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Abstract If one demystifies entropy the second law of thermodynamics comes out
as an emergent property entirely based on the simple dynamic mechanical laws that
govern the motion and energies of system parts on a micro-scale. The emergence of
the second law is illustrated in this paper through the development of a new, very
simple and highly efficient technique to compare time-averaged energies in isolated
conservative linear large scale dynamical systems. Entropy is replaced by a notion
that is much more transparent and more or less dual called ectropy. Ectropy has been
introduced before but we further modify the notion of ectropy such that the unit in
which it is expressed becomes the unit of energy. The second law of thermodynamics
in terms of ectropy states that ectropy decreases with time on a large enough time-
scale and has an absolute minimum equal to zero. Zero ectropy corresponds to energy
equipartition. Basically we show that by enlarging the dimension of an isolated con-
servative linear dynamical system and the dimension of the system parts over which
we consider time-averaged energy partition, the tendency towards equipartition in-
creases while equipartition is achieved in the limit. This illustrates that the second
law is an emergent property of these systems. Finally from our large scale linear dy-
namic model we clarify Loschmidt’s paradox concerning the irreversible behavior of
ectropy obtained from the reversible dynamic laws that govern motion and energy at
the micro-scale.
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1 Introduction

The second law of thermodynamics has puzzled and is puzzling scientists for more
than a century. Maxwell’s Demon is probably the best advocate of the puzzle. Ther-
modynamics itself also suffers from controversies. Quoting the leading system sci-
entist Jan Willems from a book review on thermodynamics [1]: “From a pedagogical
point of view, thermodynamics is a disaster.” He goes on to mention the main stum-
bling blocks as being the often inconsistent use of mathematics to describe thermo-
dynamics, entropy being an unmeasurable quantity that somehow has to be deduced
from the system laws, the use of statistical arguments at random moments in thermo-
dynamic reasoning and the supposed metaphysical nature of the second law. Fortu-
nately Jan Willems concluded that the book under review by Haddad et al. [2] did not
suffer from all these stumbling blocks. The book actually takes a dynamical systems
approach to thermodynamics. It is free of any statistical arguments and introduces ec-
tropy as an alternative much more transparent quantity to entropy. Interestingly, but
also somewhat disappointingly, the second law of thermodynamics is introduced as
an axiom.

Our research into thermodynamics and the second law was initiated by an unex-
pected request to teach a small course on thermodynamics. Being system scientists
ourselves the book review of Jan Willems and the book itself by Haddad et al. in-
spired our recent research reported in this paper that also takes a dynamical systems
approach. The main inspiration however was our hypothesis that the second law of
thermodynamics should have a “Darwinian explanation” i.e. it should require no
more than the simple dynamic laws governing the system parts and their interaction
at the micro-scale.

Although our research is restricted to linear large scale dynamical systems we
believe it clarifies the puzzles surrounding the second law of thermodynamics. Our
approach differs from most of the analysis and work performed by physicists in that
no statistics are used to describe the system. Everything just follows from the simple,
deterministic, reversible, dynamic laws governing the motion and energy of all sys-
tem parts at the micro-scale. In this respect our work is similar to that of Bernstein
and Bhat [3], Bhat and Bernstein [4] and Rapisarda and Willems [5]. What distin-
guishes our work from theirs is (1) the use of a new, highly efficient computational
scheme to compare time-averaged energies and (2) the linking of growing system
dimensions to the emergence of the second law of thermodynamics. To investigate
the emergence, systems with identical parts on the micro-scale will be considered.
In that case equipartition of temperature equals equipartition of energy over macro-
scopic system parts that are (approximately) identical. The extension to equipartition
of temperature is made by considering unequal macroscopic system parts and their
thermal capacities.

Statistical mechanics is generally invoked to try to describe approximately the
macroscopic behavior of large sets of microscopic particles. Statistical mechanics
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uses statistics and probability measures. Both of these do not appear anywhere in our
system description and computations. We only argue from the outcome of our com-
putations that the probability for certain things to happen is either very high or very
low. Also to show that several results are independent of initial conditions we will
perform our computations with different initial conditions having certain properties.
Apart from these properties the initial conditions are selected randomly. In justify-
ing statistical mechanics the ergodic hypothesis is believed to play a central role [6].
Roughly speaking it assumes that time-averages and ensemble averages of dynami-
cal systems become equal as time tends to infinity. Although we will compute time-
averages of dynamical systems these computations do not require this hypothesis to
be satisfied. Also equilibrium conditions are generally required to justify statistical
mechanics [7]. They are also not needed to obtain our results.

To arrive at our results the use of a specific type of system description turns out
very convenient. Section 2 describes how general mass-spring systems are repre-
sented in this format. Next in Sect. 3 ectropy and energy equipartition are introduced.
The systems considered in this paper will all be of the mass-spring type. Moreover
they will all be diagonalizable i.e. all eigenvalues are assumed to be distinct (they are
all imaginary due to the conservative nature of the system). As described in Sect. 4
such systems have normal mode representations that are the key to the new, very ef-
ficient computation and comparison of time-averaged energies presented in Sects. 5
and 6. These computations are finally exploited in Sect. 7 of this paper to illustrate
the emergence of the second law. The masses and springs represent the microscopic
level of the system. As their number increases a macroscopic level emerges to which
the second law applies.

Normal modes of linear systems are decoupled and do not exchange energy. There-
fore the linear mass-spring systems considered in this paper might be considered
a worst case for the second law of thermodynamics to hold. In Sect. 8 we clarify
Loschmidt’s paradox concerning the irreversible behavior of ectropy obtained from
the reversible dynamic laws that govern motion and energy at the micro-scale. In-
terpretations, conclusions and speculations concerning the results put forward in this
paper are finally presented in Sect. 9.

2 Hamiltonian Description of Mass-Spring Systems

The second law applies to systems that are isolated (autonomous) and conserve en-
ergy (are conservative). Mass-spring systems are of this type. The analysis in this
paper is restricted to this type of system because: (1) mass-spring systems are simple,
well understood and therefore easy to interpret; (2) mass-spring systems are linear
and admit a normal mode representation that enables a very efficient computation of
time-averaged energy partition that circumvents the need for numerical integration;
(3) due to their decoupled normal modes mass-spring systems may be considered a
worst case for the second law of thermodynamics to hold.

Consider a one-dimensional mass-spring system in which all masses and springs
have one degree of freedom, say moving from left to right and vice-versa. To further
describe the system consider it to be in equilibrium. The system consists of n masses
mi , i = 1,2, . . . , n, numbered from left to right, and s linear springs with spring
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Fig. 1 Two examples of 1-dimensional mass-spring systems

constants ki , i = 1,2, . . . , s, that interconnect these masses in some manner. Figure 1
represents two examples of such a system.

To describe the equations of motion of such a system let pi(t), i = 1,2, . . . , n, de-
note the shifts of the masses from their equilibrium positions at any time t . It will be
convenient to use a Hamiltonian state-space representation of the system. This rep-
resentation consists of a series of first-order differential equations represented using
matrices and vectors. To obtain this representation introduce the column vector

x(t) = [
p1(t) . . . pn(t) ṗ1(t) . . . ṗn(t)

]T ∈ R2n (2.1)

where the superscript T denotes transpose. The column vector x in (2.1) is called
the state vector of the system. It contains the state-variables of the system being the
shifts of the masses from their equilibrium positions as well as their velocities. The
equations of motion of the system can now be represented in the following form:

ẋ(t) = Ax(t), A =
[

0n In

−diag
( 1

m1
, 1

m2
, . . . , 1

mn

)
KT

s Ks 0n

]

∈ R2n×2n (2.2)

In (2.2) In denotes the identity matrix of dimension n, 0n a square zero matrix of
dimension n, diag( 1

m1
, 1

m2
, . . . , 1

mn
) a diagonal square matrix of dimension n with di-

agonal elements 1
m1

, 1
m2

, . . . , 1
mn

respectively. The matrix Ks ∈ Rs×n represents the
influence of the springs. If spring i = 1,2, . . . , s connects the masses mj(i), mk(i),
1 ≤ j (i) < k(i) ≤ n, then row i of the matrix Ks is identically zero except for ele-
ment j (i) that equals

√
ki and element k(i) that equals −√

ki . If a spring on one side
connects to a reference wall then this wall must be treated as an infinite mass. There-
fore we may set to zero the corresponding element in Ks . As a result the reference
walls may be left out of the description and the sign of the single non-zero element
that is left over in row i is positive if the wall is to the right and negative if the wall is
to the left of the other mass to which the spring connects.

The total energy in the system, denoted by H , which is also called the Hamiltonian
of the system, equals the sum of all potential and kinetic energies,

H = 1

2

n∑

i=1

miṗ
2
i + 1

2

s∑

i=1

ki l
2
i (2.3)
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In (2.3) li = pj(i) − pk(i), i = 1,2, . . . , s, represent the stretches of the springs. They
can have either sign and are zero in equilibrium. An alternative compact representa-
tion of (2.3) is

H = 1

2
xTQx, Q =

[
KT

s Ks 0

0 diag(m1,m2, . . . ,mn)

]
∈ R2n×2n (2.4)

3 Ectropy, Energy Equipartition and the Second Law

Ectropy is introduced in this section as an alternative more transparent quantity to
entropy. Ectropy is a measure of how much energies associated to system parts differ.
If all the energies are equal this is called energy equipartition. In that case the ectropy
measure equals its absolute minimum of zero. To investigate the second law starting
from the dynamics at the micro-scale, instead of energies associated to system parts
we will consider time-averaged energies in the limit as time goes to infinity. This
averages out the very fast fluctuations of energy at the micro-scale and enables an
analysis on a macroscopic time-scale. This type of analysis is required since the sec-
ond law of thermodynamics applies only to large enough (macroscopic) time-scales
and large enough (macroscopic) parts of a system.

The definition of ectropy requires a separation of the system into parts that to-
gether make up the whole system. To investigate the second law of thermodynamics
these parts are macroscopic physical parts of the system that are spatially connected.
According to the second law of thermodynamics the temperature differences between
such parts tend to zero in the long run. If the macroscopic system parts are identical
temperature differences may be replaced by energy differences. Ectropy measures the
difference of energies captured by system parts.

In this paper we consider mass-spring systems. To investigate the second law,
initially identical system parts will be considered. These parts contain an (almost)
equal number of masses and springs that are connected to each other. Presume the
mass-spring system (2.2) is separated in this manner into N parts. Let,

E(t) = [
E1(t) E2(t) . . . EN(t)

]T (3.1)

denote the associated energy vector where Ek(t) represents the sum of all kinetic and
potential energies contained by system part k = 1,2, . . . ,N . Since the energy in the
system is conserved,

N∑

k=1

Ek(t) = H (3.2)

The momentary energy partitioning E(t) in (3.1) is an equipartition if,

∀k, j ∈ {1,2, . . . ,N}: Ek(t) = Ej(t) (3.3)

The ectropy U(t) associated to the momentary energy partitioning E(t) in (3.1) is

U(t) =
N∑

k=1

|Ek(t) − Ē|, Ē = H

N
(3.4)
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Energy equipartition does not refer to momentary but to time-averaged energy parti-
tionings.

Let

Ēk = lim
T →∞

1

T

∫ T

0
Ek(t)dt, k = 1,2, . . . ,N (3.5)

denote the time-averaged values of Ek(t), k = 1,2, . . . ,N . Energy equipartition oc-
curs if,

∀x(0), ∀k, j ∈ {1,2, . . . ,N}: Ēk = Ēj (3.6)

The next ectropy measure U is similar to (3.4) but refers to time-averaged energies,

U =
N∑

k=1

|Ēk − Ē|, Ē = H

N
(3.7)

In this paper we consider isolated conservative linear systems with identical parts
on a micro-scale. For such systems the second law of thermodynamics states that
the ectropy U(t) associated to identical large enough (macroscopic) system parts
k = 1,2, . . . ,N always decreases on a large enough time-scale (macroscopic time-
scale) and becomes zero in the limit as time tends to infinity.

In this paper we will present an efficient, accurate way to check whether ectropy
decreases over arbitrary time intervals. But our focus will be on whether ectropy
reaches the zero limit regardless of the initial conditions. From (3.2), (3.6) observe
that ectropy as defined by (3.7) is a nonnegative measure of how far a system is
removed from energy equipartition. Zero ectropy corresponds to energy equipartition.
Also the unit of ectropy in both (3.4) and (3.7) equals the unit of energy.

4 Normal Mode Representation and Energy Partition

The normal mode representation of the linear system (2.2) enables a comparison of
time-averaged energies such as those in (3.1) without the need to perform numerical
integration. Numerical integration is expensive computationally and becomes highly
inaccurate for systems with largely different time-scales such as the large scale mass-
spring systems considered in this paper.

To arrive at the normal mode representation consider the eigenvalue decomposi-
tion of the square matrix A in (2.2) represented by

AV = V D, V = [v1, v2, . . . , v2n], D = diag(λ1, λ2, . . . , λ2n) (4.1)

In (4.1) vi ∈ Cn, i = 1,2, . . . ,2n are the eigenvectors and λi ∈ C1, i = 1,2, . . . ,2n

the eigenvalues of A. Because the system preserves energy (is conservative) vi =
v̄i+1, i = 1,3, . . . ,2n − 1, and λi = λ̄i+1, i = 1,3, . . . ,2n − 1, where the overbar
denotes complex conjugate. Now build the following matrix:

V ′ = [v′
1, v

′
2, . . . , v

′
2n] ∈ R2n×2n, v′

j ∈ R2n, j = 1,2, . . . ,2n (4.2)
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with

v′
j = real(vj ), j = odd, v′

j = imag(vj ), j = even (4.3)

Then if A is diagonalizable and conservative (i.e. with only distinct pairs of complex
conjugate imaginary eigenvalues and pairs of complex conjugate eigenvectors),

A′ = V ′−1AV ′ ∈ R2n×2n, (4.4)

exists and is an anti-symmetric block-diagonal matrix,

A′ =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

0 ω1 0
−ω1 0

0 ω2
−ω2 0

...
...

0 ωn

0 −ωn 0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

(4.5)

The transformation (4.4) is associated to a change of basis,

V ′x′ = x (4.6)

of the system (2.2). The columns of V ′ represent the new basis vectors and x′ is the
state representation in this new state basis. The linear system,

ẋ′ = A′x′, x′ ∈ R2n (4.7)

obtained after this change of basis describes the behavior of the so called normal
modes. Each normal mode i = 1,2, . . . , n, is described by the two consecutive states
x′
j , x′

j+1, j = 2(i − 1) + 1 of the state vector x′. According to (4.5) they satisfy

[
ẋ′
j

ẋ′
j+1

]

=
[

0 ωi

−ωi 0

][
x′
j

x′
j+1

]

(4.8)

So the normal modes do not interact and therefore they do not exchange energy. In
the new state basis the total energy 1

2xT(t)Qx(t) is represented by

1

2
x′T(t)Q′x′(t), Q′ = V ′TQV ′ (4.9)

where Q′ is diagonal. Therefore the constant energy Em
i , i = 1,2, . . . , n, associated

to each normal mode is represented by

Em
i = [

x′
j (t) x′

j+1(t)
]
[
Q′

j,j 0

0 Q′
j+1,j+1

][
x′
j (t)

x′
j+1(t)

]

j = 2(i − 1) + 1, i = 1,2, . . . , n (4.10)



1224 Found Phys (2009) 39: 1217–1239

Each pair of columns j, j +1, j = 2(i −1)+1, i = 1,2, . . . , n, of the transformation
matrix V ′ in (4.4) has the following properties. Either (1) the last n components
of column j are zero and the first n components of column j + 1 or (2) the first
n components of column j are zero and the last n components of column j + 1.
As a result in case (1) x′

j is a linear combination of pi , i = 1,2, . . . , n, and x′
j+1

a linear combination of ṗi , i = 1,2, . . . , n. Now all potential energy in the system
depends solemnly on pi , i = 1,2, . . . , n, and all kinetic energy depends solemnly
on ṗi , i = 1,2, . . . , n. Then from (4.10),

E
mp
i (t) = Q′

j,j x
′2
j (t), Emk

i (t) = Q′
j+1,j+1x

′2
j+1(t), Em

i =E
mp
i (t)+Emk

i (t)

(4.11)
where E

mp
i (t), Emk

i (t) denote respectively the potential and kinetic energy associated
to normal mode i = 1,2, . . . , n. In case (2) E

mp
i (t), Emk

i (t) must be interchanged.
Equation (4.8) represents a harmonic oscillator and has the following solution:

x′
j (t) = A sin(ωit + ϕ), x′

j+1(t) = A sin(ωit + ϕ + π/2), t ≥ 0 (4.12)

where A, ϕ depend on the initial state [x′
j (0) x′

j+1(0)]T as follows:

A =
√

x′2
j (0) + x′2

j+1(0), ϕ = atan2
(
x′
j (0), x′

j+1(0)
)

(4.13)

Due to (4.12), (4.13) the states of the normal mode representation (4.7), (4.5) have
the following properties that play a central role in establishing energy equipartition,

1

2πωi

∫ 2π/ωi

0
x′2
j (t)dt = 1

2πωi

∫ 2π/ωi

0
x′2
j+1(t)dt = 1

2
A2

= 1

2

(
x′2
j (0) + x′2

j+1(0)
)
, j = 1,3, . . . ,2n − 1 (4.14)

1

2πωi

∫ 2π/ωi

0
x′
j (t)x

′
j+1(t)dt = 0, j = 1,3, . . . ,2n − 1 (4.15)

Since all the normal mode frequencies are distinct i.e.,

∀i 
= k: ωi 
= ωk, i, k ∈ {1,2, . . . , n} (4.16)

we have

lim
T →∞

1

T

∫ T

0
x′
j (t)x

′
k(t)dt = 0, j 
= k, j, k ∈ {1,2, . . . ,2n} (4.17)

The normal modes do not interact and do not exchange energy. For a mass-spring
system with s = n = 3 Fig. 2 illustrates how every initial condition partitions its as-
sociated energy over the 3 normal modes. This is indicated as energy partitioning 1.
By manipulating the initial state x(0), the initial conditions x′

j (0), j = 1,2, . . . ,2n of
the normal modes may be manipulated arbitrarily. If the initial conditions of a normal
mode are taken to be zero this mode is inactive because their states remain zero. Con-
sider the 3 mass-spring pairs mi, ki , i = 1,2,3, as represented on the right in Fig. 2.
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Fig. 2 Fixed (1) and time-varying and (2) energy partitioning in a linear mass-spring system

Equipartition of energy happens if and only if in Fig. 1 the energy partitioning 2 as-
sociated to each normal mode is an equipartition over all 3 mass-spring pairs mi, ki ,
i = 1,2,3.

There is a subtle but important difference between the energy partitionings 1 and 2
in Fig. 2. Energy partitioning 1 is fixed and applies at time zero whereas energy
partitioning 2 applies at any time, is time-varying (oscillatory), and may even be
negative. At any time however the sum of the 3 components connected to each normal
mode is fixed to the nonnegative value determined by the initial condition. Similarly
the sum of the 3 components connected to each mass-spring pair is nonnegative.
Equipartition relates to the time-average in the limit as time goes to infinity of all 9
components represented by the 9 arrows on the right in Fig. 2.

5 A Test for Energy Equipartition

The normal modes of a linear diagonalizable conservative system as represented by
(4.7), (4.5) do not interact. This implies (4.12), (4.14), (4.15). Assuming (4.16) this
also implies (4.17). These relations offer a simple efficient way to compute whether
two energies equipartition.

Consider a linear diagonalizable conservative system (2.2). Energies present in
this system are all represented by quadratic expressions of the form

xT(t)Sx(t), (5.1)

where S is nonnegative symmetric. Two arbitrary energies Ek , k = 1,2, associated to
the system (2.2) are therefore represented by,

Ek(t) = xT(t)Skx(t), k = 1,2 (5.2)

where Sk , k = 1,2, are nonnegative symmetric matrices that determine the energies.
For Ek(t), k = 1,2, to equipartition necessary and sufficient conditions concerning
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Sk , k = 1,2, will be established. Apply to the system (2.2) the basis transform-
ation (4.6). Then the normal mode representation (4.7), (4.5) is obtained. The en-
ergies (5.1) in the normal mode representation are

Ek(t) = x′T(t)S′
kx

′(t), S′
k = V ′TSkV

′, k = 1,2 (5.3)

with S′
k , k = 1,2, nonnegative symmetric. According to (3.5), (3.6) the two energies

Ek(t), k = 1,2, equipartition if

∀x′(0): Ē1 = lim
T →∞

1

T

∫ T

0
x′T(t)S′

1x
′(t)dt = Ē2 = lim

T →∞
1

T

∫ T

0
x′T(t)S′

2x
′(t)dt

(5.4)
The time-averaged energies Ēk , k = 1,2, can be expressed as follows:

Ēk =
2n−1∑

j=1,3,5,...

lim
T →∞

1

T

∫ T

0

[
x′
j (t) x′

j+1(t)
]
[

S′
kj,j

S′
kj,j+1

S′
kj+1,j

S′
kj+1,j+1

][
x′
j (t)

x′
j+1(t)

]

dt,

k = 1,2 (5.5)

Using the normal mode properties (4.14), (4.15), (4.17) from (5.5) we obtain

Ēk =
2n−1∑

j=1,3,5,...

(
S′

kj,j
+ S′

kj+1,j+1

)(
x′2
j (0) + x′2

j+1(0)
)
, k = 1,2 (5.6)

Ek(t), k = 1,2, equipartition if Ēk , k = 1,2, are equal for every x′(0). From (5.6)
the following conditions are therefore necessary and sufficient for Ek(t), k = 1,2, to
equipartition:

S′
1j,j

+ S′
1j+1,j+1

= S′
2j,j

+ S′
2j+1,j+1

, j = 2(i − 1) + 1, i = 1,2, . . . , n, k = 1,2
(5.7)

Equation (5.7) states that all corresponding 2 × 2 matrices that appear in (5.5) should
have identical traces. Equation (5.6) states that time-average energy Ēk depends in
a simple algebraic manner on the trace of S′

k and the initial conditions x′(0). This
relation provides highly valuable insight in energy equipartition and constitutes a
highly efficient way to compute time-averaged energies for the system (2.2). It is
obtained from a normal mode representation of the system.

Example 1 Confirmation of the virial theorem. The virial theorem states that poten-
tial and kinetic energy in any conservative system equipartition. For the mass-spring
system on top of Fig. 1 we verify this by checking whether the necessary and suffi-
cient condition (5.7) for equipartition is satisfied. The values of the masses and spring
constants are selected randomly,

m1 = 1.4501, m2 = 0.7311, m3 = 1.1068, m4 = 0.9860

k1 = 1.3913, k2 = 1.2621, k3 = 0.9565, k4 = 0.5185
(5.8)
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Let xT(t)S1x(t) and xT(t)S2x(t) represent the potential and kinetic energy of the
system respectively. Then,

S1 = KT
s Ks, Ks =

⎡

⎢⎢⎢
⎣

−1.1795 0 0 0

1.1234 −1.1234 0 0

0 0.9780 −0.9780 0

0 0 0.7201 −0.7201

⎤

⎥⎥⎥
⎦

(5.9)

S2 = diag

(
1

m1
,

1

m2
,

1

m3
,

1

mn

)
= diag

(
1

1.4501
,

1

0.7311
,

1

1.1068
,

1

0.9860

)
(5.10)

Transformation to normal mode representation of S1, S2 according to (5.3) gives:

S′
1 = V ′TS1V

′ = diag(0 0.6804 0 0.7658 0.4526 0 0.1210 0)

S′
2 = V ′TS2V

′ = diag(0.6804 0 0.7658 0 0 0.4526 0 0.1210)
(5.11)

From (5.11) observe that the necessary and sufficient condition (5.7) for equipartition
is satisfied.

6 Total Equipartition

The second law of thermodynamics applies only on a macroscopic space and time
scale. The mass-spring systems considered in this paper are meant to represent the
micro-scale of the system. Therefore to investigate the second law we have to con-
sider mass-spring systems with a large enough number of masses and springs. The
second law of thermodynamics when applied to systems with identical components
on the micro-scale states that energy equipartition is achieved regardless of the initial
condition. Equipartition in this case applies to identical parts of the system that are
large enough. According to (3.6) equipartition concerns time-averaged energies and
therefore automatically considers a large enough time-scale.

In the next section we will consider equipartition of energy of mass-spring sys-
tems separated into equal parts that are large enough (macroscopic). In this section
equipartition of energy on arbitrary scales is considered. The result can be used to
investigate equipartition of energy on both macroscopic and microscopic scales. Al-
though equipartition on a microscopic scale is seldom achieved in practice, it is a
sufficient condition for equipartition on a larger scale.

Consider the linear diagonalizable conservative system (2.2) with n normal modes
and distinct eigenvalues. For this system consider m ≥ 2 energies in normal mode
representation,

x′T(t)S′
kx

′(t), k = 1,2, . . . ,m (6.1)

According to (5.7) all these energies equipartition if

S′
kj,j

+ S′
kj+1,j+1

= S′
lj,j

+ S′
lj+1,j+1

j = 2(i − 1) + 1, i = 1,2, . . . , n, k, l ∈ {1,2, . . . ,m} (6.2)
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The energies (6.1) make up the total energy of the system if

∀x′:
m∑

k=1

x′T(t)S′
kx

′(t) = x′T(t)Q′x′(t) (6.3)

When the energies (6.1) satisfy (6.2), (6.3) this is called total equipartition. Equation
(6.3) is equivalent with

m∑

k=1

S′
k = Q′ (6.4)

Since Q′ is diagonal (6.4) translates into,

m∑

k=1

S′
kj,j

= Q′
j,j , j = 1,2, . . . ,2n (6.5)

m∑

k=1

S′
ki,j

= 0, i 
= j, i, j ∈ {1,2, . . . ,2n} (6.6)

Using (6.5), (6.2) becomes

S′
kj,j

+ S′
kj+1,j+1

= 1

m
(Q′

j,j + Q′
j+1,j+1), j = 2(i − 1) + 1, k = 1,2, . . . ,m

(6.7)
In summary for total equipartition the matrices S′

k in (6.1) have to satisfy (6.5)–(6.7)
while they must also come out nonnegative symmetric.

To interpret the conditions (6.5)–(6.7) use (4.10), (6.7) to find that

[
x′
j (t) x′

j+1(t)
]
[
S′

kj,j
0

0 S′
kj+1,j+1

][
x′
j (t)

x′
j+1(t)

]

= 1

m
Em

i ,

j = 2(i − 1) + 1, i = 1,2, . . . , n, k = 1,2, . . . ,m (6.8)

and so,

x′T(t)diag(S′
k)x

′(t) = 1

m

n∑

i=1

Em
i = H

m
, k = 1,2, . . . ,m (6.9)

where H denotes the total energy in the system. According to (6.9) the matrices
diag(S′

k), k = 1,2, . . . ,m already achieve the desired equipartition of energy. This
must imply that the off-diagonal elements of S′

k , k = 1,2, . . . ,m, when they satisfy
(6.6), cause a redistribution of energy at all times the time-average of which is zero.

Combining equations (6.8), (6.7), (4.11) gives the following interpretation. For
the total equipartition of energy, S′

k , k = 1,2, . . . ,m should be such that they take
an equal 1/m portion of the energy Em

i = E
mp
i + Emk

i of each normal mode i =
1,2, . . . , n. We may select S′

kj,j
= Q′

j,j /m, S′
kj+1,j+1

= Q′
j+1,j+1/m to satisfy (6.7).

This means selecting an equal 1/m portion of both E
mp
i and Emk

i . According to (6.7)
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however we may also take e.g. a larger portion of E
mp
i and a smaller portion of Emk

i

as long as their sum equals the 1/m portion of Em
i . But (6.5) does require that the sum

over all normal modes of these possibly larger and smaller portions of E
mp
i and Emk

i ,
i = 1,2, . . . , n, respectively, add up to the total potential and total kinetic energy in
the system at any time.

Summarizing ones more. The diagonal elements of S′
k , k = 1,2, . . . ,m, have to

satisfy (6.5), (6.7). Equation (6.7) ensures equipartioning while (6.5) ensures that the
energies together are equal to the total constant energy of the system at all times.
The off-diagonal elements of S′

k , k = 1,2, . . . ,m, may be set to zero since these only
cause a redistribution of energy at all times the time-average of which is zero. If taken
non-zero they must satisfy (6.6) and be such that S′

k , k = 1,2, . . . ,m, all come out
nonnegative symmetric.

Example 2 Conjecture Bhat and Bernstein [4]. Consider the linear conservative sys-
tem:

ẋ(t) = Ax(t), A =

⎡

⎢⎢⎢⎢⎢⎢
⎣

Â Ĉ Ĉ . . . Ĉ

−ĈT Â Ĉ . . . Ĉ

−ĈT −ĈT Â . . . Ĉ
...

...
...

...

−ĈT −ĈT −ĈT . . . Â

⎤

⎥⎥⎥⎥⎥⎥
⎦

∈ R2n×2n,

Â =
[

0 ω

−ω 0

]
, ω > 0, Ĉ =

[
â b̂

ĉ d̂

]
, ĉ = b̂

(6.10)

Observe that the system description matches the one given by Bhat and Bernstein.
We have added ourselves the condition ĉ = b̂ i.e. the condition that Ĉ is symmetric.
Bhat and Bernstein considered the following energies associated to the system (6.10),

Ei(t) = 1

2
x2

2i−1(t) + 1

2
x2

2i (t), i = 1,2, . . . , n (6.11)

where
∑n

i=1 Ei(t) is the total constant energy H in the system. Their conjecture states
total equipartition of the energies (6.11). To investigate their conjecture we used ran-
dom values for ω > 0, â, b̂, d̂ and several values for n. To check the equipartition
observe from (6.11),

Ei(t) = xT(t)Si(t)x(t), i = 1,2, . . . , n (6.12)

where Si is a diagonal matrix with all diagonal elements equal to zero except for
elements 2i − 1,2i − 1 and 2i,2i that are equal to 1. According to (5.3) the normal
mode representation of the matrices Si , i = 1,2, . . . , n, are

S′
i = V ′TSiV

′, i = 1,2, . . . , n (6.13)

Because the energies (6.11) add up to the total energy in the system, for total equipar-
tition it suffices to check the conditions (6.2) that are similar to (5.7). Note that the
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index k in (6.2) corresponds to the index i in (6.13) and that m in (6.2) equals n.
The many different examples we tried all confirmed the conjecture, as long as Ĉ is
symmetric. All examples we tried with an asymmetric Ĉ failed the conjecture. As
just one example we state the result for n = 3, ω = 0.6059, â = 2.1458, b̂ = 0.3440,
d̂ = 2.9688. The conditions (6.2) only involve the diagonal elements of S′

i , i = 1,2,3.
These are as follows:

S′
1: 0.2860, 0.0473, 0.2860, 0.0473, 0.1667, 0.1667

S′
2: 0.1363, 0.1970, 0.0777, 0.2556, 0.1667, 0.1667

S′
3: 0.0777, 0.2556, 0.1363, 0.1970, 0.1667, 0.1667

(6.14)

The diagonal elements in (6.14) are rounded up to 4 decimals but the conditions (6.2)
are all satisfied close to the machine precision.

Although the paper by Bernstein and Bhat suggests that (6.10) is a representa-
tion of a mass-spring system we encountered difficulties in obtaining its physical
mass-spring realisation. Although total energy equipartition is achieved for the sys-
tem (6.10) we were unable to find a mass-spring system obeying total equipartition
taking as the system parts mass-spring pairs that are physically connected. This sug-
gests that total equipartition rarely occurs.

7 Emergence of the Second Law

Total equipartition is only achieved if the system dynamics meet highly special de-
mands. Yet the second law of thermodynamics, that is believed to be universal, seems
to imply total equipartition. This appears to be a contradiction. The second law of
thermodynamics however applies to macroscopic space and time scales, not micro-
scopic ones. Therefore the second law is an emergent property. To resolve the appar-
ent contradiction recall that the second law only demands that equipartition of energy
is approximated in the limit as the space and time scale increase. The approximation
of equipartition of energy is reflected by the fact that the necessary and sufficient
condition (5.7) for total equipartition will not be satisfied while on the other hand the
time-averaged energies (5.6) of the system parts k = 1,2, . . . ,N will become equal
in the limit n → ∞, regardless of the initial conditions.

To demonstrate that the second law of thermodynamics is an emergent property in
this section the ectropy (3.7) is computed as a function of the size of identical system
parts of a mass-spring system. Recall that ectropy as defined by (3.7) is a measure
of how far the system is removed from equipartition of energy. In this section this
will be interpreted as how far the system is removed from satisfying the second law
of thermodynamics. It will be shown in this section that as the size of system parts
grows ectropy tends to zero regardless of the initial conditions. This confirms the
emergent character of the second law.

The mass-spring system at the top of Fig. 1 will be considered, extended on
the right with arbitrarily many springs and masses. All masses mi , i = 1,2, . . . , n,
have identical values equal to one and the spring constants ki , i = 1,2, . . . , n, as-
sociated to the springs have also identical values equal to one. The system will
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be separated into N identical physically connected parts starting from the left
in Fig. 1 where N is a divisor of n. So part i = 1,2, . . . ,N consists of masses
m(i−1)n/N+1,m(i−1)n/N+2, . . . ,min/N and springs s(i−1)n/N+1, s(i−1)n/N+2, . . . ,

sin/N . For different values of n,N , Fig. 3 records the average and maximum ec-
tropy U , given by (3.7), obtained from n different initial conditions,

x(0) = [
p1(0) p2(0) . . . pn(0) ṗ1(0) ṗ2(0) . . . ṗn(0)

]T (7.1)

Using n different initial conditions (7.1), and plotting the average and maximum
(worst case) ectropy U obtained from them, is meant to show that equipartition of
energy is approached regardless of the initial conditions. The n different initial con-
ditions are computed as follows:

xr(0) = [
1 ∗ r1 2 ∗ r2 . . . n ∗ rn 1 ∗ rn+1 2 ∗ rn+2 . . . n ∗ r2n

]T
,

x(0) = 100

xT
r (0)Qrxr(0)

xr (0)
(7.2)

In (7.2) rj , j = 1,2, . . . ,2n, are normally distributed zero mean random num-
bers with variance one. Their distribution can be written as N(0,1). Furthermore
xT
r (0)Qrxr(0) represents the total energy associated to the initial state xr(0) that is

used to normalize the initial state x(0) so that the total energy in each system equals
100, regardless of its state dimension 2n. This is necessary to enable a fair compar-
ison of the ectropy values as defined by (3.7) because these increase with the total
energy present in the system. By multiplying the random numbers in xr(0) in the
manner (7.2) a high initial value U(0) of the ectropy (3.4) is achieved because the
initial energy in each mass and spring increases on average as we move from left to
right at the top in Fig. 1. The high initial value U(0) is used to ensure that the initial
condition is far from energy equipartition.

To compute the ectropy U in (3.7) the time-averaged energies Ēk of each sys-
tem part k = 1,2, . . . ,N need to be computed. For system part k = 1,2, . . . ,N ,
similar to (5.2), we first determine the nonnegative symmetric matrix Sk so that
Ek(t) = xT(t)Skx(t) represents the energy of this system part at each time t . To
do this the rules mentioned below equation (2.2) are used. Next the nonnegative sym-
metric matrices S′

k , k = 1,2, . . . ,N , associated to the normal mode representation
are computed using equations (4.1)–(4.3), (5.3). Then, using (5.6), the time-averaged
energies Ēk , k = 1,2, . . . ,N , are computed.

From the left Fig. 3 observe that as the number of masses and springs n/N of the
N = 10 identical system parts grows both the average and maximum ectropy decrease
towards zero meaning that energy equipartition is approached. The maximum values
represent the trend of the worst (highest) values of the ectropy U whereas the average
represents the trend of the average ectropy U for increasing system dimensions. Due
to the partly random nature of the n initial conditions (7.2), as expected, the decrease
of the maximum (worst case) ectropy is less smooth and monotonic. From the right
Fig. 3 a similar conclusion may be drawn. Only now instead of the number of sys-
tem parts N the systems total number of masses and springs n = 1000 is fixed. As
announced at the start of this section Fig. 3 confirms the emergent character of the
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Fig. 3 Decrease of the average ectropy mean(U) and worst case ectropy max(U) with increasing size
n/N of system parts for fixed values N = 10 (left) and n = 1000 (right)

second law because the ectropy, that measures the distance from energy equipartition
i.e. satisfaction of the second law, goes to zero as the size of the system parts grows.

To show that equipartition of energy occurs regardless of the initial conditions
the computations associated to Fig. 3 were performed for different initial conditions
(7.1), (7.2). Although this might suggest invoking some kind of statistical mechanics
observe that no probabilistic computations, probabilistic descriptions or probabilis-
tic measures are used by us to arrive at Fig. 3. Neither have we used the ergodic
hypothesis concerning the equality of time and ensemble averages or equilibrium as-
sumptions. The only thing we have exploited are the simple reversible deterministic
dynamics of a large collection of masses and springs and their dynamic responses.

For one-dimensional mass-spring systems with equal masses and springs Fig. 3
proofs that the second law of thermodynamics is an emergent property. To prove an
emergent property one must show that it is satisfied more closely as the dimension
of the system increases. This in turn requires a measure of how closely the property
is satisfied. The measure we used is the ectropy (3.7) and Fig. 3 shows how it tends
to zero as the system dimension increases. This implies that the second law of ther-
modynamics is more closely satisfied as the system dimension increases while in the
limit energy equipartition occurs.

If the partitioning of the system is a partitioning in parts k = 1,2, . . . ,N that are
identical in size, as they were in Fig. 3, the second law comes down to energy equipar-
tition. But the second law is actually about the equipartition of temperature. To make
the transition from equipartition of energy to equipartition of temperature thermal ca-
pacities hk must be attached to the (macroscopic) system parts k = 1,2, . . . ,N [2].
The thermal capacities provide the relation between energy and temperature:

Tk(t) = 1

hk

Ek(t), k = 1,2, . . . ,N (7.3)

If we take system parts that are unequal in size the second law instead of equipartition
of energy demands equipartition of temperature. As an example we considered the
same system as before with a total number of masses and springs equal to n. This
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system was divided into unequal parts with nk , k = 1,2, . . . ,N , consecutive springs
and masses such that,

N∑

k=1

nk = n (7.4)

We selected:

n = 1000, N = 10, nk = 50 + 10k, k = 1,2,3,4,5,

nk = 100 + 10(k − 6), k = 6,7,8,9,10
(7.5)

The thermal capacities associated to the system parts must be proportional to the size
of the system parts. We selected

hk = N

n
nk (7.6)

The ectropy UT , specified below, is similar to the ectropy U in (3.7). The difference
is that U measures how far the system is removed from energy equipartition whereas
UT measures how far the system is removed from temperature equipartition,

UT =
N∑

k=1

|T̄k − T̄ |, T̄ = 1

N

N∑

k=1

Tk, T̄k = lim
T →∞

1

T

∫ T

0
Tk(t)dt (7.7)

Using (7.3), (7.6) the computation of U in (3.7) is easily extended to that of UT

in (7.7). Observe that if the energy totally equipartitions over the n identical (mi-
croscopic) mass-spring pairs then according to (7.3), (7.6), (7.7) this implies both
temperature equipartition,

T1 = T2 = · · · = TN ⇔ UT = 0 (7.8)

and

H =
N∑

k=1

Tk = NT1 = NT2 = · · · = NTN (7.9)

The average value of UT for the system characterized by (7.5), (7.6), obtained from
n = 1000 initial conditions (7.2), was computed to be 0.1958. The maximum value
of UT was 0.7931. These values may be compared with the terminal values in Fig. 3
and indicate the emergence of temperature equipartition. This comparison is justified
because of equation (7.9) that holds for total energy equipartition over the n identical
(microscopic) mass-spring pairs.

8 Ectropy Decrease and Loschmidt’s Paradox

The second law of thermodynamics not only predicts temperature equipartition, as
described and illustrated in the previous section, but also states that the ectropy U(t),
given by (3.4), decreases on a large enough time-scale. The left Fig. 4 shows 3 simula-
tions of the ectropy U(t) with initial conditions, given by (7.2), having a high ectropy
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Fig. 4 Ectropy responses starting from high ectropy levels at time t = 0. Left: n = 1000, N = 10, 3 re-
sponses. Right: n = 200, N = 10, 3 responses

level. The system is the mass-spring system from the previous section with n = 1000
and N = 10. The ectropy U(t), given by (3.4), is easily computed for arbitrary times t

from (4.12), (4.13), (5.5). These equations enable an efficient computation of ectropy
over arbitrary time intervals. We actually performed many more simulations of the
type shown in Fig. 4. They all show the same pattern. Starting from a high value the
ectropy, apart from fluctuations, significantly decreases after some time and finally
starts to fluctuate on an ectropy level higher than zero. The fluctuations are due to
permanent exchanges of energy at the micro-scale that do not perfectly cancel out.
In the system (2.2) these are energy exchanges between the individual masses and
springs. Fluctuations of ectropy (entropy) on the micro-scale have been confirmed
experimentally [8]. These fluctuations decrease as the macroscopic dimensions in-
crease. To demonstrate this the right Fig. 4 shows the same simulations but with the
macroscopic dimensions reduced with a factor 5 (n = 200, N = 10). Observe that the
fluctuations increase. The consistent significant decrease of ectropy in Fig. 4 confirms
the decrease of ectropy stated by the second law on a large enough time-scale where
fluctuations are negligible.

Our attempt to explain the second law of thermodynamics from just the simple
reversible dynamic laws that govern motion and energy at the micro-scale faces
Loschmidt’s paradox. In terms of ectropy simulations, this paradox can be stated
as follows. Simulations starting from a high level of ectropy at time t = 0, apart from
fluctuations, consistently show a decrease of ectropy as illustrated by Fig. 4. At any
time t > 0 during the simulation we may reverse the sign of the velocities ṗi(t),
i = 1,2, . . . , n, of the state x(t) given by (2.1) to obtain a new state

xr(t) = [
p1(t) . . . pn(t) −ṗ1(t) . . . −ṗn(t)

]T ∈ R2n (8.1)

If we perform a new simulation the state and time of which are denoted by xL, tL and
we take as the new initial state

xL(tL = 0) = xr(t = t1), t1 > 0 (8.2)
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the state provided by this new simulation will satisfy

xL(tL) = xr(t = t1 − tL), 0 ≤ tL ≤ t1 (8.3)

In other words the new state xL(tL), 0 ≤ tL ≤ t1, will travel the states xr(t), 0 ≤
t ≤ t1, in time reversed order. This property is due to the reversible (Hamiltonian)
nature of the dynamic equations of the system at the micro-scale [9]. From (2.1),
(8.1) observe that x(t) and xr(t) give identical values for the ectropy U(t), given by
(3.4), because the sign change of the velocities leaves all kinetic energies unchanged.
Therefore we must conclude that

U(tL) = U(t = t1 − tL), 0 ≤ tL ≤ t1 (8.4)

so the ectropy values are traveled in time-reversed order too. Therefore xL(tL), U(tL),
0 ≤ tL ≤ t1 is a simulation of the system (2.2) that shows a significant increase in
ectropy on a macroscopic time and space scale. This seems inconsistent with the
second law.

What may be concluded from the simulations described above? Observe that the
initial conditions (7.2) are all roughly on the same high ectropy level. Apart from
this level they are selected randomly. By taking these “arbitrary initial conditions
with a high almost equal ectropy level” simulations consistently confirm the decrease
of ectropy consistent with the second law. On the other hand any initial condition
constructed according to (8.2) results in a significant ectropy increase that seems
to refute the second law. The initial states (8.2) can be constructed in an infinite
number of ways. Therefore one might expect to also encounter an increase of ectropy
in simulations starting from arbitrary initial conditions. To investigate this we set up
a computer experiment where we performed many simulations the initial states of
which were selected similar to (7.2),

xr(0) = [
1c ∗ r1 2c ∗ r2 3c ∗ r3 . . . nc ∗ rn

1c ∗ rn+1 2c ∗ rn+2 3c ∗ rn+3 . . . nc ∗ r2n

]T
,

x(0) = 100

xT
r (0)Qrxr(0)

xr(0)

(8.5)

By varying the constant c, 0 ≤ c ≤ 1, in (8.5) the initial value of ectropy is manip-
ulated. The lowest value is obtained for c = 0 and the highest, which is equal to the
one produced by (7.2), is obtained for c = 1. Apart from the initial ectropy value the
selection of the initial state (8.5) is random. The computer experiment searched for
a significant ectropy increase that exceeds the level of fluctuations. The procedure to
detect these was verified using initial states (8.2). For each value c = 0,0.1,0.2, . . . ,1
in (8.5) the computer experiment performed 1000 simulations of the system consid-
ered in the previous section with n = 1000 and N = 10. A significant increase of
ectropy was never found on the time-scale of the simulation (0 ≤ t ≤ 5000). This
must mean that although infinitely many initial states exist that lead to a significant
ectropy increase at the time-scale of the simulations, together these initial states form
a negligible part within sets of initial states in a certain small ectropy range. So
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we may conclude from our computer experiment that the initial states constructed
according to (8.2) are highly unlikely. This implies that the second law of thermody-
namics should be rephrased as stating that the decrease of ectropy occurs with high
probability. As argued in the next paragraph, from the point of view of a physicist,
the states (8.2) never occur and the ectropy U(t), given by (3.4), always decreases.

Loschmidt’s paradox is strongly associated with what is called the Poincaré recur-
rence property of conservative Hamiltonian systems. This property states that con-
servative Hamiltonian systems return very close to their initial state infinitely often.
Since ectropy is a function of the state this implies that ectropy behaves cyclic. The
time of a cycle however is known to increase dramatically with the dimension of the
system. For an ideal gas observed at the macroscopic human scale it has been calcu-
lated to exceed by orders of magnitude the time we believe the universe exists since
the big-bang. Then we may ask: “Is Poincaré recurrence incompatible with the sec-
ond law of thermodynamics?” Hans Christian von Bayer [10] (page 141) stated the
answer very nicely: “In dealing with outrageously large numbers mathematicians and
physicists part company”.

Poincaré recurrence offers a way to interpret the constructed initial states (8.2) that
are highly unlikely (never) to occur. Although the recurrence time is exceptionally
long, in simulation nothing prevents us from considering the time and state the cycle
completes. This time and state are represented by tL = t1 and x(tL = t1) in (8.2).
Starting from just before this end of the cycle, i.e. from tL = 0 and U(tL = 0), ectropy
increases significantly back to its initial value U(tL = t1) as shown in Fig. 4. The fact
that at tL = t1 the cycle is completed is confirmed by simulating x(tL),U(tL) for
tL > t1 because the ectropy U(tL) starts to decrease for tL > t1 in a similar manner
as observed for t > 0 in Fig. 4.

In summary simulations starting at t = 0 from initial states x(t = 0) with a cer-
tain ectropy U(x(t = 0)) but otherwise random, apart from fluctuations, consistently
show a decrease of ectropy: U(x(t = t1)) < U(x(t = 0)), t1 > 0. At any moment in
time t = t1 > 0 we may reverse all the velocities of the state x(t = t1) to obtain a
new state xr(t = t1) given by (8.1) with ectropy U(xr(t = t1)) = U(x(t = t1)) <

U(x(t = 0)). If we simulate starting from tL = 0 with initial state xr(tL = 0) =
xr(t = t1) all these simulations will violate the second law i.e. U(xr(tL = t1)) =
U(x(t = 0)) > U(xr(tL = 0)), t1 > 0. However within the set of all states having an
ectropy equal to U(xr(tL = 0)) the states xr(tL = 0) = xr(t = t1) constructed from
simulations that started from a higher ectropy U(x(t = 0)) form a negligible part.

9 Conclusions, Interpretations and Speculations

Using just the simple, reversible dynamic laws of masses and springs governing
the systems micro-scale we demonstrated how the second law of thermodynamics
emerges from them. The second law of thermodynamics implies temperature equipar-
tition but only on a large enough space and time scale, not on a smaller (micro) scale.
This was shown by means of dynamic simulations and efficient computations of time-
averaged energies of conservative linear large scale dynamical systems. In addition
the dual notion of entropy called ectropy was employed. We modified ectropy such
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that its minimum is zero and its unit becomes that of energy. This modification allows
us to interpret ectropy, as given by (3.4), as usable energy (macroscopic energy) if all
macroscopic system parts are (approximately) identical. Zero ectropy then describes
energy equipartition among all macroscopic system parts. After reaching zero ectropy
macroscopic energy transfer is no longer possible. The extension to equipartition of
temperature that applies to unequal macroscopic system parts was made through the
introduction of thermal capacities.

In the past many attempts have been made to seek confirmation of the second
law by means of simulations of systems governed by just the simple reversible dy-
namic laws that apply on the systems micro-scale. The first one appears to be the
famous paper by Fermi, Pasta and Ulam [11]. Roughly speaking the results indicate
that equipartition of temperature or energy is not easily obtained in these simulations
whereas the second law is believed to be universal. In judging the simulation out-
comes one has to realize that the second law of thermodynamics applies only on a
large enough space and time scale. Therefore the second law is an emergent property.
The “human condition” is to experience thermodynamic phenomena on these large
enough space and time scales. Probably because it is an emergent property the second
law has puzzled and still is puzzling scientists. If the second law of thermodynam-
ics seems not to be satisfied in simulation and experiment an important question to
raise is whether the space and time scales considered are large enough. For example
ectropy (entropy) fluctuations [7] are not violations of the second law. They occur
only on a small enough space and time scale and have been confirmed experimen-
tally [8]. The occurrence at small time and space scales of what are called “second
law violations” in [7], as well as the ability to quantify them, are consistent with the
second law being an emergent property, the emergence being quantifiable, as shown
in this paper. As opposed to [7] and most publications concerning the second law of
thermodynamics our results are obtained without invoking probabilistic descriptions
and measures. Our measure is ectropy and all our results are obtained from dynamic
responses dictated entirely by the simple reversible deterministic mass-spring dy-
namics. The results themselves are partly stated in terms of things being either highly
likely or unlikely. On a large enough time and space scale these things are either
always respectively never observed in physics.

Although statistical mechanics has turned out valuable to help develop and un-
derstand thermodynamics we believe it also introduces difficult unnecessary prob-
lems like the ergodic hypothesis and satisfying equilibrium conditions. This is be-
cause statistical mechanics is not a physically realistic manner to describe systems
at the micro-scale. One may argue that masses and springs are neither but we be-
lieve their simple, conservative, reversible dynamic behavior much better represents
what is truly happening on the micro-scale of physical systems. As demonstrated in
this paper this behavior alone explains the second law and its emergent nature. The
explanation is largely due to the macroscopic scale which causes averaging to be-
come a dominant phenomenon. To see this consider Fig. 2 extended with many more
mass-spring pairs and associated normal modes. Also consider (5.6). As the number
of mass-spring pairs and normal modes goes to infinity, in Fig. 2 and through (5.6)
averaging causes energy equipartition among identical macroscopic system parts that
contain an (almost) equal number of mass-spring pairs that also tends to infinity. If
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the second law of thermodynamics is directly responsible for the arrow of time we
must also conclude from this paper that the arrow of time is also an emergent property
obtained from the simple reversible system dynamics on the micro-scale.

To find and demonstrate emergent properties we need to increase sufficiently the
scale of the system. Large scale systems tend to develop largely different time-scales
on which phenomena take place. This causes numerical integration of these systems
to become very inefficient and also inaccurate. The use of conservative linear (mass-
spring) systems that are diagonalizable enabled us to partly circumvent these prob-
lems. They allow for efficient accurate partly analytic computation of time-averaged
energies and the detection of total equipartition at arbitrary scales. This allowed us to
raise the scale sufficiently while performing our computations on an ordinary PC.

Clearly our results could be criticized on the grounds of restricting ourselves to
one dimensional mass-spring systems with identical masses and spring constants. The
question is to what extend they are representative for physical systems to which the
second law applies. On the other hand the mass-spring systems have normal modes
that do not exchange energy. From this point of view our mass-spring systems con-
stitute a worst case for the second law of thermodynamics to apply. In the future we
plan to investigate large scale dynamical mass-spring systems with unequal masses
and spring constants and macroscopic system parts having different compositions.

The major contribution of this paper is to show that the second law of thermody-
namics emerges in a straightforward manner out of the simple, reversible determin-
istic dynamics of masses and springs that represent the micro-scale of a large scale
linear dynamical system. To obtain this result the recognition that: (1) the second
law is an emergent property, (2) ectropy is a measure of how well the second law
is satisfied, and (3) time-averaging is a way to ensure a sufficiently large time-scale
was crucial. Then the result was obtained thanks to (1) the large scale linear conser-
vative mass-spring system provides analytical solutions for time-averaged energies
(2) to show the emergence a moderate system size suffices. The result also relies on
(3) a computer experiment that computes many dynamic responses of a large scale
system starting from initial conditions with approximately identical ectropy values
but otherwise random. From it we concluded that although at each ectropy level we
can construct infinitely many states violating the second law, together these make up
a negligible part of all possible states realizing this ectropy level. This explains why
Loschmidt’s paradox is not a paradox when taking the scale large enough. This result
also confirms the well known argument that although any isolated large scale conser-
vative system behaves cyclic in principle, the cycle time is so large that no cycle is
ever observed in physical reality [10].

The extension of our results to other physical systems having unequal parts at the
micro-scale but linear dynamics will most likely require us to raise the scale and with
it the number of computations significantly. We speculate that to obtain sufficient
averaging the scale must be increased with an order of magnitude for each difference
at the micro-scale. As long as the system is linear and diagonalizable we can still use
the associated analytic responses and time-averages that prevent us from having to
perform numerical integration that is time-consuming and inaccurate, especially for
large scale systems. If the system becomes nonlinear in general it seems that this can
no longer be prevented.



Found Phys (2009) 39: 1217–1239 1239

Concerning Maxwell’s Demon, the best advocate of the puzzle, but also a con-
struct of human imagination, we would finally like to comment. This paper revealed
that the second law of thermodynamics is an emergent property that relies entirely
on the simple “ignorant” reversible dynamics of system parts at the micro-scale.
Maxwell’s Demon however is “aware” of the emergent property and tries to exploit
this awareness to beat the second law of thermodynamics. So Maxwell’s Demon
would be a dynamic system on the micro-scale designed using “macroscopic infor-
mation”. In this respect the dynamics of Maxwell’s Demon would be radically dif-
ferent from all the other simple “ignorant” ones that determine the emergence of the
second law. If it would be possible to physically realize Maxwell’s Demon this would
radically change what happens on the micro-scale. But even then analysis of energy
and information flows associated to an imagined physical realization of Maxwell’s
Demon still seem to rule out the possibility to beat the second law [10, 12]. Also
recall that beating the second law implies beating it on a large enough (macroscopic)
time and space scale to which it applies. So we conclude that Maxwell’s Demon
remains a construct of human imagination.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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