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[1] Gridded data sets derived through interpolation of station data have a number of
potential inaccuracies and errors. These errors can be introduced either by the propagation
of errors in the station data into derived gridded data or by limitations in the ability of the
interpolation method to estimate grid values from the underlying station network.
Recently, Haylock et al. (2008) reported on the development of a new high-resolution
gridded data set of daily climate over Europe (termed E-OBS). E-OBS is based on the
largest available pan-European data set, and the interpolation methods used were chosen
after careful evaluation of a number of alternatives, yet the data set will inevitably have
errors and uncertainties. In this paper we assess the E-OBS data set with respect to:
(1) homogeneity of the gridded data; (2) evaluation of inaccuracies arising from available
network density, through comparison with existing data sets that have been developed
with much denser station networks; and (3) the accuracy of the estimates of interpolation
uncertainty that are provided as part of E-OBS. We find many inhomogeneities in the
gridded data that are primarily caused by inhomogeneities in the underlying station data.
In the comparison of existing data with E-OBS, we find that while correlations overall
are high, relative differences in precipitation are large, and usually biased toward lower
values in E-OBS. From the analysis of the interpolation uncertainties provided as part of
E-OBS, we conclude that the interpolation standard deviation provided with the data
significantly underestimates the true interpolation error when cross validated using
station data, and therefore will similarly underestimate the interpolation error in the
gridded E-OBS data. While E-OBS represents a valuable new resource for climate
research in Europe, users of the data need to be aware of the limitations in the data set and
use the data appropriately.
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1. Introduction

[2] Gridded climate data derived from meteorological
station measurements underpin a wide range of applications
and research in climate science, including evaluation of
global and regional climate models, the construction of bias-
corrected climate change scenarios and driving many appli-
cations in climate impacts assessments [Haylock et al.,
2008]. Increasingly, there has been a need for gridded data
at higher spatial and temporal resolutions, as the focus of
climate change research has shifted from global to regional
and local scales. Recently, Haylock et al. [2008] described
the development of the first high-resolution gridded data set

of daily climate over Europe (termed E-OBS), as part of the
EU funded ENSEMBLES project. The data set, comprising
daily mean, minimum and maximum temperature and precip-
itation, was constructed through interpolation of the most
complete collection of station data over wider Europe [Klok
and Klein Tank, 2008]. The data are available on four different
Regional Climate Model (RCM) grids (0.25 and 0.5 degree
regular latitude-longitude and 0.22 and 0.44 degree rotated
pole) and cover the period 1950–2006. Additionally,
estimates of interpolation uncertainties are included as part
of the data set [Haylock et al., 2008].
[3] Gridded data sets derived through interpolation of

station data have a number of potential inaccuracies and
errors. Errors in the underlying station data can be propa-
gated into the gridded data; typical sources of error include
incorrect station location information and individual erro-
neous values or nonclimatic breaks (inhomogeneities) in the
station time series. A second source of uncertainty relates to
the ability of the interpolation method to estimate grid
values from the underlying station network. In general,
interpolation accuracy decreases as the network density
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decreases, is less accurate for variables with more variable
spatial characteristics (e.g., precipitation) and degrades in
areas of complex terrain (e.g., mountain areas).While E-OBS
is based on the largest available pan-European data set
and the interpolation methods used were chosen after
careful evaluation of a number of alternatives [Hofstra et
al., 2008], the data set will inevitably have errors and
uncertainties.
[4] The aim of this paper is to assess the E-OBS data set

with respect to some of the potential errors that may be
present. Users can then familiarize themselves with the
strengths andweaknesses of the data and use them responsibly.
We choose three important properties of E-OBS to analyze
in this paper: (1) homogeneity of the gridded data;
(2) inaccuracies due to the underlying station network
density, through comparison with existing data sets that
have been developed with much denser station networks;
and (3) the accuracy of the estimates of interpolation
uncertainty that are provided as part of E-OBS.
[5] Long-term station data are often influenced by

nonclimatic factors, such as changes in station location
or environment, instruments and observing practices.
These so-called inhomogeneities can often lead to
misinterpretations of the climate data analyzed [Peterson
et al., 1998]. The station data used for E-OBS are not fully
homogenized. Individual station series may have been
homogenized by the original custodians of each series, but
the series provided by partner organizations have been used
directly, meaning potentially inhomogeneous stations may
be contributing to the interpolated grids. As station density
strongly influences the interpolation [Hofstra et al., 2008],
E-OBS was constructed using many potentially inhomoge-
neous stations, as their exclusion would degrade the station
network density and hence accuracy of the interpolation. In
addition, several studies explain that, for area averages of
relatively large areas, inhomogeneities balance out during
interpolation [Dai et al., 1997; New, 1999; Peterson et al.,
1998]. However, that may not be the case for the E-OBS
high-resolution grids. Therefore, the first out of three
properties tested is the homogeneity of the data set.
[6] The second topic is a comparison with other gridded

data sets that have been developed with much denser station
networks. These data sets are available, in the case of
precipitation, for long periods for the UK and the Alps
and for the period October 1999 to December 2000 for
Europe as a whole. For temperature, unfortunately, we have
only been able to secure data for the UK. Data sets
developed with denser station networks are assumed to
be a better approximation of the true area averages. So if
the E-OBS gridded data set produces grid area averages that
are close to those calculated from the higher-quality grids,
the E-OBS data set can be deemed to be a reasonable
representation of the true area-average gridded values.
[7] Because of the inevitable interpolation uncertainties,

the E-OBS data set has been provided with information on
the interpolation uncertainty for each grid box and each day
[Haylock et al., 2008]. E-OBS interpolation uncertainty has
been derived by combining the Bayesian standard error
estimates of the monthly climatology [Hutchinson, 1995]
and the interpolation standard deviation for daily anomalies
[Yamamoto, 2000] (see section 5 for more detail). Here we
concentrate on the interpolation standard error estimates,

and evaluate the accuracy of the estimates through cross
validation against station data. This represents the first
evaluation of the Yamamoto [2000] standard error method,
which has to date only been applied to geological data.
[8] The remainder of the paper is structured as follows.

Section 2 provides a more detailed description of the E-OBS
data set, including the underlying station data and the
interpolation and gridding methodology. We then cover
each of the three evaluations in turn: inhomogeneities
(section 3), comparison against regional gridded data sets
based on denser station networks (section 4) and evaluation
of the interpolation standard error estimates (section 5). We
conclude with a summary of results and a discussion of the
implications of our assessment for use of the E-OBS data
set.

2. E-OBS Data Set

[9] The E-OBS gridded data set was derived through
interpolation of the ECA&D (European Climate Assess-
ment and Data) station data described by Klok and Klein
Tank [2008]. The station data set comprises a network of
2316 stations, with the highest station density in Ireland, the
Netherlands and Switzerland, and lowest density in Spain,
Northern Africa, the Balkans and Northern Scandinavia.
The number of stations used for the interpolation differs
through time and by variable. The full period of record
used for interpolation is 1950–2006, but the period 1961–
1990 has the highest density. At any particular time,
there are more precipitation than temperature stations.
Inhomogeneities in the station time series have been
flagged, but potentially inhomogeneous stations have been
used for the interpolation, for reasons noted above.
[10] The E-OBS data set was derived through a three

stage process [Haylock et al., 2008]. Monthly means (totals)
of temperature (precipitation) were first interpolated to a
rotated pole 0.1 degree latitude by longitude grid using
three-dimensional (latitude, longitude, elevation) thin plate
splines. Daily anomalies, defined as the departure from the
monthly mean (total) temperature (precipitation), were
interpolated to the same 0.1 degree grid, and combined
with the monthly mean grid. For temperature, daily
anomalies were interpolated using kriging with elevation
as an external drift factor. For precipitation indicator kriging
has been used to interpolate daily anomalies, where the state
(wet/dry) of precipitation was first interpolated, after
which the magnitude at ‘‘wet’’ 0.1 degree grid points was
interpolated using universal kriging. Finally, the 0.1 degree
points have been used to compute area-average values at the
four E-OBS grid resolutions (0.25 and 0.5 degree regular
latitude-longitude grid and 0.22 and 0.44 degree latitude-
longitude rotated pole grids). In this paper, we use the
0.25 degree regular latitude-longitude grid for further
evaluation, as results for the other grids are essentially on
a similar grid resolution.
[11] Standard error estimates that accompany the gridded

data have been derived through combination of the individual
standard error estimates for monthly and daily interpolations.
Standard errors for the monthly mean or total are the
Bayesian standard error estimates, as available in the
ANUSPLIN package used for the spline interpolation
[Hutchinson, 1995; Wahba, 1983]. Error estimates for daily
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anomalies have been calculated using the method proposed
by Yamamoto [2000] (see section 5). Both standard error
estimates were calculated at the 0.1 degree master grid. For
temperature, monthly and daily uncertainties were
combined taking the square root of the sum of the squares
of the two uncertainties. For precipitation, the relative
uncertainty of the daily total (Udt/dt, uncertainty of the daily
total, divided by the daily total) is the square root of the sum
of the squares of the relative uncertainty of the monthly total
(Umt/mt) and the relative uncertainty of the daily proportion
of monthly total precipitation (Udp/dp),

Udt ¼ dt*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Udp

dp

� �2

*
Umt

mt

� �2
s

: ð1Þ

Uncertainties at the 0.1 degree grid have been averaged over
the target grids allowing for spatial autocorrelation. Details
on the interpolation methods, their implementation and the
calculation of uncertainties are available from Haylock et al.
[2008].

3. Homogeneity Assessment

3.1. Homogeneity Testing

[12] To analyze the influence of inhomogeneities in
station data on gridded time series and to inform the user
about possible inhomogeneous areas within the data set, we
apply a homogeneity test to the gridded data set and
compare results to the same test for station data. Numerous
tests could be used [e.g., Peterson et al., 1998], but for this
study we use the Wijngaard method [Wijngaard et al.,
2003], which is the same test that was applied to the
ECA&D station data used to construct the E-OBS, where
39% of all available precipitation and 25% of all available
temperature station series were found likely to be homoge-
neous over the period 1961–2006 [Klok and Klein Tank,
2008]. It has to be noted that the Wijngaard method
[Wijngaard et al., 2003] only identifies abrupt shifts and
does not detect slow changes, for example, in vegetation or
land use, which can also cause data problems. These slow
changes have not been discussed in this paper.
[13] The Wijngaard method is an absolute test, as it does

not use a supposedly homogeneous reference series. This
was appropriate for the version of the ECA&D data set
before the ENSEMBLES project started, because of its
sparse network [Wijngaard et al., 2003]. It comprises four
stepwise homogeneity tests: the standard normal homoge-
neity test (SNHT) for a single break [Alexandersson, 1986],
the Buishand range test [Buishand, 1981], the Pettitt test
[Pettitt, 1979] and the Von Neumann test [Von Neumann,
1941]. These tests have different characteristics; for
example the SNHT, Buishand and Pettitt tests are location-
specific, but the Von Neumann test is not. Moreover, the
SNHT test is more sensitive to inhomogeneities earlier or
later in the time series, whereas the Buishand and Pettitt tests
work better for breaks near the middle of the series. If zero or
one of the tests detects a break at the 1% significance level the
time series is classified ‘‘useful’’; if a break is detected by
two tests the series is classified ‘‘doubtful’’ and if three or
four tests find a break, the series is classified ‘‘suspect.’’
Homogeneity testing is uncertain; some inhomogeneities

found may not be real breaks and other breaks and changes
in variance of the data may be overlooked.
[14] For precipitation the annual wet day count is used for

the analysis of breaks, as this statistic generally has lower
variance than annual total precipitation, enabling a better
signal-to-noise ratio for significance testing. For tempera-
ture, the annual mean diurnal temperature range (mDTR)
and the annual mean of the absolute day-to-day differences
of DTR (vDTR) are used for homogeneity detection. DTR
is used in preference to mean, maximum or minimum
temperature, as tests on DTR are often more sensitive:
breaks that are mainly radiation related have different
effects on minimum and maximum temperature and are,
therefore, only weakly apparent in these variables, but do
appear clearly in DTR [Jones and Lister, 2009; Wijngaard
et al., 2003]. As the homogeneity tests are applied to both
mDTR and vDTR, a temperature station is classified
according to the worst outcome for the two variables.
[15] We apply the Wijngaard tests to both station and

E-OBS gridded data and compare the results. We calculate
the annual wet day count, mDTR and vDTR for each year if
for each month no more than 20% of the data are missing. If
less than 80% of the years in the period 1950–2006 are
present, the homogeneity test for that station or grid box is
not performed, although these stations may have been used
for the interpolation. The consequence of using only
stations containing more than 80% of years is that there
may be more stations with potential inhomogeneities in
the data set. However, a problem with using a smaller
percentage is that the Wijngaard method may not be
sensitive enough to find breaks at the 0.01 significance
level due to the short period used for the test. Wijngaard et
al. [2003] concluded that, although the exact value of the
threshold is arbitrary, a 1 mm threshold should be applied to
define a wet day because otherwise too many breaks were
detected, and we accordingly adopt this threshold.

3.2. Results and Discussion

[16] Figure 1 shows the stations and grid boxes that are
potentially useful (green), doubtful (blue) or suspect (red),
according the Wijngaard classification. For precipitation
there are many more useful stations and grid boxes than
suspect ones. Suspect areas are mainly located in northern
Norway, Scotland, Italy, the Balkan, parts of central Europe
and in northern Russia. For temperature most of Europe has
a statistical significant inhomogeneity at some point in the
gridded data, indicated by breaks in mDTR or vDTR (or
both). However, if we only look at mDTR there are major
differences (see auxiliary material Figure S1), with many
more potential inhomogeneities in coastal areas, with
remaining areas of central France, UK, Netherlands, parts
of Spain and major parts of Ukraine, Northern Russia,
Finland, southern Sweden, Czech Republic, Baltic states
and former Yugoslavia classified as useful in that case.1

That we find breaks in mDTR along the coast may be
explained by a reduced variability in those areas due to the
influence of the sea, making it easier to detect a break in
mDTR. Inhomogeneities are much more widespread in

1Auxiliary materials are available with the full article. doi:10.1029/
2009JD011799.
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vDTR with no clear difference between coastal and non-
coastal areas.
[17] Figure 1 also shows that the areas that have the most

suspect stations often also have suspect grids, but some-
times even one suspect station may influence a whole area.
An example of the latter is precipitation in northern Sweden
where only one station is suspect, but has an influence over
many grid boxes. Conversely, some stations have a smaller
influence on the area, as, for example, in Russia where
many stations are inhomogeneous, but only small areas are
influenced. Many stations in this area have breaks in
different years and these may be canceled out in the gridded
values. In addition, some areas, for example, in Northern
Spain, show inhomogeneities in the gridded data in areas
where all stations are classified useful. These inhomogene-
ities may be introduced because of a variable density of the
station network. For temperature, inhomogeneous stations
are present across the whole of Europe, which is reflected in
the inhomogeneities of the gridded data.
[18] In the case of precipitation many more areas of the

grids are classified as potentially useful than for temperature
(78% for the wet day count versus 46% for mDTR and 28%
for vDTR for the grids, and 89% versus 49% and 56% for
the stations; see Table 1), which is related to the fact that the
homogeneity test is less sensitive for the wet day count. The
percentage of stations that are qualified useful in this study
is comparable to the percentage of stations that are qualified
useful in the study of Klok and Klein Tank [2008] (89% for
the wet day count in this study versus 94% in the Klok and
Klein Tank study and 49% versus 54% for temperature).
The differences can be explained by the different time
period used for the studies (1950–2006 in our study
compared to 1961–2006 from Klok and Klein Tank

[2008]). The mDTR has a much higher percentage of useful
grids than vDTR, whereas vDTR has a higher percentage of
useful stations than mDTR. This indicates that for the
stations, breaks are more strongly manifested in the mean
of the data, whereas in the grids, breaks are more strongly
manifested in the standard deviation. That may be due to the
fact that the variability of the grid values are dependent on
the station density of the network used for the interpolation
and the distance to the grid center (N. Hofstra et al., The
influence of interpolation and station network density on the
distribution and extreme trends of climate variables in
gridded data, submitted to Climate Dynamics, 2009). A
station network that does not have a constant density in time
may introduce inhomogeneities.
[19] We also assess the distribution of breaks in time and

compare these between gridded and station data (Figure 2).
The Von Neumann test is not included in this assessment, as
this test is not location-specific. As expected, the SNHT
detects more inhomogeneities near the beginning and end of
the period than the Buishand and Pettitt tests. SNHT also
detects more breaks for any one variable than the other tests
(Table 1). For wet day count the inhomogeneity in 1965
detected in the station data by the Pettitt test is also visible
in the gridded data. Breaks in the 1975–1985 period in the
station data are mainly reflected in the gridded data close to
1980. For mDTR the breaks in station and gridded data do
not show a specific pattern. However, where for vDTR the
largest inhomogeneities in the station data are found around
1970, the largest breaks in the gridded data are found in the
early 1990s. The latter breaks may be due to a declining
station density around this time. We investigated whether
inhomogeneities could be determined on a decadal basis, by
analyzing each of the six decades separately, but the

Figure 1. Overall homogeneity, according to the Wijngard test, of (top) the station network
and (bottom) the gridded data for (left) precipitation and (right) temperature for the period 1950–
2006. For temperature, mDTR and vDTR are combined, with the most negative outcome for the two
variables used.
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Wijngaard method is not sensitive enough to find any
inhomogeneities in these shorter periods at the 0.01 signif-
icance level.
[20] We also divide the calculated potential breaks for all

three methods of the 57 year period into six decadal groups
and assess the inhomogeneities spatially (see auxiliary
material Figures S2–S5). We can conclude, for example
for precipitation, that most Italian and former Yugoslavian
stations around the Adriatic Sea with a break have this break
in the period 1980–1990 for all three tests; these breaks are
also propagated through into the gridded data. For precip-
itation, for all three tests in general, the timing of the breaks
in the gridded and station data compares quite well. For
temperature, the agreement in timing of breaks between the
station and gridded data is smaller. For example, for vDTR a
large part of Russia and the Ukraine have the largest
significant break between 1990 and 2000 for all three tests,
whereas most stations in this area suggest the largest break
exists between 1960 and 1980. This indicates that there may
be multiple breaks in the station time series of which one
becomes more important in the gridded data.
[21] The inhomogeneities within the gridded data are

important to keep in mind during any use of the data set.
For example, when studying trends in the data, the results
within the areas that are suspect may not be meaningful. For
those who require more detail, we have prepared a file on
homogeneity of the data, which can be downloaded from
the E-OBS download site (http://eca.knmi.nl/download/
ensembles/ensembles.php).

4. Comparison With Existing Data Sets

4.1. Existing Data Sets

[22] In the second test of the data set we compare E-OBS
to existing data sets developed with much denser station
networks. Since station density is a very important factor in
the interpolation and the interpolation errors are smaller in
areas with a dense station network [Hofstra et al., 2008],
these existing data sets are deemed close to the ‘true’ areal
average, and provide a useful reference against which to
judge the E-OBS data set. The differences in interpolation
methods used for the development of the different data sets
are assumed to be of minor importance. The three existing
data sets used are the UK, Alps and ELDAS data sets.
ELDAS and the Alps data sets only comprise precipitation
data. The UK data set contains all four variables. We were
unable to find or not allowed access to additional data sets
in other regions.
4.1.1. UK
[23] The UK data set, supplied by the UK Met Office,

comprises a 5 � 5 km equal-area grid, covering the period
1958–2002 for precipitation, 1995–2002 for minimum and
maximum temperature and 1995–2006 for mean tempera-
ture [Perry and Hollis, 2005]. This data set has been
compiled from a station network of 4400 stations for
precipitation and 540 stations for temperature using multiple
regression with geographic factors as the independent
variables, followed by inverse distance weighting (IDW)
of the residuals. In comparison, the ECA&D station net-
work has 138 stations within this area, of which most had
70–85% of the data available for all variables. To allow
comparison with the E-OBS interpolations all grid points
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Figure 2. The fraction of stations and grid points with a statistically significant (0.01) inhomogeneity in
each year of the data set. Inhomogeneities are calculated for the full 1950–2006 period. The Von
Neumann test is not location-specific, so we do not show the results of this test.
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within each 0.25 degree grid used for the interpolation were
averaged. We also compare this data set to ELDAS (see
section 4.1.3), for which a 1 degree grid is used.
4.1.2. Alps
[24] The Alps data set, comprising precipitation only, is

an updated version of the climatology and daily data
described by Frei and Schär [1998] and Schwarb et al.
[2001], described in more detail by Hofstra et al. [2008].
The data are available on a 0.25 � 0.1667 degree grid and
cover the period 1966–1999. For the period 1966–1970
there are no data available over Austria and after 1990 there
are data quality issues with many of the Italian stations, so
in our comparison, we use the period 1966–1990, except
for Austria, where the period 1971–1990 has been used.
The data set was constructed through addition of daily
anomalies to the long-term climatological mean. Anomalies
were interpolated from station data using a modified version
of the Shepard algorithm (an ADW technique) [Frei and
Schär, 1998; Shepard, 1984] and the long-term climatology
was derived with a local regression approach (PRISM)
[Daly et al., 2002] specifically calibrated for the Alps
[Schwarb et al., 2001]. The data set is based on over
6500 station records. In comparison, the E-OBS station
network has 341 stations available within this area, with
majority having over 70% data presence. To allow compar-
ison with E-OBS on a common grid, both data sets were
averaged to a 0.25 � 0.25 degree grid. Since 1.5 Alps grids
make up one 0.25 degree grid in latitudinal direction, the
average is taken as 2/3 times the value of the grid that falls
fully within the 0.25 degree grid and 1/3 times the value of
the grid that falls half in the 0.25 degree grid. This might
introduce a small uncertainty, which is deemed negligible.
4.1.3. ELDAS
[25] The ELDAS daily precipitation data set has been

developed by Rubel et al. [2004] for the Development of a
European Land Data Assimilation System to predict Floods
and Droughts (ELDAS) project. It covers central and
northern Europe at 0.2 degree latitude by longitude and
covers the relatively short period of October 1999 to
December 2000. Some 21,600 stations were used for the
interpolation, compared to 2000 for E-OBS over the
ELDAS domain. Station density is reasonably homoge-
neous, but areas such as Portugal, Belgium, Italy, the
Balkans, Czech Republic, the Baltic states and Scandinavia
have a lower density than Spain, France, the Netherlands,
the UK, Denmark, Germany, Poland, Switzerland and
Austria. Interpolation was done via the Precipitation
Correction and Analysis method [Rubel and Hantel,
2001]; this comprises a dynamical bias correction combined
with an ordinary block kriging algorithm. To enable
comparison, we averaged ELDAS and E-OBS to a common
1 degree latitude by longitude grid.

4.2. Comparison

[26] We compare E-OBS to the high-quality grids using
five skill scores for temperature and six for precipitation.
Skill scores are often used in forecasting, but we use them
here to identify the skill of our data set to reproduce data
that have been developed with a much denser station
network, which are assumed to provide a good representa-
tion of the ‘‘true’’ area averages. We calculate the skill
scores for all data together to obtain overall scores, and also

on a grid point basis to explore the spatial patterns in
difference between grids. We use the mean absolute error
(MAE), root mean squared error (RMSE), compound rela-
tive error (CRE) and Pearson correlation (R) to assess
temperature and the precipitation amount. The Critical
Success Index (CSI) and Percent Correct (PC) are used to
study precipitation state (wet or dry, where a wet day is
defined as having precipitation � 0.5 mm). The skill scores
are described in detail elsewhere [Hofstra et al., 2008], but
we include an explanation of each score in the auxiliary
material. For precipitation we also divide the MAE and
RMSE by the mean precipitation for the grids in order to
remove the influence of the amount of precipitation on these
two skill scores in each grid.
[27] We note that the high-quality data are not true areal

averages. However, given they are based on an order of
magnitude denser networks than E-OBS, we expect them to
be subject to smaller interpolation errors. Thus we can only
quantify differences between the data sets, which provide a
qualitative indication of potential errors in E-OBS, but
should not be interpreted as errors in the data set.

4.3. Results and Discussion

[28] Table 2 provides an overview of the results of the
skill scores, calculated ‘‘globally’’ for each grid pairing, as
well as for each standard season. At first sight, the data sets
compare very well: correlations, CSIs and PCs are high
(for example, the correlation coefficient over the full area
for temperature (UK only) is approximately 0.99 and for
precipitation 0.85–0.92), the CREs are small and RMSEs
are fairly small (for example, CRE is 0.02–0.04 and 0.18–
0.36 for temperature and precipitation, respectively). How-
ever, the mean differences between data sets are quite large.
RMSE is 0.70–0.90�C for temperature and 2.17–2.42 mm
for precipitation, apart from the Alps where it is larger, at
5.77 mm. MAE shows similar, but smaller differences. For
precipitation, the relative RMSE varies between 0.73 (UK)
to 1.33 over the Alps. Relative difference between E-OBS
precipitation and the other data sets are smaller in winter
(UK and ALPS) and autumn (ELDAS). The main reason for
larger differences between the data sets in summer is that in
summer precipitation is mainly convective rather than
frontal. During this season the correlation between stations
is lower than in the other seasons. Interpolation with a larger
station density will then produce better areal averages than
interpolation using a less dense network. For mean and
minimum temperature the data sets are closer to each other
in spring, whereas they compare better in winter for
maximum temperature.
[29] Figure 3 presents the results for precipitation spatially.

E-OBS compares best to the UK data set, as does the
ELDAS data set, suggesting that over the UK E-OBS is
fairly reliable. The differences are generally larger over
the west of Scotland, where topography is an important
contributing factor to spatial variability in rainfall. E-OBS
does not agree as well with the Alps data set, where
the topographic complexity means that the sparse E-OBS
network does not result in the same gridded data as the
denser Alps network; although absolute errors are large
because precipitation is on average higher in the
Alps, relative errors are also larger than in the UK. Similarly,
E-OBS compares poorly to ELDAS over Norway, due to
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the greater station density for the ELDAS data set in
this topographically complex area. Finally, the E-OBS
precipitation data set has virtually no stations available in
northern Africa, which causes the poor agreement in this
area. Figure 4 shows the spatial pattern of skill for temper-
ature over the UK. In general, the agreement is good for all
three temperature elements. Differences are greatest over
Scotland compared to the rest of the UK. That may be a
result of the higher station density of the UK network,
which may have had more station data available at higher
elevations in Scotland. Differences in agreement between
the grids are generally larger than differences between the
four seasons.
[30] We also evaluate whether E-OBS shows a bias

compared to the high-density data sets, by counting the
frequency of days where E-OBS is more than ± 0.1 standard
deviations from the high-density data set (Figure 5). For
precipitation, E-OBS shows a negative bias at nearly all grid
boxes relative to the Alps and ELDAS data sets. Compared
to the ELDAS data set, E-OBS is positively biased over
parts of Norway and at scattered locations elsewhere in
Europe. Over the UK, E-OBS rainfall tends to be negatively
biased in areas of higher rainfall in the west, apart from

Northern Ireland where there is a positive bias (and also
compared to ELDAS). For temperature there are areas with
a positive (too warm) and a negative (too cold) bias. One
striking feature is that areas such as Devon/Cornwall and
southern Wales, that are too warm for minimum tempera-
ture, are often too cold for maximum temperature. The bias
for temperature is not consistent over the whole of the UK.
[31] In Figure 6 we assess the difference between E-OBS

and the high-density data sets across the distribution of
precipitation amount and temperature. For this we calculate
for each grid deciles of temperature and precipitation (for all
wet days) for the full available time period. We then
calculate for each day and each grid the absolute difference
between the E-OBS and the other data sets and plot
the median, 5th, 25th, 75th and 95th percentiles of these
differences in each decile (Figure 6). While precipitation is
biased toward smaller values in all deciles of the data set,
the bias is larger for more extreme precipitation. In the
comparison of the 10th decile for the Alps the error between
the two data sets can be as high as 16 mm, which is the
median of the error when E-OBS is compared to the Alps
data set (see median of 9–10th decile of E-OBS versus Alps
comparison in Figure 6). The reason for this relates to the

Table 2. Skill Scores for the Comparison of the E-OBS Gridded Data Set With the UK, Alps, and ELDAS Gridded Data Sets for the

Four Variables Minimum, Maximum, and Mean Temperature and Precipitationa

R MAE (mm or �C) MAE/Mean RMSE (mm or �C) RMSE/Mean CRE CSI PC

Annual
UK Minimum temperature 0.984 0.687 n/a 0.895 n/a 0.041 n/a n/a

Maximum temperature 0.991 0.597 n/a 0.780 n/a 0.024 n/a n/a
Mean temperature 0.991 0.517 n/a 0.695 n/a 0.023 n/a n/a
Precipitation 0.916 1.081 0.355 2.170 0.729 0.182 0.836 0.909

Alps Precipitation 0.880 2.253 0.514 5.766 1.325 0.357 0.769 0.897
Eldas Precipitation 0.846 1.159 0.457 2.419 1.009 0.316 0.744 0.874

Winter
UK Minimum temperature 0.971 0.700 n/a 0.918 n/a 0.082 n/a n/a

Maximum temperature 0.977 0.507 n/a 0.680 n/a 0.056 n/a n/a
Mean temperature 0.974 0.533 n/a 0.718 n/a 0.068 n/a n/a
Precipitation 0.925 1.187 0.331 2.227 0.627 0.176 0.856 0.914

Alps Precipitation 0.894 2.013 0.505 5.031 1.274 0.346 0.784 0.906
Eldas Precipitation 0.848 1.256 0.458 2.360 0.926 0.373 0.759 0.869

Spring
UK Minimum temperature 0.973 0.663 n/a 0.860 n/a 0.069 n/a n/a

Maximum temperature 0.981 0.640 n/a 0.822 n/a 0.051 n/a n/a
Mean temperature 0.984 0.491 n/a 0.631 n/a 0.039 n/a n/a
Precipitation 0.916 0.893 0.359 1.803 0.730 0.181 0.828 0.908

Alps Precipitation 0.881 2.237 0.514 5.345 1.231 0.365 0.775 0.888
Eldas Precipitation 0.853 1.039 0.465 2.103 0.992 0.338 0.742 0.875

Summer
UK Minimum temperature 0.955 0.668 n/a 0.866 n/a 0.116 n/a n/a

Maximum temperature 0.970 0.709 n/a 0.896 n/a 0.087 n/a n/a
Mean temperature 0.965 0.520 n/a 0.700 n/a 0.082 n/a n/a
Precipitation 0.898 1.004 0.402 2.136 0.874 0.207 0.807 0.903

Alps Precipitation 0.852 2.531 0.546 6.088 1.385 0.392 0.732 0.878
Eldas Precipitation 0.826 1.026 0.514 2.003 1.334 0.577 0.690 0.870

Autumn
UK Minimum temperature 0.976 0.720 n/a 0.928 n/a 0.067 n/a n/a

Maximum temperature 0.987 0.518 n/a 0.667 n/a 0.035 n/a n/a
Mean temperature 0.983 0.526 n/a 0.709 n/a 0.042 n/a n/a
Precipitation 0.921 1.243 0.341 2.408 0.681 0.173 0.849 0.912

Alps Precipitation 0.899 2.228 0.495 6.196 1.368 0.326 0.783 0.914
Eldas Precipitation 0.863 1.226 0.431 2.511 0.911 0.306 0.765 0.879

aSkill scores have been calculated for each grid point and are then averaged.
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much higher station density in the other data sets. For E-OBS,
interpolation typically occurs from more distant stations
compared to the high-density data sets; as extreme precip-
itation events are usually more localized, they will be
oversmoothed if a sparse network is used. For temperature,
differences in error are similar for all deciles, with an
average of around 0.5�C. The errors are slightly larger in
the first decile for minimum temperature and the tenth
decile for maximum temperature, which means that there
are slightly larger errors in the extremes, but overall extreme
temperature events will be quite well represented (see also
the discussion of extremes by Haylock et al. [2008]).
[32] We can conclude that E-OBS exhibits quite large

differences from existing data sets based on higher-density
networks. While correlations overall, and on a grid-by-grid
basis, are high, relative differences in precipitation are large,
and usually biased toward an underestimation. For temper-
ature (UK only), mean absolute differences are at least
0.5�C. The fact that the ELDAS precipitation data set shows
a much better spatial match to the UK data set than E-OBS
underlines the fact that E-OBS is fundamentally limited by
its underlying station network. As the E-OBS network
density over the UK is above average compared to density
over the rest of Europe, we can conclude that this issue is
likely to be pervasive across much of the E-OBS domain.
Assessment of the agreement with existing data sets for all
deciles of precipitation and temperature shows that the
errors are larger in the extremes than in the more average
amounts of precipitation or temperature. There seem to be
significant problems with the underestimation of precipita-

tion extremes. Comparability is much higher for tempera-
ture than for precipitation, due to the fact that temperature is
a continuous variable as opposed to precipitation.

5. Assessment of the Uncertainties

5.1. Calculation of Uncertainties

[33] Brohan et al. [2006] give an overview of all sources
of known and calculable uncertainty in their HadCRUT3
gridded global monthly temperature data set. Three groups
of uncertainties have been identified: (1) station error,
(2) sampling error, and (3) bias error. Station error includes
errors made during thermometer reading, possible adjust-
ment of homogeneities, calculation of the station normal,
and processing of raw data. The sampling error is the
difference between the ‘‘true’’ spatial average and
the interpolated estimate. It depends on, among others, the
number of stations in the grid box, the distribution of those
stations and on the variability of the climate in the grid box.
The gridding method used by Brohan et al. [2006] is a
simple area average of the stations within a grid, which is
different from the kriging method that we use, but the
sampling error of our gridding method will depend on the
same factors. Two sources of bias error are summarized by
Folland et al. [2001]: urbanization effects [Jones et al.,
1990] and thermometer exposure changes [Parker, 1994].
For precipitation a similar list of sources of uncertainty
can be made. Here we focus on sampling error as it is expected
to be the largest contributor to overall error. The objective here
is to evaluate the accuracy of the estimates of interpolation
sampling error for daily anomalies used in E-OBS. As

Figure 4. Same as Figure 3 but for the skill scores R, MAE (�C), RMSE (�C), and CRE for
(a) minimum, (b) maximum, and (c) mean temperature for the comparison with the UK data set.
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Figure 5. Spatial pattern of bias in the E-OBS data set compared to higher-quality data over the Alps,
ELDAS domain, and UK, expressed as the percentage of days that E-OBS data are more than 0.1 standard
deviations below the higher-quality data, subtracted from the percentage of days the E-OBS data are more
than 0.1 standard deviation above the higher-quality data. Thus a positive value indicates that E-OBS data
tend to be biased greater than the higher-quality data, and vice versa. Precipitation is shown for (a) UK,
(b) Alps, and (c) ELDAS. For precipitation, red means that the area is estimated too dry in E-OBS
compared to the other data sets, and blue means too wet. Temperature (UK only) is shown for
(d) minimum temperature, (e) maximum temperature, and (f) mean temperature. For temperature blue
means that the area is estimated too cold in E-OBS compared to the other data sets, red means too
warm.
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explained in the introduction, these daily errors are estimated
using the method proposed by Yamamoto [2000].
[34] Yamamoto [2000] estimates the so-called ‘‘interpola-

tion standard deviation’’ at each grid point as the weighted
average of the squared differences between station and
interpolated values as follows:

s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i�1

li z xið Þ � z* x0ð Þ½ �2
s

; ð2Þ

where xi (i = 1,n) are the locations of the stations used for
the interpolation and li are the weights used in the kriging
interpolation and z are the observed values at the i stations
used for the interpolation (xi) and z* is the interpolated
value at the location for the interpolation (x0). The kriging
weights are a function of distance to x0 and their calculation
is described by Haylock et al. [2008].
[35] Yamamoto [2000] compared his interpolation

standard deviation to the kriging standard deviation and
cross-validation error. The kriging standard deviation is a
standard by-product of kriging and used widely as a
measure of reliability of the kriging procedure. The inter-
polation standard deviation has much larger correlation with
cross-validation error than with the kriging standard
deviation. The reason for that is that the kriging standard
deviation is not a true estimate of uncertainty [Journel and
Rossi, 1989;Monteiro da Rocha and Yamamoto, 2000], as it
cannot properly measure local data dispersion [Yamamoto,
2000].
[36] As we do not have the true grid values for evaluation,

we adopt station cross validation to test the accuracy of the
Yamamoto [2000] interpolation standard deviation. We
estimate the daily anomaly at each station in the ECA&D
data set used to construct E-OBS, using the same interpo-
lation approach used for E-OBS gridded data. Interpolation
standard deviation is calculated using equation (1) above
and cross-validation error as the absolute difference
between the interpolated station value and the observed
value,

cve0 ¼ z* x0ð Þ � z x0ð Þj j: ð3Þ

[37] We next transform the interpolation standard devia-
tions into 95% confidence intervals by multiplication with
1.96 (assuming a normal distribution, which is justified, but
likely not fully correct, because we have normalized the
data by using anomalies for the interpolation rather than
actual daily data) and addition to and subtraction from the
interpolated daily values for each station. We then count
the number of times the observed station value falls within
the 95% confidence interval for the interpolated value, with
the expectation that if the confidence interval is an accurate
estimate of interpolation uncertainty we would expect
the station value to fall outside the confidence interval
approximately 5% of the time.

5.2. Results and Discussion

[38] We first compare the cross-validation error (CVE)
and interpolation standard deviation (ISD) through
scatterplots. Results are similar for all temperature variables,
so we only show figures for precipitation and minimum
temperature.
[39] Correlation between the CVE and ISD for both

temperature and precipitation is positive (Figure 7). The
relationship between CVE and ISD is stronger for precip-
itation (r = 0.57) than minimum temperature (r = 0.33),
which provides confidence that the spatial distribution of
ISD will reflect the spatial variability in interpolation error.
The relationship is also closer to one-to-one for precipita-
tion, whereas for temperature, ISD tends to be too large at
smaller CVE and vice versa.

Figure 6. Absolute error in different deciles for each
comparison with existing data sets for (top) precipitation
(in millimeters) and (bottom) temperature (in �C). In the top
plot, red is for the UK, green is for the Alps, and blue is for
ELDAS; in the bottom plot, red is for minimum
temperature, green is for maximum temperature, and blue
is for mean temperature. The box of absolute error shows
the 0.25th median and 0.75th percentile, and the whiskers
show the 0.05th and 0.95th percentile. Deciles are
calculated for each grid separately. The whisker of the 9th
to 10th decile for the comparison with the Alps is cut off
and runs through to 41 mm.
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[40] However, a better test of the accuracy of the ISD is
the count of the percentage of station values falling outside
the interpolation 95% confidence interval derived from the
ISD (Figure 8). For precipitation, the upper 95% limit is
mostly exceeded between 5 and 10% of the time, while
values fall below the lower limit 10–25% of the time,
indicating that while the upper limit is a reasonable esti-
mate, the lower limit is poorly defined, and that precipita-
tion is frequently significantly underestimated. For
temperature, there are roughly equal numbers of values
falling above and below the 95% confidence interval, but
as with precipitation, the number exceeds that expected.
Most stations have at least 10% of data falling outside the
confidence interval, with many stations having more than
25% of values outside the interval. There is also a clear
north-south gradient in the percentage of the precipitation
values falling outside the confidence limits, with the CI
underestimation being much larger in the north. The main
reason for this is the fact that there are fewer rain days in the

south of Europe, compared to the north. The error is
smaller when no or little precipitation is observed, com-
pared to a situation when a lot of precipitation is observed.
[41] From this analysis, we can conclude that the inter-

polation standard deviation provided with the data is a
strong underestimation of the actual interpolation error
and should be used with care. Moreover, it has to be taken
into account, that the confidence intervals available with the
gridded data only include interpolation sampling error and
no station and bias errors.

6. Summary and Conclusions

[42] We have analyzed the new E-OBS European high-
resolution gridded data set of daily minimum, maximum
and mean temperature and precipitation in three ways. First,
we assessed the homogeneity of the gridded data and related
this to the homogeneity of the station data. Second, we
compared the data set to existing gridded data sets
developed with denser station networks. And finally, we
evaluated the accuracy of the interpolation standard
deviation, a measure of interpolation error that is provided
with the data set. While the three issues we assess do not
give a complete overview of the reliability of the data set,
they do provide important additional information for users
of the data set.
[43] The results of the Wijngaard et al. [2003] homoge-

neity tests show that there are many potential inhomogene-
ities present in the gridded data set. There are more
statistically significant breaks present in temperature than
precipitation data, and within the temperature data, there are
more breaks for vDTR (the annual mean of the absolute
day-to-day differences of the diurnal temperature range
(DTR)) than mDTR (annual mean DTR) variables.
Inhomogeneities in the gridded data are often related to
inhomogeneities in the stations contributing to the value of
the grid. However, this relation is not the same for all areas.
Sometimes an area is inhomogeneous even if there are zero
or only one inhomogeneous station in the area (e.g., for
precipitation in northern Spain and northern Sweden,
respectively) and on other occasions many stations are
inhomogeneous, but the area is not effected (e.g., for
temperature in southeastern France). The former statement
indicates that a station network that varies in time may
introduce inhomogeneities in the data. In addition, not all
stations could be tested for homogeneity, as many stations
did not have data for 80% or more of the years 1950–2006.
These stations might have inhomogeneities that we do not
find in our study. The year of the break of inhomogeneous
grids generally corresponds to the year of the break of
stations in the surrounding area, although the correspon-
dence is better for precipitation than for temperature. This
information will be critical when, for example, performing
analyses of trends in extremes using E-OBS. We would
recommend users of the data to only use potentially homo-
geneous areas for trend analysis. For a future update of the
E-OBS data set we recommend that the issue of inhomo-
geneities is studied thoroughly. A balance will have to be
found between the loss of station data and the introduction
of inhomogeneities. An alternative, as presented by Haylock
et al. [2008], would be to incorporate the homogeneity

Figure 7. Bivariate histograms showing the joint frequency
distribution of cross validation error and interpolation
standard deviation for (top) precipitation and (bottom)
minimum temperature. Both plots are on a log-log scale.
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assessment results in the uncertainty estimates, such as by
using stochastic simulations.
[44] As far as the authors are aware this is the first paper

that studies the homogeneity of gridded climate data. In this
paper we only apply an existing test for stations to the
gridded data. We do not test how effective the use of this
method is. An additional issue compared to station data is
that gridded data, at least in the case of E-OBS, are formed
by a station network that varies in density and placement
over time, which may introduce inhomogeneities in the
actual value and the variance of temperature and precipita-
tion. This requires further analysis.
[45] When compared to existing high-resolution regional

gridded data for the UK, Alps and Europe (ELDAS) that are
based on much denser station networks, E-OBS shows an
excellent correlation. However, mean absolute errors are
significant, in the order 0.5�C for temperature and greater
than 100% for precipitation. For both variables and all skill
scores the data sets compare worse in mountainous areas.
For precipitation, agreement is in general better in winter,
whereas for temperature agreement is mainly best in spring.
In the case of precipitation, E-OBS also shows a negative
bias, indicating that E-OBS tends to be oversmoothed
relative to the high-density data sets. For temperature,

E-OBS shows a small positive bias over quite large areas,
but some scattered areas have a stronger negative bias.
Moreover, the E-OBS data set compares better to the mean
of the variables of the existing data sets than to the
extremes, although differences are much larger for precip-
itation than for temperature. Consequently, the data set
should be used with caution in comparison to RCM outputs,
especially with respect to evaluation of RCM precipitation
extremes.
[46] The uncertainty estimates available with the data

only represent sampling, or interpolation, errors. These are
calculated by combining errors from both parts of the
interpolation process, namely interpolation of the monthly
mean (temperature) or totals (precipitation) using thin plate
smoothing splines and the interpolation of daily anomalies
using versions of kriging (see section 2). We evaluate
the daily interpolation error estimates, estimated using
Yamamoto’s [2000] interpolation standard deviation
approach. A comparison of these errors with cross-
validation errors shows that for most of Europe cross-
validation error is positively correlated with interpolation
standard deviation. However, the frequency with which
Yamamoto’s [2000] 95% interpolation confidence interval
is exceeded is much larger than expected, indicating that the

Figure 8. Spatial patterns of the percentage of interpolated data exceeding the (left) lower and (right)
upper limits of the 95% confidence interval for (top) precipitation and (bottom) minimum temperature for
all stations. Insets display histograms of the frequency of the overestimation or underestimation of the
stations.
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interpolation standard deviation significantly under-
estimates the actual interpolation error. The 95% confidence
limits are on average exceeded 25% and sometimes even
over 50% of the time. In a future update of the data we
recommend that ensemble stochastic simulations should be
considered for the estimation of uncertainties. Such an
approach could be used to create a set of interpolated
realizations that honor the observations, but vary away from
the observing stations by an amount dependent on the
distance to the observations as well as the variability of
the observations [Ahrens and Beck, 2008; Deutsch and
Journel, 1998]. These have also been mentioned by
Haylock et al. [2008] but have not been implemented due
to time constraints. Bellerby and Sun [2005] and Teo and
Grimes [2007] suggest shortcuts that should reduce the
computing time required. That uncertainty estimates are
underestimated should not have the consequence that
users of the data do not use the estimates. However, the
uncertainties should be seen as minimum uncertainties.
[47] The E-OBS data set is the first publicly available

data set that covers the whole of Europe at a very high
spatial resolution for daily data. However, as this study
reveals, there are some potentially important limitations to
the data. Inhomogeneities are present within the data, the
data show quite large absolute and relative differences and
biases to existing data sets that have been developed with
very dense station networks, and the standard errors
delivered with the data appear to significantly underestimate
the true interpolation error. This will have to be taken into
account when the data are used, for example, for the
evaluation of RCM outputs. Trends analysis may also be
affected by potential inhomogeneities in the data. In addi-
tion, the underestimation of extremes within the data may,
for instance, influence future predictions using RCM out-
puts regarding flooding. Moreover, when using the standard
errors that have been supplied with the data it has to be
taken into account that these errors only include interpola-
tion sampling errors and that these sampling errors are
underestimated.
[48] The E-OBS data will often be the only available data

set for studies of, for example, the comparison of RCM
outputs for the whole of Europe. With the collation of more
data, reconsideration of how to deal with inhomogeneities
in station data, and the improvement of the uncertainty
estimates the data will improve in the future. However,
users of the data should take notice of the weaknesses
mentioned in this paper and use the data appropriately.
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