bioassay. 

Plants were kept overnight in a climate room (21 ± 2 °C and 50 to 60% RH, 
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L8:D16 photoperiod and 80 to 110 µmol m-2 s-1 PPF). The olfactometer was 

illuminated with 4 high-frequency fluorescent tubes (Philips 840, 36 W) from 

above at an intensity of 60 ± 5 µmol photons m-2 sec-1. All experiments were 

conducted in a climatized room (20 ± 2 °C). 

Individual wasps were transferred into the Y-tube olfactometer, and their be-

havior was observed and scored as described in detail by Bukovinszky et al. 

(2005). Odor sources were interchanged to compensate for any unforeseen 

asymmetry in the set-up after every five wasps tested. Choices between odor 

sources were statistically analyzed using a chi-square test, with the null-

hypothesis that no preference existed. 

 

The total area of consumed leaf-tissue was analyzed for the plants used in the 

bioassay. Therefore, after an experiment, all individual leaves of each rosette 

were taped on paper and scanned with a Hewlett-Packard scan jet 3570c. For 

quantification of the consumed leaf area, analysis was performed with KS400 

version 3.0 software service pack 9 (Carl Zeiss Vision, Oberkochen, Germany). 

The consumed leaf area per genotype was statistically compared using ANOVA 

(SPSS 15.0, Chicago, USA 

 

Results 

 

Quantitative analysis of jasmonate family members 

We quantified the levels of dnOPDA, OPDA and JA in leaf-tissue from the mu-

tants dde2-2, opr3 and fad5, after 24h of herbivory by Pieris rapae, and from 

uninfested plants (Fig. 2). As the dde2-2 and fad5 mutants have a Col-0 back-

ground, while the opr3 mutant has a WS background, both wild-type acces-

sions were included as well.  

Analyses of Col-0 were performed both in 2004 and 2005. Even though plants 

were grown in a controlled environment, the levels of oxylipins varied between 

the years (Fig. 2). Therefore, the 2004 dataset was analyzed separately from 

the 2005 dataset. Constitutive levels of OPDA and JA are similar in both wild-

type accessions, whereas constitutive dnOPDA levels are lower in WS compared 

to Col-0 (Fig. 2). Herbivory by P. rapae induced all three oxylipins to similar 

levels in Col-0 and WS plants (Fig. 2).  

Mutations in oxylipin biosynthetic genes clearly affected the oxylipin signatures. 

In dde2-2 plants, induction of dnOPDA, OPDA or JA by herbivory was com-

pletely abolished. In fact, a decrease in dnOPDA and OPDA levels was observed 

in dde2-2 plants in response to herbivory. Moreover, constitutive OPDA levels 

were lower in the dde2-2 mutant. 

A mutation in FAD5 resulted in constitutively lower dnOPDA levels that could 

not be induced by herbivory. However, this mutation did not affect either con-

stitutive or herbivore-induced levels of OPDA or JA. 

A mutation in OPR3 hampered the induction of JA after herbivory; herbivory 

resulted in a significantly lower induction than in the WS wild-type. Constitutive 

levels of all three oxylipins were unaffected by OPR3 mutation.  
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Figure 2. Oxylipin titers in Arabidopsis thaliana after 24h of Pieris rapae feeding, or left 
uninfested. Extracted oxylipin concentration for P. rapae-infested (black bar) or uninfested 
(white bar) leaves. Mean oxylipin values + SE are shown (n=4). Dashed line separates 
wild-type accession backgrounds for 2004. Asterisks indicate significant differences be-
tween infested and uninfested plants within a genotype (P value: * <0.05; **<0.01; 
***<0.001; ns, not significantly different). Bars for infested leaves marked with the same 
letter are not significantly different (data from 2004 in lower case and data from 2005 in 
capital letters) (2004: q value > 0.05; 2005: P value > 0.05). 
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In short, the oxylipin mutations have the expected effects on oxylipin produc-

tion: the fad5 mutant only affects dnOPDA levels, opr3 only affects JA levels 

and dde2-2 affects the levels of dnOPDA, OPDA and JA. Thus, these three mu-

tants allow us to dissect the roles of dnOPDA, OPDA and JA levels in indirect 

defense.  

 

Volatile analysis 

To assess the effects of altered oxylipin signatures on HIPVs, we measured the 

volatile emissions in uninfested and P. rapae-infested Col-0, WS, dde2-2, fad5, 

and opr3 plants. Compounds for which an influence on discriminative behavior 

by carnivorous arthropods is known are selected and presented in Fig. 3 (Dicke 

et al., 1990c; De Boer et al., 2004; Shimoda et al., 2005). HIPV production in 

wild-type Col-0 and WS showed both similarities and differences. For example, 

P. rapae feeding induced the emission of methyl salicylate (MeSA), the ses-

quiterpene (E,E)-α-farnesene and the homoterpene (E,E) 4,8,12-

trimethyltrideca-1,3,7,11-tetraene (TMTT) to similar levels in both accessions. 

However, Col-0, but not WS, showed the induction of the monoterpene linalool, 

whereas WS, but not Col-0, showed induction of the GLVs (Z)-3-hexenal and 

(Z)-3-hexen-1-ol acetate and of the monoterpenes β-myrcene and both stereo-

isomers of β-ocimene.  

A mutation in FAD5 did not result in an altered HIPV emission, indicating that 

dnOPDA does not play a role in HIPV induction. In contrast, a mutation in DDE2

-2 abolished the induction of all HIPVs, except for 1-nonanol. A mutation in 

OPR3 hampered induction of all HIPVs, except for the GLVs.  

To compare total volatile blends instead of single compounds among acces-

sions, the variation in volatile profiles among genotypes was further explored 

using the algorithm locally linear embedding graph generator (LEGG). LEGG 

analysis resulted in a network of genotypes, generated by using a non-linear 

dimensionality reduction method (Fig. 4) (for LEGG details see (Van Poecke et 

al., 2007)). This demonstrated a strong relationship between volatile profiles 

emitted by uninfested plants of the various genotypes plus caterpillar-infested 

plants of the dde2-2 and opr3 mutants. In contrast, HIPVs from caterpillar in-

fested Col-0, fad5 and WS showed a much weaker correlation with the volatile 

blend from uninfested genotypes. LEGG analysis also showed that the HIPVs 

from Col-0 and WS show similarities.  

Thus, headspace analysis for the mutants fad5, dde2-2, opr3 and their respec-

tive wild-types pointed out that only hampered JA levels (i.e. the common de-

nominator in dde2-2 and opr3 plants) resulted in an altered production of 

HIPVs.  
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Figure 3. Characteristic Arabidopsis 
thaliana HIPV-compounds per geno-
type treatment. A: GLVs; B: 
monoterpenes C: methyl salicylate 
(MeSA), (E,E)-α-farnesene, and 
(E,E) 4,8,12-trimethyltrideca-
1,3,7,11-tetraene (TMTT). Given is 
the mean + SE for compound-
representative ions (n=3-5). Aster-
isks indicate significant differences 
between uninfested (grey bars) and 
Pieris rapae-infested (black bars) 
leaves within a genotype (P value: 
*<0.05; **<0.01; ***<0.001). 
Bars that are marked with the same 
letter are not significantly different, 
(y-z=uninfested p lants ,  a -
c=infested plants), q value > 0.05. 
Dashed lines divide separately ana-
lyzed compounds.  
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Figure 4. Visualization of the relationships among HIPV blends of different Arabidopsis 
thaliana genotype-treatment combinations. LEGG analysis was applied to the volatile 
blends of the Pieris rapae-infested (_P ; black nodes) and uninfested (_C; white nodes) 
plants of different genotypes. The peak areas of 22 volatile compounds contribute to the 
parameter for each volatile blend, indicated as nodes in the graph. Relationships among 
the profiles that were determined by LEGG are depicted as directed links; genotypes at 
the base of an arrow represent a near neighbor of the genotype directed at. Arrows that 
point at two genotypes represent genotypes that are both close neighbors of each other. 
Directed links can be compared based on their presence, absence or strength. Strength of 
connections measured by r2 are indicated as follows: dotted grey arrow, 0.951<r2<0.964; 
dashed grey arrow, 0.964<r2<0.974; solid grey arrow, 0.974<r2<0.984; and solid black 
arrow, 0.984<r2<0.990 (n=3-5). Arrow lengths do not illustrate strength of connections. 
Analyzed volatile compounds were: pentan-1-ol; (E)-2-penten-1-ol; hexanal; (Z)-3-
hexenal; (E)-3-hexen-1-ol; hexan-1-ol; heptanal; α-pinene; 1-octen-3-ol; 6-methyl-5-
hepten-2-one; β-myrcene; (Z)-3-hexen-1-ol acetate; (Z)-β-ocimene; (E)-β-ocimene; (E)-
2-nonen-1-ol; linalool; (E)-4,8-dimethyl-1,3,7-nonatriene; 1-nonanol; methyl salicylate; 
undecanal; (E,E)-α-farnesene; (E,E) 4,8,12-trimethyl-1,3,7,11-tridecatetraene. 
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Behavioral assays 

To investigate whether the changes in HIPV profiles due to the mutations in the 

jasmonate pathway affect indirect defense, we investigated the behavioral re-

sponses of a parasitoid wasp species towards HIPVs originating from dde2-2, 

opr3, fad-5, and their wild-types in a Y-tube olfactometer (Fig. 5). Diadegma 

semiclausum females preferred volatiles of infested plants over uninfested  

plants for all mutants or wild-types (P<0.001). However, HIPVs from caterpillar  

-infested wild-type plants were significantly more attractive than HIPVs from 

caterpillar-infested mutants dde2-2 or opr3 (for both mutants P<0.05). The 

wasps did not discriminate between volatiles of herbivore-infested fad5 plants 

and infested wild-type plants.  

A possible explanation for the observed differences in HIPV emission and para-

sitoid attraction among mutants and wild-type plants is that the mutation al-

tered the feeding behavior of the herbivore. A reduced attraction to infested 

mutant plants might have resulted from a reduced feeding rate on the mutant 

plants. However, this is not supported by our data on feeding rate: the amount 

of leaf area consumed did not differ when the caterpillars were feeding on 

plants of opr3, fad5 or their wild-types (P>0.05). Moreover, the caterpillars 

even consumed more leaf material of dde2-2 plants compared to wild-type 

ones (P<0.05). Thus, the mutations do not result in reduced feeding and thus 

altered caterpillar-feeding rates cannot explain the observed changes in head-

space composition or parasitoid attraction.  

 

Figure 5. Preference of 
naïve Diaegma semiclausum 
females to volatiles of differ-
ently treated Arabidopsis 
thaliana, as assessed in the 
Y-tube olfactometer. Plants 
were infested with Pieris 
rapae (Pr) or treated with JA 
24h before (JA) or were left 
untreated (C). Data repre-
sent total number of parasi-
toids that chose for any of 
the two odor sources as 
determined in 3-4 replicate 
experiments, each on a dif-
ferent day with new odor 
sources. Asterisks indicate a 
significant difference within 
a choice test: * P<0.05; ** 
P<0.01; *** P<0.001; ns, 
not significantly different (X2

-test). The number of wasps 
that did not make a choice 

and the total number of 
tested parasitoids is given in 
parenthesis. 
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We verified the importance of JA signaling in indirect defense by assessing the 

attractiveness of volatiles induced in the plants by the application of 1 mM JA. 

Exogenous JA treatment of Col-0 plants made them more attractive than non-

treated Col-0 control plants (Fig. 5, P<0.01). However, when these JA-sprayed 

plants were tested against P. rapae-induced Col-0, the wasps preferred the 

latter (P<0.001). 

 

Discussion 

 

We used a molecular genetic approach to unravel the involvement of the jas-

monate pathway oxylipins dnOPDA, OPDA and JA in caterpillar-induced indirect 

defense. We selected Arabidopsis thaliana mutants, fad5, opr3 and dde2-2, for 

which we quantified oxylipin levels, HIPV emission and ultimately assessed 

parasitoid attractiveness towards HIPVs.  

Based on previous work summarized in figure 1 we expected the fad5 mutant 

to show reduced levels of 16:3 derived compounds; the dde2-2 mutant to 

show reduced levels of both 16:3 and 18: 3 derived compounds and opr3 mu-

tants to show reduced levels of JA. Our data confirmed these expectations: af-

ter herbivory fad5 showed no induction of dnOPDA, opr3 was hampered in the 

induction of JA, and dde2-2 showed no induction of dnOPDA, OPDA and JA (Fig. 

2). Additionally, these data also demonstrated that 1) the 16:3 pathway does 

not contribute to constitutive or herbivory-induced levels of JA and 2) that her-

bivory-induced levels of dnOPDA and OPDA do not depend on JA accumulation 

through a feedback loop.  

Mutation of the FAD5 gene did not result in an altered emission of HIPVs, 

showing that dnOPDA does not play a role in HIPV-mediated indirect defense. 

On the other hand, mutations in DDE2-2 or OPR3 did show clear effects on 

HIPV production, resulting in reduced induction of many volatiles, especially 

the terpenoids, indicating roles of OPDA and/or JA in HIPV-indirect defense. As 

knocking out DDE2-2 or OPR3 has very similar effects on HIPV production, we 

conclude that JA, and not OPDA, is the most important oxylipin in HIPV produc-

tion. A minor role for OPDA cannot be excluded as opr3 plants, showing mode-

rate JA induction, still showed induction of a few volatile compounds, such as 

GLVs while dde2-2 plants, lacking OPDA and JA induction, did not. However, it 

is likely that this difference between opr3 and dde2-2 is caused by differences 

in the genetic background: all three genotypes with a Col-0 background (Col-0, 

fad5 and dde2-2) did not show induction of GLVs, whereas WS does show in-

duction of GLVs. The lower GLV-levels produced by Col-0, fad5 and dde2-2 

plants, are most likely caused by a dysfunctional HPL1 enzyme in the Col-0 

background (Duan et al., 2005). In any case, the role of OPDA or earlier inter-

mediates is minor, as LEGG analyses show that the composition of the overall 

volatile blend of opr3 and dde2 plants is very similar (Fig. 4). Moreover, the 

blends of infested dde2-2 and opr3 plants were very similar to the blends of 

uninfested controls while they were different from the blends of infested wild-

type plants (Fig. 4). 
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Parasitoid behavioral assays reflected the results obtained by headspace analy-

ses: mutation of FAD5 did not affect parasitoid behavior, whereas infested 

plants of both opr3 and dde2-2 showed reduced parasitoid attraction compared 

to wild-type plants (Fig. 5). Some compounds were still induced in the mutants 

dde2-2 and opr3: 1-nonanol and (Z)-3-hexenal, respectively. These com-

pounds might explain the attractiveness of infested mutants dde2-2 and opr3 

over uninfested controls. These results indicate that other signals besides JA or 

its intermediates are involved in HIPV production. This is also illustrated by the 

observation that JA-treated Col-0 plants were less attractive to the wasps than 

caterpillar-infested Col-0 (Fig. 5; see also Van Poecke and Dicke (2002)). Simi-

lar results have also been obtained for other plant-herbivore-carnivore systems 

(Dicke et al., 1999; Bruinsma, 2008). 

 

The combination of biochemical and behavioral analyses of Arabidopsis wild-

type and mutant plants not only gives insight in which plant hormones influ-

ence indirect defense but also through which volatile compounds these hor-

mones exert their effects. Inhibition of JA production influenced mono-, sesqui- 

and homoterpene volatile emissions as well as the emission of the shikimate 

pathway derived methyl salicylate (MeSA). Even though exogenous JA is known 

to induce GLV production in Arabidopsis (Snoeren et al., 2009 chap. 3), we did 

not find any effect of the lack of JA on P. rapae-induced GLV emissions in 

Arabidopsis. 

 

The importance of monoterpenes in plant-insect interactions is well studied 

(Dicke et al., 1990a; Rose et al., 1998; Shimoda et al., 2005; Mumm et al., 

2008b; Opitz et al., 2008). Even though Col-0 and WS differed in the identity 

of monoterpenes induced by P. rapae feeding, with Col-0 showing mainly in-

duction of linalool and WS showing mainly induction of (Z)- and (E)-β-ocimene, 

lack of JA had a similar inhibitory effect on monoterpene induction in both ac-

cessions. Lack of JA also affected emission rates of the sesquiterpene (E,E)-α-

farnesene and the diterpene-derivative (E,E) 4,8,12-trimethyltrideca-1,3,7,11-

tetraene (TMTT), demonstrating that JA influences not only the plastid-localized 

mono- and diterpene production, but also the sesquiterpene production located 

in the cytosol. Both (E,E)-α-farnesene and TMTT are known to influence plant-

insect interactions (Van Poecke, 2002; De Boer et al., 2004; Ibrahim et al., 

2005). 

 

Besides terpenoids, the induction of MeSA was also impaired in JA-lacking mu-

tants. This indicates that hampering the JA pathway consequently hampers 

some step in the biosynthesis of MeSA. Previous studies using Arabidopsis de-

monstrated that hampering the SA pathway affects the emission of both MeSA 

and TMTT and resulted in decreased parasitoid attraction (Van Poecke, 2002). 

Thus, both JA and SA are required for herbivore-induced emissions of the para-

sitoid attractants MeSA and TMTT. Such synergism has also been recorded for 

spider-mite induced volatile emissions of tomato plants (Ament et al., 2004). 
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In conclusion, the present study has shown the value of using a molecular eco-

logical approach to elucidating the importance of jasmonic acid and its interme-

diates in indirect defense. By dissecting the jasmonate pathway through the 

use of selected mutants, we have gained a better understanding of the ecologi-

cal role of oxylipins in HIPV-mediated indirect plant defense. Even though the 

importance of the octadecanoid pathway in indirect defense has been demon-

strated before (Thaler et al., 2002; Halitschke et al., 2004; Kessler et al., 

2004; Shiojiri et al., 2006a; Shiojiri et al., 2006b), the relative contribution of 

the different oxylipin compounds to indirect defense has remained unclear. 

Here, we demonstrate that in Arabidopsis the 16:0 branch of the oxylipin path-

way does not play a role in HIPV-mediated indirect defense. Moreover, we 

demonstrate that from the 18:0 pathway, jasmonic acid is the main actor in 

HIPV-mediated indirect defense, with limited or no contribution from pathway 

intermediates such as OPDA. The data strengthen the value of using a molecu-

lar ecological approach in advancing our understanding of multi-trophic plant-

insect interactions.  
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Abstract 

 

The jasmonic acid (JA) pathway is the main signal-transduction pathway in-

duced by insect folivory. Mutant plants affected in the jasmonate pathway 

(18:0 and/or 16:0-oxylipin routes) were studied to assess the effects of JA and 

its oxylipin intermediates 12-oxophytodienoic acid (OPDA) and dinor-OPDA 

(dnOPDA) on interconnected signal-transduction pathways that underlie in-

duced defenses in Arabidopsis. Our data show that the oxylipins dnOPDA, 

OPDA, and JA have different roles in defense signaling induced by caterpillar-

feeding. Jasmonic acid is the major signaling compound required for the induc-

tion of the defense-related genes LOX2 (Lipoxygenase 2), OPR3 (12-

Oxophytodienoate reductase 3), ACX1 (Acyl-CoA oxidase 1), and PAL1 

(Phenylalanine ammonia-lyase 1). The herbivore-induced oxylipin JA and not 

dnOPDA or OPDA is essential for PAL1 activity. Mutant screenings of PAL1 tran-

script levels clearly showed that the biting-chewing herbivore Pieris rapae in-

duces the shikimate pathway by means of JA induction. Analysis of mutants 

that lack JA, or JA and OPDA, further indicated more involvement of the 

oxylipin OPDA than of JA in the induction of the defense-related gene HPL1 

(Hydroperoxide lyase 1). The oxylipin dnOPDA influences the induction of the 

HPL-branch as well, yet antagonistically to the effects of OPDA and JA. Here we 

demonstrate that dnOPDA and OPDA may be used to fine-tune Arabidopsis‟ 

herbivore-induced responses in terms of the HPL-branch from the oxylipin 

pathway.  

Key words:  

Herbivory, oxylipin, qRT-PCR, gene transcript level, fad5, dde2-2, opr3 
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Introduction 

 

Plants possess a broad range of defense mechanisms to effectively combat bi-

otic stresses caused by microbial pathogens and herbivorous insects. These 

mechanisms include pre-existing physical and chemical barriers, as well as in-

duced defense responses that are activated upon attack (Pieterse and Dicke, 

2007). The induced defense responses can be subdivided into direct defense, 

e.g. production of anti-digestive proteins and toxic secondary compounds 

(Karban and Baldwin, 1997; Walling, 2000), and indirect defense, i.e. the pro-

duction of herbivore-induced plant volatiles (HIPV) that attract the natural ene-

mies of the herbivore (Dicke and Hilker, 2003). HIPVs mainly comprise green 

leaf volatiles (GLVs), terpenoids, and phenolics (Paré and Tumlinson, 1997; 

Dicke, 1999b), which are products of different biosynthetic routes (reviewed in 

e.g. (Dudareva et al., 2006). The induced nature of these responses to herbi-

vore attack allows plants to be cost-effective and also to diminish the risk that 

herbivores adapt to the defenses (Agrawal and Karban, 1999; Heil, 2008; 

Steppuhn and Baldwin, 2008). 

 

Induced defense responses are orchestrated by a network of interconnecting 

signal-transduction pathways in which jasmonic acid (JA), salicylic acid (SA), 

and ethylene (ET) play key roles (Pieterse and Dicke, 2007; Kazan and Man-

ners, 2008). Empirical evidence for the significance of the phytohormones JA, 

SA, and ET in plant defense came from using mutant plants altered in these 

pathways (reviewed in e.g. Dong, 2004; Pozo et al., 2004; Schaller et al., 

2005; Fujita et al., 2006).  

The signal-transduction pathways are differentially induced depending on the 

herbivore species (Heidel and Baldwin, 2004; Voelckel and Baldwin, 2004b; De 

Vos et al., 2005; Schmidt et al., 2005). Tissue-feeding insects, e.g. larvae of 

herbivorous Lepidoptera, and cell-content feeders, e.g. thrips, especially induce 

JA and related compounds from the same signal-transduction pathway, collec-

tively known as jasmonates or oxylipins (Kessler and Baldwin, 2002; Weber, 

2002; De Vos et al., 2005). Phloem feeders, such as aphids and whiteflies, es-

pecially induce the SA pathway (Heidel and Baldwin, 2004; De Vos et al., 

2005; Zarate et al., 2007). However, the JA pathway seems to be the most 

important in induced defenses in plant-insect interactions (Kessler and Baldwin, 

2002).  

 

In brief, the biosynthesis of oxylipins is as follows (Fig. 1). After herbivore da-

mage of the cell walls, lipases release linoleic acid (18:2) and linolenic acid 

(18:3) from the chloroplast membrane lipids (Schaller et al., 2005; Bargmann 

and Munnik, 2006). Linoleic acid and linolenic acid are subsequently converted 

by lipoxygenase (LOX) into 9(S)-hydroperoxylinoleic acid and 13(S)-

hydroperoxylinolenic acid (Bell et al., 1995).  

One branch of the oxylipin pathway, starting at the fatty acid 9- or 13-

hydroperoxides formed by the lipoxygenase, cleaves the hydroperoxides 
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through the action of hydroperoxide lyase (HPL) forming 12-oxo-trans-10-

dodecenoic acid and subsequently the GLVs hexanal or cis-3-hexenal (Bate et 

al., 1998). Both these GLVs can be converted into other GLVs such as C6 alde-

hydes, alcohols, and derivatives (Bate and Rothstein, 1998). At present, be-

sides attracting natural enemies GLVs also have ascribed plant-signaling effects 

(reviewed in e.g. Matsui, 2006; Choudhary et al., 2008).  

Another branch converts the fatty acid 9- or 13-hydroperoxide by allene-oxide 

synthase (AOS) (Laudert and Weiler, 1998) and allene-oxide cyclase (AOC) 

activities (Ziegler et al., 1997) into 12-oxophyto-dienoic acid (OPDA). The ac-

tivity of 12-oxophytodienoic acid reductase (OPR) (Stintzi and Browse, 2000) 

transforms OPDA to 3-oxo-2(2‟[Z]-pentenyl)-cyclopentane-1-octanoic acid 

(OPC-8:0). OPC-8:0 is then converted to its CoA derivative by OPC-8:0-CoA 

ligase1 (Koo et al., 2006). OPC-8:0-CoA is the starting point for three consecu-

tive ß-oxidation steps, catalyzed by several enzyme groups (e.g. acyl-CoA oxi-

dases (ACX)), to form JA (Goepfert and Poirier, 2007). A parallel JA biosyn-

thetic pathway starts from chloroplastic pools of hexadecatrienoic acid (16:3) 

that leads to dinor-oxophytodienoic acid (dnOPDA) (Weber et al., 1997). Sub-

sequently, dnOPDA is also converted into JA. The production of JA is followed 

by an increase in the titer of its conjugate jasmonoyl-L-isoleucine (JA-Ile) 

through the JAR1 enzyme (Staswick and Tiryaki, 2004). Subsequently, JA-Ile 

promotes an interaction between an F-box protein (SCFCOI1), which is encoded 

by Coronatine insensitive 1 (COI1), and the jasmonate ZIM-domain (JAZ) tran-

scriptional repressors, resulting in the degradation of JAZ proteins. As a result 

of this, the basic helix-loop-helix transcription factor MYC2 is now free, and can 

upregulate the transcript level of a variety of wound- and/or insect-responsive 

genes such as Lipoxygenase 2 (LOX2), or can repress pathogen-responsive 

genes such as Plant defensin 1.2 (PDF1.2) and Pathogenisis-related gene 1 

(PR1) (Lorenzo and Solano, 2005; Kazan and Manners, 2008; Staswick, 2008)

(Fig. 1). 

 

After caterpillar-feeding no accumulation of SA has been observed in Arabidop-

sis (De Vos et al., 2005). Yet, SA induction by other organisms or external ap-

plication does interfere with caterpillar-induced responses (Cui et al., 2002; 

Stotz et al., 2002; Cipollini et al., 2004). In addition, caterpillar-feeding in-

duces the emission of the methylated form of SA, i.e. methyl salicylate from 

Arabidopsis plants (Van Poecke et al., 2001; Loivamäki et al., 2008; Snoeren 

et al., 2009 chap. 3, 4, and 6). Therefore, the SA pathway appears to be in-

volved in the defense of Arabidopsis against tissue-feeding caterpillars. 

In short, the SA biosynthetic pathway, also called the shikimate pathway, uses 

chorismate to produce SA. The SA-formation was initially thought to be synthe-

sized exclusively through the phenylalanine ammonium lyase (PAL) pathway. 

Yet, recently the SA biosynthetic route through isochorismate synthase was 

proposed to be involved as well (Wildermuth et al., 2001)(Fig. 1).  

Increasing evidence showed that the JA pathway and SA pathway can be mutu-

ally synergistic or antagonistic, and that this crosstalk fine-tunes induced  
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Figure 1. Biosynthetic scheme of defense signaling in caterpillar-infested Arabidopsis 
leaves. FA= Fatty Acid; 16:0= hexadecanoic acid; 16:3= 7Z,10Z,13Z-hexadecatrienoic 
acid; 18:0= octadecanoic acid; 18:2= 9Z,12Z-octadecadienoic acid (linoleic acid); 18:3= 
9Z,12Z,15Z-octadecatrienoic acid (linolenic acid); dnOPDA= dinor-oxo-phytodienoic acid; 
OPDA= oxo-phytodienoic acid; JA= jasmonic acid; JA-ACC, JA-Ile, JA-?= jasmonate con-
jugates; MYC2, WRKY70= transcription factors; SCFCOI1= E3 ubiquitin ligase complex; 
NPR1= regulatory protein; JAZ= jasmonate ZIM-domain; hexanal and cis 3-hexenal= 
green leaf volatiles; BA= benzoic acid; SA= salicylic acid; Genes investigated in this 
study are underlined, in italics, and in CAPITALS. Mutations affecting the biosynthesis are 
indicated in italics. Arrows reflect stimulating activities; dashed lines represent inhibiting  
activities. Constructed after: (Wildermuth et al., 2001; Lorenzo and Solano, 2005; 
Schaller et al., 2005; Staswick, 2008; Snoeren et al., 2009 chap. 4). 
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defenses of plants (reviewed in e.g. Lorenzo and Solano, 2005; Pieterse and 

Dicke, 2007; Koornneef and Pieterse, 2008). For this interaction a crucial role 

was demonstrated for the regulatory protein NONEXPRESSOR OF PR GENES1 

(NPR1) (Spoel et al., 2003), which is required for the transduction of the SA 

signal (Dong, 2004). However, the actual role of mediator between the JA and 

SA pathways is ascribed to the transcription factor WRKY70 (Li et al., 2006), 

which is, besides NPR1, also a positive regulator for SA-dependent responses 

(Lorenzo and Solano, 2005)(Fig. 1). 

 

Here, we study intra-pathway interactions of oxylipins as well as their effects 

on the SA pathway. For this we focus on caterpillar-induced transcript levels of 

genes that are involved in the signal-transduction of underlying defense re-

sponses in brassicaceous plants. Therefore, our study especially addresses the 

role of jasmonates in orchestrating induced plant defense mechanisms. We 

used the brassicaceous plant Arabidopsis thaliana, as this species has proven 

to be a suitable plant for this ecogenomic approach (Van Poecke and Dicke, 

2004; Snoeren et al., 2007). For Arabidopsis, several biologically active oxyli-

pins with distinct roles in herbivore-induced defense responses have previously 

been described, i.e. OPDA and JA (Stintzi et al., 2001; Taki et al., 2005). Fur-

thermore, mutant plants lacking JA and/or its intermediates showed an altered 

HIPV production and resulted in altered behavioral responses of carnivorous 

enemies of herbivorous insects (Snoeren et al., 2009 chap. 4). These observed 

differences in HIPV emission may be connected to biosynthetic pathways, or-

chestrated by the SA signaling pathway and by both oxylipin signaling pathway 

branches i.e. the HPL-branch and AOS-branch (Dicke et al., 1999; Van Poecke 

and Dicke, 2002; Kessler et al., 2004). In addition, analysis of Arabidopsis leaf-

tissue consumption by caterpillars, a proxy for direct defense, suggested diffe-

rent roles for the oxylipins dnOPDA and OPDA versus JA in direct defense regu-

lation (Snoeren et al., 2009 chap. 4). Thus, several lines of research suggested 

that different jasmonates, i.e. JA and its intermediates dnOPDA and OPDA, 

have distinct effects on induced indirect and induced direct defenses in Arabi-

dopsis.  

 

We used Arabidopsis mutants with altered levels of herbivore-induced dnOPDA, 

OPDA, and JA (Weber et al., 1997; Stintzi and Browse, 2000; Von Malek et al., 

2002; Snoeren et al., 2009 chap. 4), to study the effects of these oxylipins on 

the activation of SA signaling and of both oxylipin branches, i.e. the HPL-

branch and the AOS-branch. Changes in transcript levels of genes involved in 

signal-transduction pathways (i.e. LOX2, OPR3, ACX1, HPL1, and PAL1) were 

analyzed after caterpillar herbivory in mutant and wild-type plants. This will 

allow us to unravel the relative contribution of the jasmonates dnOPDA, OPDA, 

and JA to the interconnected signal-transduction pathways that underlie in-

duced defenses in Arabidopsis.  
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Materials and methods 

 

Plants and Insect Material 

Arabidopsis seeds (A. thaliana; accessions Columbia (Col-0) and Wassilewskija 

(WS), and mutants fad5, opr3, and dde2-2) were germinated in preheated (90 

°C) sandy Arabidopsis soil (Lentse potgrond BV, Lent, Netherlands), and culti-

vated in a growth chamber at 21 ± 2 °C, 50-60% relative humidity (RH), and 

L8:16D photoperiod with 80-110 µmol m-2 s-1 PPF. The selected mutant fad5 

has a Col-0 background and is incapable of biosynthesizing 7Z,10Z,13Z-

hexadecatrienoic acid (16:3) (Weber et al., 1997); the mutant dde2-2 also has 

a Col-0 background and is deficient in functional allene oxide-synthase (AOS) 

(Von Malek et al., 2002). Mutant opr3 has a WS background and lacks the 

most relevant isoform of 12-oxo-phytodienoate reductase (OPR) (Schaller et 

al., 2000). Two-week-old seedlings were transferred to plastic pots (5 cm in 

diameter) filled with similar soil. To prevent infestation by sciarid larvae, the 

soil was treated weekly with entomopathogenic nematodes, Steinernema 

feltiae (Koppert Biological Systems, Berkel en Rodenrijs, the Netherlands). 

The plants were watered twice a week. When plants were full-grown vegetative 

plants, i.e. after 6 to 8 weeks since sowing, they were used for experiments.  

The herbivore Pieris rapae (Lepidoptera: Pieridae), the small cabbage white, 

was reared on Brussels sprouts plants (Brassica oleracea var. gemmifera, cv 

Cyrus) in a growth chamber (16L:8D; 20 ± 2 °C and 70% RH). 

 

Plant treatment 

Twenty first-instar P. rapae larvae were equally distributed over the fully ex-

panded leaves of a plant. Plants were infested 24 h before harvesting of leaf 

material and were kept overnight in a growth chamber at 21 ± 2 °C, 50-60% 

relative humidity (RH), and L8:16D photoperiod with 80-110 µmol m-2 s-1 PPF. 

Leaf material was collected by selecting two not yet fully expanded leaves with 

local feeding damage, from which caterpillars and excrements were removed. 

Collected leaf material was immediately flash frozen in liquid nitrogen and 

stored at -80 °C. As control plants we used uninfested plants that were other-

wise treated similar to the infested plants. 

 

Quantitative RT-PCR analysis 

A qRT-PCR analysis was used to screen for differences in transcript levels of 

P. rapae-induced defense-related genes in the JA and SA signaling pathways of 

Arabidopsis. One μg of total RNA was treated with DNaseI (Invitrogen, Carls-

bad, CA, USA) according to the manufacturer's instructions. DNA-free total RNA 

was converted into cDNA using the iScript cDNA synthesis kit (Bio-Rad, Hercu-

les, CA, USA). Gene-specific primers were designed using Primer3 (Rozen and 

Skaletsky, 2000) for five Arabidopsis genes based on sequences obtained from 

a Basic Local Alignment Search Tool (BLAST) search in the TIGR Arabidopsis 

database. The primer sequences are shown in table 1. 

The primers were tested for gene specificity by performing melt curve analysis 
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on a MyIQ Single-Color Real-Time PCR Detection System (BioRad). PCR pro-

ducts were sequenced to confirm the amplification of the gene of interest. Se-

quence results were checked by a BLAST search in the Arabidopsis TIGR data-

base (data not shown).  

Quantitative RT-PCR analysis was carried out in optical 96-well plates with a 

MyIQ Single-Color Real-Time PCR Detection System (BioRad), using SYBR 

Green to monitor dsDNA synthesis. Each reaction contained 10 µl 2 x SYBR 

Green Supermix Reagent (BioRad), 10 ng cDNA and 300 nM of each gene-

specific primer in a final volume of 20 µl. All qRT-PCR analyses were performed 

in duplicate. The following PCR programme was used for all PCR analyses: 95 °

C for 3 min; 40 cycles of 95 °C for 30 s and 60 °C for 45 s. Threshold cycle 

(Ct) values were calculated using the Optical System software, version 2.0 for 

MyIQ (BioRad). Subsequently, Ct values were normalized for differences in 

cDNA synthesis by subtracting the Ct value of the constitutively expressed 

gene Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the Ct value 

of the gene of interest.  

The normalized transcript abundance was then calculated as 2-∆Ct. Subse-

quently, the significant induction of the normalized gene transcript levels after 

treatment was tested with a one-way ANOVA (α=0.05). Additionally, norma-

lized gene transcript levels were used to calculate log2-transformed transcript 

level ratios for each experimental condition that were statistically compared 

using a one-way ANOVA followed by a Least Significant Difference (LSD) post-

hoc test. 

 

Gene  AGI-codes Forward primer (5’ à 3’) Reverse primer (5’ à 3’) 

GADPH At3g04120 GTGTTCACGGTCAATGGAAAC ACCACCCTTCAAGTGAGCTG 

LOX2 At3g45140 ACAACTAAGTGCCATGGATCC GTAAGCCTTCCTGGTCAAACC 

OPR3 At2g06050 CCCACATGTGCCTGGAATCTATTCAG AGCCCGAGTGATAGTGGGTCAGAAT 

ACX1 At4g16760 TGGAGCAAGACATAGGTGGC TACGAAGTTGCTGCTGAAGC 

HPL1 At4g15440 GGCGTTCGTGTTGGAGTTTATC GGATTCGATTGTTCCCCAGAA 

PAL1 At2g37040 TGTAGCGCAACGTACC GTTCGGGATAGCCGATG 

Table 1. Sequences of Arabidopsis thaliana primers used in the qRT-PCR analysis. 
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Results 

 

Quantitative RT-PCR analysis was used to study P. rapae-induced transcript  

levels of genes of defense-related signal-transduction pathways in Arabidopsis, 

with special focus on JA signaling. Mutant plants with altered JA signaling (i.e. 

dde2-2, fad5, and opr3) and their corresponding wild-types (i.e. Col-0 or WS) 

were tested for the induced transcript levels of defense-related genes: LOX2 

(Lipoxygenase 2), OPR3 (12-Oxophytodienoate reductase 3), ACX1 (Acyl-CoA 

oxidase 1), HPL1 (Hydroperoxide lyase 1), and PAL1 (Phenylalanine ammonia-

lyase 1)(Fig. 2).  

For both ecotypes, Col-0 and WS, LOX2 was significantly induced after P. rapae 

herbivory (P<0.001, Fig. 2A). Mutant fad5 showed a similar level of LOX2 in-

duction as its corresponding wild-type Col-0, whereas mutants dde2-2 and 

opr3 showed lower levels of LOX2 induction than their corresponding wild-types 

Col-0 and WS, respectively. 

Herbivory by P. rapae significantly induced transcript levels of OPR3 in Col-0, 

fad5, and WS compared to uninfested plants (P<0.01, Fig. 2B). The level of 

OPR3 induction in mutant fad5 was similar to that in wild-type Col-0. In con-

trast, the abundance of the OPR3 transcript was not induced after P. rapae her-

bivory in dde2-2 and opr3 plants (Fig. 2B).  

Genotypes Col-0 and fad5 showed significant induction of ACX1 after P. rapae 

herbivory (P<0.01), whereas the transcript level of ACX1 in WS plants was 

marginally increased (P=0.050) compared to uninfested WS. Mutants dde2-2 

and opr3 did not show induced transcript levels of ACX1 after herbivory. The 

induction level of ACX1 transcripts in fad5 was similar to that in the wild-type 

(Fig. 2C).  

Col-0, fad5, WS, and opr3 showed significantly induced transcript levels of 

HPL1 after herbivory (P<0.01; Fig. 2D), whereas dde2-2 plants did not show 

an herbivory-related induction of the HPL1 transcript level. The induced tran-

script abundance of HPL1 in fad5 plants was significantly higher compared to 

the corresponding wild-type Col-0. The induced transcript level of HPL1 in opr3 

plants was significantly lower than in the relevant wild-type WS (Fig. 2D).  

Herbivory induced the transcript level of the PAL1 gene in both Col-0 and fad5 

plants (P<0.05). WS plants demonstrated a marginally insignificant induced 

abundance of the PAL1 transcript after P. rapae-feeding (P=0.067). Mutants 

dde2-2 and opr3 did not show induced transcript levels of PAL1 after herbivory. 

The level of induction of PAL1 in infested versus uninfested plants was compa-

rable for Col-0 and fad5 plants (Fig. 2E). 

 

In conclusion, mutant fad5, which has a reduced dnOPDA production (Snoeren 

et al., 2009 chap. 4), showed a stronger induction of the transcript level after 

P. rapae-feeding than wild-type plants for HPL1 only. The transcript levels of 

the other tested genes were similar in this mutant and its wild-type control. 

The dde2-2 mutation that hampered dnOPDA, OPDA, and JA induction 
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(Snoeren et al., 2009 chap. 4), affected the transcription of all genes studied. 

The opr3 mutation, which only resulted in hampered JA levels (Snoeren et al., 

2009 chap. 4), negatively affected the transcription of the LOX2, OPR3, HPL1, 

and PAL1 genes but not that of ACX1. 

Discussion 

 

Induced resistance to pathogens or herbivores in plants relies on the ability to 

recognize a potential attack and trigger an appropriate response. For this, 

plants employ distinct recognition mechanisms and signaling pathways in re-

sponse to attacker-specific elicitors. The major endogenous signaling molecules 

JA, SA and ET play key roles in orchestrating induced defenses. These signaling 

Figure 2. Induced transcript levels of defense genes in the Arabidopsis genotypes Col-0, 
dde2-2, fad5, WS, and opr3 after 24 h of P. rapae herbivory quantified with qRT-PCR and 
presented as log2 transcript level changes compared to uninfested control plants. Quantita-
tive RT-PCR data are shown for LOX2 (Lipoxygenase 2), OPR3 (12-Oxophytodienoate re-
ductase 3), ACX1 (Acyl-CoA oxidase 1), HPL1 (Hydroperoxide lyase 1), and PAL1 
(Phenylalanine ammonia-lyase 1). Values are the mean (+ SE) of four biological replicates 
and marked with an asterisk when significantly upregulated compared to uninfested con-
trols (one-way ANOVA, + P=0.05, * P<0.05; ** P<0.01; *** P<0.001). Bars marked with 
different letters are significantly different (one-way ANOVA, LSD, P<0.05).  
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pathways are not linear, but appear to form a network of synergistic and an-

tagonistic interactions (Kunkel and Brooks, 2002; Spoel et al., 2003; Kazan 

and Manners, 2008). Herbivore species from different feeding guilds induce 

different signaling pathways (Heidel and Baldwin, 2004; Voelckel and Baldwin, 

2004b; De Vos et al., 2005; Schmidt et al., 2005). Leaf-tissue consuming her-

bivores, like the caterpillar P. rapae that was used in this study, mainly induce 

the JA signaling pathway (De Vos et al., 2005). Previous studies indicate that 

the phytohormone JA may affect the SA pathway (Schenk et al., 2000) and 

induces GLVs produced by the HPL-branch of the oxylipin pathway (Van 

Poecke, 2002;  

Snoeren et al., 2009 chap. 3). To elucidate the role of the jasmonates dnOPDA, 

OPDA, and JA, we investigated changes in gene transcript levels in response to 

herbivory in mutants hampered in the production of these three jasmonates. In 

this study, we provide strong evidence that the jasmonates dnOPDA, OPDA, 

and JA have distinct effects on the HPL-branch of the oxylipin pathway and on 

the SA pathway, or contribute differently to feedback loops within the oxylipin 

AOS-branch that leads to the final product JA.  

 

Mutant fad5, in which the dnOPDA route is blocked, had a higher level of HPL1 

transcripts compared to the wild-type Col-0. This shows that dnOPDA indeed 

has a biological role in induced plant responses, in particular by repressing the 

transcription of HPL1. To our knowledge this is the first time that the proposed 

role for dnOPDA, i.e. a biologically active signaling role within induced plant 

responses, as put forward by Weber et al. (Weber et al., 1997), is confirmed. 

We hypothesize that dnOPDA, through its effect on the HPL1 transcription, in-

fluences GLV emission and consequently affects the signaling roles of GLVs in 

plant-carnivore interactions and in inter- and intra-plant communication 

(Engelberth et al., 2004; Heil and Silva Bueno, 2007; Frost et al., 2008).  

The lack of JA, which is the case in the mutants dde2-2 and opr3, results in a 

reduced induction of HPL1 transcript level compared to induction observed in 

wild-types Col-0 and WS, respectively. This effect is much stronger in the dde2

-2 mutant, which lacks not only induced JA but also OPDA, than in the opr3 

mutant, which lacks JA but not OPDA (Snoeren et al., 2009 chap. 4). This indi-

cates the important involvement of OPDA in HPL1 induction compared to the 

end product of the AOS-branch, i.e. JA. Together, this indicates that dnOPDA 

and OPDA have contrasting effects on the HPL-branch of the oxylipin pathway: 

dnOPDA has a negative effect and OPDA a positive effect on the HPL-branch. 

Thus, dnOPDA and OPDA may be used to fine-tune Arabidopsis‟ responses to 

biotic stress in terms of the HPL-branch and consequently GLV emission.  

 

Our data show that a biting-chewing herbivore like P. rapae induces the SA-

signaling pathway and that jasmonates are required for observed PAL1 tran-

script levels, since PAL1 induction was not observed in the dde2-2 mutant, 

which lacks oxylipins. Furthermore, the absence of dnOPDA in fad5 mutant 

plants did not influence PAL1 induction. In contrast, opr3 plants that lack JA 
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production but had no altered dnOPDA and OPDA levels (Snoeren et al., 2009 

chap. 4), showed an impaired PAL1 induction. This indicates that PAL1 induction 

is dependent on signaling molecule JA. These observations demonstrate only a 

biological active role for JA and not for dnOPDA and OPDA in inducing PAL1 ac-

tivity after folivory.  

 

Surprisingly, we did not observe a different transcript level of ACX1 in mutant 

opr3, which lacks JA, when compared to its wild-type WS. Since we observed no 

transcript induction of OPR3 in caterpillar-damaged mutant opr3 plants when 

compared to the uninfested control opr3 mutant plants, we conclude that the 

mutation in opr3 effectively blocked OPR3 activity. Therefore, we suggest that 

the observed comparable ACX1 transcript abundance in opr3 and WS plants 

after herbivory, is provoked by alternative reductases of 12-oxophytodienoic 

acid. Candidate reductases are OPR1 and OPR2, but enzyme activities of these 

reductases are poor compared to OPR3 activity (Schaller et al., 2000), though 

these activities might increase in the absence of OPR3.  

 

The observed lower levels of caterpillar-induced transcription of LOX2 and OPR3 

in the mutants dde2-2 and opr3 compared to their corresponding wild-types, 

demonstrates that the absence of JA results in a lower induction of the first 

steps of the AOS-branch. Still, to discriminate between roles of OPDA and JA in 

the activation of upstream genes in the AOS-branch one would ideally require 

mutant plants having an identical genetic background. In addition, a mutant 

with a completely blocked conversion of dnOPDA and OPDA into JA is required. 

For this, comparing mutant dde2-2 and double mutant acx1/acx5 (Schilmiller et 

al., 2007), would allow for the discrimination in terms of biological activity for 

the jasmonates OPDA and JA.  

We demonstrate that dnOPDA has no or a very limited contribution to the in-

duction of genes within the AOS-branch, i.e. LOX2, OPR3, and ACX1. In addi-

tion, earlier studies have indicated that fad5 plants produce wild-type levels of 

OPDA and JA after 24 h of P. rapae herbivory (Snoeren et al., 2009 chap. 4). 

These two observations together suggest a more prominent contribution of the 

18:0 route than the 16:0 route towards the production of JA.  

 

In conclusion, we observed different roles for the oxylipins dnOPDA, OPDA, and 

JA in caterpillar-feeding-induced defense signaling. In response to folivory jas-

monic acid is the major signaling compound required for the induction of genes 

in both the HPL-branch and the AOS-branch from the oxylipin pathway. Yet, 

dnOPDA is likely to influence the activity of the HPL-branch, which is antagonis-

tic to the effects of OPDA and JA. Furthermore, the herbivore-induced oxylipin 

JA and not dnOPDA or OPDA is essential for PAL1 activity. Thus, our study im-

plicates that in Arabidopsis the biting-chewing herbivore P. rapae induces the 

shikimate pathway by means of the formation of JA, which subsequently in-

duces the shikimate pathway. Studies with pathway-specific mutants in sepa-
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rate signal-transduction routes could further distinguish between the roles of 

different oxylipins within caterpillar-induced plant defenses. 
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Abstract 

 

The indirect defense mechanisms of plants comprise the production of herbi-

vore-induced plant volatiles that can attract natural enemies of plant attackers. 

One of the often emitted compounds after herbivory is methyl salicylate 

(MeSA). Here, we studied the importance of this caterpillar-induced compound 

in the attraction of parasitoid wasp Diadegma semiclausum using a molecular 

genetic approach. Pieris rapae infested AtBSMT1-KO mutant Arabidopsis plants, 

compromised in the biosynthesis of MeSA, were found to be more attractive to 

parasitoids than infested wild-type plants. This suggests that the presence of 

MeSA has negative effects on parasitoid host-finding behavior when exposed to 

wild-type production of herbivore-induced Arabidopsis volatiles. Further, sup-

plementing the headspace of caterpillar-infested mutant plants with synthetic 

MeSA demonstrated a positive correlation between MeSA-dose and repellence 

of D. semiclausum.  

Key words:  

Tritrophic interaction, herbivory, infochemical, SABATH methyl transferase, BSMT1 
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Introduction 

 

Herbivores are effectively combated by plants through direct and indirect de-

fenses (Kessler and Baldwin, 2002). Direct defense comprises the production 

and storage of metabolites that negatively influence herbivore performance 

(Wittstock and Gershenzon, 2002). In contrast, indirect defense encompasses 

the production of metabolites that benefit the natural enemies of herbivores 

(Dicke et al., 1999; Wäckers et al., 2001; Halitschke et al., 2008; Kost and 

Heil, 2008). These defenses are commonly divided into constitutive and in-

duced defenses. The former include morphological and structural features (e.g. 

trichomes) as well as constitutively produced defense compounds. Induced de-

fenses are only active in actual threat situations, for instance when plants are 

under attack by pathogens or insect herbivores. These dedicated responses to 

an attack allow plants to be more cost effective and also to diminish the risk 

that herbivores adapt to the defenses (Agrawal and Karban, 1999; Pieterse and 

Dicke, 2007; Heil, 2008; Steppuhn and Baldwin, 2008). 

 

In this study, we address a component of induced indirect plant defense, i.e. 

the production of herbivore-induced plant volatiles (HIPVs). HIPVs mainly com-

prise green leaf volatiles (GLV) (C6 aldehydes, alcohols, and derivatives), ter-

penoids, and phenolics (Paré and Tumlinson, 1997; Dicke, 1999b). Green leaf 

volatiles originate from linolenic and linoleic acid, which are released particu-

larly when cells are damaged (Bate and Rothstein, 1998). Terpenoids are syn-

thesized via the mevalonic acid (MVA) or methylerythritol phosphate (MEP) 

pathway (Dudareva et al., 2006; Gershenzon and Dudareva, 2007). Finally, the 

aromatic compounds, such as methyl salicylate (MeSA) and indole, are formed 

via the shikimic acid pathway (Paré and Tumlinson, 1997). The induced volatile 

production is orchestrated by at least three main signal-transduction pathways: 

the jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) pathways (Dicke 

and Van Poecke, 2002; Kessler and Baldwin, 2002). These pathways can be 

differentially induced by different herbivore species (Heidel and Baldwin, 2004; 

De Vos et al., 2005; Schmidt et al., 2005), leading to the emission of a volatile 

blend that is specific for an herbivore species (Vet and Dicke, 1992; Ozawa et 

al., 2000; Walling, 2000; Leitner et al., 2005). These herbivore-specific volatile 

blends can provide foraging natural enemies of herbivores, such as predators 

and parasitoid wasps, with detectable and reliable information to locate their 

prey or host respectively (Dicke et al., 1990c; Turlings et al., 1991; Vet and 

Dicke, 1992; Du et al., 1998; Dicke, 1999a).  

 

Variation in attraction of carnivorous arthropods towards host or non-host in-

fested plants is mainly ascribed to the presence and relative abundance of at-
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tractive compounds within the HIPV blend (D'Alessandro and Turlings, 2006). 

An intriguing question is which components of the complex HIPV blend affect 

parasitoid attraction most. In the past decades, several approaches have been 

applied to study the relative importance of certain HIPVs in the attraction of 

carnivorous arthropods, e.g. offering synthetic compounds alone or in mix-

tures, inducing certain subsets of the HIPV blend with elicitors, or manipulating 

signal-transduction or biosynthetic pathways through a molecular genetic ap-

proach (Snoeren et al., 2007).  

 

One HIPV component for which biological relevance for carnivorous arthropod 

attraction has been addressed is methyl salicylate (MeSA) (De Boer and Dicke, 

2004; De Boer et al., 2004; James and Price, 2004; Zhu and Park, 2005; Ishi-

wari et al., 2007). This methyl ester of the plant hormone salicylic acid (SA) 

has been reported in many HIPV blends, e.g. lima bean (Dicke et al., 1990c), 

tomato (Ament et al., 2004), cabbage (Geervliet, 1997; Poelman et al., in 

press), and Arabidopsis (Van Poecke et al., 2001; Chen et al., 2003). Its role in 

the attraction of carnivorous arthropods has been studied by investigating the 

attraction to synthetic MeSA in field (James and Price, 2004; Zhu and Park, 

2005) and laboratory studies (De Boer and Dicke, 2004; De Boer et al., 2004; 

Ishiwari et al., 2007). However, so far, no studies have addressed the effects 

of the absence of MeSA from an otherwise complete HIPV blend on the beha-

vior of carnivorous arthropods.  

 

In this study we focus on the function of MeSA within the HIPV blend through a 

molecular genetic approach that involves the elimination of MeSA. MeSA is syn-

thesized by SA carboxyl methyltransferase (SAMT), a member of the SABATH 

methyl transferase family, to which also jasmonic acid, indole-acetic acid and 

cinnamic/p-coumaric acid methyltransferases belong (Seo et al., 2001; Chen et 

al., 2003; Zubieta et al., 2003; Kapteyn et al., 2007). Related enzymes that 

methylate benzoic acid (BA) to give MeBA have also been reported (Murfitt et 

al., 2000). Some SABATH enzymes can methylate both SA and BA with roughly 

equal efficiencies, and have therefore been designated as BSMTs. One such 

example is the Arabidopsis thaliana gene designated BSMT1 (Chen et al., 

2003).  

 

While SAMT or BSMT enzymes have been identified in a number of plant spe-

cies, including fary fans (Clarkia breweri), snapdragon (Antirrhinum majus), 

petunia (Petunia hybrida), Arabidopsis and jasmine (Stephanotis floribunda), 

we have selected Arabidopsis for further work on the physiological significance 

of MeSA emission because of the availability of molecular genetic tools and be-

cause this species is a valuable stepping stone towards other brassicaceous 
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plants for studying the role of HIPVs in plant-insect interactions (Snoeren et 

al., 2007). We addressed the role of MeSA in the foraging behavior of the para-

sitoid wasp Diadegma semiclausum Hellén (Hymenoptera, Ichneumonidae) that 

attack caterpillars feeding on brassicaceous plants including Arabidopsis. Cater-

pillar-feeding is known to induce MeSA in Arabidopsis (Van Poecke et al., 2001; 

Chen et al., 2003). We used wild-type Arabidopsis plants and a knock-out mu-

tant that does not have functional SAMT and thus no MeSA biosynthesis. We 

addressed the effects of the mutation on parasitoid- and herbivore behavior, 

and headspace composition. 

 

Materials and Methods 

 

Plants and Insects 

An Arabidopsis line with an insertion in the AtBSMT1 gene was obtained from 

the Torrey Mesa Institute collection and the position of the insertion was veri-

fied by sequencing (Supplemental Fig. 1). Arabidopsis seeds (A. thaliana wild-

type Columbia (Col-0) and AtBSMT1-KO) were germinated in sandy Arabidopsis 

soil (Lentse potgrond BV, Lent, Netherlands), and cultivated in a growth cham-

ber at 21 ± 2 °C , 50-60% relative humidity (RH), and L8:16D photoperiod 

with 80-110 µmol m-2 s-1 PPF. The soil was heated to 90 °C for at least two 

hours prior to sowing of the plants. Two-week-old seedlings were transferred to 

plastic containers (5 cm in diameter) filled with the same soil type. Plants were 

watered twice a week. To prevent infestation by root-feeding sciarid flies, the 

soil was treated weekly with the entomopathogenic nematode Steinernema 

feltiae (Koppert Biological Systems, Berkel en Rodenrijs, the Netherlands). 

Fully grown vegetative plants were used for the experiments, i.e. after 6 to 8 

weeks since sowing.  

The small cabbage white butterfly, P. rapae L. (Lepidoptera, Pieridae), was 

reared on Brussels sprouts plants (Brassica oleracea var. gemmifera, cv Cyrus) 

in a growth chamber (16L:8D; 20 ± 2 °C and 70% RH) as described in detail in 

Fatouros et al. (2005). 

The parasitoid wasp D. semiclausum was reared as described in Bukovinszky et 

al. (2005). Emerging wasps were provided ad libitum with water and honey, 

and are referred to as „naïve‟ wasps as they had neither received exposure to 

plant material, nor obtained an oviposition experience. This parasitoid is known 

to be attracted to the volatiles emitted by P. rapae-infested Arabidopsis Col-0 

plants (Loivamäki et al., 2008; Snoeren et al., 2009 chap. 4). 
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Plant treatments 

Plants were infested by equally distributing 20 first-instar P. rapae larvae per 

plant over the fully expanded leaves. Uninfested plants that otherwise received 

similar treatment as the infested plants were used as control plants. In all ex-

periments, plants were treated 24 h before the experiments and kept in a cli-

mate room (21 ± 2 °C, 50-60% RH; L8:D16 photoperiod, and 80-110 µmol m-2 

s-1 PPFD). 

 

Behavioral assays 

Y-tube olfactometer 

The effects of HIPVs from wild-type Arabidopsis Col-0 and transgenic AtBSMT1-

KO plants on parasitoid behavior were tested in a closed Y-tube olfactometer 

system as described by Bukovinszky et al. (2005). In short, filtered air was led 

through activated charcoal and split into two air streams (4 L min-1) that were 

led through five-liter glass vessels containing the odor sources consisting of 

four plants each. The olfactometer was illuminated with artificial light from 

above at an intensity of 60 ± 5 µmol m-2 sec-1 PPFD. All experiments were con-

ducted in a climatized room (20 ± 2 °C).  

 

Naive, 3-7 days-old female D. semiclausum were individually transferred from 

the cage into the Y-tube olfactometer on a plant leaf; this was done by using 

alternately a Col-0 or AtBSMT1-KO leaf, that had been previously infested by 

P. rapae and from which the caterpillars and their products had been carefully 

removed. Upon release in the olfactometer, parasitoid behavior and parasitoid 

choice for one of the two odor sources was observed and scored as described in 

detail by Bukovinszky et al. (2005). Parasitoids that did not make a choice 

within ten minutes after release or did not choose for one of the two arms of 

the olfactometer within five minutes were considered as non-responding indi-

viduals, and were excluded from preference analysis. After every five parasi-

toids tested, the odor sources were interchanged to compensate for any un-

foreseen asymmetry in the set-up.  

 

Experiment 1: effect of AtBSMT knock-out on parasitoid attraction to caterpillar

-infested plants 

To assess the role of MeSA as a cue for parasitoids in planta, we compared 

parasitoid behavior in response to an HIPV blend that lacked MeSA versus a 

complete HIPV blend that included MeSA. Caterpillar-infested mutant AtBSMT1-

KO and wild-type Col-0 plants were offered as odor sources in the Y-tube olfac-

tometer to D. semiclausum.  
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Experiment 2: supplementing headspace of caterpillar-infested AtBSMT1-KO 

plants with synthetic MeSA 

To further investigate the role of MeSA, we restored the HIPV blend of 

AtBSMT1-KO plants by adding synthetic MeSA (Merck, 99% pure). To deter-

mine if parasitoid behavior to MeSA was dose dependent, different doses of 

MeSA (0.2 μg, 2 μg, 20 μg, 200 μg) were added downwind to the earlier in-

fested plants. MeSA was diluted in n-hexane (Sigma-Aldrich, 95%). In all ex-

periments 0.1 ml of the MeSA solution was applied on filter paper (15 cm2) and 

positioned in the last section of the olfactometer arm. A piece of filter paper 

with 0.1 ml hexane was placed at a similar position in the other arm as a con-

trol treatment. The solvent was allowed to evaporate for 30 – 60 seconds, after 

which a parasitoid was introduced in the olfactometer. New filter papers with 

MeSA or hexane were used for each parasitoid tested in the olfactometer.  

 

Caterpillar-feeding  

Areas of consumed leaf-tissue were assessed for the caterpillar-infested Col-0 

and AtBSMT1-KO plants that were used in experiment 1. Immediately after  

finishing an olfactometer bioassay, individual leaves were taped on paper and 

scanned with a Hewlett-Packard scan jet 3570c. Original leaf shapes were re-

constructed using Paint.NET v3.30, Microsoft Corporation. Quantification of 

consumed leaf-tissue area was performed using Winfolia pro 2006a, Regent 

instruments (Québec, Canada).  

 

Headspace collection and volatile analysis 

Dynamic headspace sampling was carried out in a climate room (20 ± 2 °C, 

70% RH; L8:D16 photoperiod and 90-110 µmol photons m-2 s-1 PPFD). Twenty-

four hours before sampling, the pots were removed, roots and soil were care-

fully wrapped in aluminum foil, and four plants were placed together in a 2.5 L 

glass jar. The glass jars were then covered with insect-proof gauze. Just before 

trapping, the gauze was removed and jars were closed with a Viton-lined glass 

lid having an inlet and outlet. Inlet air was filtered by passing through tubes 

filled with 200 mg Tenax TA (20/35 mesh; Grace-Alltech, Deerfield, USA). Air 

was sucked out of the jar with 100 ml min-1 by passing through a tube filled 

with 200 mg Tenax TA. Headspace volatiles from different treatments were 

collected for a period of 3.5 h. Fresh weights of all rosettes were determined 

immediately after the experiments. On each experimental day, headspace sam-

ples for two or three replicates of each treatment were collected simultane-

ously.  

 

Headspace samples were analyzed with a Thermo TraceGC Ultra (Thermo 

Fisher Scientific, Waltham, USA) connected to a Thermo TraceDSQ (Thermo 
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Fisher Scientific, Waltham, USA) quadrupole mass spectrometer. Before de-

sorption of the volatiles, the Tenax cartridges were dry-purged with helium at 

30 ml min-1 for 20 min at ambient temperature to remove moisture. Samples 

were desorbed from the cartridges using a thermal desorption system at 250 °

C for 3 min (Model Ultra Markes Llantrisant, UK) with a helium flow at 30 ml 

min-1. Analytes were focused at 0 °C on an electronically-cooled sorbent trap 

(Unity, Markes, Llantrisant, UK). Volatiles were transferred without split to the 

analytical column (Rtx-5ms, 30 m, 0.25 mm i.d., 1.0 µm film thickness, 

Restek, Bellefonte, USA) by ballistic heating of the cold trap to 250 °C. The GC 

was held at an initial temperature of 40 oC for 3.5 min followed by a linear 

thermal gradient of 10 oC min-1 to 280 oC and held for 2.5 min with a column 

flow of 1 ml min-1. The column effluent was ionized by electron impact ioniza-

tion at 70 eV. Mass spectra were acquired by scanning from 45-400 m/z with a 

scan rate of 3 scans s-1. 

 

Compounds were identified by using the deconvolution software AMDIS 

(version 2.64, NIST, USA) in combination with NIST 98 and Wiley 7th edition 

spectral libraries and by comparing their retention indices with those from the 

literature (Adams, 1995). For quantification characteristic quantifier ions were 

selected for each compound of interest (see Fig. 2). Metalign software (PRI-

Rikilt, Wageningen, the Netherlands) was used to align peaks of chroma-

tograms of all samples and integrate peak areas for the quantifier ions. Peak 

areas of all compounds were corrected for the fresh weight of the leaf rosettes. 

 

Statistical analysis 

Bioassay 

Parasitoid preference for infested AtBSMT1-KO vs. infested Col-0 plants (i.e. 

experiment 1) were statistically analyzed using a Chi-square test, with the null-

hypothesis that parasitoids did not have a preference for any of the two odor 

sources. Secondly, we analyzed whether the parasitoids exhibited a MeSA-dose

-dependent response when the HIPV blend from AtBSMT1-KO plants was re-

stored with synthetic MeSA (i.e. experiment 2). We constructed an overall gen-

eralized linear model (GLM) including MeSA-dose as a covariate, the tested 

genotype combination as a fixed factor, and the interaction of the terms. As 

the null-hypothesis we defined that addition of MeSA did not result in a differ-

ent attraction of parasitoids. Total number of parasitoids that preferred infested 

AtBSMT1-KO plants with the supplemented MeSA over the control (infested Col

-0 or AtBSMT1-KO) plants was taken as response variate. Total numbers of 

parasitoids that made a choice per day were used as the binomial total and we 

used a logit-link function. We used a Chi-square, with the aforementioned null-

hypothesis, to test for a significant preference of each tested MeSA-dose per 
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genotype combination. Parasitoids that did not make a choice were not in-

cluded in the test. 

Third, we investigated the effects of MeSA-dose on the proportion of parasi-

toids that made a choice in the Y-tube olfactometer experiments. We used the 

same overall GLM model as described above, only now with number of non-

responding parasitoids as the response variate (SPSS 15.0, Chicago, USA). 

 

A Mann-Whitney-U test was used to test whether the consumed leaf area of Col

-0 and AtBSMT1-KO plants (experiment 1) was different (SPSS 15.0, Chicago, 

USA).  

 

Headspace collection 

The fresh weight of a corrected peak area for a volatile compound quantifier 

ions were log10 transformed, and for each HIPV the following mixed model was 

used to screen for HIPV compound differentiation per genotype: log10(Vijk)

~Gi+Tj+G:Tij+Rk+εijk , where V=area of quantifier ions per gram fresh weight; 

G=genotype; T=treatment; R=replicate; ε=residual; i=1,2; j=1,2; and k=1,

…,5 (see also Snoeren et al., 2009 chap. 4). Both G and T were used as fixed 

effects and R as a random effect. Subsequently, two-tailed t-tests followed by a 

Benjamini and Hochberg false discovery rate (BH-FDR) multiple comparison 

correction were conducted per compound for the genotypes (significance: 

q<0.05; (Benjamini and Hochberg, 1995)). 

 

Results 

 

Parasitoid behavior 

Experiment 1: effect of AtBSMT knock out on parasitoid attraction to caterpillar

-infested plants  

Diadegma semiclausum females are attracted to the headspace of P. rapae-

infested Arabidopsis Col-0 plants (Loivamäki et al., 2008; Snoeren et al., 2009 

chap. 4). To investigate whether changes in this headspace, as a result of a 

knock-out mutation in the AtBSMT1 gene, affected indirect defense we investi-

gated the behavioral responses of D. semiclausum towards plant volatiles in-

duced by P. rapae herbivory in a Y-tube olfactometer. Females of 

D. semiclausum preferred the volatiles emitted by herbivore-infested AtBSMT1-

KO plants over those emitted by infested Col-0 plants (P<0.05; Fig. 1a). The 

amount of leaf-tissue consumed by the caterpillars did not differ between Col-0 

and AtBSMT1-KO plants (mean ± SE: Col-0 10.41 ± 0.91 mm2, AtBSMT1-KO 

10.88 ± 0.80 mm2; Mann Whitney U test: U=259.00; P=0.90, n=23). Thus, 

the difference in attraction cannot be explained by a difference in the amount 

of feeding by the caterpillars. 
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Experiment 2: supplementing headspace of caterpillar-infested AtBSMT1-KO 

plants with synthetic MeSA 

To assess if the absence of MeSA in the HIPV blend can explain parasitoid be-

havior, the volatile blend of infested AtBSMT1-KO plants was restored by add-

ing synthetic MeSA downwind of the plant. Different MeSA-doses were used to 

test for dose-dependent effects of MeSA presence. The addition of MeSA elimi-

nated the preference for the knock-out plants, as seen in experiment 1, and 

with increasing MeSA-dose this effect was stronger. Parasitoid preference was 

not influenced by the different genotype combinations, but solely by the MeSA-

dose used (GLM: genotype combination P=0.167, MeSA dose P<0.001, 

R2=0.28).  

Figure 1. Behavioral responses of naïve Diadegma semiclausum females to the volatiles 
of two sets of Arabidopsis thaliana plants, as assessed in the Y-tube olfactometer. All 
plants were infested (inf.) with 20 Pieris rapae caterpillars and in some cases the head-
space was supplemented with synthetic MeSA, added downwind from the plants. Added 
MeSA-doses (μg) are indicated to the right of the bars in the left bar plot. Each bar 
represents the percentage of choices for each of the two odor sources as determined in 5 
replicate experiments; on each replicate day 10 parasitoids were tested per odor source 
(X2 test, P values). Error bars indicate SE. GLM analysis for experiments B and C, demon-
strated that MeSA dosage (P<0.001) and not the offered genotype (P=0.167) explained 
parasitoid behavior. Parasitoid MeSA dosage responses between two tested genotype 
combinations did not differ (P=0.270). The right bar plot indicate the percentage of no 
choice in each experiment; total number of tested parasitoids are given in these bars. 
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Analysis of parasitoid choices for each tested MeSA-dose within a tested geno-

type combination demonstrated that parasitoid preferences slightly varied 

among the MeSA doses used. Yet, for both genotype combinations tested, 

AtBSMT1-KO HIPV complementation with 0.2 μg MeSA did not result in dis-

crimination between the two odor sources and a complementation with 200 μg 

MeSA resulted in significant preference for the odor without supplemented 

MeSA (Fig. 1b, 1c). When parasitoids were offered a choice between volatiles 

from infested AtBSMT1-KO plants supplemented with 2 or 20 μg MeSA versus 

infested Col-0 HIPVs, they preferred the latter. In contrast, no discrimination 

between odors from infested AtBSMT1-KO plants supplemented with 2 or 20 μg 

MeSA versus infested AtBSMT1-KO plants was observed. 

The addition of MeSA negatively influenced the proportion of parasitoids that 

made a choice for one of the two odor sources. Analysis of the number of 

wasps that did not make a choice for one of the two odor sources, showed no 

effect of the offered genotype combination, but only an effect of the MeSA-

dose used (GLM: genotype combination P=0.75, MeSA dose P=0.010, 

R2=0.15). 

 

Headspace volatile analysis 

To evaluate the effects of the SAMT knock-out mutation, we analyzed the 

headspace of uninfested and P. rapae-infested plants of wild-type Col-0 and 

AtBSMT1-KO mutant plants. For the analysis, we selected compounds in the 

HIPV blend that are known to influence the behavior of carnivorous arthropods 

or compounds predicted to be affected by the KO mutation, i.e. methyl salicy-

late and methyl benzoate (MeBA) (Fig. 2) (Dicke et al., 1990c; Turlings and 

Fritzsche, 1999; Chen et al., 2003; De Boer et al., 2004; Shimoda et al., 

2005).  

Infested Col-0 and AtBSMT1-KO plants differed significantly in the emission of 

MeSA, ethyl salicylate (EtSA) and MeBA (q<0.001); these compounds were 

induced in Col-0 but not in AtBSMT1-KO. The Y-axis represents a 10log scale. 

Thus, the headspace analysis for infested AtBSMT1-KO and infested Col-0 

showed that the production of MeBA (No. 10), MeSA (No. 12), and ethyl salicy-

late (EtSA, No. 13) was hampered. These compounds are emitted at 14, 59, 

and 17 times lower emission rates, respectively (Fig. 2). 

The remaining compounds, pentan-1-ol, linalool, indole, (E,E)-α-farnesene, and 

(E,E)-4,8,12–trimethyltrideca-1,3,7,11–tetraene (TMTT) were similarly induced 

in infested Col-0 and AtBSMT1-KO plants when compared to uninfested plants. 

The green leaf volatile (Z)-3-hexen-1-ol was only induced in the mutant 

(q=0.005) but not in the wild-type. Uninfested Col-0 and AtBSMT1-KO plants 

did not differ in the emission of volatiles, except for TMTT which was emitted in 

somewhat larger amounts by uninfested Col‑0 plants than by uninfested 

AtBSMT1-KO plants (q=0.011). Uninfested Col-0 plants emitted more 1-octen-

3-ol and 1-nonanol than infested plants (Fig. 2).  
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Figure 2. Emission of volatile compounds of Col-0 wild-type and At-BSMT-KO plants,  
either uninfested or infested with 20 Pieris rapae caterpillars, expressed as peak area 
(arbitrary units; mean ± SE; n=5) for the identifying ion per g FW. Compounds: 
1=pentan-1-ol (m/z 70); 2= (Z)-2-penten-1-ol (m/z 57); 3= (Z)-3-hexen-1-ol (m/z 67); 
4= α-pinene (m/z 93); 5= 1-octen-3-ol (m/z 57); 6= ß-myrcene (m/z 93); 7= (Z)-3-
hexen-1-ol acetate (m/z 67); 8= (E)-ß-ocimene (m/z 93); 9= linalool (m/z 93); 10= 
methyl benzoate (m/z 136) 11= 1-nonanol (m/z 56); 12= methyl salicylate (m/z 120); 
13= ethyl salicylate (m/z 120); 14= indole (m/z 117); 15= (E,E)-α-farnesene (m/z 93); 
16= (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT) (m/z 69).  
Bars marked with * indicate a treatment for a genotype significantly emitting more vola-
tiles than its counterpart. Bars marked with arrows represent compounds emitted in sig-
nificantly different amounts by the two genotypes. 
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Discussion 

 

Variation in the attraction of carnivorous arthropods towards HIPVs is often 

ascribed to the relative contribution of attractive compounds within the com-

plex herbivore-induced blend (Van Den Boom et al., 2004; D'Alessandro and 

Turlings, 2006). Plant species can differ in the relative emission rates of indivi-

dual attractive compounds after feeding by distinct herbivores. The commonly 

induced attractive compounds comprise green leaf volatiles, terpenoids and 

phenolics. Several studies have already shown in planta the importance of 

some green leaf volatiles and terpenoids in attracting carnivorous arthropods 

(Kappers et al., 2005; Schnee et al., 2006; Shiojiri et al., 2006a). Yet, empiri-

cal evidence for the quantitative importance of single compounds in the total 

HIPV blend of infested plants is still rare.  

We used a molecular genetic approach with the crucifer Arabidopsis, to study 

the importance of the presence-absence of an individual component within the 

total HIPV blend on parasitoid behavior. 

 

Females of D. semiclausum are attracted to the headspace of P. rapae-infested 

Arabidopsis Col-0 plants (Loivamäki et al., 2008; Snoeren et al., 2009 chap. 

4). However, so far the attractive compounds of the HIPV blend involved are 

not known. One of the P. rapae-induced volatiles emitted by Arabidopsis Col-0 

plants is MeSA (Van Poecke et al., 2001). This compound is only emitted in 

very low amounts by undamaged Col-0 plants (Van Poecke et al., 2001). New 

molecular tools allowed us to use the Arabidopsis knock-out mutant for benzoic 

acid and salicylic acid carboxyl methyltransferase (AtBSMT1-KO), to study the 

ecological effects of the presence of MeSA in the volatile blend induced by her-

bivory. Our data clearly show that infested AtBSMT1-KO plants attract more 

parasitoids than infested wild-type Col-0 plants (see Fig. 1a). Thus, although 

the total HIPV blend strongly attracts D. semiclausum parasitoids (Loivamäki et 

al., 2008; Snoeren et al., 2009 chap. 4), a genotype that does not emit MeSA 

in response to caterpillar infestation is even more attractive to the parasitoids. 

These data indicate that MeSA does not contribute to the attraction of naïve 

D. semiclausum females but acts as a repellent or masks the attractiveness of 

other compounds to the parasitoids. This negative effect of MeSA on D. semi-

clausum attraction was not anticipated, as MeSA is commonly induced after 

herbivory in many plant species, e.g. in lima bean (Dicke et al., 1990c), Brus-

sels sprouts (Geervliet, 1997; Bukovinszky et al., 2005), and Arabidopsis (Van 

Poecke et al., 2001; Chen et al., 2003). Moreover, MeSA has also been demon-

strated to attract other carnivore species (Dicke et al., 1990c; De Boer, 2004; 

James and Price, 2004). 
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However, other studies have also recorded repellent or masking effects of HIPV 

compounds to carnivores. For example, a HIPV fraction of maize, containing 

(Z)-3-hexen-1-ol acetate, linalool and (3E)-4,8-dimethyl-1,3,7-nonatriene 

(DMNT) was found to be least attractive compared to other tested fractions of 

the HIPV blend of maize to the parasitoid Cotesia marginiventris and might 

even have a repellent or masking effect on other fractions of the HIPV blend 

(Turlings and Fritzsche, 1999). Furthermore, for the same plant-herbivore sys-

tem it was demonstrated that naïve Microplitis rufiventris parasitoids preferred 

HIPV blends lacking the induced compound indole, also indicating a repellent or 

masking effect of this compound (D'Alessandro et al., 2006). In addition, also 

isoprenoids were found to interfere with host-finding, as was demonstrated for 

transgenic Arabidopsis plants emitting isoprene (Loivamäki et al., 2008). 

The function of emitting HIPV compounds that do not lure naïve carnivores but 

repel them may be linked to the compounds‟ role in other plant defense 

mechanisms. For example, HIPV compounds can act as repellents towards her-

bivores (Bruce et al., 2008; Piesik et al., 2008), which also has been demon-

strated for MeSA (Hardie et al., 1994; James and Price, 2004; Prinsloo et al., 

2007; Ulland et al., 2008). In addition, supporting evidence of a plant-plant 

signaling role for MeSA has been proposed (Ozawa et al., 2000; James and 

Price, 2004), suggesting a priming effect of MeSA on plant defense (Turlings 

and Ton, 2006). Yet, from the perspective of the carnivore, one would expect 

that any volatile that is correlated with the activity of its herbivorous victim 

could be exploited in locating the herbivore. It is well known that carnivores 

can learn to respond to HIPV blends and this has also been demonstrated for 

the response of a predatory mite to MeSA (De Boer and Dicke, 2004). Whether 

this also influences the response of D. semiclausum remains to be investigated. 

 

To determine if an altered enzyme activity for SAMT and BAMT affected the 

headspace composition in other respects, we analyzed the headspace of in-

fested knock-out mutant and wild-type plants. The headspace of caterpillar-

infested plants differed only in the emission of MeSA and MeBA: the emission 

rates of these compounds were up to 60 times lower for AtBSMT1-KO plants 

compared to wild-type plants (Fig. 2). This agrees with the reported activity of 

the enzyme encoded by the BSMT1 gene (Chen et al., 2003). The very low 

emission of MeSA that remains may be ascribed to activity of another SABATH 

enzyme that shows very low levels of activity towards SA and BA (Chen et al., 

2003). Eliminating a functional BSMT1 gene also decreased the emission rate 

of EtSA. EtSA has been recorded in several plants (Hamilton-Kemp et al., 

1988; Scutareanu et al., 1997; Deng et al., 2004) and is known to be per-

ceived by insect chemoreceptors (Ramachandran et al., 1990; Reinecke et al., 

2002).  
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All other investigated HIPVs were emitted at similar rates by infested Col-0 and 

AtBSMT1-KO plants (Fig. 2). 

 

Testing the HIPVs from AtBSMT1-KO plants supplemented with synthetic MeSA 

against HIPVs from Col-0 or AtBSMT1-KO demonstrated that MeSA acts as a 

repellent to naïve D. semiclausum. Moreover, the observed dose-dependent 

repellent effect for MeSA was also reflected in the disturbance of the response 

level of the parasitoids as fewer wasps chose between odor sources with higher 

MeSA-doses.  

The KO-mutation did not affect the feeding rate by the caterpillars. Thus, the 

change in volatile emission and parasitoid attraction cannot be attributed to 

effects on herbivore behavior. Our data from the experiments in which the 

headspace was supplemented with MeSA show that the altered emission rate of 

this compound plays an important role in the observed effects. Caterpillar-

feeding also induces the emission of EtSA and MeBA (Fig. 2). Whether MeBA 

and EtSA also affect the attraction of D. semiclausum wasps remains to be in-

vestigated, though our data suggest an attractive role for these compounds 

present in the wild-type Col-0. 

 

In conclusion, through a multidisciplinary approach we investigated the role of 

MeSA by eliminating it from the total HIPV blend rather than investigating the 

role of MeSA as an isolated compound or as an addition to an artificial blend. 

We demonstrated that MeSA has a repellent effect on the behavior of naïve 

D. semiclausum parasitoids. This provides a new view on the effects of indivi-

dual components of herbivore-induced plant volatile blends. The effects on 

other species in the same community should be investigated to understand the 

role of MeSA in a community ecological context. 
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Introduction 

 

Plants are sessile organisms at the basis of most food webs where they are 

under constant threat of possible attackers. Plants have evolved resistance 

against most of their attackers. A broad range of defense mechanisms allows 

plants to effectively combat biotic stresses caused by, for instance, herbivorous 

insects. These mechanisms include constitutively present barriers, as well as 

induced defense responses that are activated upon attack (Karban and Bald-

win, 1997; Pieterse and Dicke, 2007). A constitutive defense involves plant 

traits that interfere with herbivores and form a pre-existing physical or chemi-

cal barrier. Morphological plant traits, such as leaf surface wax layers, thorns or 

trichomes, form a first physical barrier to the herbivore. Secondary metabo-

lites, such as toxins and digestibility reducers, can form the next barriers that 

benefit the plant under attack. In addition, plants may also provide shelter to 

natural enemies of the herbivore (Schoonhoven et al., 2005). The induced de-

fense responses can be subdivided into direct defense, e.g. production of anti-

digestive proteins and toxic secondary compounds (Karban and Baldwin, 1997; 

Walling, 2000), and indirect defense, e.g. by providing the natural enemies 

with extrafloral nectar (Kost and Heil, 2008) and the production of infochemi-

cals (Dicke and Sabelis, 1988) such as herbivore-induced plant volatiles (HIPV) 

(Dicke and Hilker, 2003). Chemical cues are a major source of information for 

interacting plants and insects. Herbivores might use induced changes in in-

fochemicals as information on the status of the plant to determine the suitabi-

lity of the plant for oviposition or feeding. Carnivorous arthropods can use 

chemical cues, e.g. HIPVs, to locate their prey or host (Dicke and Hilker, 

2003). Furthermore, the induced nature of these defense responses to herbi-

vore attack allows plants to be cost-effective and also to diminish the risk that 

herbivores adapt to the defenses (Agrawal and Karban, 1999; Heil, 2008; 

Steppuhn and Baldwin, 2008). Therefore, studying how these HIPVs are in-

volved in indirect defense is a major challenge, requiring a multidisciplinary 

approach (Baldwin et al., 2002)(chapter 2). 

 

Ecogenomic approach 

 

This PhD project was embedded in an NWO-VICI-project which consisted of two 

PhD projects and two post-doc projects that addressed the role of infochemi-

cals in insect-plant interactions using an ecogenomic approach. In the VICI 

project we took a chemical approach to modify the infochemical phenotype and 

a molecular genetic approach by altering signal-transduction pathways underly-

ing the induction of infochemical production. Both approaches were used to 

investigate the underlying mechanisms in terms of signal-transduction path-

ways involved in the induction of infochemicals and to determine whether 

modified emission rates of HIPVs affect interactions with plant-associated in-

sects. For both approaches crucifer plants were adopted.  
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Knowledge of mechanisms that underlie the induction of HIPVs is of great im-

portance for studying how these volatiles are involved in indirect defense. Cur-

rent mechanistic knowledge of the biosynthetic and signaling pathways under-

lying HIPV production provides interesting tools to modify the emission of plant 

volatiles through specific elicitors and inhibitors (for review, see Bruinsma and 

Dicke, 2008). Over the last decade, molecular genetic information on the pro-

duction of induced plant volatiles has accumulated rapidly. This allowed the use 

of mutants that are modified in the biosynthesis of volatiles or mutants that 

have altered signaling defense pathways (for review, see Baldwin et al., 2001; 

Degenhardt et al., 2003; Dicke et al., 2004). Both a chemical manipulation ap-

proach to study HIPV emission and a genotypic approach by studying trans-

genic plants modified in the underlying pathways have their own advantages 

and disadvantages (chapter 2).  

 

I used a molecular genetic approach to alter the signaling or biosynthetic path-

ways involved in the induction or production of HIPVs to study the importance 

of HIPV blend composition on parasitoid host-finding behavior and to gain in-

sight in the underlying mechanisms. This approach has already been used in 

several plant species, especially Arabidopsis, tomato, and tobacco (Van Poecke 

and Dicke, 2002; Ament et al., 2004; Kessler et al., 2004). Although Arabidop-

sis is not the most interesting plant species from an ecological point of view, it 

has been proven useful to study underlying mechanisms of herbivore-induced 

plant defense responses in Brassica systems (Mitchell-Olds, 2001; Van Poecke 

and Dicke, 2004). Compared to other crucifers, Arabidopsis is ideal for a multi-

disciplinary approach to study the roles of HIPVs in indirect defense by means 

of transcriptomics, metabolomics and phenomics (Fig. 1). Furthermore, Arabi-

dopsis is a valid stepping stone towards other brassicaceous plants, since, for 

instance, micro-arrays developed for Arabidopsis can be used for Brassica spe-

cies as well (Lee et al., 2004; Broekgaarden et al., 2007) and HIPVs emitted by 

Arabidopsis resemble those of other brassicaceous species (Van Poecke and 

Dicke, 2004). Adopting Arabidopsis to study plant-insect interactions gave me 

the unique opportunity of combining transcriptomics, metabolomics, and beha-

vioral studies of natural enemies of crucifer pests.  

 

Given the early-season lifecycle of Arabidopsis, under natural growing condi-

tions the plant is not exposed to major crucifer lepidopteran pest species such 

as Pieris rapae and Plutella xylostella. Still, I chose to induce defense pathways 

with Pieris rapae larvae that specialize on brassicaceous plants, since there are 

many parallels between Arabidopsis and other brassicaceous species in terms 

of caterpillar-induced plant volatiles (Van Poecke and Dicke, 2004). Parasitoid 

behavior towards HIPVs was tested with the specialist Ichneumonid parasitic 

wasp Diadegma semiclausum that uses the specialist herbivore Plutella xylos-

tella as host. Although P. rapae is not a host species for D. semiclausum, bio-

assays in which the naïve wasps were offered crucifer plants infested with ei-

ther P. rapae or P. xylostella, did not show discrimination of the wasps between 
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both odor sources (T.A.L. Snoeren, unpublished data). I preferred using 

P. rapae over P. xylostella for its higher feeding rate on Arabidopsis, which in-

creased the level of defense induction, and preferred D. semiclausum over 

Cotesia-wasp species, since this species was more easy to handle in the chosen 

experimental set-up.  

 

Herbivore-induced indirect defense 

 

Role of HIPVs 

It is well-known that plants increase the production of volatiles after infestation 

by herbivores. This herbivory-induced volatile blend from the vegetative parts 

of the plant can vary drastically in the quantity and quality of volatile com-

pounds (Turlings et al., 1995; Tumlinson et al., 1999; Dicke and van Loon, 

2000). HIPVs can attract carnivorous arthropods, such as predatory mites and 

parasitoid wasps, and/or repel herbivores and thus act as a means of plant re-

sistance (Dicke, 1986; Dicke and Dijkman, 1992; Turlings et al., 1995; Dicke, 

1999b; Tumlinson et al., 1999; Kessler and Baldwin, 2001; Arimura et al., 

2005). Compounds that form the headspace of plants after herbivory comprise 

alcohols, esters, aldehydes and various terpenoids (Dudareva et al., 2006; 

Pichersky et al., 2006). Some compounds are released instantly after herbi-

vory, such as green leaf volatiles (GLVs), e.g. (Z)-3-hexen-1-ol, (E)-2-hexenal 

or (Z)-3-hexen-1-yl acetate. In contrast, the ester methyl salicylate (MeSA), 

the monoterpenes myrcene and ß-ocimene, the homoterpene (E,E)-4,8,12-

Figure 1. Integrated approach of studying herbivore-induced plant volatiles of Arabidop-
sis thaliana as used in this thesis. 
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trimethyltrideca-1,3,7,11-tetraene (TMTT), and the sesquiterpene (E,E)-α-

farnesene are usually not emitted until after some hours after the onset of her-

bivory (Dudareva et al., 2006; Heil, 2008). Different feeding modes, which can 

be roughly divided in leaf chewing and piercing-sucking, affect plant defense 

signaling pathways distinctively and can, therefore, induce insect-plant-

interaction specific volatiles (Walling, 2000; Leitner et al., 2005). Numerous 

carnivorous arthropods can use HIPVs to discriminate between plants attacked 

by different herbivore species and different plant species infested by the same 

herbivore species (Du et al., 1996; De Moraes et al., 1998). The attraction of 

natural enemies that effectively attack the herbivores can result in an increase 

in plant fitness (Van Loon et al., 2000; Fritzsche-Hoballah and Turlings, 2001). 

Thus, HIPVs have an important function in insect-plant interactions.   

 

Natural variation in HIPVs among accessions 

Carnivorous arthropods are confronted with a plethora of different volatile com-

pounds released by different plant species. Background odors from surrounding 

plants might interfere with an attractive HIPV blend or mask individual attrac-

tive compounds from an HIPV blend (Mumm and Hilker, 2005; Schroeder and 

Hilker, 2008). Successful localization of a host or prey is therefore dependent 

on the capacity of carnivores to distinguish the different HIPV blends emitted 

by distinct plant species (De Moraes et al., 1998). Variation in emission of 

HIPVs does not only occur between different plant species but also within spe-

cies. To date, the occurrence of intraspecific variation in headspace composi-

tion after herbivory was primarily explored for crop varieties, including cotton 

(Loughrin et al., 1995), gerbera (Krips et al., 2001), pear (Scutareanu et al., 

2003), maize (Hoballah et al., 2004), carrot (Nissinen et al., 2005), rice (Lou 

et al., 2006), and cruciferous crops (Bukovinszky et al., 2005). So far, no stud-

ies were conducted on the occurrence of natural variation in HIPV emission 

among Arabidopsis accessions. Only few studies compared the herbivore-

induced headspace from leaves between Arabidopsis accessions, i.e. Col-0 and 

WS (chapter 4). In chapter 3 we, therefore, conducted an extensive study on 

the occurrence of natural variation in HIPV emission. We analyzed nine Arabi-

dopsis accessions from different geographic origins, i.e. An-1, Col-0, C-24, Cvi, 

Eri-1, Kond, Kyo-1, Ler, and WS (Table 1). After herbivory by P. rapae caterpil-

lars, variation among accessions was detected for distinct HIPV-compound-

groups, i.e. GLVs, terpenoids, and phenolics. Accessions also differed in the 

production of plant volatiles after spraying the plants with the phytohormone 

jasmonic acid, which is often used to mimic herbivory (chapter 4)(Van Poecke 

and Dicke, 2002; Loivamaki et al., 2004; Ibrahim et al., 2005; Mewis et al., 

2005; Bruinsma et al., 2008). Although we observed that parasitoids discrimi-

nated among JA-treated accessions, we were unable to allocate individual com-

pounds to the differences in parasitoid behavior. The complex variation of the 

volatile headspace is likely to interfere with the postulation of conclusions on 

the contribution of individual compounds (chapter 3). It is likely that the para-

sitoid evaluates the HIPV blend more on its total composition or a range of 
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compounds in the total blend, than on the presence or absence of single com-

pounds (Mumm and Hilker, 2005). For both methods of inducing the production 

of HIPVs, we also detected variation in the transcript levels of genes that are 

putatively associated with biosynthetic steps in the formation of volatile com-

pounds, e.g. MeSA, TMTT, (E)-ß-ocimene. Furthermore, the expression of some 

genes could be connected to volatile emission. Although no connection between 

gene expression and parasitoid behavior was found, this first attempt of com-

bining several disciplines to study the mechanisms underlying the induced pro-

duction of plant volatiles holds promise for further research on herbivore-

induced volatile-regulated indirect defense.  

 

Signal-transduction pathways in HIPV production 

Induced defense responses are orchestrated by a network of interconnecting 

signal-transduction pathways in which jasmonic acid (JA), salicylic acid (SA), 

and ethylene (ET) play key roles (Kazan and Manners, 2008; Koornneef and 

Pieterse, 2008). Empirical evidence for the significance of the phytohormones 

JA, SA, and ET in plant defense came from using mutant plants altered in these 

pathways (reviewed in e.g. Dong, 2004; Pozo et al., 2004; Schaller et al., 

2005; Fujita et al., 2006). These signal-transduction pathways are differentially 

induced depending on the herbivore species (Heidel and Baldwin, 2004; Voel-

ckel and Baldwin, 2004b; De Vos et al., 2005; Schmidt et al., 2005). Tissue-

feeding insects, e.g. larvae of herbivorous Lepidoptera, and cell-content fee-

ders, e.g. thrips, especially induce JA and related compounds from the same 

signal-transduction pathway, known as jasmonates or oxylipins (Kessler and 

Baldwin, 2002; Weber, 2002; De Vos et al., 2005). Phloem feeders, such as 

aphids and whiteflies, especially induce the SA pathway (Heidel and Baldwin, 

2004; De Vos et al., 2005; Zarate et al., 2007). However, the JA pathway 

seems to be the most important in induced defenses in plant-insect interactions 

1 accessions Col-0 and Ler originate from the same location but are genetically different 
(see http://arabidopsis.info/) 

Table 1. Geographic origins of accessions. (source: http://www.arabidopsis.org and 
Google Earth for latitude and longitude determination)  

Alias Name Country Latitude Longitude 

An-1 Antwerpen Belgium N51/N52 E4/E5 

Col-0 Columbia1 Germany N52 E15 

C24 C-24 Portugal N40/N41 W8/W9 

Cvi Cape Verde Islands Cape Verde N15/N17 W23/W25 

Eri-1 Eriengsboda Sweden N56 E15 

Kond Kondara Tadjikistan „N38‟ „E64‟ 

Kyo-1 Kyoto Japan „N35‟ “E135‟ 

Ler Landsberg erecta1  Germany N52 E15 

WS Wassilewskija Russia N52/N53 E30 

http://arabidopsis.info/
http://www.arabidopsis.org/


Summarizing discussion  

  
C

h
a
p

te
r
 7

 

113  

(Kessler and Baldwin, 2002; Liechti and Farmer, 2002). This is supported by 

the finding that mutants of several plant species, including Arabidopsis, that 

are modified in the JA pathway are highly susceptible to herbivory (Howe et al., 

1996; McConn et al., 1997; Halitschke et al., 2004). Therefore, in this thesis 

most attention was allocated to studying the effects of the jasmonic acid path-

way on induced indirect defense (chapters 4 and 5). 

 

Roles of jasmonates in induced defense 

Jasmonates serve a key role in regulating defense responses in various types 

of herbivore-tissue damage (Kessler and Baldwin, 2002; Howe, 2004). In addi-

tion, jasmonates are involved in host-plant resistance to phloem-feeding in-

sects, regulation of tritrophic interactions, trichome development, priming of 

direct and indirect defenses, and intra-plant transmission of defense signals. 

(Thaler, 1999; Li et al., 2002; Van Poecke and Dicke, 2002; Engelberth et al., 

2004; Li et al., 2004; Mewis et al., 2005; Ton et al., 2007; Zarate et al., 

2007). Transcriptional profiling experiments using DNA microarrays show a 

correlation of herbivory-induced JA signaling with changes in the transcription 

of hundreds of defense-related genes (Reymond et al., 2000; Halitschke et al., 

2003; Reymond et al., 2004; De Vos et al., 2005; Devoto et al., 2005b). Jas-

monates generally promote defense- and reproductive processes while growth 

and photosynthetic processes are inhibited (Devoto et al., 2005a). This sug-

gests, therefore, a role of jasmonates in mediating “the dilemma of plants: to 

grow or defend” (Herms and Mattson, 1992).  

 

The JA-titer increases rapidly (<30 min) at the site of wounding after herbivory 

by biting-chewing insects (Reymond et al., 2000). JA appears to be the actual 

compound required in herbivore-induced plant defense (Schilmiller et al., 

2007). Furthermore, only the JA-conjugate jasmonoyl-L-isoleucine (JA-Ile) has 

been proven to be the active compound inducing JA-dependent responses. JAS-

MONATE ZIM-DOMAIN (JAZ) proteins were discovered as repressors of JA-

signaling (Chico et al., 2008). JA-Ile relieves this repression by promoting bin-

ding of JAZ1 with the F-Box protein CORONATINE INSENSITIVE1 (COI1), which 

releases transcription factor MYC2. The JA precursor 12-oxo-phytodienoic acid 

(OPDA), the methylated form of JA (MeJA), and some other tested JA-

conjugates were incapable to promote the JAZ-COI1 interaction (Staswick, 

2008). It is surprising that JA, MeJA, and OPDA were not able to promote JAZ-

COI interactions as these jasmonates were good potential candidates for jas-

monate signaling (Seo et al., 2001; Stintzi et al., 2001; Farmer et al., 2003). 

Nevertheless, recent studies indicate that OPDA signaling is distinct from the 

mechanism of JA-derived signals like JA-Ile (Taki et al., 2005; Thines et al., 

2007). Earlier studies indicate that OPDA is a biologically active signal in itself 

for a limited range of direct (Stintzi et al., 2001) and indirect defense (Koch et 

al., 1999) responses to herbivory. Also, dinor-OPDA (dnOPDA), which origi-

nates from a parallel oxylipin cascade, is suggested to be involved in induced 

plant defense (Weber et al., 1997). Therefore, I was especially interested in 
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the different roles of the oxylipins OPDA, dnOPDA, and the end-product of the 

octadecanoid pathway, i.e. JA (chapters 4 and 5).  

Headspace compositions of P. rapae caterpillar-infested mutants opr3 (Stintzi 

and Browse, 2000), fad5 (Weber et al., 1997), and dde2-2 (Von Malek et al., 

2002) were analyzed. Mutant fad5, which lacks dnOPDA-derived products, did 

not result in hampered production of HIPVs when compared to wild-type 

plants. In contrast, the absence of OPDA and/or JA in mutants dde2-2 and 

opr3, did result in reduced induction of many volatiles, especially terpenoids 

and the aromatic compound MeSA. This implicates that OPDA and/or JA have a 

role in HIPV-indirect defense. As knocking out DDE2-2 and OPR3 has very simi-

lar effects on HIPV production, it was concluded that JA, and not OPDA, was 

the most important oxylipin in HIPV production (chapter 4). Quantitative RT-

PCR analysis also demonstrated that, after P. rapae feeding, JA was the major 

signaling compound required for the induction of the defense-related genes 

LOX2 (Lipoxygenase 2), OPR3 (12-Oxophytodienoate reductase 3) and ACX1 

(Acyl-CoA oxidase 1) from the oxylipin pathway (chapter 5). Yet, roles for 

OPDA and dnOPDA galactolipid conjugates cannot be excluded in plant defense 

against herbivores, for instance the role of OPDA conjugates such as arabidop-

sides E and G (Kourtchenko et al., 2007).  

 

Behavioral assays with the parasitoid D. semiclausum reflected the results from 

headspace analyses: both caterpillar-infested dde2-2 and opr3 mutants were 

shown to be less attractive when compared to infested wild-type plants. Mutant 

opr3, which only lacks JA but showed wild-type induced levels of OPDA and 

dnOPDA, still emitted induced quantities of the GLV (Z)-3-hexenal (chapter 4). 

This indicates that the absence of JA did not influence the emission of GLVs. 

This finding was further supported by analysis of mutants dde2-2 and opr3 for 

their transcript levels of HPL1, which mediates a step in the GLV producing 

pathway (Bate et al., 1998)(chapter 5). The lack of JA in the mutants dde2-2 

and opr3 resulted in a reduced induction of HPL1 transcript levels compared to 

the wild-types Col-0 and WS, respectively. This effect was much stronger in the 

dde2-2 mutant that lacked not only JA but also OPDA, when compared to mu-

tant opr3 that only lacked JA but showed wild-type OPDA levels. Thus, this fin-

ding indicates the important involvement of OPDA compared to JA in HPL1 in-

duction. Furthermore, transcript levels of the HPL1 gene in P. rapae-infested 

fad5 plants were significantly more induced compared to infested Col-0 wild-

type plants (chapter 5). This suggests a regulatory role for the products co-

ming from the dnOPDA oxylipin-route in GLV production. Yet, this was not re-

flected by an increased GLV emission rate in the headspace of fad5 plants and 

also not in distinct behavior of parasitoids when offered a choice between ca-

terpillar-infested wild-type and fad5 plants (chapter 4). This indicates that the 

emission of GLVs, e.g. (E)-3-hexen-1-ol, cannot be directly extrapolated from 

transcript levels of HPL1 (chapter 3). Nevertheless, dnOPDA and OPDA may be 

used to fine-tune Arabidopsis‟ response to biotic stress in terms of the HPL-

branch in other respects.  
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Besides terpenoids (i.e. (E,E)-α-farnesene and TMTT), the emission of MeSA 

was also hampered after caterpillar herbivory in JA-lacking mutants, i.e. dde2-

2 and opr3. This indicates that the JA-signaling pathway influences the biosyn-

thesis of MeSA (chapter 4). Furthermore, interference with the SA pathway 

influenced TMTT- and MeSA-emission as well (Van Poecke, 2002). It is, there-

fore, assumed that both JA and SA signal-transduction pathways regulate the 

emission of MeSA and TMTT in response to herbivory. This is indicative of a 

synergistic interaction for the emission between both pathways, which has also 

been recorded for the emission of spider-mite induced volatiles in tomato 

(Ament et al., 2004). In contrast, only JA- and not SA-related signaling path-

ways are essential for TMTT-emission in Arabidopsis after pathogen-attack 

(Attaran et al., 2008). The data presented in chapter 4, resulting from a me-

tabolomics approach, that suggest synergism between the JA- and SA-

pathways after herbivory, were supplemented with data from a transcriptomics 

approach (chapter 5). Quantitative RT-PCR analysis indicates that in opr3 mu-

tant plants transcript levels of Phenylalanine ammonia-lyase 1 (PAL1), a candi-

date gene for the formation of SA, did not show an induction after P. rapae 

herbivory compared to the herbivore-infested wild-type. Thus, in the presence 

of OPDA and dnOPDA, the absence or presence of JA can influence PAL1 ex-

pression. This implies a major role of JA or its conjugates in crosstalk between 

JA and SA signaling transduction pathways after P. rapae herbivory. Together 

with the findings in chapter 4, this suggests that JA influences the emission of 

MeSA by affecting SA production. Furthermore, the observation that PAL1 tran-

script abundance was not induced in mutant plants that were completely ham-

pered in oxylipin production, i.e. no OPDA, dnOPDA, and JA, supports that in-

duction of the SA pathway after P. rapae herbivory requires the signaling com-

pound JA (chapter 5). 

 

Role of methyl salicylate in HIPV blend  

Attraction of parasitoid wasps towards host or non-host infested plants is 

mainly ascribed to the presence and relative abundance of attractive volatile 

compounds in the headspace of plants (Van Den Boom et al., 2004; D'Alessan-

dro and Turlings, 2006). A fascinating question is: what are the compounds in 

the headspace that affect parasitoid behavior most? Several approaches have 

been made to study the relative importance of certain HIPVs on carnivorous 

arthropods, e.g. offering synthetic compounds alone or in mixtures, inducing 

certain subsets of the HIPV blend with elicitors, or manipulating signal-

transduction or biosynthetic pathways through a molecular genetic approach 

(chapter 2).  

In chapters 3 and 4 I reported that MeSA together with terpenoids (e.g. TMTT) 

and GLVs forms a group of volatiles that were induced after P. rapae feeding. 

Hampering the JA signaling pathway resulted in an altered emission of MeSA, 

among other HIPVs, that correlated with a reduced attraction of the parasitoid 

wasp D. semiclausum (chapter 4). The initial assumption was, therefore, that 

MeSA is used by D. semiclausum to locate its host, which I tested in chapter 6. 
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Several studies demonstrated with a molecular genetic approach that some 

terpenoids and GLVs contribute to the attractiveness of an HIPV-blend to the 

carnivorous arthropod (Kappers et al., 2005; Schnee et al., 2006; Shiojiri et 

al., 2006a). Methyl salicylate, the methyl ester of the plant hormone salicylic 

acid (SA), has been reported in many HIPV blends, e.g., lima bean (Dicke et 

al., 1990c), tomato (Ament et al., 2004), cabbage (Geervliet, 1997; Poelman 

et al., in press), and Arabidopsis (chapters 3 and 4)(Van Poecke et al., 2001; 

Chen et al., 2003). The attractiveness of MeSA to carnivorous arthropods has 

also been studied by investigating the attraction of synthetic MeSA in the field 

(James and Price, 2004; Zhu and Park, 2005) and in the laboratory (De Boer 

and Dicke, 2004; De Boer et al., 2004; Ishiwari et al., 2007). I used a molecu-

lar genetic approach to study the effect of the absence of MeSA from an other-

wise complete HIPV blend on parasitoid behavior, by using a transgenic Arabi-

dopsis line that was hampered in the methylation of SA. Behavioral experi-

ments with naïve parasitoids resulted in a preference for the headspace of cat-

erpillar-infested plants lacking MeSA over wild-type plants. Subsequently, sup-

plementing the headspace from these transgenic plants with synthetic MeSA 

resulted in a dose-dependent decrease of attractiveness of the transgenic 

plants with supplemented MeSA for D. semiclausum. This indicates that MeSA 

acts as a repellent or masks the attractiveness of other compounds to naïve D. 

semiclausum wasps. Masking or repellence effects of HIPVs have also been 

shown for other HIPV compounds in different systems (Turlings and Fritzsche, 

1999; D'Alessandro et al., 2006; Loivamäki et al., 2008). My results were logi-

cally followed by the question: “Why do plants allocate resources to the emis-

sion of the HIPV MeSA?” Possibly, MeSA has other defense roles than luring 

parasitoids. One role of MeSA is already described for other insect-plant sys-

tems: repelling herbivores (Hardie et al., 1994; James and Price, 2004; Prins-

loo et al., 2007; Ulland et al., 2008). Also, it is commonly accepted that plants 

can perceive volatiles and respond to them. Methyl salicylate can be converted 

back to salicylic acid, which subsequently has a role in inducing defense against 

pathogens (Shulaev et al., 1997). MeSA is, therefore, potentially involved in 

volatile-induced resistance (Choh et al., 2004; Engelberth et al., 2004; Baldwin 

et al., 2006). This suggests that MeSA could have an intra-plant signaling role 

as well.  
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Future perspectives 

 

In this thesis, we explored the natural variation in HIPVs between nine acces-

sions of Arabidopsis obtained from different geographical origins. We demon-

strated genotypic variation in indirect defense traits, both at the transcriptional 

level as well as for the biosynthesis of metabolites (chapter 3). Newly available 

marker technologies can be used for the characterization and positioning of loci 

that control these types of traits. It would be very interesting to screen recom-

binant inbred line (RIL) populations of those accessions that strongly differ 

quantitatively and qualitatively for their individual volatile compounds and sub-

sequently perform expression quantitative trait locus (e)QTL analysis. Such RIL 

-populations would enable the unraveling of genetic regulation underlying HIPV

-formation. 

 

Recent findings in protein-protein interaction studies in the absence of other 

plant proteins indicate that JA-Ile is the sole active compound of the JAZ-COI1 

interaction (Thines et al., 2007). For Arabidopsis this resulted in the transcrip-

tional activity of MYC2 to regulate genes involved in jasmonate response (Chini 

et al., 2007). This finding sheds new light on oxylipin signaling. Yet, this does 

not exclude roles of other jasmonates than JA-Ile, i.e. JA, dnOPDA and OPDA. 

First, only the JAZ1 protein was tested and other JAZ-proteins might interact 

with other jasmonates. Second, there are known jasmonate-regulated genes 

that are COI1-independent and other jasmonates like OPDA might be active in 

such different defense signaling mechanisms (Taki et al., 2005). Therefore, 

unraveling the distinct roles of OPDA versus JA and JA-Ile could further eluci-

date alternate jasmonate-signaling mechanisms. The double Arabidopsis mu-

tant acx1/acx5 (Schilmiller et al., 2007), which hampers the formation of JA 

downstream of the precursor OPDA, and the mutant jar1-1 (Suza and 

Staswick, 2008), which hampers the conversion of JA to JA-Ile, allow studying 

of separate effects of both jasmonate-signaling mechanisms and the role of  

JA-Ile on HIPV production.   

 

From the perspective of the carnivorous arthropod, it is to be expected that 

any volatile induced by its prey or host is used. Surprisingly, we did not ob-

serve this response by the naïve wasp D. semiclausum for P. rapae-induced 

MeSA. These findings resulted in a new view on effects of individual HIPV com-

pounds on carnivorous arthropods. Effects on other natural enemies of crucifer 

pests should be investigated to understand the role of MeSA. 

In addition, it should be stressed that I have used naïve wasps in all behavioral 

studies of this thesis. Yet, it is well-known that carnivores such as parasitoid 

wasps can learn to respond to volatiles which enables them to cope with varia-

tion in HIPV blends during host location (Vet et al., 1998; Drukker et al., 2000; 

De Boer et al., 2005). The predatory mite Phytoseiulus persimilis can learn to 

respond to HIPVs such as MeSA (De Boer and Dicke, 2004). Whether the innate 

response of D. semiclausum towards MeSA changes after an oviposition experi-

ence, remains to be examined.  
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Many molecular approaches that study the effects of genes on plant defense 

have used mutants that represent qualitative variation in the functional expres-

sion of genes. New molecular tools, such as quantitative RT-PCR, have pro-

vided plant scientists with methods that allow comparison of quantitative diffe-

rences in the transcript levels of genes foremost because of the sensitivity and 

precision of this new method.  

Quantitative RT-PCR can be used to screen segregating populations for geno-

types that show quantitative variation in the expression of genes of interest. 

This can be connected to investigations of the performance of plant phenotypes 

in interactions with community members. Together, this provides a valuable 

group of genotypes for addressing questions about the evolutionary ecology of 

plant-insect interactions (Dicke et al., 2004). Although several genes are likely 

involved in the regulation of the expression of a trait such as HIPV production 

(Kant and Baldwin, 2007), studies of transcript levels of regulatory genes that 

are plant-trait associated enables the correlation of quantitative transcript le-

vels with quantitative variation in the plant‟s phenotype.  

Arabidopsis can be used as a stepping stone for molecular approaches to other 

crucifer species (Zheng and Dicke, 2008). Mechanistic knowledge gathered by 

studying Arabidopsis can be used to link to the ecology of ecologically more 

relevant crucifers, e.g. Brassica species. Studies on plant transcriptional re-

sponses in the field will further help to understand plant responses to herbivory 

under ecologically more relevant conditions. An excellent example demonstra-

ting the value of a molecular approach to community ecology in the field is, for 

instance, work by Broekgaarden and colleagues (in prep.). They investigated 

whether differences in herbivore community composition between two  

B. oleracea cultivars can be correlated to intraspecific transcriptional variation. 

In chapter 3 we took the first steps to link transcriptomics, metabolomics and 

insect behavior assays for nine Arabidopsis accessions in a study of plant-insect 

interactions. This approach can be very helpful when studying the functional 

expression of genes of interest in plant-insect interactions for other crucifers 

under field conditions. 

 

The swift development of newly available tools to address the ecological func-

tions of genes provokes ecology by allowing the integration of molecular gene-

tics and community ecology. Conducting multiple research approaches simulta-

neously, i.e. transcriptomics, metabolomics and phenomics, enables the corre-

lation of molecular genetic plant traits with insect behavior, which will further 

promote the understanding of the ecology of induced plant-insect interactions. 
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Samenvatting 

 

Planten bevinden zich aan de basis van de meeste voedselketens, waar ze con-

tinu bedreigd worden door mogelijke aanvallers. Tegen de meeste van deze 

aanvallers heeft de plant verdedigingsmechanismen ontwikkeld. Er bestaat een 

breed scala aan verdedigingsmechanismen waarmee de plant zich kan bescher-

men tegen biologische stressfactoren zoals vraat door plantenetende insecten. 

Eén van de mogelijke verdedigingsmechanismen van een plant is een altijd 

aanwezige directe verdedigingsvorm, waardoor de planteneter moeilijker van 

de plant kan eten. Deze vorm kan bestaan uit eigenschappen als beharing en 

de aanwezigheid van doorns of een waslaag. Een ander onderdeel van deze 

permanente directe barrière bestaat uit chemische stoffen die schadelijk zijn 

voor de planteneter. Sommige plantensoorten hebben een indirect aanwezige 

verdedigingsvorm door natuurlijke vijanden van planteneters schuilplaatsen 

aan te bieden. Veel planten beschikken daarnaast ook over een verdedigings-

mechanisme dat pas geactiveerd wordt als de plant aangevreten wordt door 

een insect. Deze geïnduceerde verdediging bestaat ook uit een directe en een 

indirecte vorm. Door vraat kan de productie van chemische stoffen die schade-

lijk zijn voor de planteneter omhoog gaan. Van insecten is ook bekend dat ze 

een indirect verdedigingsmechanisme kunnen induceren dat gericht is op de 

natuurlijke vijand van de planteneter. Bijvoorbeeld door het aanmaken van 

suikers die als voedsel kunnen dienen voor de natuurlijke vijanden, of door het 

maken van geurstoffen die natuurlijke vijanden helpen bij het lokaliseren van 

de prooi of gastheer. Deze geurstoffen voorzien bijvoorbeeld de natuurlijke vij-

and van zeer specifieke informatie over de plantensoort, de soort planteneter 

en soms zelfs over het ontwikkelingsstadium van de planteneter. De door vraat 

geïnduceerde aanmaak van deze geurstoffen maakt het voor de plant mogelijk 

om efficiënt om te gaan met de beschikbare energie en de induceerbaarheid 

verkleint de kans dat de planteneter resistent wordt tegen de verdedigingsme-

chanismen.  

Dit proefschrift richt zich op de rol van herbivoor-geïnduceerde plantengeur-

stoffen (HIPVs) binnen de indirecte verdediging. Het bestuderen hiervan is een 

uitdaging die vraagt om een muldisciplinaire aanpak. Tot op heden zijn ver-

schillende onderzoeksmethoden gebruikt om de aanmaak van HIPVs te bestu-

deren. Gedurende mijn onderzoeksproject heb ik gekeken naar de effecten van 

het modificeren van de productie van plantengeurstoffen op het gastheer-

zoekgedrag van een sluipwesp.  

 

Studiesysteem 

Mijn onderzoek vond plaats binnen een project waarin de interacties van kool-

planten met de daarop voorkomende insecten worden onderzocht. Koolplanten 

beschikken over directe en indirecte verdedigingsmechanismen tegen planten-

eters. Om de verdediging van de plant te activeren moet de plant de verande-

ringen, die veroorzaakt worden door planteneters (signalen), kunnen waarne-

men en verwerken. De verwerking van signalen verloopt via verscheidene  
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signaaltransductie-routes. Om de rol van HIPVs binnen de indirecte verdediging 

van de plant nauwgezet te bestuderen zijn mutanten met specifieke verande-

ringen in de signaaltransductie-routes die leiden tot de productie van HIPVs 

zeer waardevol. Tot op heden zijn dergelijke mutanten voor koolsoorten nog 

niet beschikbaar. De zandraket behoort tot dezelfde plantenfamilie als kool en 

blijkt over de verdedigingsmechanismen te beschikken die typerend zijn voor 

koolsoorten. Ook blijkt uit eerder werk dat de geurprofielen die de zandraket 

en koolachtigen produceren na vraat door rupsen van bijv. het kleine koolwitje 

vergelijkbaar zijn. De zandraket wordt binnen de moleculaire genetica veelvul-

dig gebruikt als modelplant. Hierdoor zijn er veel mutanten beschikbaar die 

specifieke veranderingen hebben in uiteenlopende planteneigenschappen, 

waaronder eigenschappen die belangrijk zijn voor de verdediging van de plant. 

Deze eigenschappen van de zandraket maken haar tot een geschikte plant voor 

deze studie waarin een moleculair genetische onderzoeksbenadering centraal 

staat.  

 

Natuurlijk variatie in HIPV productie 

Natuurlijke vijanden van planteneters, zoals sluipwespen, worden tijdens het 

lokaliseren van een plantetende gastheer blootgesteld aan geurstoffen van uit-

eenlopende bronnen. Plantensoorten die aangevreten worden door verschillen-

de planteneters, produceren elk verschillende mengsels van geurstoffen en 

veroorzaken hiermee een grote diversiteit aan geurprofielen. Daarnaast produ-

ceren planten niet enkel geurstoffen als ze door insecten aangevreten worden, 

maar ook vanuit de bloemen om bijv. bestuivers aan te trekken. Ook binnen 

een plantensoort treedt variatie op in de emissie van HIPVs. Dit is reeds onder-

zocht door HIPVs van verschillende cultivars van cultuurgewassen te bestude-

ren. Om effectief een gastheer te lokaliseren dient een sluipwesp dus in staat 

te zijn specifieke geurprofielen, die in dit geval geproduceerd worden door een 

bepaalde plantensoort die aangevreten wordt door haar gastheer, te onder-

scheiden van de andere geurbronnen. Eerdere studies hebben aangetoond dat 

sluipwespen dit onderscheid kunnen maken.  

Om te bepalen of er ook natuurlijke variatie bestaat in HIPV productie, heb ik 

voor negen zandraket populaties met een verschillende geografische herkomst, 

de HIPV productie na rupsenvraat geanalyseerd (hoofdstuk 3). Dit onderzoek 

toonde aan dat er binnen de zandraket natuurlijke variatie bestaat in de sa-

menstelling van het HIPV geurprofiel na vraat. Zowel het aantal geurstoffen als 

de hoeveelheid van de geurstoffen verschilt tussen de verschillende zandraket 

populaties. De sluipwespen konden de geurprofielen geproduceerd door de 

zandraketpopulaties onderscheiden.  

 

Signaaltransductie-routes binnen plantenverdediging 

Verdedigingsmechanismen tegen planteneters worden voornamelijk geregu-

leerd door drie signaaltransductie-routes die als eindproduct jasmonzuur (JA), 

salicylzuur (SA) of ethyleen hebben. Signaaltransductie-routes kunnen door 

plantenetende insectensoorten verschillend geïnduceerd worden. Insecten die 
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bladmateriaal eten, bijv. rupsen, of de bladcelinhoud opnemen, bijv. thrips, 

induceren de jasmonzuurroute. Planteneters die zich voeden met het floëem 

van de plant, zoals bladluizen en witte vliegen, induceren meer de salicylzuur-

route. Maar over het geheel genomen blijkt toch dat de jasmonzuurroute het 

meest betrokken is bij geïnduceerde verdediging tijdens plant-insect interac-

ties. In mijn proefschrift heb ik me daarom in het bijzonder gericht op het on-

derzoeken van effecten van deze JA-signaaltransductie-route op de HIPV emis-

sie. 

Met drie Arabidopsis mutanten is de rol van de JA-signaaltransductie-route op 

de HIPV productie bestudeerd. De mutanten zijn geblokkeerd in de JA-

signaaltransductie-route, waardoor ze verschillen in de productie van JA of de 

twee biologisch actieve tussenproducten, nl. de jasmonaten OPDA en dnOPDA. 

Voor OPDA, dnOPDA en JA is het effect op de inductie van plantengeurstoffen 

in reactie op vraatschade onderzocht. Van de mutanten en hun bijbehorende 

wildtype Arabidopsis planten heb ik eerst de geïnduceerde productie van de 

jasmonaten gekwantificeerd (hoofdstuk 4). Vervolgens zijn de geïnduceerde 

geurprofielen voor deze planten in reactie op rupsenvraat geanalyseerd. Deze 

analyse van de geurprofielen toont aan dat enkele mutanten een geurprofiel 

hebben dat afwijkt van het wildtype. Mutanten die geen OPDA of JA produceren 

blijken minder geurstoffen te produceren, zoals „green leaf volatiles‟, terpeen-

achtige verbindingen en de gemethyleerde vorm van salicylzuur (MeSA). Plan-

ten die geen dnOPDA bezitten, produceren een geurprofiel dat vergelijkbaar is 

met dat van wildtype planten. 

Deze variaties in geïnduceerde geurprofielen van mutanten en wildtypen, heb 

ik getest op relevantie voor sluipwespen in een biotoets. De gebruikte sluip-

wespenvrouwtjes zoeken rupsen om hun eieren in te leggen. Bij het lokaliseren 

van deze gastheer maken ze gebruik van het geurprofiel dat na rupsenvraat 

door de plant wordt uitgescheiden. In een twee-keuze-experiment heb ik sluip-

wespenvrouwtjes laten kiezen tussen wildtypen en mutanten, die beiden aan-

getast werden door rupsen van het kleine koolwitje. Deze experimenten toon-

den aan dat deze sluipwesp een duidelijke voorkeur heeft voor wildtype planten 

als het alternatief een mutant is die geen JA kan maken. De afwezigheid van 

dnOPDA beïnvloedde het gedrag van de sluipwespen niet in deze twee-keuze-

experimenten. Hieruit concludeer ik dat het eindproduct van de JA-

signaaltransductie-route, JA, betrokken is bij de productie van plantengeurstof-

fen die het sluipwespenvrouwtje gebruikt om haar gastheer te vinden.  

Eén van de geurcomponenten die na vraat niet geïnduceerd werd door mutan-

ten die geen JA kunnen produceren is methyl salicylaat (MeSA). Hierbij is het 

opmerkelijk dat MeSA een directe afgeleide is van de SA-signaaltransductie-

route. Dit doet vermoeden dat er een interactie plaats vindt tussen de twee 

signaaltransductie-routes, nl. de SA-signaaltransductie-route en de JA-

signaaltransductie-route. Dit is vervolgens onderzocht met behulp van dezelfde 

mutanten uit de JA-signaaltransductie-route, door genactiviteit voor genen uit 

verschillende signaal-transductie routes te kwantificeren (hoofdstuk 5).  

Dit onderzoek toont aan dat de afzonderlijke jasmonaten de signaaltransductie-
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routes op verschillende manieren beïnvloeden. Hoewel er geen effect gevonden 

werd van dnOPDA-afwezigheid op geurstoffenproductie, blijkt er op gen-niveau 

wel een rol te zijn voor dnOPDA. Het jasmonaat dnOPDA blijkt de expressie van 

een van de genen die betrokken is bij de aanmaak van „green leaf volatiles‟ te 

reduceren. Dit effect is tegenovergesteld aan het stimulerende effect dat JA en 

OPDA hebben op dit gen. Verder blijkt dat enkel de aanwezigheid van het jas-

monaat JA, en niet van de jasmonaten dnOPDA of OPDA, noodzakelijk is om na 

rupsenvraat een regulerend gen binnen de SA signaal-transductie route tot ex-

pressie te laten komen. Hieruit kan worden afgeleid dat er na rupsenvraat een 

directe link is van JA-inductie met MeSA productie.  

 

Rol van de geurcomponent MeSA  

De emissie van MeSA na rupsenvraat doet vermoeden dat deze component een 

bruikbare indicator is voor deze sluipwespensoort tijdens het lokaliseren van 

haar gastheer op een plant. Om dit te onderzoeken is een mutant gebruikt die 

niet in staat is MeSA te produceren, maar een geurprofiel heeft dat verder ge-

lijk is aan dat van een wildtype plant (hoofdstuk6). Dit resulteerde in het ver-

rassende resultaat dat MeSA niet aantrekkelijk is voor de in mijn onderzoek 

gebruikte sluipwespensoort. Door ook twee-keuze-experimenten uit te voeren 

waarbij synthetisch MeSA in toenemende concentratie is toegevoegd aan het 

geurprofiel van de mutant, heb ik kunnen bevestigen dat MeSA afstotend werkt 

voor deze sluipwesp. 

 

Conclusie 

De snelle ontwikkeling van nieuw beschikbare technieken om de activiteit en 

het functioneren van genen te bestuderen stelt ecologen in staat om moleculai-

re genetica te combineren met studies naar de ecologie van insect-plant inter-

acties. Het toepassen van verschillende onderzoeksmethoden stelt ons in staat 

om planteneigenschappen op het niveau van gen-expressie te koppelen aan 

insectengedrag. Dit bevordert het verkrijgen van inzicht in de ecologie van 

plant-insect interacties. 
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Dankwoord 

  

De laatste pagina‟s van mijn proefschrift zullen voor veel lezers de eerste zijn 

die ze lezen. Belangrijke pagina‟s dus, die ik daarom meteen wil beginnen met 

het bedanken van de belangrijkste persoon. Eva, jij weet uit eigen ervaring hoe 

het is om te promoveren, er komt nogal wat bij kijken. Soms moeten er keuzes 

gemaakt worden waarbij je elkaars steun en begrip nodig hebt. Dit lukt ons 

goed en ik hoop dat we dat in de toekomst zullen blijven doen. Het laatste half 

jaar is mede door het door jou voorgedragen „plan van aanpak‟ goed verlopen 

en nu draaien we de rollen om. Natuurlijk is er meer dan promoveren alleen, 

en dan zijn gedeelde hobbies onmisbaar. Bijvoorbeeld als we in het weekend 

het „mogen werken op het NKI‟ slim koppelen aan het wandelen in een natuur-

gebied. We hebben beiden een voorliefde voor koken, maar jouw kookkunsten 

stelen overal de show en daar mag ik, in meer dan een opzicht, erg van genie-

ten. Twee belangrijke eigenschappen van jou, die niet onvermeld mogen blij-

ven zijn je positiviteit en je kracht. Beiden hebben ons erg geholpen na mijn 

„akkefietje‟ op de fiets. Tot slot geef je me steeds de ruimte om mijn overtollige 

energie kwijt te raken. Kortom, je bent ontzettend belangrijk voor me en ik 

hoop dat dit nog lang zo blijft. 

  

Beste Marcel, een lab loopt goed als de sfeer goed is en op ento is die zeker 

goed. Tijdens mijn afstudeerstage bij jou en Jetske werd me dit al gauw duide-

lijk. Toen er een AIO-positie beschikbaar kwam was de beslissing om te sollici-

teren dan ook snel genomen. Tijdens mijn promotietraject heb ik genoten van 

de leerzame samenwerking en de vrijheid die je me gaf binnen het onderzoek. 

Tijdens de afrondende schrijffase heb ik menigmaal versteld gestaan van de 

snelheid waarmee je mijn stukken van commentaar voorzag, dat werkte effici-

ënt en stimulerend. Verder heb ik veel waardering voor je flexibiliteit na het 

„fiets-akkefietje‟. De ruimte die je me bood om mijn promotietraject voort te 

kunnen zetten is erg belangrijk voor me geweest. Ik hoop onze samenwerking 

in de toekomst met hetzelfde plezier te kunnen voortzetten, bedankt! 

  

Maaike en Roland, mijn kamergenootjes, het lag voor de hand dat ik jullie ge-

vraagd heb om paranimf te zijn. Maaike, ons promotie-avontuur begonnen we 

tegelijk en om even in te haken op jouw dankwoord van een jaar geleden: Ook 

ik ben zeer blij dat we nog een extra jaar kamergenootjes zijn geweest op de 

meest huiselijke en groenste kamer van ento. Het feit dat je nooit koffie voor 

me zette onder het mom van: “Ik weet niet hoe dat moet” is je vergeven. 

Grapjas. De etentjes met jou en Bart waren steeds een succes, je bent zeker 

meer dan alleen een fijne collega! Gelukkig waagde Roland zich wel aan mijn 

koffie, alhoewel hij er wel heel veel melk bij nodig had. Roland, toen jij bij ento 

kwam, dacht ik: Fijn, extra handen voor het kweken van de zandraket en ook 

nog eens een dijk aan kennis over plantengeurstoffen. Jouw inzichten zijn van 

onschatbare waarde geweest, super bedankt daarvoor. Maar met jouw komst 

kreeg ik ook te maken met de “Mummy-factor” in de kweek. Gelukkig wisten 

we veel van deze problemen „wetenschappelijk‟ op te lossen. Dat er op onze 
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kamer naast hard werken ook ruimte was voor gezelligheid wisten andere en-

tomologen ook. Zoals mijn carpoolmaatje Valentina die daar dankbaar gebruik 

van maakte als ik nog niet klaar was. In de auto praatten we de experimentele 

frustraties weg gevolgd door een uitvoerige uiteenzetting over hoe en wat er 

gekookt ging worden om uiteindelijk bij de volgende woorden in neonlicht te 

arriveren ”Just imagine,,,Being there”. De volgende ochtend stond mijn es-

presso weer klaar. Klinkt als een sleur? Nee, dit was plezierig. 

  

Het mogen opdoen van expertise door samenwerking is een mooie kans. Iris, 

ik heb veel van je geleerd. Jouw benadering van het onderzoekswereldje was 

verhelderend en ik heb er veel bewondering voor hoe jij je gedrevenheid voor 

onderzoek weet te combineren met de overige dagelijkse zaken. Daarnaast 

was er ook altijd ruimte voor een bespreking, al dan niet met Italiaans ijs, over 

werk of over menig ander onderwerp dat ons bezighield. Colette, jouw intro-

ductie in de moleculaire aspecten van plant-insect interacties was super, de 

samenwerking was erg geslaagd. Maar zelfs jij hebt ook een „evil‟ kant, mijn 

„lolbroek‟ moest het regelmatig ontgelden. Si-jun, door jou ben ik meer te we-

ten gekomen over twee moleculaire technieken, hopelijk volgen er nog meer. 

Remco, je hebt me wegwijs gemaakt in het werken met de zandraket en haar 

potentie voor onderzoek binnen de plantenverdediging. Ik heb veel aan jouw 

kennis gehad, zowel op praktisch als op schrijfgebied. 

  

Erik, ik ken maar weinig mensen die zo snel bereid zijn om te helpen of mee te 

denken, dit siert je. Onze plezierige omgang zal de komende jaren zeker in ons 

voordeel gaan werken want de samenwerking zetten we gelukkig nog even 

voort. Samen met Coco hebben we ook een zeer succesvolle workshop georga-

niseerd. Beste Peter, ondanks dat onze samenwerking voortijdig tot een einde 

kwam waardeer ik jouw behulpzaamheid zeer. Ik wens jou en Susan heel veel 

geluk. Natuurlijk wil ik ook graag de studenten Carola, Suzanne en Peter V. 

bedanken voor hun inzet. Veel experimenteel werk heb ik gedaan binnen de 

gezellige groep van Harro Bouwmeester op het PRI. Harro, bedankt voor deze 

mogelijkheid. Op het PRI heb ik natuurlijk ook regelmatig praktische vragen 

gehad, met name Francel maar ook Hans en Geert bedankt.  

  

Ik heb al even genoemd dat een goede sfeer onmisbaar is op een lab. Zonder 

mijn collega‟s was die sfeer nooit zo goed geweest. De feestcommissie, alle 

koks tijdens de multi-culti diners en iedereen met wie ik ging klimmen, con-

certjes bezocht, lunchte of koffie dronk, bedankt! Deze sfeer moeten we ook in 

Radix zien te behouden! Zonder insecten konden er geen experimenten gedaan 

worden dus de mannen van de insectenkweek, Leo, Frans en André, bedankt! 

Wouter, bedankt voor alle gezellige gesprekken en namens mijn vader bedankt 

voor alle bijzondere soorten groente en fruit, de druiven doen het goed! 

  

Frank, jij leerde me veel over de wetenschap en wist dat zo aantrekkelijk te  

doen dat ik daar in verder gegaan ben. Daar heb ik nooit spijt van gehad.  Ik 

heb de contacten met jou en Saskia, zowel in Nederland als in Zuid-Europa en 
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zowel zakelijk als privé, altijd als erg prettig ervaren, dank jullie wel! 

  

Ontspanning is broodnodig en die vond ik vooral in de sociale contacten. Om 

maar even dicht bij huis te beginnen: Pim voor een pint met worst, een goed 

gesprek of een film kan ik altijd bij je terecht en mede aan jou heb ik deze 

mooie voorkant te danken, thanks! Machiel, lotgenoot, „Out‟ huisgenoot en 

stadsgenoot, we delen onze sociale en sportieve interesses. Samen fietsen, 

schaatsen, stappen, eten of het bespreken van serieuzere zaken, het kon altijd. 

Het is fijn om in een stad te wonen met veel vrienden, Babette, Sonja, Caroline, 

Kaspar, Dimi, Erika, Daan, Nicolien, Fleur, Julien, Pieter, Freek, Brigit, Joost, 

Michelle, Mendy, Iris, Judith en Tim, bedankt voor alle gezellige etentjes, feest-

jes en stapavonden. Eens een Brabander, altijd een Brabander en dus zak ik 

regelmatig af naar het Bourgondische zuiden voor wat Brabantse gezelligheid: 

Krik, Marjolein, Wen, Emiel, Annemarie, Bart, Eva, Gijs, Noortje,  

Maarten, Renske, Sas, Rolf en Pim D., Dongen city zou Dongen city niet zijn 

zonder jullie (gelal). Ook mijn studievrienden uit Wageningen wil ik hier niet ver-

geten. Bram, door al het samen fietsen en schaatsen en je vele telefoontjes zal 

ik jou niet gauw uit het oog verliezen. Vinz, „keep da vibes going‟. Tiz en Evelien, 

bedankt voor alle logeerpartijen. Alle anderen, bedankt voor de gezelligheid! 

  

Tot slot gaan we terug naar de roots, de families. Beginnende bij de oorsprong: 

Oma de Wildt, ondanks de grootte van je familie was je altijd op de hoogte van 

mijn werk en privé leven. Ik geniet ervan om even wat te eten in Wijchen en 

lekker bij te kletsen. Ik hoop dat ik dat nog vele jaren mag blijven doen. Dan de 

schoonfamilie: Oma Aben, de belangstelling die jij toont voor mijn onderzoek 

heb ik altijd erg bijzonder gevonden. Pierre en Wies, bedankt voor alle steun, 

belangstelling, (klus)hulp en begrip. Ik voel me in Oisterwijk altijd op mijn ge-

mak en dat beschouw ik als zeer waardevol. Lonneke en Etienne ik heb het met 

jullie ook getroffen, ik kan altijd met (en om) jullie lachen. Een kleine 25km ver-

derop ligt De Moer, waar mijn ouderlijk huis staat. Dit was en is mijn veilige  

haven en buitenverblijf. Klein broertje, gelukkig is Arnhem niet ver weg en zijn 

we goed in bellen. Onze band is altijd sterk geweest en we weten dit allebei op 

waarde te schatten. Je hebt nu inmiddels je eigen gezin maar ik heb er alle ver-

trouwen in dat onze band met de jaren alleen maar hechter zal worden. Carlijne, 

je past goed binnen de Snoeren-clan en ik ben blij met jou als partner van mijn 

broertje. En dan kleine Saar, ik ga je overstelpen met aandacht en je alles leren 

over het wel en wee van Rupsje Nooitgenoeg. Paps en mams, voor jullie is de 

ereplek aan het eind. Nature and nurture, wat beiden betreft heb ik het getrof-

fen met jullie als ouders. Mijn doorzettingsvermogen en nooit aflatende energie 

heb ik van jullie geërfd. Daarnaast hebben jullie altijd in me geloofd en me ge-

leerd om het onderste uit de kan te halen wat onder andere geresulteerd heeft 

in dit proefschrift. Daarvoor kan ik jullie niet genoeg bedanken, dit boekje is ook 

een beetje voor jullie. 

  

Tjeerd 
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Curriculum Vitae 

  

Tjeerd Snoeren werd geboren op 18 april 1975 te Tilburg. In 1992 slaagde hij 

voor de HAVO op het Dr. Schaepmancollege te Dongen, in 1995 haalde hij zijn 

VWO diploma aan het Dag Avond College te Tilburg. In maart 2000 rondde hij 

zijn Bachelor van de Tuinbouw opleiding aan de Hogeschool Delft af met als 

specialisatie onderzoek. Hiervoor doorliep hij een afstudeervak van september 

1999 tot februari 2000 onder begeleiding van Dr. F.M. Bakker van MITOX-Trial 

Management BV (titel: Partneracceptatie van de roofmijt Typhlodromus pyri - 

Effect van gezamenlijk ontwikkelen op verwantenherkenning bij paringsvoor-

keur). Vervolgens heeft hij 6 maanden voor MITOX gewerkt in Portugal. In dat-

zelfde jaar begon hij zijn studie Plantenveredeling en Gewasbescherming aan 

de Wageningen Universiteit (WU). Van september 2001 tot november 2002 

doorliep hij een afstudeervak bij de vakgroep Entomologie onder begeleiding 

van Dr. ir. J.G. de Boer en Prof. dr. M. Dicke (titel: Leren onderscheiden van 

prooi en niet-prooi geïnduceerde vluchtige planten-

stoffen door de roofmijt Phytoseiulus persimilis). In 

februari 2003 haalde hij aan de WU zijn Master met 

als specialisatie Ecologische Gewasbescherming. De 

overige maanden van 2003 werkte hij voor MITOX in 

Zuid-Europa en Nederland. In januari 2004 begon hij 

aan de vakgroep Entomologie van de WU als assistent 

in opleiding (AIO). In februari 2009 werd hij aange-

steld als Postdoc bij de vakgroep Entomologie van de 

WU en zal hij verder werken aan insect-plant interac-

ties, waarbij gekeken zal worden naar de mogelijke 

trade-off tussen geïnduceerde plantenverdediging en 

bestuiving.  
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Compound  Retention 

index  

m/z fragment  

used for  

quantification 

Compound  Retention 

index  

m/z fragment  

used for  

quantification 

pentan-2-ol 732 45 acetophenone 1068 105 

2-heptene 735 55 hexanoic acid 1085 60 

(E)-3-penten-2-one 735 69 terpinolene 1093 93 

2-pentenal 758 55 linalool 1099 93 

pentan-1-ol 767 42 nonanal 1109 57 

(E)-3-hexenal 770 41 DMNT1 1114 69 

(Z)-2-penten-1-ol 771 57 allo-ocimene 1129 69 

(E)-3-penten-2-ol 774 71 ß-sesquiphellandrene 1149 69 

(Z)-3-hexenal 796 41 α-terpineol 1186 59 

hexan-2-ol 801 45 methyl salicylate 1193 92+120+152 

(E)-3-hexen-1-ol 851 41 verbenone 1204 107 

(E)-2-hexenal 853 41 decanal 1207 57 

(Z)-3-hexen-1-ol 853 67 nerol 1225 69 

hexan-1-ol 868 56 ß-citral 1239 69 

hexanal 878 44 pulegone 1240 81 

1-nonene 892 56 ethyl salicylate 1248 120 

4-methyl-3-penten-2-one 892 83 geraniol 1255 69 

heptanal 900 70 indole 1292 117 

heptan-2-ol 908 45 α-copaene 1378 161 

(E,E)-2,4-hexadienal 910 81 ß-elemene 1379 81 

α-pinene 939 93 (E)-ß-caryophyllene 1420 93 

1-octen-3-ol 943 57 thujopsene 1431 119 

benzaldehyde 965 77 geranyl acetone 1454 69 

trans pinane 974 55 α-himachalene 1454 93 

1-octen-1-ol 977 57 α-humulene 1454 107 

6-methyl-5-hepten-2-one 989 69 ß-acoradiene 1463 119 

ß-myrcene 995 93 (E)-ß-farnesene 1465 69 

octanal 1000 43 ß-chamigrene 1484 189 

(E)-3-hexenyl acetate 1006 43 ß-ionone 1486 121 

α-phellandrene 1007 93 cuparene 1506 132 

(Z)-3-hexenyl acetate 1010 43 (E,E)-α-farnesene 1509 93 

3-carene 1010 93 ß-bisabolene 1510 69 

α-terpinene 1017 93 (Z)-nerolidol 1535 69 

limonene 1033 93 geranyl-isovalerate 1553 85 

(Z)-ß-ocimene 1040 93 (E)-nerolidol 1564 69 

(E)-ß-ocimene 1052 93 TMTT2 1590 69 

γ-terpinene 1062 93    

1, (E)-4,8-dimethyl-1,3,7-nonatriene 
2, (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene 

 

SOM Table 1. Characteristics of the identified induced volatile compounds in headspace of Arabidopsis 
thaliana leaves after Pieris rapae herbivory or jasmonic acid treatment.  
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jasmonic acid  

Geno I >Geno J Compound Mean1 Difference 

 (I-J) 

Std. Error Sign. 

An-1 > Col-0 (E)-ß-ocimene 0.957 0.192 0.031 

An-1 > Cvi ß-sesquiphellandrene 1.068 0.224 0.031 

An-1 > Cvi TMTT1 0.828 0.148 0.027 

An-1 > Eri-1 ß-sesquiphellandrene 0.892 0.192 0.043 

An-1 > Kyo-1 (Z)-ß-ocimene 1.052 0.143 0.012 

An-1 > Kyo-1 (E)-ß-ocimene 1.392 0.205 0.004 

Col-0 > Cvi methyl salicylate 1.505 0.573 <0.001 

Col-0 > Eri-1 methyl salicylate 1.253 0.180 0.020 

C24 > Col-0 (Z)-ß-ocimene 0.980 0.229 0.049 

C24 > Col-0 DMNT2 1.672 0.257 0.004 

C24 > Kyo-1 (Z)-ß-ocimene 1.082 0.145 0.011 

C24 > Kyo-1 (E)-ß-ocimene 1.098 0.227 0.037 

C24 > WS ß-bisabolene 5.974 1.154 0.039 

Cvi > An-1 ß-myrcene 0.638 0.126 0.025 

Cvi > An-1 ethyl salicylate 5.564 0.343 0.001 

Cvi > Col-0 ß-myrcene 0.885 0.168 0.014 

Cvi > Col-0 (Z)-ß-ocimene 1.176 0.231 0.017 

Cvi > Eri-1 ethyl salicylate 5.564 0.343 0.001 

Cvi > Kyo-1 (Z)-ß-ocimene 1.278 0.148 0.006 

Cvi > Kyo-1 (E)-ß-ocimene 1.108 0.199 0.013 

Cvi > Ler ß-myrcene 0.734 0.147 0.024 

Eri-1 > Col-0 ß-myrcene 0.969 0.198 0.022 

Eri-1 > C24 α-farnesene 1.478 0.215 0.003 

Eri-1 > Kyo-1 (E)-ß-ocimene 0.816 0.154 0.023 

Eri-1 > Ler ß-myrcene 0.818 0.180 0.047 

Eri-1 > WS α-farnesene 1.205 0.209 0.007 

Eri-1 > WS ß-bisabolene 7.034 1.140 0.019 

Kond > An-1 α-pinene 0.686 0.115 0.021 

Kond > An-1 ß-myrcene 1.110 0.091 <0.001 

Kond > Col-0 ß-myrcene 1.357 0.144 0.001 

Kond > Col-0 (Z)-ß-ocimene 1.682 0.197 0.002 

Kond > Col-0 (E)-ß-ocimene 1.531 0.115 <0.001 

SOM Table 2. Significant differences in headspace among accessions after either treatment (jasmonic 
acid or Pieris rapae) or left non-treated. One-way ANOVA followed by Dunnett T3 results for 9 Arabi-
dopsis thaliana accessions for each volatile compound.  
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jasmonic acid  

Geno I >Geno J Compound Mean1 Difference 

 (I-J) 

Std. Error Sign. 

Kond > Col-0 DMNT2 0.950 0.189 0.023 

Kond > C24 ß-myrcene 1.250 0.149 0.007 

Kond > C24 α-farnesene 1.266 0.244 0.019 

Kond > Cvi (E)-ß-ocimene 0.858 0.160 0.049 

Kond > Cvi ß-sesquiphellandrene 1.208 0.240 0.023 

Kond > Cvi methyl salicylate 1.074 0.099 0.002 

Kond > Cvi TMTT1 1.386 0.179 0.008 

Kond > Eri-1 (Z)-ß-ocimene 0.954 0.165 0.024 

Kond > Eri-1 (E)-ß-ocimene 1.150 0.099 <0.001 

Kond > Eri-1 ß-sesquiphellandrene 1.032 0.210 0.037 

Kond > Kyo-1 (Z)-ß-ocimene 1.784 0.085 <0.001 

Kond > Kyo-1 (E)-ß-ocimene 1.966 0.136 <0.001 

Kond > Ler ß-myrcene 1.206 0.118 0.002 

Kond > Ler (Z)-ß-ocimene 0.962 0.175 0.033 

Kond > WS ß-myrcene 0.857 0.143 0.017 

 Kyo-1 > Cvi methyl salicylate 1.078 0.139 0.012 

 Kyo-1 > Cvi TMTT1 1.108 0.099 <0.001 

Ler > An-1 α-pinene 0.732 0.134 0.039 

Ler > An-1 ethyl salicylate 6.228 0.153 <0.001 

Ler > Cvi methyl salicylate 1.900 0.120 <0.001 

Ler > Cvi TMTT1 1.592 0.201 0.009 

Ler > Eri-1 methyl salicylate 1.648 0.208 0.002 

Ler > Eri-1 ethyl salicylate 6.228 0.153 <0.001 

Ler > Kond methyl salicylate 0.826 0.147 0.013 

Ler > Kyo-1 methyl salicylate 0.822 0.176 0.037 

WS >Col-0 (Z)-ß-ocimene 1.257 0.242 0.011 

WS >Col-0 (E)-ß-ocimene 1.298 0.154 <0.001 

WS >Col-0 DMNT2 1.412 0.196 0.001 

WS > Cvi methyl salicylate 1.585 0.136 0.001 

WS > Eri-1 (E)-ß-ocimene 0.918 0.142 0.003 

WS > Eri-1 methyl salicylate 1.333 0.218 0.007 

WS > Eri-1 geranyl acetone 6.608 1.108 0.039 

WS > Kyo-1 (Z)-ß-ocimene 1.359 0.164 0.004 

WS > Kyo-1 (E)-ß-ocimene 1.734 0.170 <0.001 
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Pieris rapae 

Geno I >Geno J Compound Mean1 Difference 

 (I-J) 

Std. Error Sign. 

An-1  > Col-0 (Z)-3-hexen-1-ol 1.945 0.120 <0.001 

An-1  > Col-0 (Z)-ß-ocimene 0.789 0.183 0.045 

An-1  > Col-0 ß-sesquiphellandrene 1.149 0.256 0.042 

An-1  > Col-0 α-farnesene 1.116 0.243 0.038 

An-1  > C24 benzaldehyde 1.448 0.226 0.006 

An-1  > C24 ß-sesquiphellandrene 1.262 0.285 0.047 

An-1  > C24 α-farnesene 1.314 0.297 0.049 

An-1  > Cvi (Z)-3-hexen-1-ol 0.900 0.174 0.024 

An-1  > Cvi methyl salicylate 1.704 0.128 <0.001 

An-1  > Cvi α-farnesene 1.724 0.225 0.003 

An-1  > Eri-1 ß-sesquiphellandrene 1.280 0.240 0.022 

An-1  > Eri-1 methyl salicylate 0.524 0.103 0.026 

An-1  > Kond methyl salicylate 1.152 0.149 0.002 

An-1  > Kond ß-bisabolene 7.448 0.226 <0.001 

An-1  > Kyo-1 methyl salicylate 0.808 0.140 0.012 

An-1  > Ler (E)-2-hexenal 7.080 1.226 0.045 

Col-0 > An-1 decanal 1.352 0.256 0.027 

Col-0 > Cvi methyl salicylate 1.602 0.106 <0.001 

Col-0 > Cvi decanal 1.145 0.285 0.019 

Col-0 > Eri-1 methyl salicylate 0.422 0.074 0.013 

Col-0 > C24 benzaldehyde 1.155 0.192 0.024 

Col-0 > C24 (E)-ß-farnesene 1.043 0.067 <0.001 

Col-0 > C24 TMTT1 1.454 0.252 0.008 

Col-0 > Cvi TMTT1 1.558 0.240 0.005 

Col-0 > Kond methyl salicylate 1.050 0.130 0.008 

Col-0 > Kyo-1 methyl salicylate 0.706 0.120 0.030 

Col-0 > WS (E)-nerolidol 6.193 1.194 0.047 

C24 > Cvi methyl salicylate 1.182 0.135 0.001 

C24 > Kond ß-bisabolene 7.166 0.312 <0.001 

C24 > Kyo-1 α-humulene 1.294 0.170 0.002 

C24 > Ler (E)-2-hexenal 7.148 1.202 0.047 

Cvi > An-1 ß-myrcene 0.836 0.160 0.019 

Cvi > An-1 (Z)-3-hexenyl acetate 1.442 0.126 <0.001 

Cvi > Col-0 (Z)-3-hexen-1-ol 1.045 0.155 0.012 

Cvi > C24 (Z)-3-hexenyl acetate 1.620 0.163 0.001 

Cvi > C24 indole 6.170 0.312 0.001 
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Pieris rapae 

Geno I >Geno J Compound Mean1 Difference 

 (I-J) 

Std. Error Sign. 

Cvi > C24 (E)-ß-farnesene 1.104 0.144 0.018 

Cvi > C24 (E)-ß-farnesene 1.104 0.144 0.018 

Cvi > Kyo-1 ß-acoradiene 0.564 0.119 0.032 

Eri-1 > An-1 decanal 1.066 0.218 0.050 

Eri-1 > An-1 ß-myrcene 0.622 0.138 0.044 

Eri-1 > Col-0 3-hexen-1-ol 1.899 0.180 0.002 

Eri-1 > C24 methyl salicylate 1.180 0.115 0.001 

Eri-1 > Cvi decanal 1.164 0.251 0.040 

Eri-1 > Cvi α-farnesene 1.286 0.183 0.003 

Kond > An-1 ß-myrcene 0.846 0.156 0.015 

Kond > Col-0 3-hexen-1-ol 2.313 0.156 <0.001 

Kond > Col-0 (Z)-ß-ocimene 1.005 0.196 0.016 

Kond > Col-0 (E)-ß-ocimene 1.202 0.183 0.007 

Kond > Col-0 geranyl acetone 6.275 1.150 0.041 

Kond > C24 3-hexen-1-ol 2.334 0.426 0.041 

Kond > C24 benzaldehyde 1.158 0.213 0.020 

Kond > C24 (E)-ß-ocimene 1.274 0.108 <0.001 

Kond > C24 (E)-ß-farnesene 1.096 0.084 0.002 

Kond > C24 TMTT1 1.188 0.231 0.022 

Kond > Cvi 3-hexen-1-ol 1.268 0.201 0.005 

Kond > Cvi TMTT1 1.292 0.218 0.012 

Kond > WS (E)-nerolidol 6.190 1.187 0.048 

 Kyo-1 > Col-0 α-farnesene 1.106 0.205 0.011 

 Kyo-1 > C24 (E)-ß-farnesene 1.048 0.687 0.001 

 Kyo-1 > C24 α-farnesene 1.304 0.266 0.040 

 Kyo-1 > Cvi methyl salicylate 0.896 0.149 0.008 

 Kyo-1 > Cvi α-farnesene 1.714 0.183 <0.001 

 Kyo-1 > Kond ß-bisabolene 5.790 0.343 0.001 

 Kyo-1 > Ler α-farnesene 1.096 0.233 0.040 

Ler > An-1 ß-myrcene 0.834 0.151 0.013 

Ler > Col-0 (Z)-ß-ocimene 0.955 0.157 0.009 

Ler > C24 benzaldehyde 1.380 0.207 0.008 

Ler > Cvi (Z)-ß-ocimene 0.524 0.096 0.014 

Ler > Cvi methyl salicylate 1.400 0.128 <0.001 

Ler > Kond methyl salicylate 0.848 0.149 0.015 



 

158  

 

Pieris rapae  

Geno I >Geno J Compound Mean1 Difference 

 (I-J) 

Std. Error Sign. 

WS > An-1 decanal 1.492 0.129 <0.001 

WS > Col-0 3-hexen-1-ol 1.962 0.169 <0.001 

WS > C24 (Z)-ß-ocimene 0.870 0.149 0.017 

WS > C24 (E)-ß-ocimene 1.008 0.210 0.021 

WS > Cvi (Z)-ß-ocimene 0.439 0.082 0.015 

WS > Cvi (E)-ß-ocimene 1.080 0.149 0.002 

WS > Cvi (E)-ß-farnesene 0.918 0.132 0.014 

WS > Cvi TMTT1 0.917 0.196 0.030 

WS > Cvi 3-hexen-1-ol 0.917 0.211 0.042 

WS > Cvi methyl salicylate 1.273 0.163 0.001 

WS > Cvi decanal 1.590 0.179 0.002 

Control  

Geno I >Geno J Compound Mean1 Difference 

 (I-J) 

Std. Error Sign. 

An-1 > Col-0 3-carene 5.740 0.199 <0.001 

An-1 > WS methyl salicylate 1.031 0.201 0.036 

Col-0 > Ler (E)-ß-farnesene 0.922 0.155 0.007 

C24 > Col-0 DMNT2 1.030 0.155 0.001 

C24 > Col-0 (E)-nerolidol 5.887 1.125 0.039 

C24 > Kyo-1 pentan-2-ol 5.232 1.133 0.042 

C24 > Ler hexanoic acid 6.540 0.087 <0.001 

Cvi > Col-0 α-phellandrene 5.557 1.042 0.045 

Cvi > Kyo-1 pentan-2-ol 5.518 1.122 0.032 

Eri-1 > WS methyl salicylate 0.789 0.171 0.045 

Kond > An-1 (Z)-ß-ocimene 1.073 0.175 0.004 

Kond > Col-0 α-phellandrene 5.479 1.042 0.048 

Kond > Col-0 DMNT2 0.913 0.133 0.001 

Kond > Cvi (Z)-ß-ocimene 1.620 0.346 0.050 

Kond > Ler (E)-ß-farnesene 0.748 0.163 0.029 

 Kyo-1 > WS methyl salicylate 0.707 0.131 0.005 

WS > Col-0 (E)-3-hexenal 1.757 0.280 0.009 

WS > Col-0 (Z) 2-penten-1-ol 6.405 1.199 0.036 

WS > Col-0 DMNT2 0.902 0.153 0.005 

WS > C24 (E)-3-hexenal 1.598 0.278 0.015 

1, (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene 
2, (E)-4,8-dimethyl-1,3,7-nonatriene 
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SOM Table 3. Results of t-tests for each volatile compound on differences between non-treated plants 
and P. rapae-infested plants, and non-treated plants and JA-treated plants.  

P. rapae  F Sig.2tail. Jasmonic acid  F Sig.2tail. 

An-1 (Z)-ß-ocimene 0,023 2,83E-06 An-1 (Z)-ß-ocimene 0,358 7,96E-06 

An-1 methyl salicylate 5,825 4,80E-04 An-1 (E)-ß-ocimene 0,009 4,28E-04 

An-1 α-farnesene 0,014 0,001 An-1 α-farnesene 0,000 0,002 

An-1 geraniol 2,570 0,003 An-1 TMTT 1,503 0,004 

An-1 α-terpineol 4,333 0,005 An-1 ß-sesquiphellandrene 2,442 0,012 

An-1 DMNT 4,379 0,010 An-1 geraniol 0,379 0,023 

An-1 ß-sesquiphellandrene 1,620 0,011 An-1 (Z)-nerolidol 2,488 0,044 

An-1 (E)-ß-ocimene 0,622 0,011 An-1 ethyl salicylate 44,108 0,075 

An-1 (E)-2-hexenal 0,148 0,015 An-1 DMNT 2,074 0,078 

An-1 (Z)-3-hexen-1-ol 85,282 0,044         

An-1 octanal 0,337 0,059         

An-1 (Z)-2-penten-1-ol 44,425 0,060         

An-1 nerol 4,382 0,067         

An-1 3-carene 56,757 0,072         

An-1 geranyl-isovalerate 1,025 0,084         

An-1 ß-elemene 15,297 0,084         

An-1 allo ocimene 5,898 0,085         

An-1 α-terpinene 5,164 0,088         

An-1 ß-bisabolene 62,390 0,089         

Col-0 methyl salicylate 4,207 2,32E-07 Col-0 methyl salicylate 3,887 7,57E-06 

Col-0 (E)-nerolidol 3,933 2,02E-04 Col-0 (Z)-2-penten-1-ol 3,806 1,60E-04 

Col-0 TMTT 2,574 0,001 Col-0 (E)-nerolidol 4,810 2,10E-04 

Col-0 (Z)-ß-ocimene 0,045 0,002 Col-0 α-phellandrene 0,000 0,018 

Col-0 DMNT 0,471 0,004 Col-0 TMTT 1,359 0,045 

Col-0 linalool 1,299 0,052 Col-0 α-farnesene 297,446 0,048 

Col-0 (Z)-3-hexen-1-ol 458,342 0,069 Col-0 (Z)-ß-ocimene 0,864 0,051 

Col-0 decanal 0,418 0,069 Col-0 3-carene 2.939,156 0,076 

Col-0 α-farnesene 586,641 0,072         

Col-0 (Z)-2-penten-1-ol 2,332 0,077         

Col-0 (E)-hexenyl acetate 25,916 0,094         

C-24 pentan-2-ol 6,816 4,41E-08 C-24 (E)-ß-ocimene 1,934 8,03E-06 

C-24 methyl salicylate 6,603 3,90E-06 C-24 (Z)-ß-ocimene 0,594 1,49E-04 

C-24 (E)-ß-ocimene 0,214 8,48E-06 C-24 methyl salicylate 0,165 0,002 

C-24 hexanoic acid 3,265 5,23E-05 C-24 DMNT 0,156 0,014 

C-24 (Z)-ß-ocimene 3,796 3,48E-04 C-24 ethyl salicylate 0,112 0,016 

C-24 (E)-2-hexenal 0,496 4,28E-04 C-24 (E)-hexenyl acetate 0,158 0,027 

C-24 4-me-3-penten-2-one 3,446 0,002 C-24 6-me-5-hepten-2-one 1,724 0,038 

C-24 pentan-1-ol 3,614 0,008 C-24 (E)-ß-farnesene 1,500 0,061 

C-24 indole 16,298 0,009 C-24 α-humulene 0,296 0,098 
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Pieris rapae F Sig.2tail. jasmonic acid F Sig.2tail. 

C-24 1-octen-1-ol 0,014 0,011         

C-24 α-terpineol 3,710 0,013         

C-24 benzaldehyde 0,103 0,016         

C-24 6-me-5-hepten-2-one 0,082 0,016         

C-24 (E)-nerolidol 0,089 0,016         

C-24 α-humulene 0,165 0,024         

C-24 ß-myrcene 0,041 0,027         

C-24 ß-chamigrene 1,980 0,031         

C-24 (E)-ß-farnesene 9,643 0,035         

C-24 (E)-ß-caryophyllene 0,100 0,040         

C-24 thujopsene 31,742 0,042         

C-24 (Z)-3-hexen-1-ol 0,540 0,049         

C-24 (E)-hexenyl acetate 0,205 0,064         

C-24 ß-elemene 1,867 0,076         

Cvi (Z)-3-hexenyl acetate 1,238 8,15E-07 Cvi (Z)-ß-ocimene 1,580 7,33E-05 

Cvi (Z)-ß-ocimene 0,957 0,001 Cvi (E)-ß-ocimene 0,082 1,17E-04 

Cvi trans pinana 2,702 0,003 Cvi ß-myrcene 2,246 4,22E-04 

Cvi ß-myrcene 0,834 0,004 Cvi linalool 0,365 0,004 

Cvi α-phellandrene 0,097 0,005 Cvi (Z)-3-hexenyl acetate 1,243 0,005 

Cvi linalool 0,785 0,007 Cvi pentan-1-ol 2,419 0,020 

Cvi pentan-1-ol 0,466 0,014 Cvi (E)-nerolidol 133,242 0,029 

Cvi (E)-ß-ocimene 1,801 0,016 Cvi α-phellandrene 2,858 0,030 

Cvi ß-acoradiene 2,343 0,028 Cvi acetophenone 1,304 0,035 

Cvi (E)-ß-farnesene 0,002 0,037 Cvi (E)-3-hexenal 855,557 0,051 

Cvi geranyl acteone 61,472 0,042 Cvi 3-carene 206,499 0,052 

Cvi (E)-ß-caryophyllene 1,701 0,059 Cvi (Z)-2-penten-1-ol 26,958 0,055 

Cvi benzaldehyde 3,059 0,064 Cvi γ terpinene 1,559 0,057 

Cvi α-terpinene 0,065 0,065 Cvi geranyl acteone 116,002 0,071 

Cvi methyl salicylate 2,537 0,068         

Cvi α-farnesene 447,986 0,069         

Cvi hexan-2-ol 0,202 0,074         

Cvi pentan-2-ol 92,570 0,085         

Cvi (E)-2-hexanal 3,809 0,094         

Cvi verbenone 0,148 0,096         

Cvi (E)-3-hexanal 1.117,670 0,096         

Cvi (E)-nerolidol 42,628 0,100         

Eri-1 methyl salicylate 2,004 8,59E-05 Eri-1 α-farnesene 0,004 4,23E-06 

Eri-1 (Z)-ß-ocimene 0,895 3,26E-04 Eri-1 (E)-ß-ocimene 2,622 0,002 

Eri-1 (E)-ß-ocimene 0,023 0,001 Eri-1 (Z)-ß-ocimene 0,250 0,003 

Eri-1 α-farnesene 0,059 0,001 Eri-1 α-humulene 0,336 0,005 

Eri-1 DMNT 2,589 0,005 Eri-1 DMNT 1,995 0,006 
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Pieris rapae   F Sig.2tail. jasmonic acid  F Sig.2tail. 

Eri-1 linalool 0,778 0,011 Eri-1 TMTT 0,012 0,038 

Eri-1 α-humulene 0,088 0,038 Eri-1 (E)-ß-farnesene 0,141 0,068 

Eri-1 (Z)-3-hexen-1-ol 68,315 0,050 Eri-1 ethyl salicylate 60,631 0,073 

Eri-1 octanal 74,681 0,071 Eri-1 (E)-2-hexenal 47,663 0,081 

Eri-1 heptanal 0,250 0,076 Eri-1 heptanal 0,018 0,087 

        Eri-1 ß-myrcene 78,719 0,093 

Kond (E)-ß-ocimene 1,150 6,73E-06 Kond (E)-ß-ocimene 3,553 1,63E-06 

Kond (Z)-ß-ocimene 0,022 2,57E-04 Kond (Z)-ß-ocimene 2,020 5,03E-06 

Kond (Z)-nerolidol 0,220 0,001 Kond (Z)-nerolidol 0,100 2,55E-05 

Kond ß-bisabolene 4,718 0,002 Kond ß-myrcene 3,208 4,78E-04 

Kond 2-pentanal 0,182 0,007 Kond methyl salicylate 1,399 0,005 

Kond methyl salicylate 0,428 0,007 Kond α-pinene 0,581 0,025 

Kond ß-elemene 0,085 0,017 Kond (E)-ß-farnesene 0,020 0,027 

Kond (E)-hexenyl acetate 1,274 0,020 Kond ß-bisabolene 0,011 0,029 

Kond 1-nonene 4,542 0,032 Kond (E)-3-hexen-1-ol 0,108 0,043 

Kond ß-myrcene 0,966 0,035 Kond ß-sesquiphellandrene 0,020 0,045 

Kond TMTT 3,853 0,065 Kond α-farnesene 3,265 0,062 

Kond (Z)-3-hexen-1-ol 26,140 0,065 Kond TMTT 3,626 0,066 

Kond Α-pinene 0,004 0,073 Kond α-phellandrene 0,147 0,088 

Kond (E)-3-hexenal 21,423 0,076         

Kyo-1 methyl salicylate 0,001 5,30E-05 Kyo-1 methyl salicylate 0,046 0,003 

Kyo-1 α-farnesene 46,460 0,012 Kyo-1 (Z)-nerolidol 0,420 0,005 

Kyo-1 α-himachalene 155,770 0,019 Kyo-1 α-farnesene 37,732 0,009 

Kyo-1 limonene 39,446 0,020 Kyo-1 (E,E)-2,4-hexadienal 0,902 0,019 

Kyo-1 hexanoic acid 76,421 0,041 Kyo-1 α-himachalene 116,646 0,031 

Kyo-1 trans pinana 422,776 0,048 Kyo-1 trans pinana 1.675,678 0,055 

Kyo-1 terpinolene 0,120 0,064 Kyo-1 (E)-ß-ocimene 4,216 0,057 

        Kyo-1 ß-myrcene 8,423 0,061 

        Kyo-1 terpinolene 0,033 0,076 

Ler hexanoic acid 16,710 1,38E-04 Ler methyl salicylate 5,625 0,001 

Ler (E)-ß-ocimene 0,800 0,001 Ler (E)-ß-ocimene 0,037 0,005 

Ler methyl salicylate 8,118 0,001 Ler ß-sesquiphellandrene 3,207 0,014 

Ler ß-sesquiphellandrene 4,187 0,008 Ler ethyl salicylate 183,936 0,042 

Ler DMNT 9,416 0,015 Ler (Z)-ß-ocimene 24,405 0,050 

Ler (E)-ß-farnesene 1,505 0,024 Ler decanal 1.021,292 0,052 

Ler (E)-2-hexenal 0,003 0,026 Ler pulegone 178,818 0,053 

Ler α-copaene 0,011 0,029 Ler 3-carene 974,396 0,076 

Ler (Z)-ß-ocimene 27,146 0,032 Ler geraniol 352,990 0,077 

Ler acetophenone 178,215 0,047 Ler (Z)-3-hexenal 0,959 0,079 

Ler (E)-3-hexenal 25,167 0,057 Ler allo ocimene 149,587 0,084 

Ler pulegone 84,486 0,067 Ler TMTT 6,776 0,089 
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P. rapae  F Sig.2tail. jasmonic acid F Sig.2tail. 

Ler allo ocimene 673,440 0,074 Ler (E)-ß-farnesene 3,541 0,090 

Ler 3-carene 974,396 0,076         

Ler (E)-hexenyl acetate 22,177 0,090         

WS methyl salicylate 0,443 2,13E-07 WS methyl salicylate 0,541 5,86E-07 

WS (Z)-ß-ocimene 2,285 1,39E-05 WS (Z)-ß-ocimene 0,033 5,42E-05 

WS TMTT 2,205 3,09E-05 WS nonanal 0,254 0,009 

WS nonanal 0,520 0,002 WS DMNT 0,011 0,009 

WS (E)-hexenyl acetate 3,563 0,003 WS linalool 1,124 0,014 

WS (E)-ß-farnesene 0,148 0,015 WS (E)-hexenyl acetate 6,100 0,019 

WS 2-pentanal 35,049 0,018 WS (E)-ß-farnesene 0,307 0,025 

WS (E)-ß-ocimene 4,715 0,029 WS geranyl acteone 293,039 0,038 

WS ß-myrcene 33,865 0,056 WS (E)-ß-ocimene 5,071 0,045 

WS (Z)-3-hexen-1-ol 4,346 0,079 WS ß-myrcene 30,728 0,050 

WS cuparene 1,679 0,097 WS ß-sesquiphellandrene 4,477 0,054 

        WS α-farnesene 408,025 0,060 

        WS pulegone 4.725,005 0,061 

        WS hexan-2-ol 0,491 0,063 

        WS hexanal 4,296 0,063 

        WS (E)-2-hexanal 2.309,289 0,065 

        WS TMTT 41,050 0,076 

        WS ethyl salicylate 4.771,445 0,083 

1, (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene 
2, (E)-4,8-dimethyl-1,3,7-nonatriene 
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 Treatment with higher  
average emission rate:  

F Sig. 

An-1     

(E)-2-hexenal Pr   9.170 0.016 

trans pinana Pr   9.305 0.016 

ß-myrcene   JA 11.714 0.009 

α-terpineol Pr   9.712 0.014 

ß-acoradiene Pr   11.409 0.010 

(E)-nerolidol   JA 9.207 0.016 

TMTT1   JA 5.632 0.045 

Col-0    

DMNT2 Pr   10.059 0.010 

methyl salicylate Pr   102.577 0.000 

C-24    

pentan-2-ol   JA 15.933 0.004 

(E)-2-hexenal Pr   52.706 0.000 

4-Me-3-penten-2-one   JA 17.129 0.003 

benzaldehyde   JA 8.315 0.020 

(E)-ß-ocimene   JA 7.592 0.025 

ß-sesquiphellandrene   JA 6.925 0.030 

α-terpineol   JA 14.910 0.005 

methyl salicylate Pr   10.119 0.013 

nerol   JA 50.385 0.000 

ethyl salicylate Pr   12.938 0.007 

indole   JA 448.516 0.000 

ß-elemene   JA 6.791 0.031 

(E)-ß-farnesene   JA 57.984 0.000 

(E)-nerolidol   JA 10.805 0.011 

 Cvi    

(E)-3-hexenal Pr   14.663 0.005 

(Z)-2-penten-1-ol   JA 6.614 0.033 

(Z)-3-hexenal Pr   7.115 0.028 

(E)-2-hexenal Pr   7.892 0.023 

trans-pinana Pr   5.357 0.049 

α-phellandrene Pr   21.808 0.002 

(Z)-3-hexenyl acetate Pr   10.514 0.012 

3-carene   JA 13.407 0.006 

limonene Pr   28.407 0.001 

SOM Table 4. Results of one-way ANOVA for each compound on differences between JA and Pieris 
rapae treatment. For each accession the volatile compounds that are emitted in significantly different 
(ANOVA) rates between both treatments ((Pieris rapae infestation (Pr) and JA-treatment (JA)). F- and 
P-values (Sig.) are given.  
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 Treatment with higher  
average emission rate:  

F Sig. 

Cvi     

limonene Pr   28.407 0.001 

(Z)-ß-ocimene   JA 8.471 0.020 

acetophenone   JA 9.238 0.016 

methyl salicylate Pr   24.951 0.001 

(E)-ß-farnesene Pr   6.445 0.035 

(E)-nerolidol   JA 7.072 0.029 

Eri-1     

2-pentanal Pr   18.740 0.003 

(E)-2-hexenal   14.719 0.005 

(Z)-3-hexen-1-ol Pr   5.484 0.047 

1-octen-1-ol Pr   7.716 0.024 

ß-myrcene   JA 10.475 0.012 

linalool Pr 8.715 0.018  

methyl salicylate Pr   61.541 0.000 

nerol Pr   6.343 0.036 

α-farnesene   JA 30.832 0.001 

ß-bisabolene   JA 7.450 0.026 

 Kond    

(Z)-3-hexen-1-ol Pr   17.445 0.003 

hexan-1-ol Pr   5.420 0.048 

ß-myrcene   JA 32.530 0.000 

(Z)-ß-ocimene   JA 6.367 0.036 

verbenone   JA 6.500 0.034 

decanal   JA 17.427 0.003 

(Z)-nerolidol   JA 10.927 0.011 

 Kyo-1    

(Z)-nerolidol   JA 15.012 0.005 

Ler    

ß-myrcene Pr 9.877 0.014  

(E)-hexenyl acetate Pr   19.068 0.002 

(Z)-ß-ocimene Pr   8.886 0.018 

hexanoic acid Pr   5.999 0.040 

ethyl salicylate   JA 6.290 0.036 

WS    

(E,E)-2,4-hexadienal   JA 12.120 0.006 

(Z)-3-hexenyl acetate   JA 5.309 0.044 

linalool   JA 5.361 0.043 

geranyl acteone   JA 6.643 0.028 

α-farnesene   JA 5.447 0.042 

1, (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene 
2, (E)-4,8-dimethyl-1,3,7-nonatriene 
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Supplemental Figure 1. 

 
The AtBSMT1 mutant was obtained from The Torrey Mesa Institute (GARLIC line, 
776_B10). To determine the exact lesion (see below) we analyzed the mutant in detail. 
The insertion caused a deletion of about 200 nucleotides (in bold), and at the same time 
there are only about 200 nucleotides left from the T-DNA. Therefore, if a Southern blot,is 
conducted or even a PCR with oligos for the beginning and end of the gene, it is difficult 
to see the differences. However, we have amplified the gene with the insertion, and se-
quenced the fragment, so we verified the insertion as shown. Moreover, we noticed that 
mRNA is still produced from the gene, with a similar size of the WT mRNA. When we 
cloned this mRNA by RT-PCR and sequenced it, we saw that a new 3' splice site was used 
(see (▼) in figure showing the position of the new 3‟ splice site). This leads to a protein 

that is much shorter and could not possibly have SAMT activity.  
Underlined letters: UTRs 
CAPITAL letters: coding regions 
Regular letters: introns 
 
At3g11480(AtBSMT1)- MUTANT 
gttttttttataaataatgtgctaccttgatgaagttccctctctctataaattgaagtg-
tgtgagatgcatcatccatacacaacatcttccatcttccgataattctcctttagtcttataatcactaataagtacgataattgaa
ATGGATCCAAGATTCATCAACACCATTCCTTCCTTGAGgttcttatctccaattcatgtatcattaatgcaacacat
tcacacacacacacacataaatattctgtatatagagttaatgcttcttaatttgatttagttatttaaatatagatcgatatatatcc
atgcagctgtttatgtaacaatatatgcatgtatgtcgcgatgcagGTATGATGATGATAAGTGTGATGATGAATAT
GCGTTTGTGAAAGCTCTATGTATGAGTGGTGGAGATGGTGCCAACAGTTACTCCGCCAATTCTCG
CCTTCAGgttcttcaatatcttcgcttacttttagggtttaagcagaaacaaattattaatgttcagatttttctctggtgatacaa
acatttttacaatcatttaattatgataaaattgtaaaaactgaacatgaactaactaattgtcaatatcaaatattaaatgaattta
catataagaacataatatttaaatgtctttatatgaattgcaaaaacttcaaatatattatgcatgaagtagaaaaatataaacat
atactcaatagaaatagattttcttgtttttaaaattgaaacatatgttctttctatctatatgttgagacagtctttaataaaattcta
ctcaaaaagagaagttatgaaagatgcatgatttccatctattttatccaatcaaattcattcatatcatatgttagtttgtttttaag
aagtttacatttgtatttaggaaagtaaaaatatattaaaaatataagtaatttaaaacgaaattataggtttcatttaaaataaa
aaaaataaaatataactaagatatttatgttagattaacctctactaattgactaaaaaatggtatatatgttgaccaaaaaaga
aaaagatactaatgatacaattactaacatatgcgttctgttaacgacggttctgccaaacaaattaaaatgttgataaatgacg
attcttaggactagtataaattctctaaattaaaaagggctcattacatcacctataacttataaacctacaagtcattaaagaata
ataaggcatgtacatgcactagtcaaattgtaaactcgaaaatgcataaacactagtaatatataaatgtatataactcaaaatc
atatattgttgttgttatcgtatgaagcatgggtccagtatcacattatcacggatcgacat 
 
T-DNA insertion line Garlic_776_B10: The position of the insertion is indicated by the tri-
angle (▼). Approximately 200 nucleotides of the T-DNA are present, and 328 nucleotides 

downstream of the insertion site (the nucleotides in bold) are deleted in this GARLIC in-
sertion. 
 
actgtaaag▼aaaaaaatcatattttctaaacgaattataaaatccagataataatactattttttataactaagctt

ctttttttgttgttttttttagAAAAAAGTTTTATCAATGGCCAAACCAGTCTTGGTAAGAAACACA
GAAGAAATGATGATGAACTTAGACTTTCCTACGTACATCAAAGTTGCTGAATTGGGTTGTT
CTTCGGGACAAAACTCTTTTTTGGCTATCTTTGAGATCATCAACACCATTAATGTGTTGTGC
CAACATGTGAACAAAAACTCACCAGAGATCGATTGTTGTCTAAACGATCTCCCGGAAAAT
GATTTCAACACGACCTTTAAGTTCGTACCTTTCTTCAACAAGGAGCTCATGATCACAAACAAATCA
TCATGTTTCGTCTATGGAGCTCCAGGTTCCTTCTATTCCAGGCTCTTCTCTCGCAATAGCCTCCATT
TAATACATTCCTCTTATGCACTCCATTGGCTCTCTAAGgtacttataaataatttcaagatgttgtttatttctatga
aacgttagaggttttgatattgaaacgatggaattgtgtgttcatgattaaagGTTCCCGAGAAACTTGAGAATAATA
AGGGGAATCTGTACATAACAAGTTCAAGTCCTCAAAGTGCATACAAGGCCTACTTGAATCAATTCC
AAAAAGACTTCACCATGTTTCTAAGGTTACGTTCTGAAGAAATTGTCTCTAATGGACGTATGGTTCT
CACCTTCATCGGAAGAAACACTCTTAACGATCCATTGTATAGAGATTGTTGTCACTTTTGGACATTG
CTATCAAACTCTCTCCGTGACCTAGTCTTTGAggtatatcaaatcaacttattcatttcttttgtaaaactttttaaata
tgggacattcatggtcttcgacatagattaacatttttatatattttactcaaaatataagaccaaacatatatattattgtggaaca
tggtactcattgctatcttcatataaacagGGTCTTGTGAGTGAGTCAAAGCTGGACGCATTCAACATGCCGT
TTTATGATCCGAACGTACAAGAACTCAAAGAAGTGATACAAAAAGAGGGCTCTTTTGAAATCAATG
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AATTGGAGTCACATGGATTTGATCTTGGTCACTACTACGAAGAAGATGACTTTGAAGCAGGACGC
AATGAAGCTAATGGCATAAGAGCTGTTAGTGAACCAATGCTCATTGCTCATTTTGGAGAAGAAAT
TATCGATACCTTGTTCGATAAGTATGCATACCATGTGACTCAACATGCCAACTGCAGGAACAAAAC
GACTGTCAGTCTTGTCGTTTCCTTGACTAAGAAGTAAgaagtaatcaacttctgtcatgttgctctatttgtattta
tttactactgttattt 
 
At3g11480(SAMT1)- WILD-TYPE 
gttttttttataaataatgtgctaccttgatgaagttccctctctctataaattgaagtg-
tgtgagatgcatcatccatacacaacatcttccatcttccgataattctcctttagtcttataatcactaataagtacgataattgaa
ATGGATCCAAGATTCATCAACACCATTCCTTCCTTGAGgttcttatctccaattcatgtatcattaatgcaacaca
ttcacacacacacacacataaatattctgtatatagagttaatgcttcttaatttgatttagttatttaaatatagatcgatatatat
ccatgcagctgtttatgtaacaatatatgcatgtatgtcgcgatgcagGTATGATGATGATAAGTGTGATGATGAAT
ATGCGTTTGTGAAAGCTCTATGTATGAGTGGTGGAGATGGTGCCAACAGTTACTCCGCCAATTCT
CGCCTTCAGgttcttcaatatcttcgcttacttttagggtttaagcagaaacaaattattaatgttcagatttttctctggtgata
caaacatttttacaatcatttaattatgataaaattgtaaaaactgaacatgaactaactaattgtcaatatcaaatattaaatga
atttacatataagaacataatatttaaatgtctttatatgaattgcaaaaacttcaaatatattatgcatgaagtagaaaaatata
aacatatactcaatagaaatagattttcttgtttttaaaattgaaacatatgttctttctatctatatgttgagacagtctttaataaa
attctactcaaaaagagaagttatgaaagatgcatgatttccatctattttatccaatcaaattcattcatatcatatgttagtttgt
ttttaagaagtttacatttgtatttaggaaagtaaaaatatattaaaaatataagtaatttaaaacgaaattataggtttcatttaa
aataaaaaaaataaaatataactaagatatttatgttagattaacctctactaattgactaaaaaatggtatatatgttgaccaa
aaaagaaaaagatactaatgatacaattactaacatatgcgttctgttaacgacggttctgccaaacaaattaaaatgttgata
aatgacgattcttaggactagtataaattctctaaattaaaaagggctcattacatcacctataacttataaacctacaagtcatt
aaagaataataaggcatgtacatgcactagtcaaattgtaaactcgaaaatgcataaacactagtaatatataaatgtatata

actcaaaatcatatattgttgttgttatcgtatgaagcatgggtccagtatcacattatcacggatcgacatactgtaaagaaaa
aaatcatattttctaaacgaattataaaatccagataataatactattttttataactaagcttctttttttgttgttttttttagAAAA
AAGTTTTATCAATGGCCAAACCAGTCTTGGTAAGAAACACAGAAGAAATGATGATGAACTTAGAC
TTTCCTACGTACATCAAAGTTGCTGAATTGGGTTGTTCTTCGGGACAAAACTCTTTTTTGGCTATC
TTTGAGATCATCAACACCATTAATGTGTTGTGCCAACATGTGAACAAAAACTCACCAGAGATCGAT
TGTTGTCTAAACGATCTCCCGGAAAATGATTTCAACACGACCTTTAAGTTCGTACCTTTCTTCAAC
AAGGAGCTCATGATCACAAACAAATCATCATGTTTCGTCTATGGAGCTCCAGGTTCCTTCTATTCC
AGGCTCTTCTCTCGCAATAGCCTCCATTTAATACATTCCTCTTATGCACTCCATTGGCTCTCTAAGg
tacttataaataatttcaagatgttgtttatttctatgaaacgttagaggttttgatattgaaacgatggaattgtgtgttcatgatt
aaagGTTCCCGAGAAACTTGAGAATAATAAGGGGAATCTGTACATAACAAGTTCAAGTCCTCAAAG
TGCATACAAGGCCTACTTGAATCAATTCCAAAAAGACTTCACCATGTTTCTAAGGTTACGTTCTGA
AGAAATTGTCTCTAATGGACGTATGGTTCTCACCTTCATCGGAAGAAACACTCTTAACGATCCATT
GTATAGAGATTGTTGTCACTTTTGGACATTGCTATCAAACTCTCTCCGTGACCTAGTCTTTGAGgta
tatcaaatcaacttattcatttcttttgtaaaactttttaaatatgggacattcatggtcttcgacatagattaacatttttatatatttt
actcaaaatataagaccaaacatatatattattgtggaacatggtactcattgctatcttcatataaacagGGTCTTGTGAG
TGAGTCAAAGCTGGACGCATTCAACATGCCGTTTTATGATCCGAACGTACAAGAACTCAAAGAAG
TGATACAAAAAGAGGGCTCTTTTGAAATCAATGAATTGGAGTCACATGGATTTGATCTTGGTCACT
ACTACGAAGAAGATGACTTTGAAGCAGGACGCAATGAAGCTAATGGCATAAGAGCTGTTAGTGAA
CCAATGCTCATTGCTCATTTTGGAGAAGAAATTATCGATACCTTGTTCGATAAGTATGCATACCAT
GTGACTCAACATGCCAACTGCAGGAACAAAACGACTGTCAGTCTTGTCGTTTCCTTGACTAAGAA
GTAAgaagtaatcaacttctgtcatgttgctctatttgtatttatttactactgttattt 
 
 
At3g11480 cDNA – WILD-TYPE 
ATGGATCCAAGATTCATCAACACCATTCCTTCCTTGAGGTATGATGATGATAAGTGTGAT-
GATGAATATGCGTTTGTGAAAGCTCTATGTATGAGTGGTGGAGATGGTGCCAACAGTTACTCCGC
CAATTCTCGCCTTCAGAAAAAAGTTTTATCAATGGCCAAACCAGTCTTGGTAAGAAACACAGAAGA
AATGATGATGAACTTAGACTTTCCTACGTACATCAAAGTTGCTGAATTGGGTTGTTCTTCGGGACA
AAACTCTTTTTTGGCTATCTTTGAGATCATCAACACCATTAATGTGTTGTGCCAACATGTGAACAA
AAACTCACCAGAGATCGATTGTTGTCTAAACGATCTCCCGGAAAATGATTTCAACACGACCTTTAA
GTTCGTACCTTTCTTCAACAAGGAGCTCATGATCACAAACAAATCATCATGTTTCGTCTATGGAGC
TCCAGGTTCCTTCTATTCCAGGCTCTTCTCTCGCAATAGCCTCCATTTAATACATTCCTCTTATGCA
CTCCATTGGCTCTCTAAGGTTCCCGAGAAACTTGAGAATAATAAGGGGAATCTGTACATAACAAG
TTCAAGTCCTCAAAGTGCATACAAGGCCTACTTGAATCAATTCCAAAAAGACTTCACCATGTTTCT
AAGGTTACGTTCTGAAGAAATTGTCTCTAATGGACGTATGGTTCTCACCTTCATCGGAAGAAACAC
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TCTTAACGATCCATTGTATAGAGATTGTTGTCACTTTTGGACATTGCTATCAAACTCTCTCCGTGA
CCTAGTCTTTGAGGGTCTTGTGAGTGAGTCAAAGCTGGACGCATTCAACATGCCGTTTTATGATC
CGAACGTACAAGAACTCAAAGAAGTGATACAAAAAGAGGGCTCTTTTGAAATCAATGAATTGGAG
TCACATGGATTTGATCTTGGTCACTACTACGAAGAAGATGACTTTGAAGCAGGACGCAATGAAGC
TAATGGCATAAGAGCTGTTAGTGAACCAATGCTCATTGCTCATTTTGGAGAAGAAATTATCGATAC
CTTGTTCGATAAGTATGCATACCATGTGACTCAACATGCCAACTGCAGGAACAAAACGACTGTCA
GTCTTGTCGTTTCCTTGACTAAGAAGTAA 
 
At3g11480 protein – WILD-TYPE 
MDPRFINTIPSLRYDDDKCDDEYAFVKALCMSGGDGANSYSANSRLQKKVLSMAKPV-
LVRNTEEMMMNLDFPTYIKVAELGCSSGQNSFLAIFEIINTINVLCQHVNKNSPEIDCCLNDLPENDF
NTTFKFVPFFNKELMITNKSSCFVYGAPGSFYSRLFSRNSLHLIHSSYALHWLSKVPEKLENNKGNLYI
TSSSPQSAYKAYLNQFQKDFTMFLRLRSEEIVSNGRMVLTFIGRNTLNDPLYRDCCHFWTLLSNSLR
DLVFEGLVSESKLDAFNMPFYDPNVQELKEVIQKEGSFEINELESHGFDLGHYYEEDDFEAGRNEAN
GIRAVSEPMLIAHFGEEIIDTLFDKYAYHVTQHANCRNKTTVSLVVSLTKK 
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