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Summary
In this paper the authors discuss the use of modelling in the evaluation 
of strategies designed to control epidemics of highly pathogenic avian influenza
(HPAI) in poultry. Referring to a number of published models for HPAI
transmission in poultry, the authors describe the different ways that modellers
use quantitative information. Quantitative information can be used for model
building, parameter estimation, and model validation. The authors emphasise
that in the case of HPAI transmission in poultry there are important gaps in our
understanding. Due to these gaps the models for the effects of certain control
strategies, especially those involving vaccination of poultry, need to be based on
provisional assumptions. Hence, it is necessary to validate these models and to
do research to improve our understanding of the underlying processes in order
to better parameterise the models and better estimate the parameters.

Keywords
Avian influenza – Epidemiology – Mathematical modelling – Model validation.

Introduction
Ideally, the design of strategies for the control of an
infectious disease in a host population, in this case highly
pathogenic avian influenza (HPAI) in poultry, is based on
quantitative information of the transmission dynamics
under different conditions. In principle, such knowledge
can only be obtained by analysing the data from natural
outbreaks and animal experiments; but modelling is also
needed, particularly when the conditions under which
control measures are applied are different from the
conditions under which the effects were observed in
outbreaks and/or experiments. These different conditions
include scenarios in which new combinations of previously
adopted control measures are used, as the combined effect
of two measures can in general not be derived simply from
the separate effects of each of the measures. Thus,
modelling is used whenever there is a need to extrapolate
from current or previous conditions.

Modelling is important for infectious disease control
because it helps with the interpretation of data, the design
of experiments, and the choice of control strategy (by
calculating various options). The mathematical models
may be very simple, e.g. comparing only incidence with
control measures to incidence without control measures.
However, more complex models are required to account
for other differences that may exist between groups of hosts
that are subject to control measures and groups that are
not. These more complex models can lead to more reliable
extrapolation of the control effect to new conditions.

There are two approaches to predicting, on the basis of
existing knowledge, the outcome of applying new
scenarios: one approach is based on randomisation using
statistical models, and the other on mimicking the
mechanics of the relevant (demographic and transmission)
processes using mathematical modelling. Randomisation is
the basis of prediction used in statistical inference: the
effect of a control measure can be estimated because all
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relevant conditions that could influence the outcome are
chosen at random from the relevant target population.
Hence, any new situation in the future will also be a
random draw from this same distribution and the new
control effect will, to a certain degree of confidence, fall
within the corresponding confidence interval and thus
prediction is possible (Fig. 1). In contrast, mechanistic
prediction or extrapolation is based on the assertion that
the appropriate model is fitted to the observations and,
provided that sufficient knowledge exists regarding the
future conditions, the correct outcome for these future
conditions can be calculated (Fig. 1). The adequacy of the
mechanistic extrapolation depends on applying the valid
model and knowing the future conditions. If, in Figure 1,

model B is valid and model A is not, it is clear that using
the correct model for the future condition (as given by the
arrow on the x-axis) is very important.

In the modelling approaches to be discussed below,
statistical and mechanistic (or ‘structural’) elements are
combined. Statistical prediction is always valid provided
that observations are available for the relevant set of
conditions. However, predictions made using the statistical
approach may not be as accurate as those extrapolated
using a valid mechanistic model. The mechanistic model
can give better predictions because uncertainty is reduced
by using the additional mechanistic information.
Moreover, for extrapolation to conditions outside the reach
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Fig. 1
An illustration of extrapolation by statistical methods or by modelling
Top panel: a data set with observed outcome (y-axis) and observed conditions (x-axis)
Left lower panel: a new outcome can be predicted statistically, where each new outcome is just a new realisation of the process given a random
draw from the distribution of conditions (arrow x-axis), and thus a random draw from the outcome distribution gives the right prediction (arrow y-axis)
Right lower panel: on the other hand mechanistic modelling can show how the outcome depends on the underlying conditions (two lines) and how
knowledge of the new condition (arrow x-axis) can give a better prediction of future outcome, given that the model is correct. Here model B applies
and model A does not apply



of the existing observations on which the statistical analysis
was based, mechanistic model elements are essential. For
example, an estimate of the effect of culling of
neighbourhood farms made in an unvaccinated region
cannot directly be used for predicting what will happen in
a vaccinated region.

The main difficulty in mechanistic modelling, and thus in
obtaining correct extrapolations, is that it is often difficult
to determine the actual transmission mechanism(s)
underlying the observed infection dynamics. In other
words, models can be made to mimic the real world as it is
observed, but that is no proof that the models give the
correct outcome for the correct reasons. Finding out
whether the transmission processes are modelled correctly
requires specifically designed experiments, well planned
field studies, and accompanying data analysis to elucidate
the true underlying mechanisms. The need for studying
underlying mechanisms is often left unaddressed in
modelling papers. Instead, emphasis is often placed on the
need for measuring the underlying conditions better. For
example, with respect to questions regarding the factors
that exacerbate the risks of spread and the factors that help
determine the most effective control strategies, Sharkey et
al. state that ‘Such questions can only be addressed
through detailed consideration of specific features of the
population at risk ..’ (8). Truscott et al. consider that there
are uncertainties regarding disease transmission in poultry,
but that ‘these uncertainties could be reduced only with
considerably more data on the structure and
movements …’ (11). Although sufficiently detailed
knowledge of underlying conditions can be important, it

first remains to be determined which parameters are
required (and how detailed they must be) to understand
the relevant transmission mechanism. Below, the authors
try to explain and illustrate that not yet all the questions
regarding the quantitatively important aspects of these
transmission mechanisms of HPAI in poultry have been
answered.

Classification of modelling
approaches
All the models for the control of HPAI in poultry that are
discussed here use a combination of mechanistic structural
elements and statistical or parameter-fitting elements. Here
the authors look at modelling analyses of HPAI in poultry
that aim to evaluate the effect of control measures and
discuss to what extent we know that these models are valid
and how we can improve them. The only limitations to
improving the models further reside in the creativity of the
researchers and in the availability of data. Although no
model will be perfect, we need to have more critical
discussions about the models and their assumptions and
more quantitative investigation to either falsify or
corroborate the assumptions. In this paper the authors
focus on modelling papers exemplifying different
approaches (Table I) with respect to using data for
predicting future scenarios.

The differences discussed here relate to the ways in which
these models are linked to data. There are three different
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Table I
The different modelling approaches discussed in this paper

Article
Date and location of Type of model

epidemic data analysis Statistical Mechanistic
Prediction

(Stegeman et al., 2004) Netherlands, 2003 Transmission rates and the effect of control measures SIR Statistical

(Mannelli et al., 2007) Italy, 1999/2000 Transmission rates and the effect of control measures SIR Statistical

(Boender et al., 2007) Netherlands, 2003 Transmission kernels Spatial SIR Statistical

(Garske et al., 2007) Italy, 1999/2000 Reproduction ratio based on observed trees Branching process Statistical
Netherlands, 2003

Canada*, 2004

(Le Menach et al., 2006) Netherlands, 2003 Transmission rates w/wo control measures Spatial SIR Simulations with the
and dependent on distances fitted model

(Truscott et al., 2007) None Not applicable Spatial SIR Simulation with
mechanistic modelling

(Sharkey et al., 2008) None Not applicable Stochastic SIR with Simulation with
contact structure mechanistic modelling

(Dent et al., 2008) None Not applicable Contact structure analysis Simulation with
mechanistic modelling

* In the province of British Columbia
SIR: susceptible–infectious–recovered model
w/wo: with and without



approaches. On one side of the spectrum are studies that
use a relatively simple model structure that requires only
fairly limited assumptions and apply statistical inference.
Examples are the models by Stegeman et al. (9), Mannelli
et al. (7), Boender et al. (1), and Garske et al. (5). In these
models the structure is modelled with few parameters,
which perhaps cannot be mechanistically interpreted but
which can be estimated statistically from an observed
epidemic. The models are used to learn from observed
outbreaks of HPAI and estimate the impact of particular
control measures.

On the other side of the spectrum are the models by
Truscott et al. (11), Sharkey et al. (8) and Dent et al. (3),
which use mechanistically founded parameters that are
estimated from the literature or from available data sets;
the final forms of these models, however, are not validated
against data. For these three papers the lack of validation
was unavoidable as the modelling was done for the United
Kingdom (UK), where no outbreak data were available.
The aim of these modelling efforts was to study features
specific to the situation in the UK, either with respect to
the risk for transmission or with respect to the possibilities
for controlling the epidemic.

The model by Le Menach et al. (6) is in between, in the
sense that it uses parameters from the literature and
parameter estimates from a data set to which they fit the
model (calibration) and compare the model fit (validation).
This paper (6) and the paper of Garske et al. (5) both
implicitly start with the assumption that quantitative
information from previous outbreaks in certain
areas/countries can also be useful in the modelling of
transmission risks in other areas/countries.

Model structure
All these models for the transmission of HPAI in poultry
are based on explicit and implicit assumptions about the
underlying mechanisms. These assumptions become
visible in how the model is built up, i.e. in the model
structure. In particular, as control of HPAI in poultry is
based on dealing with infected farms or premises (IP), the
transmission between premises has to be modelled. Failed
attempts during natural outbreaks, such as the 2003
epidemic in the Netherlands, to stop the transmission
between premises show that we do not completely
understand how that transmission occurs. In fact, it
emerged that unexplained neighbourhood transmission
was predominantly responsible for the difficulties in
stopping major epidemics (2, 4, 10). The modelling of
transmission between premises is therefore not
straightforward, however tempting it may be to assume a
set of routes based on known contacts between premises.

It is important when discussing these mechanistic or
structural parts of the models to clarify to what extent the
mechanisms on which the extrapolations are based, are
known. Transmission processes are often not well
understood and, thus, even when transmission parameters
are estimated as a function of the underlying conditions it
is unknown whether the model structure is valid. Hence,
the extrapolations obtained also need to be critically
assessed.

Truscott et al. (11) consider transmission in a vaccinated
population as part of their modelling. They model the
effect of vaccination assuming reduction in susceptibility of
the vaccinated premises and reduction in contact rate
(infectivity) between premises. Two issues arise with 
this model. First of all, does the model accurately reflect
the effect of vaccination? Second, is there a way to estimate
the parameters used for modelling these effects from
available data? The experiments of van der Goot et al. (12,
13, 14, 15) have shown that vaccination can reduce
transmission. However, this is at the level of transmission
between animals, not between premises. The experiments
of van der Goot show that it is possible to stop
transmission between chickens for a certain vaccine and
virus combination, and thus it will most likely also be
stopped between premises for that combination or a
comparable combination. However, what will happen
under circumstances in which the flock is not well
vaccinated, for example, because of a mismatch between
vaccine and circulating field strains? Then it becomes
important whether, for example, the infectivity of a
vaccinated farm is a function of the distance between that
IP and premises at risk of infection. Also, other measures
of the intensity of contact between the IP and the receiving
premises can be important, for example, in the case of a
professional visitor as a possible transmission vector, the
kind of work they have done on the IP and how much
contact they had with infectious animals and materials.
Furthermore, levels of reduction in transmission due to
vaccination that are insufficient to stop transmission
between poultry in direct contact may still be sufficient to
stop the transmission between poultry at different
locations. There is thus a need for better research before
extrapolation of the vaccine effect can be done with more
confidence.

Another important aspect is local spread, as it underpins
the use of locally defined control options, i.e. measures
implemented in the neighbourhood of an IP. Examples of
such measures are reactive vaccination, pre-emptive
culling and increased surveillance for IPs. Local spread is
defined as the spread to premises in the neighbourhood of
an IP without any known specific contacts with that IP.
Again, ways of modelling this aspect can differ and there is
as yet not enough knowledge to identify the correct
mechanisms. Boender et al. (1) estimate a kernel for the
spatial transmission of HPAI between poultry farms from
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the 2003 outbreak data from the Netherlands. A kernel is
the mathematical relationship between the distance from
the infected farm to the receiving farm and the infection
probability of that receiving farm. The kernel describes all
possible transmission events, including those that have not
been assigned to specific contacts. The approach of
Boender et al. is statistical and as explained above this
means that it is applicable to the conditions under which it
is observed and more has to be assumed to extrapolate
these results. For example, the estimated kernel applies to
the mixture of large and smaller poultry holdings as found
there and then and it may not apply, for example, in
regions where all farms are relatively small. Le Menach et
al. (6) have used three different probabilities for three
different distance bands and estimated these from the data.
In contrast, Sharkey et al. (8) have only used one
probability for the nearest neighbours of an IP, which they
estimated from the literature.

Another interesting paper, namely Dent et al. (3), sets out
to look at only the observable contacts and what role they
can play in the transmission of HPAI in poultry. Although
this goal is interesting, there is the need to better know
how these contacts could lead to transmission between
premises. For example, the different contact types may
differ in their contribution to the risk of transmission. Also,
this issue illustrates the possible interaction between
control measures, as the risk transmitted by first visiting an
IP and then another premise with poultry may be reduced
when one or both of these premises have been vaccinated.

Model predictions
As a result of the differences in how the different modelling
approaches are based on quantitative data, different weight
has to be attached to the conclusions drawn from the
analyses. Conclusions based on statistical inference are
typically robust, although they only apply to the specific
situation studied. For example, it is obvious that major
HPAI outbreaks can occur in areas with high densities of
poultry farms even with control measures in place (1, 5, 8).

Better understanding of underlying mechanisms would be
necessary to try and understand how the local spread
between premises is actually occurring and what one could
do to control it. Perhaps by changing certain conditions the

farm density at which an epidemic cannot really 
be stopped would change. This includes increased
biosecurity, encompassing better protocols for 
visitors going from farm to farm and for teams culling
poultry at IPs.

Firm conclusions about the effect of vaccination can only
be drawn when better mechanistic models are available,
because vaccination has never been carefully studied in the
field. One approach could be to make provisions to follow
the first applications of vaccination, preferably during an
outbreak, with appropriate field observations. Finally,
modelling-based conclusions can be trusted more when
they are specific about the applicability to poultry species,
vaccines, and field viruses. For example, what is true for
chickens might not apply to other species.

Conclusions
For deciding on HPAI control strategies an element 
of predicting the future is desirable, i.e. predicting the
effect of the control measures. The basis for such
prediction is formed by past experiences analysed using
statistical methods, and fundamental knowledge of the
behaviour of the virus in the host population obtained by
analysis of experiments and field observations. Modelling
plays an important role in the analysis and the design 
of experiments and field observations, and also in
interpolating and extrapolating between these
measurements. To make useful predictions, a sufficient
understanding of the mechanisms underlying transmission
is needed. Hence, for a model to be used when deciding
upon which control measures to implement, this
understanding must be demonstrated by validation and by
discussing the validity of underlying assumptions,
although sometimes validation will have to be done during
the first application of the measures.

Rev. sci. tech. Off. int. Epiz., 28 (1) 375



Rev. sci. tech. Off. int. Epiz., 28 (1)376

La modélisation de la lutte contre l’influenza aviaire 
chez les volailles : comment utiliser les données

M.C.M. de Jong & T.J. Hagenaars

Résumé
Les auteurs examinent les modèles utilisés pour évaluer les stratégies de lutte
contre les épizooties d’influenza aviaire hautement pathogène (IAHP) chez les
volailles. À partir de plusieurs modèles publiés relatifs à la transmission de
l’IAHP chez les volailles, les auteurs décrivent les différentes manières d’utiliser
les données quantitatives dans les modèles. L’information quantitative peut être
utilisée pour construire un modèle, pour en évaluer les paramètres, et pour le
valider. Il est important de souligner que d’importantes lacunes subsistent
encore au sujet de la transmission de l’IAHP chez les volailles. De ce fait, les
modèles utilisés pour déterminer les effets de certaines stratégies de lutte
(notamment la vaccination des volailles) reposent sur des hypothèses
provisoires. Il est donc impératif de valider ces modèles et de continuer à
élucider les processus de transmission à l’œuvre afin de mieux paramétrer les
modèles et d’évaluer plus précisément ces paramètres.

Mots-clés
Épidémiologie – Influenza aviaire – Modélisation mathématique – Validation du modèle.

El nexo con los datos en la modelización 
de la lucha contra la influenza aviar en las aves de corral

M.C.M. de Jong & T.J. Hagenaars

Resumen
Los autores examinan el uso de modelos para evaluar estrategias de control de
epidemias de influenza aviar altamente patógena (IAAP) en las aves de corral.
Refiriéndose a varios modelos de transmisión de la IAAP en las aves que han
aparecido en publicaciones, describen las distintas formas en que los creadores
de modelos utilizan los datos cuantitativos. La información cuantitativa puede
usarse para elaborar y validar modelos y para estimar parámetros. Los autores
recalcan que todavía hay muchas cosas que no entendemos en la transmisión
de la IAAP en las aves de corral. Debido a estas lagunas, los modelos que
describen los efectos de ciertas estrategias de lucha, en especial las que
entrañan vacunaciones, están necesariamente basados en premisas
provisionales. De ahí la necesidad de validar esos modelos e investigar más a
fondo para entender los procesos subyacentes, a fin de introducir en los
modelos parámetros más fiables y de poder estimarlos con más exactitud.

Palabras clave
Epidemiología – Influenza aviar – Modelos matemáticos – Validación de modelos.



Rev. sci. tech. Off. int. Epiz., 28 (1) 377

References
1. Boender G.J., Hagenaars T.J., Bouma A., Nodelijk G., 

Elbers A.R.W., de Jong M.C.M. & van Boven M. (2007). –
Risk maps for the spread of highly pathogenic avian influenza
in poultry. PLoS comput. Biol., 3, 704-712.

2. Bouma A., Elbers A.R.W., Dekker A., de Koeijer A., Bartels C.,
Vellema P., van der Wal P., van Rooij E.M.A., Pluimers F.H. &
de Jong M.C.M. (2003). – The foot-and-mouth disease
epidemic in the Netherlands in 2001. Prev. vet. Med., 
57, 155-166.

3. Dent J.E., Kao R.R., Kiss I.Z., Hyder K. & Arnold M. (2008).
– Contact structures in the poultry industry in Great Britain:
exploring transmission routes for a potential avian influenza
virus epidemic. BMC vet. Res., 4, 14.

4. Ferguson N.M., Donnelly C.A. & Anderson R.M. (2001). –
Transmission intensity and impact of control policies on the
foot and mouth epidemic in Great Britain. Nature, 
413, 542-548.

5. Garske T., Clarke P. & Ghani A.C. (2007). – 
The transmissibility of highly pathogenic avian influenza 
in commercial poultry in industrialised countries. PLoS ONE,
2, e349.

6. Le Menach A., Vergu E., Grais R.F., Smith D.L. & Flahault A.
(2006). – Key strategies for reducing spread of avian
influenza among commercial poultry holdings: lessons 
for transmission to humans. Proc. roy. Soc. Lond., B, biol. Sci.,
273, 2467-2475.

7. Mannelli A., Busani L., Toson M., Bertolini S. & Marangon S.
(2007). – Transmission parameters of highly pathogenic
avian influenza (H7N1) among industrial poultry farms 
in northern Italy in 1999-2000. Prev. vet. Med., 81, 318-322.

8. Sharkey K.J., Bowers R.G., Morgan K.L., Robinson S.E. &
Christley R.M. (2008). – Epidemiological consequences of an
incursion of highly pathogenic H5N1 avian influenza into the
British poultry flock. Proc. roy. Soc. Lond., B, biol. Sci., 
275, 19-28.

9. Stegeman A., Bouma A., Elbers A.R.W., de Jong M.C.M.,
Nodelijk G., de Klerk F., Koch G. & van Boven M. (2004). –
Avian influenza A virus (H7N7) epidemic in the Netherlands
in 2003: course of the epidemic and effectiveness of control
measures. J. infect. Dis., 190, 2088-2095.

10. Stegeman A., Elbers A.R.W., Smak J. & de Jong M.C.M.
(1999). – Quantification of the transmission of classical swine
fever virus between herds during the 1997-1998 epidemic in
the Netherlands. Prev. vet. Med., 42, 219-234.

11. Truscott J., Garske T., Chis-Ster I., Guitian J., Pfeiffer D.,
Snow L., Wilesmith J., Ferguson N.M. & Ghani A.C. (2007).
– Control of a highly pathogenic H5N1 avian influenza
outbreak in the GB poultry flock. Proc. roy. Soc. Lond., B, biol.
Sci., 274, 2287-2295.

12. Van der Goot J.A., Koch G., de Jong M.C.M. & van Boven M.
(2005). – Quantification of the effect of vaccination 
on transmission of avian influenza (H7N7) in chickens. Proc.
natl Acad. Sci. USA, 102, 18141-18146.

13. Van der Goot J.A., Koch G., de Jong M.C.M. & van Boven M.
(2007). – Quantification of the transmission characteristics 
of avian influenza (H5N1 and H7N7) in ducks. Prev. vet.
Med., 81, 221.

14. Van der Goot J.A., van Boven M., de Jong M.C.M. & Koch G.
(2007). – Effect of vaccination on transmission of HPAI
H5N1: the effect of a single vaccination dose on transmission
of highly pathogenic avian influenza H5N1 in Peking ducks.
Avian Dis., 51, 323-324.

15. Van der Goot J.A., van Boven M., Koch G. & de Jong M.C.M.
(2007). – Variable effect of vaccination against 
highly pathogenic avian influenza (H7N7) virus on 
disease and transmission in pheasants and teals. Vaccine, 
25, 8318-8325.




