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Abstract Olive-mill wastes are produced by the industry of
olive oil production, which is a very important economic
activity, particularly for Spain, Italy and Greece, leading to
a large environmental problem of current concern in the
Mediterranean basin. There is as yet no accepted treatment
method for all the wastes generated during olive oil
production, mainly due to technical and economical
limitations but also the scattered nature of olive mills
across the Mediterranean basin. The production of virgin
olive oil is expanding worldwide, which will lead to even
larger amounts of olive-mill waste, unless new treatment
and valorisation technologies are devised. These are
encouraged by the trend of current environmental policies,

which favour protocols that include valorisation of the
waste. This makes biological treatments of particular
interest. Thus, research into different biodegradation
options for olive-mill wastes and the development of
new bioremediation technologies and/or strategies, as well
as the valorisation of microbial biotechnology, are all
currently needed. This review, whilst presenting a general
overview, focusses critically on the most significant recent
advances in the various types of biological treatments, the
bioremediation technology most commonly applied and
the valorisation options, which together will form the
pillar for future developments within this field.
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Introduction

The olive oil industry generates large amounts of by-
products that are harmful to the environment. According to
the Food and Agriculture Organisation of the United
Nations (FAOSTAT 2006), 2.7 millions of tonnes of olive
oil are produced annually worldwide, 76% of which are
produced in Europe, with Spain (35.2%), Italy (23.1%) and
Greece (16.1%) being the highest olive oil producers. Other
olive oil producers are Africa (12.5%), Asia (10.5%) and
America (0.9%). Olive oil production is a very important
economic activity, particularly for Spain, Italy and Greece
(where combined exports are valued at more than 5,500
million US$); worldwide, there has been an increase in
production of about 30% in the last 15 years (FAOSTAT
2006). Moreover, olive oil production is no longer
restricted to the Mediterranean basin, and new producers
such as Australia, USA and South America will also have
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to face the environmental problems posed by olive-mill
wastes (OMWs).

The chemical composition of olives, which is the raw
material for olive oil extraction, is very variable and
depends on factors such as the olive variety, soil type and
climatic conditions, but in general it consists of 18–28%
oil, 40–50% vegetation water and stone (pit) and 30–35%
of olive pulp (Niaounakis and Halvadakis 2004). Following
olive oil extraction, mainly by mechanical procedures in
olive mills, a large quantity of liquid and solid residues is
produced, with a high organic load, the nature of which
depends on the extraction system employed. Three systems
are used worldwide for the industrial-scale extraction of oil
from olives, viz. the traditional press-cake system, the
three-phase decanter system and the modern two-phase
centrifugation system (Fig. 1). Nowadays, two-phase and
three-phase centrifugation systems are most commonly
used.

The three-phase system, introduced in the 1970s to
improve extraction yield, produces three streams: pure olive
oil, olive-mill wastewater (OMWW) and a solid cake-like
by-product called olive cake or orujo. From an environ-
mental point of view, OMWW is considered the most
critical waste emitted by olive mills in terms of both
quantity and quality (Niaounakis and Halvadakis 2004).
The olive cake, which is composed of a mixture of olive
pulp and olive stones, is transferred to central seed oil
extraction plants where the residual olive oil can be
extracted. The two-phase centrifugation system was intro-
duced in the 1990s in Spain as an ecological approach for
olive oil production since it drastically reduces the water

consumption during the process. This system generates
olive oil plus a semi-solid waste, known as the two-phase
olive-mill waste (TPOMW) or alpeorujo. This review will
focus on the microbial treatment of OMWW and TPOMW
due to their high production (Table 1) and thus high
environmental impact.

The problems arising from OMWW are derived from its
high organic load and its chemical composition (Table 2),
which renders it resistant to degradation. The OMWW
contains a majority of the water-soluble chemical species
present in the olive fruit, a high organic load and high C/N
ratio (chemical oxygen demand (COD) values up to 200 g
l−1) and has an acidic pH of between 4 and 6. The organic
fraction contains large amounts of proteins, lipids and
polysaccharides, but unfortunately OMWW also contains
phytotoxic components that inhibit microbial growth
(Capasso et al. 1995; Ramos-Cormenzana et al. 1996), as
well as the germination and vegetative growth of plants
(Linares et al. 2003). Olive oil phenolic compounds are the
main determinants of antimicrobial and phytotoxic actions
of olive-mill wastes. These compounds are either originally
synthesised by the olive plants as a defence against a
remarkable variety of pathogens (Bianco et al. 1999) or
formed during the olive oil extraction process (Pannelli
et al. 1991). Once in the olive oil, olive oil phenols show a
range of antioxidant, functional, nutritional and sensory
properties (Saija and Uccella 2000). Because olive oil
phenols are amphiphilic, only a fraction of the phenolics
enters the oil phase, and a large proportion (>98%) is lost
with the waste stream during processing (Rodis et al.
2002). It is estimated that the toxic load of OMWW in
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Fig. 1 Simplified flow chart of
industrial-scale olive oil
extraction processes: traditional
press-cake system, three-phase
decanter system and two-phase
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terms of phenolic compounds is up to a thousand times
larger than that of domestic sewage (Niaounakis and
Halvadakis 2004). Due to their instability, OMWW
phenols tend to polymerise during storage into condensed
high-molecular-weight polymers that are particularly
difficult to degrade (Ayed et al. 2005; Crognale et al.
2006). For these reasons, the uncontrolled disposal of
OMWW has traditionally become a great problem in
Mediterranean countries because of their polluting effects
on soil and water (Sierra et al. 2001; Piotrowska et al. 2006).

The waste stream of the two-phase system, TPOMW,
comprises about 800 kg per 1,000 kg of the processed
olives, and its production may exceed four million tons

annually in Spain alone (Alburquerque et al. 2004). The
TPOMW consists of a thick sludge that contains water and
pieces of stone plus the pulp of the olive fruit. This semi-solid
effluent has a water content of about 65%, a slightly acidic pH
and a very high content of organic matter, mainly composed of
lignin, hemicellulose and cellulose (Table 3). It has also a
considerable proportion of fats, proteins, water-soluble
carbohydrates and a small but active fraction of hydrosoluble
phenolic compounds (Alburquerque et al. 2004).

The phenolic profile of OMWs is complex and variable.
The occurrence of specific phenolic compounds depends on
the fruit (e.g. maturity, cultivar), climatic conditions and

Table 2 Chemical composition of OMWW

Parameter Mean Range

Dry matter (%) 6.72 6.33–7.19
pH 4.84 4.2–5.17
EC (dS/m) 8.36 5.5–12
Organic Matter (g/l) 55.80 46.5–62.1
TOC (g/l) 37.00 34.2–39.8
TN (g/l) 0.96 0.62–2.1
C/N 53.32 52.3–54.3
P2O5 (g/l) 0.57 0.31–0.7
K2O (g/l) 4.81 2.37–10.8
Na (g/l) 0.26 0.11–0.42
Ca (g/l) 0.35 0.2–0.64
Mg (mg/l) 121.25 44–220
Fe (mg/l) 81.70 18.3–120
Cu (mg/l) 3.15 1.5–6
Mn (mg/l) 5.15 1.1–12
Zn (mg/l) 6.13 2.4–12
Density (g/cm3) 1.04 1.02–1.048
Lipids (g/l) 6.39 1.64–12.2
Phenols (g/l) 4.98 0.98–10.7
Carbohydrates (g/l) 7.16 1.4–16.1
COD (g/l) 124.67 67–178
BOD5 (g/l) 65.00 46–94

Data were calculated from eight independent studies reported in Roig
et al. (2006)

Table 3 Chemical composition of TPOMW

Parameter Mean Range

Humidity (%) 62.16 49.6–71.4
pH (H2O) 5.48 4.9–6.8
EC (dS/m) 2.99 1.2–5.24
Organic matter (%) 90.66 60.3–98.5
C/N 44.99 29.3–59.7
TN (g/kg) 11.99 9.7–18.5
P (g/kg) 0.97 0.3–1.5
K (g/kg) 18.73 6.3–29
Ca (g/kg) 5.08 2.3–12
Mg (g/kg) 1.03 0.5–1.7
Na (g/kg) 0.67 0.2–1
Fe (mg/kg) 1,107.80 526–2,600
Cu (mg/kg) 41.20 13–138
Mn (mg/kg) 25.80 13–67
Zn (mg/kg) 19.60 10.01–27
Lignin (%)a 38.82 19.8–47.5
Hemicellulose (%)a 29.70 15.3–38.7
Cellulose (%)a 23.47 17.3–33.7
Lipids (%)a 11.01 3.76–18
Protein (%)a 6.95 6.7–7.2
Carbohydrates (%)a 12.32 9.6–19.3
Phenols (%)a 1.36 0.5–2.4

Data were calculated from eight independent studies reported in Roig
et al. (2006)
a (% w/w) of total organic matter

Table 1 Input–output data for the three olive oil production processes

Production process Input Amount of input Output Amount of output (kg)

Traditional press process Olives 1 ton Oil ∼200
Wash water 0.1–0.12 m3 Solid waste ∼400
Energy 40–63 kWh Wastewater ∼600

Three-phase process Olives 1 ton Oil 200
Wash water 0.1–0.12 m3 Solid waste 500–600
Fresh water for decanter 0.5–1 m3 Wastewater 1,000–1,200
Energy 90–117 kWh

Two-phase process Olives 1 ton Oil 200
Wash water 0.1–0.12 m3 Solid + water waste 800–950
Energy <90–117 kWh

Adapted from Azbar et al. (2004)
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storage time, in addition to the processing technique.
Besides, analytical factors such as the solvent of choice to
extract the phenolic compounds from the residues (e.g.
methanol, ethanol, hydroalcoholic mixtures, ethyl acetate),
the different methods used to store/prepare the samples (e.g.
direct extraction, chemical hydrolysis, steam treatments)
and the diversity of analytical techniques employed to
conduct qualitative or quantitative analysis (e.g. high-
performance liquid chromatography (HPLC), HPLC–mass
spectrometry (MS), gas chromatography–MS, capillary
electrochromatography) add more complexity to the intrin-
sic variability of the phenolic profiles of OMWs. In fact, the
complexity of the phenolic fraction has been highlighted in
the literature, and 20 phenolic substances have been
identified in OMWW using HPLC–MS–MS chemical
analysis (Bianco et al. 2003). Using this approach in three
different varieties of olives, the main phenolic compounds
detected were tyrosol, hydroxytyrosol, oleoside methyl
ester, oleoside dimethyl ester and oleuropein. Lesage-
Messen et al. (2001) studied the phenolic composition of
OMWs as a function of the extraction system (three-phase
and two-phase mills), and they reported that the phenolic
profiles identified by HPLC (after acid extraction with ethyl
acetate) were similar in the residues from the two extraction
systems (OMWW and TPOMW), with hydroxytyrosol
(approximately 1% dry residue) and tyrosol being the
major compounds detected. Nevertheless, the contents of
individual compounds (hydroxytyrosol, tyrosol, caffeic
acid, ferulic acid and p-coumaric acid), with the exception
of vanillic acid, were higher for the two-phase system.
Research on the bioactivity and chemical analysis of these
substances has focussed on their antioxidant and antimi-
crobial activities (reviewed by Obied et al. 2005).

Besides traditional decantation, several disposal methods
have been proposed for olive-mill wastes, such as thermal
processes (combustion and pyrolysis), physico-chemical
treatments (e.g. precipitation/flocculation, ultrafiltration and
reverse osmosis, adsorption, chemical oxidation processes
and ion exchange), extraction of valuable compounds (e.g.
antioxidants, residual oil, sugars), agronomic applications
(e.g. land spreading), animal-breeding methods (e.g. direct
utilisation as animal feed or following protein enrichment)
and biological treatments (Niaounakis and Halvadakis
2004). Among the different options, biological treatments
are considered the most environmentally compatible and
the least expensive of wastewater treatments methods
(Mantzavinos and Kalogerakis 2005). These processes use
microorganisms to break down the chemicals present in
olive-mill wastes and/or to valorise the residues by the
production of added-value compounds such as a diverse
range of microbial-derived substances including biopoly-
mers and biofuels. The actual type of microorganism that
is involved depends on the conditions under which the

olive-mill waste is treated, particularly whether it is
aerobic or anaerobic. Aerobic processes are applied to
waste streams with low organic loads and/or concentration
of nutrients or as a polishing step to further remove residual
organic matter and nutrients from olive-mill wastewaters,
whereas anaerobic processes are applied to waste streams
with high organic loads (Niaounakis and Halvadakis 2004).
In any case, high organic loads, presence of some classes of
antimicrobial or biostatic compounds such phenols and
lipids, low pH values, low water activity in the case of
TPOMW and unbalanced composition of nutrients all
represent barriers that should be overcome to achieve an
optimal biological process.

Aerobic biodegradation

Aerobic biological treatments, such as activated sludge and
trickling filters, are usually exploited to remove pollutants
from wastewaters. A plethora of aerobic biological processes,
technologies and microorganisms have been tested for the
treatment of OMWs, aimed at reducing organic load, dark
colour and toxicity of the effluents. Early studies focussed on
the use of specific bacterial species, primarily to reduce the
toxicity of OMWW (Ramos-Cormenzana et al. 1996;
Ehaliotis et al 1999). In general, aerobic bacteria appeared
to be very effective against some low-molecular-mass
phenolic compounds but are relatively ineffective against
the more complex polyphenolics responsible for the dark
colouration of OMWs (McNamara et al. 2008).

Ramos-Cormenzana et al. (1996) evaluated the reduction
of the phenolic content of OMWW by Bacillus pumilis,
obtaining a biodegradation up to 50% of these compounds.
Using a similar approach, Ehaliotis et al. (1999) demon-
strated that the N2-fixing bacterium Azotobacter vinelandii
was able to reduce the phytotoxicity of OMWW by
approximately 90% at the end of two 5-day period cycles
in an aerobic biowheel-type reactor. The treated effluent
was thus suitable for use as fertiliser (Ehaliotis et al. 1999;
Piperidou et al. 2000). Nevertheless, it should be noticed
that the conditions used by Ehaliotis et al. (1999) and
Piperidou et al. (2000) were not sterile, and thus other
microorganisms could, at least partially, have contributed to
the chemical changes reported in their studies.

Aerobic bacterial consortia from different sources have
also been utilised for bioremediation of OMWW (Benitez
et al 1997; Zouari and Ellouz 1996a). Several recent studies
have focussed on this subject, but available information
about the indigenous microbiota of OMWs is still scarce.
Reported studies have used different approaches, such as the
direct isolation of phenolic-degrading bacteria from OMWW
(Di Gioia et al. 2002) or the determination of the
ecophysiology and diversity of bacterial isolates obtained
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from TPOMW (Jones et al. 2000; Ntougias et al. 2006).
Interestingly, olive-mill wastes, due to their particular
characteristics, provide a source of new microorganisms
with biotechnological potential, like the exopolysaccharide-
producing bacterium Paenibacillus jamilae (Aguilera
et al. 2001) and the obligate alkaliphilic Alkalibacterium
olivoapovliticus (Ntougias and Russell 2001).

In general, available scientific information shows that
fungi are more effective than bacteria at degrading both
simple phenols and the more complex phenolic compounds
present in olive-mill wastes. The reason for this lies in the
structure of the aromatic compounds present in OMWs;
they are analogous to that of many lignin monomers, and
only a few microorganisms, mainly wood-rotting fungi, are
able to efficiently degrade lignin by producing ligninolytic

enzymes such as lignin peroxidases, manganese perox-
idases and laccases (Hattaka 1994).

Consequently, the bioremediation of OMWs using
specific strains of fungi (some of them isolated directly
from olive-mill wastes), primarily filamentous fungi, white
rot fungi and yeasts, has been extensively investigated.
There are a considerable number of reports on the
application of fungi to reduce the organic load and phenolic
content of OMWs (Table 4). For instance, several species of
the genus Pleurotus were found to be very effective in the
degradation of the phenolic substances present in OMWs. It
should be highlighted that in general a close relationship
has been found between the decrease of phenolic content
and the decrease of phytotoxicity. In fact, several studies
have reported a reduction of phytotoxicity following the

Table 4 Aerobic treatment of OMWs by fungi

Culture Residue Method OM reduction Phenol reduction
(%)

Reference

Aspergillus niger OMWW Flasks 73% as COD 76 García García et al. 2000
Aspergillus spp. OMWW Flasks 52.5% as COD 44.30 Fadil et al. 2003
Aspergillus terreus OMWW Bioreactor 66% as COD n.a. Garrido Hoyos et al. 2002
Aspergillus terreus OMWW Flasks 63% as COD 64 García García et al. 2000
Candida boidinii TPOMW Fed-batch microcosm n.a. 57.7 Giannoutsou et al. 2004
Candida tropicalis OMWW Flasks 62.8% as COD 51.70 Fadil et al. 2003
Coriolus versicolor OMWW Flasks 65% as COD 90.00 Yesilada et al. 1997
Coriolopsis rigida TPOMW Flasks 9% as TOC 89 Sampedro et al. 2007
Geotrichum spp. OMWW Flasks 55% as COD 46.60 Fadil et al. 2003
Geotrichum candidum OMWW Bubble column pilot scale station 70% as COD n.a. Assas et al. 2000
Geotrichum candidum TPOMW Fed-batch microcosm n.a. 57 Giannoutsou et al. 2004
Funalia trogii OMWW Flasks 70% as COD 93.00 Yesilada et al. 1997
Lentinula edodes OMWW Immobilized mycelium 73–80% as TOC 88.50 D’Annibale et al. 1998
Lentinula edodes OMWW Flasks 65% as COD 88.00 D’Annibale et al. 2004a
Penicillium spp. OMWW Flasks 25–38 as COD 32–45 Robles et al. 2000
Phanerochaete flavido-alba OMWW Bioreactor n.a. 52.00 Blánquez et al. 2002
Phanerochaete flavido-alba TPOMW Solid-state cultures n.a. 70.00 Linares et al. 2003
Phanerochaete
chrysosporium

OMWW Bioreactor 75% as COD 92 García García et al. 2000

Phanerochaete
chrysosporium

TPOMW Flasks 9.2% as TOC 14.50 Sampedro et al. 2007

Phlebia radiata TPOMW Flasks 13% as TOC 95.70 Sampedro et al. 2007
Pleurotus ostreatus OMWW Solid cultures and flasks n.a. 64–67 Fountoulakis et al. 2002
Pleurotus ostreatus OMWW Flasks n.a. 90.00 Martirani et al 1996
Pleurotus ostreatus OMWW Bioreactor n.a. Nearly complete Aggelis et al. 2003
Pleurotus spp. OMWW Solid cultures and flasks n.a. 69–76 Tsioulpas et al. 2002
Pleurotus ostreatus OMWW Flasks n.a. >90 Sanjust et al. 1991
Pleurotus ostreatus TPOMW Plastic bag 22% as TOC 90 Saavedra et al. 2006
Pleurotus floridae OMWW Flasks n.a. >90 Sanjust et al. 1991
Pleurotus pulmonarius TPOMW Flasks 9.7% as TOC 66.2 Sampedro et al. 2007
Poria subvermispora TPOMW Flasks 13.2% as TOC 72.3 Sampedro et al. 2007
Pycnoporus cinnabarinus TPOMW Flasks 7.6% as TOC 88.7 Sampedro et al. 2007
Saccharomyces spp. TPOMW Fed-batch microcosm n.a. 61 Giannoutsou et al. 2004
Yarrowia lipolytica OMWW Flasks 20–40% as COD <30 Lanciotti et al. 2005

n.a. not available
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treatment of the OMWs with fungi (Table 5). However, the
use of filamentous fungi (compared with bacteria) for
OMWW treatment in large-scale processes is considered
problematic due to the difficulty of achieving a continuous
culture because of the formation of fungal pellets and other
aggregations (Niaounakis and Halvadakis 2004). To over-
come this limitation, the use of yeast in bioreactors could be
a way forward. Some yeasts able to reduce COD and
phenolic content of OMWs include Geotrichum candidum
(Assas et al. 2000; Giannoutsou et al. 2004), Candida
tropicalis (Fadil et al. 2003), Candida boidinii and
Saccharomyces sp. (Giannoutsou et al. 2004; Table 4). In
contradiction to the general relationship between phenolic
content reduction and phytotoxicity reduction, Tsioulpas et
al. (2002) reported that different strains of Pleurotus spp.
were able to remove phenolics from OMWW but suggested
that the remaining phenolics and/or some of the oxidation
products of the laccase reaction were more toxic than the
original phenolic mixture. In this study, phytotoxicity was
quantified by using the phenol toxicity index (a function of
the germination index of Lepidium sativum seeds and the
phenolic concentration), which was suggested to quantita-
tively express the toxicity of phenolic content. Two possible
explanations for these contradictory findings are, first, an
increase of the toxicity of the phenolics after oxidation (Field
and Lettinga 1989) and, second, a selective accumulation of a
toxic fraction of phenolics not oxidised by the fungal laccase.
Thus, it is suggested that further research is still required to
clarify the effect of treating OMW with fungi on the
phytotoxicity of the residue. Moreover, most of the afore-
mentioned studies have been conducted under strictly
controlled laboratory conditions, low waste volumes, axenic
conditions and treated waste (e.g. sterile, filtrated, lyophi-
lised, diluted), conditions which are far from real case
scenarios. Thus, in spite of the considerable research effort
to find single species to achieve optimal mineralisation or
detoxification of OMWs, this has not led to environmentally
useful strategies at industrial scale.

The application of culture-independent (molecular) tech-
niques to study microbial communities involved in the
biodegradation of olive-mill wastes provides a valuable
source of additional information. By using laboratory-scale
bioreactors, it was shown that the genetic potential of the
indigenous microbiota was able to metabolise polypheno-
lic compounds present in TPOMW under aerobic con-
ditions, through the stimulation of the fungal fraction by
nutrient supplementation (N and P), and it was also
observed that predominant fungi identified by polymerase
chain reaction (PCR)–temperature time gradient electro-
phoresis included members of the genera Penicillium,
Candida, Geotrichum, Pichia, Cladosporium and Ascochyta
(Morillo et al. 2008a). Moreover, it was demonstrated that,
compared to the inoculation of a single-strain (or consortium)
approach, indigenous microorganisms could have a broader
range of different biodegrading activities and thus steri-
lisation of the substrate is not necessary. The amendment
with nutrients to alter the C/N ratio allowed the microbial
activity and the phenolic content reduction to be signifi-
cantly improved during aerobic biodegradation of either
OMWW (El Hajjouji et al. 2008) or TPOMW (Morillo et
al. 2008a). Apart from changing the structure of the
microbial communities involved in the bioremediation of
OMWs, the addition of nutrients can also modify the
pattern of degrading enzymes production by specific
microorganisms. In fact, applying nitrogen supplementa-
tion on some axenic white root fungi cultures has resulted
in a significant decrease in OMW toxicity (de la Rubia et
al. 2008).

Anaerobic biodegradation

Biodegradation of OMWs using anaerobic biodegradation
approaches has been widely investigated. This technique
presents a number of advantages in comparison to the
classical aerobic processes: (a) quite a high degree of

Table 5 Phytotoxicity reduction by aerobic treatment of OMWs with fungi

Culture Residue Method Phenol
reduction (%)

Toxicity analysis Toxicity reduction Reference

Coriolopsis rigida TPOMW Flasks 89 Growth inhibition
of tomato plants

Growth inhibition decreased 57.4% after
treatment

Sampedro et
al. 2007

Lentinula edodes OMWW Flasks 88.00 Durum wheat
germinability

>50% in twofold diluted OMW treated with
Lentinula edodes

D’Annibale
et al. 2004a

Phanerochaete
flavido-alba

TPOMW Solid-state
cultures

70.00 Tomato plant
germinability

Improvement of >40% in germination rates Linares et al.
2003

Coriolopsis rigida TPOMW Flasks 73 Tomato plant
germinability

Decreased phytotoxicity Aranda et al.
2006

Candida holstii OMWW Flasks 39 Barley plant
germinability

Improvement of 80% in germination rates Ben Sassi et
al. 2008
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purification with high-organic-load feeds can be achieved;
(b) low nutrient requirements are necessary; (c) small
quantities of excess sludge are usually produced; and (d) a
combustible biogas is generated (Borja et al. 2006; Wheatley
1990). However, the nutrient imbalance of OMWW, due
mainly to its high C/N ratios (∼50), low pH (∼5), low
alkalinity (∼0.6 g CaCO3 per litre) and the presence of
biostatic and inhibitory substances, represents a problem for
the anaerobic degradation of these wastewaters (Boubaker
and Cheikh Ridha 2007). An additional problem of TPOMW
is its doughy consistency, which makes its transport, storage
and handling difficult.

To overcome problems of the nutrient imbalance, toxicity
and other difficulties derived from the composition of
OMWW, the wastewaters can be subjected to pre-treatments
before anaerobic digestion. Apart from dilution with water,
other pre-treatments include (a) aerobic biological treatment
(Borja et al. 1998; Hamdi 1996), (b) pre-treatment with
specific aerobic organisms like the fungi Phanerochaete
chrysosporium (Gharsallah et al. 1999) and (c) the addition
of a source of nitrogen (Boari et al. 1984; Demirer et al.
2000). Another approach adopted by researchers to minimise
the difficulties of OMWW anaerobic digestion is the co-
digestion of OMWW with other substrates to compensate for
its low alkalinity and nitrogen. For example, co-digestion
with nitrogen-rich substrates such as animal manure has been
explored (Angelidaki and Ahring 1997; Angelidaki et al.
2002).

In spite of these limitations, OMWW and TPOMW may
be metabolised using anaerobic digestion once the process
parameters have been optimised. A reduction of more than
80% in COD and yields of methane production of ∼0.1–
0.3 m3 CH4 per kilogramme of COD removed have been

widely reported for anaerobic process at mesophilic temper-
atures (Table 6). Although most of these studies utilised
microbial consortia derived from sewage treatment plants,
other more “exotic” microbes have also been tested,
including the use of a bacterial consortium isolated from
termites (Hamdi et al. 1992).

Knowledge of the microbial communities involved in the
anaerobic biodegradation of OMWs would be useful in
order to better understand and monitor these processes. In a
recent study, molecular identification of the microbial
species (Bacteria and Archaea) involved in a process of
anaerobic treatment of diluted TPOMW showed that the
composition of the microbial communities changed with
the operational conditions (Rincón et al. 2008). Firmicutes,
mostly represented by the genus Clostridium, were the
predominant bacteria at low organic loading rate (OLR),
whereas other bacterial communities containing Gammapro-
teobacteria, Actinobacteria, Bacteroidetes and Deferribacteres
were the most abundant at high OLR. The Archaea were
mainly represented by four phylotypes belonging to the genus
Methanosaeta independent of the OLR.

Comparing anaerobic to aerobic biodegradation, the
former process requires generally higher capital investment
(e.g. reactors), expert labour and transport of waste from
generation point to treatment point resulting in higher fuel
costs and higher emissions. Furthermore, it has been
traditional practice to use composting of these wastes as a
preferred aerobic biodegradation treatment, due partially to
the reasons mentioned above but also due to the seasonal
production of these wastes. Nevertheless, recent efforts
have been focussed on anaerobic treatments because of
their potential for production of biofuels (Antizar-Ladislao
and Turrion-Gomez 2008).

Table 6 Anaerobic biodegradation of OMWs

Residue Method COD
reduction (%)

Methane yield (cubic metre CH4 per
kilogramme COD removed)

Reference

OMWW Anaerobic sludge bed reactors UASB 70 0.35 Ubay and Öztürk 1997
OMWW Anaerobic sequencing batch reactor 80 n.a. Ammary 2005
OMWW Stirred batch reactor with sepiolite 90 0.345 Borja et al. 1998
OMWW Anaerobic reactors packed with GAC 78.4 0.08 Bertin et al. 2004
OMWW Anaerobic batch reactor 85.4–93.4 n.a. Ergüder et al. 2000
OMWW Co-digestion with solid wastes in tubular

digesters
89 n.a. Boubaker and Cheikh

Ridha 2007
OMWW Co-digestion with sewage and sewage

sludge
75-85 0.32 Boukchina et al. 2007

OMWW Two-stage up-flow and fixed-bed
bioreactors

83 n.a. Dalis et al. 1996

OMWW Co-digestion with piggery effluent in an
up-flow filter type

70–80 n.a. Marques 2001

TPOMW Laboratory-scale stirred tank reactor 88 ∼0.30 Borja et al 2002
TPOMW Laboratory-scale stirred tank reactor 77–97 0.244 Rincón et al. 2008

n.a. not available, UASB up-flow anaerobic sludge blanket, GAC granular activated carbon
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Bioremediation of olive-mill waste by composting

Among many other treatment technologies, composting is
one of the most popular technologies aimed at utilising
OMWs and producing a fertiliser from such wastes.
Composting typically removes the phytotoxicity of the
residues within a few weeks and allows the subsequent
enrichment of croplands with compost nutrients that were
originally taken up by olive tree cultivation (Arvanitoyannis
and Kassaveti 2007). Such a tight circulation and recycling
of nutrients has a certain aesthetic and practical appeal,
particularly in local situations where the small-scale
production of oil by individual mills can re-utilise the
wastes to improve subsequent cropping, be it olives or other
produce such as tomatoes. The local/rural economy might
also benefit from the sale of surplus soil conditioner
(Vlysides et al. 1989).

The effectiveness of compost recycling in agriculture
depends mostly on the quality of the compost; therefore,
characterisation of the process plus evaluation of the quality
of the mature compost are crucial (Cayuela et al. 2008a, b).
In this respect, fulvic acid levels could constitute a tool in
order to follow the maturity of the product during
composting of OMWs (Ait Baddi et al. 2004). Due to the
characteristics of these residues, it is also important to
follow the changes occurring in phenols and biotoxicity
during composting. In an experimental composting process
of OMWW plus barley straw, Zenjari et al. (2006) found
that degradation of the phenols reached 95% after the
maturation phase and the toxicity disappeared after only
2 months of composting. In this regard, much active
research is oriented towards the adaptation of composting
technologies to the specific requirements of OMWs.

Composting of OMWs requires the proper adjustment of
pH, temperature, moisture, oxygenation and nutrients,
thereby allowing the adequate development of the microbial
populations (Arvanitoyannis and Kassaveti 2007). In
general, ideal conditions for an optimal composting process
are a carbon-to-nitrogen ratio of the composting material
between 20 and 40, moisture content between 50% and
65%, an adequate oxygen supply, a small particle size and
enough void space through which air can flow (Chang et al.
2006). In order to equilibrate the nutrient imbalance of
OMWs, the preferred approach in the majority of cases has
been the application of co-composting with other residues,
such as those derived from cattle and poultry farming
(Paredes et al. 2001; Hachicha et al. 2008), arable farming
(Alburquerque et al. 2007; Paredes et al. 2002) or industry
(Sánchez-Arias et al. 2008). Direct amendment with
nutrients such as urea has also been proved to be a
possibility (Tomati et al. 1995), although it is less
environmentally desirable. The OMWW has to be pre-
absorbed in a solid substrate in order to proceed with the

composting process. To obtain good results, a broad variety
of bulking agents, including wheat straw (Galli et al. 1997;
Tomati et al. 1995), maize straw (Paredes et al. 2000) and
solid olive and olive tree waste (Vlyssides et al. 1999;
Filippi et al. 2002), have been found acceptable.

Among the possible technologies for recycling the
TPOMW, composting is gaining interest as a sustainable
strategy to recycle this residue for agricultural purposes
(Alburquerque et al. 2006; Filippi et al. 2002; Cayuela et al.
2008a, b). The TPOMW needs also to be mixed with
bulking agents such as grape stalk (Alburquerque et al.
2006) or straw (Madejón et al. 1998), due to its semi-solid
consistency and low porosity. Compost, rich in organic
matter and free of phytotoxicity, can thus be obtained
(Alburquerque et al. 2006). Composting of TPOMW is a
valid process from technical and economical standpoints, as
demonstrated by its application at industrial scale (Kobek
2004). Vermicomposting of TPOMWamended with manure
has been also suggested as a suitable alternative (Plaza et al.
2008).

A characteristic feature during the composting of
TPOMW is the high pH (>9) reached (Cayuela et al.
2004; Alburquerque et al. 2006). This fact was explained
by Cayuela et al. (2008a, b) as being a consequence of the
decarboxylation of organic anions during the aerobic
decomposition of TPOMW and could represent a limitation
for its soil application. Roig et al. (2004) suggested the
addition of elemental sulphur during the composting
process as a suitable strategy to control this pH increase.
Composting of TPOMW is also characterised by a
prolonged thermophilic period, which can be optimised
and even reduced in length of time by the use of
appropriate bulking agents (Manios et al. 2006). Hydrolytic
enzymes involved (Cayuela et al. 2008b) and the pattern of
organic matter transformation and humic substances pro-
duced during composting have been also characterised
(Ait Baddi et al. 2004).

Monitoring of microbial diversity is one of the most
fundamental tasks to understand the composting process.
Although its importance is claimed, there are only few
studies in the published literature that focus on the analysis
of the microbial communities during the composting
process (Antizar-Ladislao et al. 2008). In a recent study,
olive-mill wastewater sludge obtained by a physico-
chemical treatment of OMWW (electro-Fenton oxidation)
was composted in a bench-scale reactor and the evolution
of microbial species within the composter was followed
using a respirometric test and by means of both cultivation-
dependent and cultivation-independent approaches (PCR–
single strand conformation polymorphism (SSCP); Abid et
al. 2007). It was reported that during the period of high
respiration rates (7–24 days), the cultivation method showed
that thermophilic bacteria, as well as actinomycetes,
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dominated over eumycetes, whilst, during the composting
process, the PCR–SSCP method showed a higher diversity
of the bacterial community than the eukaryotic one. Finally,
after 60 days of composting, the compost exhibited a
microbial stability and a clear absence of phytotoxicity.

The main problem of the application of composting from
olive by-products is odour emission and the drainage water
that has to be treated. Biofilters are applied to treat the
released gas from composting piles, which then increases
the total costs of this technology (Kobek 2004).

Bioconversion of olive-mill wastes to high added-value
products

Many applications have been attributed to OMWs, with or
without further treatment to obtain added-value products
(Fig. 2). For example, OMWs have been used as substrate
for the culture of certain microorganisms in order to obtain
a potentially useful microbial biomass and/or to induce a
partial bioremediation of the residues. Such applications
have a long history, and already 50 years ago Fiestas Ros
de Ursinos (1961) reported the production of yeast biomass
using OMWW in a chemostat for use in industrial

applications. A few edible fungi, especially species of
Pleurotus, can also be grown using OMWs as the source of
nutrients by the application of different strategies (Kalmis
et al. 2008; Sanjust et al. 1991; Zervakis et al. 1996). These
authors also reported biochemical changes and detoxifica-
tion of the substrates due to the active excretion of
ligninolytic enzymes and partial consumption/adsorption
of the organic fraction by fungi. Kalmis et al. (2008)
recently suggested the cultivation of the oyster mushroom
(Pleurotus ostreatus) on wheat straw substrate containing a
mixture of tap water and OMWW (25% OMWW, v/v) as an
environmentally friendly solution for the purpose of
commercial mushroom production. Similar approaches
have been exploited by several small companies for more
than a decade (Ramos-Cormenzana et al. 1995). Mention
should also be made of the possibility of using the
microbial biomass produced from OMW fermentations
either as an additive to animal feed or to improve its
agronomic use. For example, Laconi et al. (2007) achieved
an intense degradation of most polluting substances of
OMWW and the production of biomass that could be used
as an animal feed integrator using a chemical–biological
method (alkaline-oxidative treatment to decrease the poly-
phenolic content followed by fermentation with a fungal
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Fig. 2 Potential uses and
microbial valorisation of olive-
mill wastes
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mixture). As far as agronomic use of the waste is
concerned, the idea of re-using microbially treated OMWW
as fertiliser has been also proposed (Vassilev et al. 1997).
To this end, a strain of the acidogenic fungus Aspergillus
niger was grown in either free or immobilised form on
OMWW with rock phosphate added in order to solubilise
it. After fermentation, the phosphorus-enriched OMWW
was tested as fertiliser on soil/trifolium (Trifolium repens
L.) and soil/wheat (Triticum durum) systems, resulting in
enhancement of plant growth (Cereti et al. 2004). These
authors highlighted the production of biopolymers,
enzymes and biofuels as added-value products of such
fermentations.

Biopolymers and enzymes

The production of microbial biopolymers using OMWs as a
low-cost fermentation substrate has been proposed, focus-
sing on polysaccharides and biodegradable plastics in a
process that has the additional benefit of being environ-
mentally beneficial (Ramos-Cormenzana et al. 1995). This
microbial biotechnological valorisation is supported by the
fact that olive-mill wastes present certain similarities with
the standard media for microbial polymer production,
mainly with respect to the high carbon-to-nitrogen ratio.
This approach could reduce the cost of polymer production
because it is the market prices of the substrate that is often
the first limiting factor and so might improve the process
economics.

Microbial exopolysaccharides (EPSs) often show clearly
identified properties that form the basis for a wide range of
applications in food, pharmaceuticals, petroleum and other
industries (Sutherland 1990). Xanthan gum, an EPS pro-
duced by the bacterium Xanthomonas campestris (the most
commercially accepted microbial polysaccharide), has been
obtained from OMWW (Lopez and Ramos-Cormenzana
1996). An improved EPS yield could be obtained with a
selection of the proper X. campestris strain and an adequate
balance between waste concentration and nutrient supple-
mentation (López et al. 2001). In these studies, it was
reported that a dilution of OMWW (below 60%) in order to
reduce the inhibitory effect of phenols and the addition of
nitrogen and/or salts led to a significant increase of xanthan
yields, with a maximum of 7.7 g l−1. A similar approach has
successfully been used to obtain the metal-binding EPS
produced by P. jamilae from OMWs. In these studies,
maximal EPS production (5.1 g l−1) was reached in batch-
culture experiments with a concentration of 80% of OMWW
as fermentation substrate (Morillo et al. 2007). In the case of
the use of TPOMWas substrate, maximal EPS yield (2 g l−1)
was obtained in cultures prepared with an aqueous extract of
20% TPOMW (w/v). An inhibitory effect was observed on
growth and EPS production when TPOMW concentration

was increased (Morillo et al. 2006). This EPS produced by P.
jamilae through fermentation of OMWs has been investigat-
ed in relation to its potential application as a biofilter of
heavy-metal-contaminated water (Morillo et al. 2008b).

The fungus Botryosphaeria rhodina has also been used
for the production of the polysaccharide β-glucan from
OMWW with a satisfactory yield of 17.2 g l−1 and a partial
dephenolisation of the substrate, which was attributed to an
adsorption phenomenon of the mycelial biomass due to the
absence of a phenol-degrading activity (Crognale et al.
2003). It has been reported that OMWW can also be used
as a fermentation substrate to obtain other types of
microbial polymers, such as homo- and co-polymers of
polyhydroxyalkanoates (PHAs; Martinez-Toledo et al.
1995; Gonzalez-Lopez et al. 1996; Pozo et al. 2002). These
substances are accumulated as intracellular granules in a
variety of bacteria and are a source of new biodegradable
plastics. The production of PHA byAzotobacter chroococcum
strain H23 in a medium prepared with OMWW (diluted up
to 60% with water) as the only source of carbon was
increased by aeration of the cultures and the addition of
nitrogen (0.12% ammonium acetate w/v), with a maximal
yield of 6.2 g PHA per litre culture medium (Pozo et al.
2002).

The production of enzymes by fungi using OMWs as
substrate with commercial interest offers another interesting
opportunity for the biotechnological valorisation of the
residues. The microbial enzymes obtained by fungal treat-
ment of OMWs include different families of lipases, laccases,
Mn-dependent peroxidases and pectinases (Crognale et al.
2006).

Microbial lipases employed in the dairy, pharmaceutical,
detergent and other industries can be obtained from the
fermentation of OMWW based on the (variable) amount of
residual oil present in these wastes (Cordova et al. 1999).
Amongst a series of fungal strains belonging to the known
lipolytic species, D’Annibale et al. (2006) found a
promising potential for lipase production by Candida
cylindracea NRRL Y-17506. The aromatic-degrading abil-
ity of white rot fungi is associated with the production of
extracellular oxidases, enzymes with low substrate speci-
ficity and good stability against various potentially dena-
turing agents and thus with a possible use in a wide range
of industrial applications (Crognale et al. 2006). Within this
context, the production of laccases and Mn-dependent
peroxidases by OMWW fermentation by Panus tigrinus
CBS 577.79, a strain able to cope with high organic loads,
has been proposed (D’Annibale et al. 2004b). The
development of effective methods to purify/isolate the
enzymes and biopolymers from the bulk fermentation is
an important point in order to scale the processes to the
industrial scale. The required methodologies are specific of
the enzyme/technology considered and generally involves
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further steps of concentration, precipitation and chromatog-
raphy (Morillo et al. 2006; D’Annibale et al. 2004b).

All the aforementioned studies are very promising, but
at present it is unlikely that biopolymers and enzymes
obtained from these wastes will be produced at an economic
industrial scale, mainly due to their low demand, which will
render their production unprofitable, and to the high
competition with other established technologies. Therefore,
these biopolymers and enzymes are still mainly produced
at the laboratory scale.

Bioconversion of olive-mill waste to biofuels

In recent years, considerable attention has been directed
towards the production of energy from lignocellulosic
wastes. As mentioned above, anaerobic digestion is a
practical alternative for the treatment of TPOMW, which
produces biogas (Borja et al. 2006; Antizar-Ladislao and
Turrion-Gomez 2008). As it has been reported for other
agroindustrial residues, such as potato pulp (Zhu et al.
2008) or cattle manure (Güngör-Demirci and Demirer 2004),
anaerobic processes applied to OMWs, whether in one or
two stages, must be selected according to the C/N ratio of
the residues in order to obtain a satisfactory anaerobic
degradation. The TPOMW is biodegradable by anaerobic
digestion at mesophilic temperatures in stirred tank
reactors, with COD removal efficiencies in the range of
72–89% and an average methane yield coefficient of
0.31 dm3 CH4 per gramme COD removed (Borja et al.
2006). Similar production of hydrogen and methane has been
reported using thermophilic reactors at 55°C (Gavala et al.
2005) and in mesophilic anaerobic treatment of TPOMW in
continuous and batch experiments, in which approximately
0.28 dm3 CH4 per gramme COD was removed, and
hydrogen production was coupled with a subsequent step
for methane production, giving the potential for production
of 1.6 mmol H2 per gramme of TPOMW (dry matter; Borja
et al. 2006).

Additionally, the high content of organic matter makes
OMWs an interesting alternative resource to produce
ethanol as a biofuel (Li et al. 2007). Even if the content
of free reducing sugar in these wastes is low, different kinds
of polysaccharides can be converted to ethanol via different
reactions that occur in two separate steps: first an enzymatic
hydrolysis using commercial enzymes followed by the
conversion of reducing sugars to ethanol performed by
yeasts (alcoholic fermentation; Zanichelli et al. 2007).
Amongst the many parameters that can affect the process
of alcoholic fermentation, the presence of inhibiting
compounds in OMWs is critical. Bambalov et al. (1989),
using a collection of several yeast strains of different
species, confirmed that fresh OMWW was unfavourable to
yeast growth and ethanol production. The removal of the

phenolic fraction using an adsorption/desorption technique
seems to be a necessary procedure for efficient ethanol
production from OMWW (Zanichelli et al. 2007).

The utilisation of TPOMW as a potential substrate for
production of ethanol has also been proposed. Ballesteros et
al. (2001) reported the production of ethanol by a
simultaneous saccharification (by the addition of cellulases)
and fermentation process, using the two main components
of TPOMW (stones and olive pulp) as substrates. Although
a pre-treatment was not necessary to bioconvert a fraction
of the olive pulp into ethanol, pre-treatment of fragmented
olive stones by sulphuric-acid-catalysed steam explosion
increased the enzymatic digestibility. The yield of the
enzymatic hydrolysis (expressed as glucose obtained in the
enzymatic hydrolysis divided by potential glucose in the raw
material) was in the range 38–49%, and concentrations of
>10 g l−1 of glucose after the hydrolysis could be obtained
(Ballesteros et al. 2001). Pre-treatment of TPOMW with hot
water (200–250°C) combined with the use of feed-batch
procedure is another option to improve the production of
ethanol (Ballesteros et al. 2002). In another recent study
(Georgieva and Ahring 2007), an enzymatic hydrolysis and
subsequent glucose fermentation by baker’s yeast were
evaluated for ethanol production using dry matter of
TPOMW. The enzymatic hydrolysis resulted in an increase
in glucose concentration by 75%. The results showed that
yeasts could effectively ferment TPOMW without nutrient
addition, resulting in a maximum ethanol production of
11.2 g l−1 and revealing the tolerance of yeast to TPOMW
toxicity. In this study, pre-treatment of the residue was not
performed prior to being subjected to enzymatic hydrolysis
and ethanol fermentation, in order to avoid sugar degrada-
tion in the substrate (Georgieva and Ahring 2007).

It is widely recognised that clean and sustainable
technologies, e.g. biofuels, are only part of the solution to
the impending energy crisis. Comparing the heating value
of biohydrogen (121 MJ kg−1), methane (50.2 MJ kg−1) and
bioethanol (23.4 MJ kg−1), the production of hydrogen will
be more attractive (Nazaroff and Alvarez-Cohen 2002).
Nevertheless, at present, the use of biohydrogen is still not
practical (Duerr et al. 2007), and thus there is a higher
demand for methane and bioethanol because they can be
used directly as biofuels with the existing technology
(Antizar-Ladislao and Turrion-Gomez 2008).

Summary

Although much olive oil is produced in modern coopera-
tives and its consumption has become globalised, overall, in
the Mediterranean region, its production remains essentially
a local activity. Thus, solutions for dealing with the wastes
generated the need to be effective at both small- and
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medium-scale levels. A corollary is that treatment regimes
should be relatively simple to operate and preferably low
cost, not simply towards removing the toxic waste but by
converting it to environment-enhancing products.

Given this background, it is perhaps surprising that no
particular OMW-remediation technology has been more
universally adopted. No single method has proven superior
enough to become adopted by an industry that retains a
diversity of practices. We would argue that a multifactorial
approach is needed, combining a biological, i.e. bioremedi-
ation, stage (this might integrate more than one type of
biotreatment) with innovative process engineering to handle
the wastes and derived products. For instance, there might be
sequential anaerobic and aerobic biological treatments,
which delivered fractions that were subjected to specific
biological (or chemical) treatments. These would give a
variety of specific added-value products, ranging from bulk
fertilisers and other soil amendment products (e.g. for
germination enhancement or selective pathogen suppression)
to specialised products such as antioxidants, enzymes,
biofuels and bioplastics. It is the development of industries
producing useful value-added products that will alter the
mindset for dealing with OMWWfrom one that is focussed on
its deleterious (toxic) properties to one that emphasises its
beneficial qualities and realises its economic benefit.
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