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Abstract The branching zooxanthellate soft coral Sinularia
flexibillis releases antimicrobial and toxic compounds with
potential pharmaceutical importance. As photosynthesis by
the symbiotic algae is vital to the host, the light-dependency
of the coral, including its specific growth rate (μ day−1) and
the physiological response to a range of light intensities
(10–1,000 μmol quanta m−2 s−1) was studied for 12 weeks.
Although a range of irradiances from 100 to 400 μmol
quanta m−2 s−1 was favorable for S. flexibilis, based on
chlorophyll content, a light intensity around 100 μmol
quanta m−2 s−1 was found to be optimal. The contents of
both zooxanthellae and chlorophyll a were highest at
100 μmol quanta m−2 s−1. The specific budding rate
showed almost the same pattern as the specific growth
rate. The concentration of the terpene flexibilide, produced
by this species, increased at high light intensities (200–
600 μmol quanta m−2 s−1).
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Introduction

The symbiotic branching soft coral Sinularia flexibilis produ-
ces secondary metabolites, which have been found to possess
a range of biological activities such as antimicrobial, anti-
inflammatory, and cytotoxicity (e.g., Coll et al. 1982;
Sammarco et al. 1987; Volkman 1999; Bhosale et al. 2002).
For drug development from these compounds, large quantities
of the coral are needed. One of the possibilities for that is to
rear the corals in captivity. For this, the corals’ physiological
characteristics for cultivation need to be known.

S. flexibilis, like other symbiotic corals, harbors symbi-
otic algae, the zooxanthellae. They belong to the dino-
flagellata and translocate photosynthates to the coral host
(e.g. Muscatine et al. 1989). It is well documented, mainly
in hard corals, that photoautotrophy becomes more efficient
under optimal light conditions (e.g., Muscatine and Porter
1977; Muscatine et al. 1981) and that light enhances
calcification (e.g., Al-Horani et al. 2003, 2007; Tentori
and Allemand 2006). Hence, light is a major factor
affecting both zooxanthellae and coral physiology and
ecology, even at the scale of a single branch (Chalker et
al. 1983; Kühl et al. 1995; de Beer et al. 2000).
Additionally, symbiotic corals are able to acclimatize to
environmental disturbance (e.g., light and temperature)
through physiological and morphological responses, even
though the range of acclimatization capacities within a
species is not known (Gates and Edmunds 1999). In
general, little is known about photoacclimation of corals
(Titlyanova et al. 2001).

Moreover, it has been found that the photoresponse of corals
to be species-specific (Titlyanov and Titlyanova 2002a,b).
Because of the dependency of S. flexibilis on light (Fabricius
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et al. l995a,b; De’ath and Fabricius 2000), it is important that
light conditions are controlled in coral husbandry. However,
the effect of irradiance on growth kinetics and biosynthesis of
the major terpene of this species, flexibilide (e.g., Aceret et al.
2001), has not been clarified yet. Similarly, despite the fact
that this soft coral can also propagate by budding (e.g., Fautin
2002), the link between both light-dependent specific growth
rate and budding rate is unknown. Therefore, this long-term
study was carried out under controlled laboratory conditions
to verify (1) the influence of light intensity on the coral’s
specific growth and specific budding rates and also optimal
irradiance for growth irradiance and physiology and (2) the
influence of irradiance on the contents of zooxanthellae,
chlorophyll a, protein, and flexibilide in the coral samples.

Materials and Methods

Organism

Parent colonies of the soft coral S. flexibilis were obtained from
Burgers’ Zoo, Arnhem, The Netherlands. They were trans-
ferred to rearing tanks (Eco-deco systems, Dymico-Model
1000, containing ± 1,300 L saltwater) at 34‰±0.5 salinity,
25.8±0.2°C. The saltwater was made of the nutrient-free
Instant Ocean Reef Crystals (Aquarium systems, Sarrebourg,
France, 2007). Lighting (12 h light/12 h dark) was provided
by VHO Halide, 10,000 K, HQI lamps (Aqua Medic
aqualight 400, Aquaria Veldhuis, Enschede, The Netherlands).

Experimental Design

Experiments were performed in the laboratory under
controlled conditions. Small coral colonies (5–7 cm) were
taken, fixed on polyvinyl chloride platelets within
±2 weeks, and placed in the tank. The experimental corals
(n=8) were allocated to each light treatment. Different light
intensities from 10 to 1,000 μmol quanta m−2 s−1, measured
by an underwater photo sensor (LI-COR, Li250 Light
meter) were applied to the colonies at several locations in
the tank. Because of the dependency of coral growth on
water flow, the local mean water velocities for each
experimental group in the tank was measured using a
thermistor to ensure almost similar water flow for all
colonies (8±2 cm s−1), which is in the range of optimal
flows for this species (Khalesi et al. 2007).

Specific Growth and Budding Rates

Growth of the experimental corals was calculated after a
minimum of 2 weeks of adaptation to the lighting regimes,
which would result in a complete photoacclimation
(Anthony and Hoegh-Guldberg 2003). The weight gain of

each coral group (n=8) was measured weekly by buoyant
weighing, using an analytical balance (Prolabo A&D
HR300) with underweighing device. Average weekly μ
were then calculated from: m ¼ lnW2 � lnW1ð Þ=Δt; where
W1 and W2 are the weights at the beginning (t1) and end
(t2) of each time interval. The mean of these specific
growth rates was then calculated every week for the
colonies at each light intensity. Changes in the mean μ
were then plotted against light intensity. Statistical analyses
included analysis of variance (ANOVA) and Student’s t
tests. To have a clear estimation of likely light effects on
budding, the initial (time zero) and final (week 12) number
of buds for coral samples in each group were counted to
determine the specific budding rate using the same formula
as for the specific growth rate.

Zooxanthellae, Chlorophyll a, Protein, and Flexibilide

At the end of the experiment, equal samples from each
treatment were separated to measure the relative amounts of
zooxanthellae, chlorophyll a (chl. a), protein, and flexibilide at
various light intensities. Wet weight was determined by
weighing dry blotted samples prior to freezing. Following
freeze–drying, dry weight of the samples was also determined.
In order to count the zooxanthellae, the samples were
homogenized in tubes containing 2 ml filtered (0.2 μm)
seawater. The homogenate (1 ml) was diluted and vortexed.
The cells were counted using a hemocytometer under a
microscope. Chlorophyll a was extracted based on Kinzie
(1993), using chilled methanol/tetrahydrafuran (80:20 vol/vol)
as the solvent at 4°C during night. The following day,
absorbance of the supernatant was read at 665, 636, and
750 nm. The equation of Kinzie (1993) was also used to
determine chlorophyll a concentration, which was normalized
to coral’s protein content to have a meaningful comparison of
photosynthesis-dependent growth among the coral groups
(Chalker et al. 1983). Protein normalization also provides a
compatible measure of biomass (e.g., Zamer et al. 1989). Both
the algae and chl. a were also normalized to the dry weight of
the samples for comparison. The metanolic extraction was
then used to quantify concentrations of flexibilide, based on
Dmitrenok et al. (2003), using the standards kindly provided
by Prof. B. Bowden, Queensland University, Australia. The
flexibilide content was expressed as mg g−1 dry weight of the
samples.

Results and Discussion

Light-dependent Growth

The light-dependency of the colonies of the soft coral S.
flexibilis was investigated from low to high light intensities
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(10 to 1,000 μmol quanta m−2 s−1). The raw data of
buoyant weighing for the coral groups at each light
intensity is shown in Fig. 1. The coral groups at moderate
to relatively high light intensities (100–600 μmol quanta
m−2 s−1) showed ascending growth, whereas at very low
and especially at high light intensities (10 and 1,000 μmol
quanta m−2 s−1), the corals showed stunted growth.
However, the growth at very low irradiance (10 μmol
quanta m−2 s−1) was comparably higher than at 1,000 μmol
quanta m−2 s−1. Weekly mean specific growth rates (μ
day−1) were calculated from buoyant weight data for
12 weeks (Fig. 2). Maximum value of μ was 16×10−3

day−1, which is similar to values in our previous study on
this species (Khalesi et al. 2007). Paired t test showed
significant differences in μ between the groups of 10 and
100 (p=0.002), 100 and 600 (p=0.025), 10 and 200 (p<
0.03), and 200 and 600 (p<0.02). No significant differences
in μ was found in the corals between 100 and 400 μmol
quanta m−2 s−1 (ANOVA, p>0.05). The optimal light
intensity for rapid growth of S. flexibilis, therefore, appears
to be in the range of 100–400 μmol quanta m−2 s−1. The
present light-dependent specific growth rate (μ) of S.
flexibilis at light intensities of 100 μmol quanta m−2 s−1 is
identical to the value that was established by Moya et al.
(2006) for light-enhanced calcification (skeletal growth).

In addition, specific growth rates were also calculated
from initial and final number of buds. A similar result was
obtained as with buoyant weight data as a base for μ
(Fig. 1). It is concluded that the number of buds per unit of
buoyant weight is constant and independent of light
intensity. Budding in S. flexibilis was discussed earlier as
a mean of asexual reproduction both in the field (Bastidas
et al. 2004) and in captivity (Khalesi et al. 2007).

Despite the coral survival (visual observation) at the
extreme irradiances, their specific growth and budding rates
were zero, indicating that they may survive but cannot
thrive without suitable illumination. Hidaka et al (1982)
found a relation between sunlight and budding frequency in

the scleractinian coral Galaxea fascicularis. To the author’s
knowledge, the current research is the first study of an
optimal irradiance based on similar patterns of both specific
growth and budding rates in corals.

The curvilinear light-growth pattern for S. flexibilis
indicates no further growth increase at higher irradiances
beyond the optimal range (100–400 μmol quanta m−2 s−1,
Fig. 1). Hence, in addition to light availability (photo-
trophy) as the main source of energy for S. flexibilis,
optimal light intensity also plays a fundamental role to
maximize the utilization of available irradiance. This can
also be of considerable attention on the ecological and
physiological consequences of light intensity in the coral
habitats, which are necessarily exposed to sunlight.

Photoacclimation

The relatively similar μ of the corals at light intensities of
100–400 μmol quanta m−2 s−1 (Fig. 2) suggests photo-
acclimation, which occurs within rather a long period (e.g.,
Barnes and Chalker 1990; Robison and Warner 2006).
Photoacclimation improves the light tolerance, results in
diminished light-induced injury, and maintains the maxi-
mum growth under these conditions. This result is in
agreement with the earlier findings (Lambers et al. 1997;
Titlyanov and Titlyanova 2002a) that (symbiotic) corals
have a wide, species-specific range of light intensities in
which, through physiological acclimation, they maintain a
relatively stable level of production. In addition, S.
flexibilis, being a shallow-water species, is considered to
be more resistant to high radiation than deep-water corals
(Siebeck 1988).

The flexible retractile structure of S. flexibilis probably
was helpful to photoacclimate to supra-optimal levels. We
observed that the corals at relatively high light (>200 μmol
quanta m−2 s−1) were always retracted once exposed and
showed a delayed expansion when exposed again to low
and moderate illuminations (10 and 100 μmol quanta m−2
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s−1). Besides, the yellowish appearance of the corals at high
light intensities (>100 μmol quanta m−2 s−1) suggested the
photoprotective xanthophyll cycle as a key factor in
photoacclimation, which is a key photoprotective defense
in shallow water corals (e.g., Long et al. 1994; Coles and
Brown 2003). These features should have enabled this
species to divert intense radiation and shield zooxanthellae,
as was found for other symbiotic, retractile corals (Lasker
1979; Brown et al. 1994).

Zooxanthellae and Chlorophyll a Changes

Light-dependent growth of S. flexibilis shows the role of
zooxanthellae and their distinctive light-absorbing pigment,
chlorophyll a (Fig. 3). Zooxanthellae density increased two
times at low light intensities (up to 100 μmol quanta m−2

s−1) compared to high irradiances. Chlorophyll a concen-
trations (g−1 protein) increased by a factor of 2 in the range
of 10–100 μmol quanta m−2 s−1) and then decreased again
by a factor of >2 times above 100 μmol quanta m−2 s−1.
Furthermore, normalization of the algae and chlorophyll a
densities based on dry weight of the coral resulted in the
same pattern. Despite the high zooxanthellae content at low

light intensity (10 μmol quanta m−2 s−1) to maximize light
absorption, compared to higher irradiances (200 and
400 μmol quanta m−2 s−1), they contain low chlorophyll
because of low light availability. In contrast, the lower
chlorophyll content at 200 and 400 μmol quanta m−2 s−1, as
opposed to that of 100 μmol quanta m−2 s−1, led to the
increased coral growth than at 10 μmol quanta m−2 s−1

(Fig. 2), suggesting an efficient photosynthesis. Therefore,
photoacclimation through a decrease in the amount of
photosynthetic units, while maintaining photosynthetic
capacity, enabled S. flexibilis to thrive in a range of
favorable light intensities (100–400 μmol quanta m−2 s−1).
At this, the chlorophyll content and the photosynthetic light
absorption capacity of the zooxanthella decreased; as a
consequence, not all light was used in photosynthesis and a
part was diverted. At higher intensities, the zooxanthella, as
a result of photoinhibition, could not promote coral growth
(Apprill et al. 2007; Fitt and Cook 2001; Iglesias-Prieto and
Trench 1994, 1997).

Figure 3 is similar to the pattern of linearity of
photosynthetic rates in corals at low light, deviation at
certain irradiances, and reaching optimal values (maximal
photosynthetic rate) at high irradiance (Chalker et al. 1983;
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Levy et al. 2004; Stambler and Dubinsky 2005). Hence,
maximum algal photosynthesis corresponds to maximum
growth of S. flexibilis at favorable light conditions.

Similarly, a negative correlation between zooxanthellae
densities in S. flexibilis and solar downflux was found by
Michalek-Wagner (2001). At a similar light intensity
(100 μmol quanta m−2 s−1) as optimum growth irradiance,
a higher content of chlorophyll than at other intensities was
also found in a soft coral (Tsai and Liu 2005). Therefore,
zooxanthellae act more efficiently under optimal light
conditions, as was found earlier (Titlyanov et al. 2001;
Titlyanov and Titlyanova 2002b).

Irradiances above 600 μmol quanta m−2 s−1 apparently
caused expulsion of zooxanthellae from the host (bleach-
ing), i.e., the loss of a crucial energy source (Richter et al.
1990; Glynn 1993; Jones and Hoegh-Guldberg 2001)
leading to the observed reduced growth. These phenomena
are relevant at light intensities above 400 μmol quanta m−2

s−1, i.e., in shallow-water corals (Baker and Weber 1975;
Lesser and Farrell 2004).

Flexibilide Content

The level of flexibilide increased up to irradiances of
600 μmol quanta m−2 s−1 and then decreased again (Fig. 4).
The flexibilide contents we found are in the same range as
has been reported for this species before (Maida et al. 1993;
Michalek– Wagner and Bowden 2000). Our data show that
increased production of flexibilide in S. flexibilis presents a
strategy to acclimatize the stressful situations through a
chemical response to extensive long-term exposure to high
light stress. Michalek-Wagner and Bowden (2000) have
suggested such an energy investment into increased
flexibilide under conditions of combined elevated temper-
ature and solar irradiance for 12 days in the field. They,
however, did not mention any range of light intensities nor
a distinguishable effect of solar irradiance and temperature.
Irrespective of the mechanism involved in flexibilide

increase, both studies show that S. flexibilis has some
capacity to overcome stressful conditions.

At very low light, reduced photosynthesis energy and the
loss of zooxanthellae under high irradiances (10 and
1,000 μmol quanta m−2 s−1) might have resulted in
nutritional constraints leading to reduction of required energy
for the biosynthesis of flexibilide. Although previously
unknown, this mechanism has been proposed by Michalek-
Wagner et al. (2001). Zooxanthellae in soft corals may also
produce specific secondary metabolites (Papastephanou and
Anderson 1982; Ciereszko 1989) or they may not (Michalek-
Wagner et al. 2001; Frenz-Ross et al. 2008); zooxanthellae
expulsion could therefore directly interrupt metabolite
production in case the metabolites are really biosynthesized
by the zooxanthellae or indirectly damage manufacturing the
secondary metabolites through nutritional restrictions.

Conclusion

Our results show that phototrophy is decisive for the rapid
growth of S. flexibilis. Both specific growth and budding
rates of S. flexibilis showed a curvilinear dependency on
light intensity. They were linear up to optimal light level,
remained relatively constant at optimal range of irradiance,
and then dropped at higher light intensities. These show a
preference for optimum light and deterrence against high
illuminations in this species. The photoacclimation of S.
flexibilis and its symbionts helped the coral to sustain growth
and acclimate a range of steady-state light intensities as
optimal growth irradiances. Both the physiological and
morphological acclimations led to a reduced photo-damage
from high irradiances and to a maximized utilization of
optimal range of irradiance. Because this soft coral appar-
ently invests energy in the biosynthesis of metabolites
against rather high illuminations, the optimal growth
irradiance should be preserved at subsaturation levels.
Thereby, the higher chlorophyll content will enable S.
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flexibilis to optimize photosynthetically driven growth. This
octocoral, therefore, has developed both physiological and
morphological means to cope with various light conditions.
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