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  Chapter 1 

  7 

General introduction 

 

Importance of plant cell walls 

One of the more obvious distinctions between animal cells and plant cells is the plant cell 

wall, a layer of well-structured material located beyond the cell plasma membrane, a rigid but 

dynamic extra cellular matrix that surrounds each cell. This cell wall has the functions of 

providing strength, and defining the shape and size of a plant cell, ultimately, the plant cell 

wall functions as the determinant of plant morphology. In addition, plant cell walls are 

instrumental in controlling cell interactions within tissues and recogninizing pathogens, in the 

development of water- and ion-binding capacity of plant tissues, and in mechanisms of seed 

germination, fruit maturation and leaf abscission, and in stress responses (Carpita et al., 

2000). Furthermore the plant cell wall polysaccharides have great practical significance in the 

food, feed, and chemical industry, as well as in bio-energy production. There has recently 

been an upsurge of interest in the use of biofuels to replace fossil oil. This has been stimulated 

by a very rapid increase in the price of petroleum and concerns about global climate change. 

The link between climate change and biofuels is related to the fact that biofuels are a 

renewable source of energy. Energy from sunlight is collected by the photosynthetic system of 

plants and used to reduce and condense atmospheric CO2 into the polysaccharides that 

comprise the cell wall of plants. These polysaccharides can be fermented into bio-ethanol or 

biogas, and used as transport fuel, or they can be burned to produce electricity and heat. The 

energy resulting from oxidation is released as heat, and the CO2 is recycled into the 

atmosphere. Gaining genetic control of the amount, composition, and structure of cell walls in 

different cell types will impact both the quantity and yield of fermentable sugars from 

biomass for biofuel production, and the challenge is to achieve this target without 

compromising plant performance. The progress towards this goal is limited by the incomplete 

understanding of the cell wall polysaccharide biosynthesis and the genes involved.  

 

The plant cell wall composition 

Two types of cell walls can be distinguished in a plant cell; the primary wall, which is 

deposited during cell growth, and the secondary cell wall, which is deposited inside the 

primary wall at the onset of differentiation. The primary wall needs to be both mechanically 

stable and sufficiently extensible to permit cell expansion while avoiding the rupture of cells 

under their turgor pressure. The primary cell wall consists mainly of cellulose, hemicellulose, 

pectins and structural proteins. Hemicellulose is defined as wall polysaccharides that are not 
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solublized from wall materials with buffers, hot water, or chelating agents, but only with more 

or less strong chaotropic agents such as alkali (O’Neill and York, 2003). Pectins are structural 

complex polysaccharides, to date three classes of pectic polysaccharides have been 

characterized: homogalacturonans, rhamnogalacturonans, and substituted galacturonans. In 

the primary cell wall the cellulose microfibrils are cross-linked with hemicellulose to form a 

cellulose-hemicellulose network, and imbedded in a pectin matrix (Fig. 1). The much thicker 

secondary cell wall contributes to specialized functions related to a specific cell type, such as 

xylem fibers. The secondary wall is further strengthened by the incorporation of lignin, 

polymers of aromatic alcohols that covalently bind to hemicellulose (Vanholme et al., 2008).  

 

Figure 1. Model for the cell wall biosynthesis. Cellulose microfibrils (blue rods) are synthesized by 
large hexameric complexes in the plasma membrane, whereas hemicelluloses (red) and pectins 
(green), which compose the matrix polysaccharides, are synthesized in the Golgi apparatus and are 
deposited to the wall surface by vesicles. 
 

Glycosyltransferases 

The importance of the plant cell wall is revealed in the high number of genes likely to be 

involved in cell wall biogenesis, assembly, and modification. With the completion of the 

Arabidopsis thaliana genome sequence, it became clear that about 15% of the plant genes 

participate in cell wall formation and functioning (Carpita et al., 2001; Carpita and McCann, 

2002). The key enzymes that are directly engaged in polysaccharide assembly are the 

glycosyltransferases (GTs). GTs are enzymes that transfer the glycosyl moiety of activated 
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sugar residues to various acceptors and they are specific towards donor- and acceptor-

substrates, as well as the bonds they form. The high specificity of these enzymes supports the 

abundance of the genes needed for the diverse glycoside bonds in the polysaccharides of the 

plant cell walls (Faik et al., 2002; Carpita et al., 2001). About 1.6% of the Arabidopsis 

genome is made up of genes that encode GTs (Egelund et al., 2004). The GTs can be divided 

into two distinctive classes; type I and type II. Type I are processive enzymes that 

continuously incorporate glycosyl residues in the molecular backbones that constitute the 

main chains of wall polysaccharides. These polysaccharide synthases are believed to remain 

in close association with the nascent polysaccharide during its elongation, and are involved in 

the biosynthesis of homo-polysaccharides (Farrokhi et al., 2006). These integral membrane 

proteins contain multiple transmembrane domains and have been proven difficult to purify by 

traditional biochemical methods (Delmer, 1999). The second class of GTs comprises enzymes 

that transfer glycosyl residues to a polysaccharide backbone. They have a single 

transmembrane domain (TMD), which functions as an anchor, an extended hydrophilic stem 

region, and a globular catalytic domain within the lumen of the Golgi (Perrin et al., 2001). 

 

The CESA superfamily 

A breakthrough in cell wall research was the identification of a type I glycosyltransferase 

family containing the cellulose synthases (CESA) proteins (Pear et al., 1996). Analysis of the 

Arabidopsis genome project indicated that this plant has ten cellulose synthases (CESAs) and 

thirty cellulose-like (CSL) genes (Richmond and Somerville, 2000). The catalytic region of 

these proteins was identified as sequence motif; D, D, D, QXXRW. The CSL genes are 

classified into the A, B, C, D, E, and G families and are proposed to encode processive 

glycosyltransferases that synthesize cell wall polysaccharides. A member of the CSLA 

subfamily was found to encode β-mannan synthase in guard seeds (Dhugga et al., 2004) 

whereas genes from respectively the CSLC and CSLF families encode β(1,4)-glucan and β-

(1,3;1,4) glucan synthases (Cocuron et al., 2007; Burton et al., 2006). The Arabidopsis CESA 

proteins range from 985 to 1088 amino acids in length and are integrated in the membrane by 

eight TMDs (Taylor, 2008). The cytosolic amino terminus contains a RING-type zinc finger 

though to be involved in protein-protein interaction (Saurin et al., 1996) (Fig. 2). The RING-

finger domain of Cotton CESA protein was shown to homodimerise and interact with the 

RING-finger of another CESA protein (Kurek et al., 2002). The central cytosolic domain 

between the second and third TMD contains the catalytic site and is highly conserved between 
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all the CESA proteins, except for one region, the hyper variable region (Vergara and Carpita, 

2001). 

 

 

Figure 2. Model for the topology of a CESA protein. The CESA protein contains eight 
transmembrane domains and large central domain containing the QXXRW motif, believed to be 
important for substrate binding and catalysis, and the hyper variable region (HVR). 
 

Structure of cellulose  

Due to its abundance and importance, many efforts have been done to understand the structure 

and properties of cellulose and identify the enzymes involved in its biosynthesis. Unlike most 

known biopolymers, cellulose is a simple molecule of unbranched β(1,4)-glucan chains (Fig. 

3A). Therefore cellulose is defined less by its primary structure, with β-1,4 linked glucosyl 

residues as repeating unit, but more by its secondary and higher-ordered structure.  

Different forms of cellulose are defined by their crystallinic form. In crystalline cellulose, the 

glucan chains are arranged in a specific manner with respect to each other, no specific 

arrangement of the glucan chains occurs in non-crystalline or amorphous cellulose, nematic-

ordered cellulose which is an intermediate form (Kondo et al., 2004). In plants cellulose is 

assembled in a structure referred to as a microfibril and the glucan chains are arranged in a 

parallel manner thought to be composed of thirty-six glucan chains (Taylor, 2008).  
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Figure 3. Chemical structure of cellulose and xyloglucan. A) The structure of cellulose, G indicates 
glucose, B) the structure of xyloglucan G indicates glucose, X xylose, L galactose and F fucose. 
Between the brackets (n) the repeating unit is indicated. 
 

Cellulose biosynthesis 

In higher plants cellulose is synthesized at the plasma membrane by rosette complexes (Fig. 

1) (Somerville, 2006). The rosette structures are believed to contain thirty-six individual 

CESA proteins and microfibrils are believed to be composed of thirty-six glucan chains 

(Somerville et al., 2004). The rosette complex is organized as a hexamer, as it consists of six 

subunits, probably resulting in synthesis of six glucan chains per subunit (Fig. 4). The rosette 

complexes are assumed to be assembled in the Golgi and then exported to the plasma 

membrane (Somerville, 2006). It was found that at least three different CESA proteins are 

required to form a functional rosette complex, CESA1, 3 and 6 and CESA4, 7 and 8 during, 

respectively, primary and secondary cell wall formation (Persson et al., 2007; Taylor et al., 

2003). Mutant analysis revealed that in the primary cell wall synthesis CESA1 and CESA3 

are essential, whereas CESA6 maybe functionally redundant by CESA2, CESA5 and CESA9, 

as null alleles of CESA1 and CESA3 proteins result in embryo-lethal phenotypes (Persson et 

al., 2007). Defects in the secondary cell wall shown by irregular xylem vessels that are unable 

to withstand the negative pressure generated during water transport through the xylem, the 

IRX phenotype. Mutations in each of the secondary cell wall CESAs results in such defects,  
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Figure 4. Model for the structure of the rosette. Six subunits, containing six CESA proteins, interact 
to form a rosette. Adopted from Doblin et al., 2002. 
 

and it seems that all CESAs involved are equally important for cellulose deposition (Turner 

and Somerville, 1997). These irx1, irx3 and irx5 mutants, respectively atcesa8, atcesa7, and 

atcesa4, contain approximately 30% of the cellulose compared with wild type. Cellulose in 

the primary cell wall appeared unaffected in these mutants (Ha et al., 2002; Turner and 

Somerville, 1997). The identical phenotypes and similar reduction in cellulose content 

indicate that these genes are nonredundant, and that the enzymes are active in the same cell, at 

the same time (Taylor et al., 2003). 

Apart from the CESA proteins, cellulose biosynthesis requires the participation of other 

proteins. Defects in the secondary cell wall characterized can be indicated by the IRX 

phenotype, therefore this phenotype was used to isolate Arabidopsis mutants defective in the 

biosynthesis of cellulose of the secondary cell wall (Turner and Somerville, 1997). Although 

this phenotype is indicative for any secondary cell wall mutations, it is not particularly suited 

to very large genetic screens. Mutants, which only exhibit slight distortions, are harder to 

discriminate and very severe wall defects may result in reduced viability, indicating that this 

screen may not identify all genes involved in proper secondary cell wall formation. Mutations 

in KORRIGAN result in reduced cellulose in both primary and secondary cell wall 

(Szyjanowicz et al., 2004). The korrigan mutant is deficient in an endo-β(1,4)-D-glucanase 

(Nicol et al., 1998) and although the exact role of the glucanase KOR1 in the synthesis of 

cellulose is not known, the mutant phenotype indicates that this enzyme is essential in 

cellulose biosynthesis (Sato et al., 2001). It has been suggested that KOR1 might be involved 

in cleavage of glucosylated sitosterol primers for cellulose synthesis, or in editing the growing 
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microfibrils to ensure proper packing of individual glucan chains, or in termination of the 

microfibril elongation (Peng et al., 2002; Roberts et al., 2004). Mutations in the COBRA locus 

affect the orientation of cell expansion and cause reduction in cellulose production 

(Schindelman et al., 2001); however; this reduction is thought to be due to the disordered 

deposition of cellulose microfibrils in which the COBRA genes are involved. Mutations in 

KOBITO result in cellulose-deficient, dwarfed mutants with a randomized cellulose 

microfibril orientation (Pagant et al., 2002). Mutations in an endo chitinase-like gene (CTL1) 

cause ectopic deposition of lignin and cell deformation in pith cells due to a decrease in 

cellulose (Zhong et al., 2002). The kobito, knopf and botero1 mutants also show compromised 

cellulose content. Although these mutants have an effect on the cellulose synthesis, it is 

unknown whether they are directly linked to the rosette structure or even the cellulose 

machinery.  

 

Structure of xyloglucan 

The major hemicellulose found in the primary cell wall of dicots and non-graminaceous 

monocots is xyloglucan, where it constitutes 10 to 25% of the cell wall dry weight in dicots 

(McNeil et al., 1984; O'Neill and York, 2003). Xyloglucans have a β(1,4) glucan backbone, 

regularly decorated at C6 with α-linked xylose residues, which in turn may be substituted with 

galactosyl and fucosyl residues (Fig. 3B). This xyloglucan substitution is highly regular and 

conserved in the majority of primary cell wall xyloglucans (Vincken et al., 1997). It might act 

as a spacer preventing cellulose microfibrils from aggregating or as an adapter that enables 

cellulose to interface with other cell wall matrix components (Thompson, 2005). Models of 

the plant cell wall postulate that xyloglucan cross-link adjacent cellulose microfibrils to form 

a cellulose-xyloglucan network which constitutes the major load-bearing structure of the 

primary cell wall (O'Neill and York, 2003). However it is not essential for the load-bearing 

capacity of the expanding primary cell wall, as lack of xyloglucan (XyG) is not fatal (Cavalier 

et al., 2008). In addition to this structural role, XyG can be a food reserve in seed or may act 

as signal molecules (Thompson, 2005). 

 

Xyloglucan biosynthesis 

Considerable progress has been made in the identification of glycosyltransferases involved in 

the biosynthesis of XyG. As glycosyltransferases are highly specific for the substrate and the 

types of linkages they generate, it has been suggested that a distinct enzyme is required for 

each linkage that is created (Keegstra and Raikhel, 2001). To date, several of the enzymes 
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involved in XyG production have been identified and characterized in Arabidopsis. The 

xyloglucan fucosyltransferase (AtFUT1) has been identified in Arabidopsis (Perrin et al., 

1999). AtFUT1 was found to be a member of a multi-gene family that has ten members 

(Sarria et al., 2001). AtFUT1 is expressed at similar levels in all plant organs, whereas the 

other putative fucosyltransferases display a more complex expression pattern. The lack of 

fucosylated XyG and the expression pattern suggest that the other family members encode 

glycosyltransferases that are involved in the fucosylation of other polysaccharides like 

rhamnogalacturonan-I, rhamnogalacturonan-II, arabiongalactan proteins and N-linked glycans 

(Reiter, 2002). 

Another fucose-deficient mutant mur3 led to the identification of a xyloglucan 

galactosyltransferase that specifically adds galactose onto the third xylosyl residue. The lack 

of fucose is caused by the missing galactose (Madson et al., 2003). It was found that 

galactosylation rather than fucosylation is important for the mechanical strength during 

hypocotyl growth in Arabidopsis (Peña et al., 2004). The MUR3 gene is expressed in similar 

quantities throughout the plant (Li et al., 2004). The xyloglucan xylosyltransferases (XXT) 

have been identified on the basis of their amino acid sequence homology with a fenugreek 

α(1,5)-galactosyltransferase (Faik et al., 2002). In Arabidopsis, the family containing these 

proteins consists of seven proteins with three clades. Additional research demonstrated that 

XXT1, XXT2, and XXT5 are involved in xyloglucan biosynthesis based on their mutant 

phenotype and their ability to link xylose to cellohexaose (Cavalier et al., 2006; Cavalier and 

Keegstra, 2006; Zabotina et al., 2008). The CSLC4 proteins is though to processively  

produce the glucan backbone of xyloglucan, as there is a strong correlation between the 

expression of CSLC4 and XXT1 and it has been observed that combined expression in P. 

pastoris of the two genes results in a longer β-(1,4) glucan synthesis by CSLC4 (Cocuron et 

al., 2007). 

 

Scope and outline of the thesis 

In this thesis we study the synthesis of two plant cell wall polysaccharides in Arabidopsis 

thaliana with the intention to identify and characterize the protein complexes involved in cell 

wall polysaccharide biosynthesis. A new approach in cell wall research was chosen to obtain 

new insights in the cell wall biosynthesizing machinery. This strategy can provide us with 

valuable information about the interactions between known constituents of the complexes 

involved in cell wall biosynthesis as well as providing new components of these complexes. 
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In Chapter 2, the advantages and limitations of several protein interaction assays are discussed 

and a motivation for the strategy followed in this research program is provided. The 

membrane-based yeast two-hybrid (MbYTH) is described, the potential pitfalls are mentioned 

and the details of an improved protocol for the identification cell wall protein complexes are 

given. 

In Chapter 3, the interactions between the different CESA proteins (#4, #7 and #8), 

components of the complex that synthesizes the cellulose in the secondary cell wall, have 

been tested using the MbYTH system. A model for the composition of rosette structure of the 

secondary cell wall of Arabidopsis is proposed, and the importance of the RING-finger 

domain on the interaction between different CESA proteins is tested. 

The interactions between different CESA proteins and the cellulase KOR1 were tested to 

confirm its presence in the rosette structure, which is described in Chapter 4. This interaction 

was studied in more detail to identify the domain responsible for the interaction.  

In Chapter 5, the MbYTH system was used to identify new candidates involved in cell wall 

biosynthesis. The different secondary CESA proteins were used in a library screen for 

interactors. Several criteria were used to discriminate between the proteins found in order 

discuss their relevance in cellulose biosynthesis. 

In Chapter 6, the interactions between proteins which are known to be involved in the 

biosynthesis of xyloglucan are described. In a library screen several new interactors of the 

xylosyltransferase XXT1 have been identified and their biological relevance is discussed. 

In Chapter 7, the results obtained in the previous chapters, the importance of the MbYTH 

system in cell wall research, and the insights into the biosynthesis of cellulose and xyloglucan 

are discussed. 
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Abstract 

 

The analysis of protein interactions can provide insights into pathways and developmental 

programs, as well as give an indication about the function of the proteins present in the same 

complex. Several powerful tools are available to screen protein interactions, however each 

method has its benefits and drawbacks, which are discussed in this chapter. The membrane 

based yeast two hybrid (MbYTH) was chosen to characterize the protein complexes involved 

in cell wall biosynthesis because of it is high throughput method able to identify interactions 

between the membrane proteins. Several practical hurdles, which are described in this chapter, 

had to be overcome to optimize this system for efficient screening and validation of the found 

interactors.  
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Methods for the analysis of protein-protein interactions 

 

Proteins are essential constituents of the cell, either as structural components, or as enzymes 

for catalysis of highly diverse chemical reactions. Physical associations between different 

proteins, protein-protein interactions (PPI), are an important aspect in all biological pathways. 

Interactions between proteins can serve diverse functions such as protection of proteins from 

their environment, facilitation of substrate channeling, or building supramolecular structures 

such as the cytoskeleton. The binding between two proteins is influenced by shape and 

chemistry of the binding surface, which is in turn determined by the amino acid composition 

and tertiary structure of the proteins. The identification of interactions between different 

proteins can provide further insights into protein functions and signaling pathways in vivo.  

During the last decade, a wide variety of methods has been developed to detect, analyze, and 

quantify protein interactions, including yeast two-hybrid assays, fluorescence-based 

technologies, and the biochemical purification of tagged proteins followed by identification of 

associated proteins via mass spectrometry. Each method has its restrictions and advantages as 

described below.  

 

Affinity purification approach 

One strategy to identify protein-protein interactions is to isolate protein complexes from a 

living cell, followed by characterizing their constituents. Originally, the purification of 

proteins complexes relied on specific antibodies for a given protein of interest for which the 

interacting partners had to be determined. By fusion of a tag, or a protein domain, to the 

protein of interest, problems associated with antibody-based purifications, like specific 

conditions for binding specificity and post translational modifications, might be avoided. This 

tag can then be used for specific isolation of the protein of interest, together with its associated 

partners, after which the partners can be identified (Fig. 1A). As these purification steps are 

performed in a gentile manner, it is thought that the native complexes are recovered, which 

may subsequently be tested for their activities or used in structural analysis (Puig et al., 2001). 

Sometimes the harsh conditions needed to isolate the proteins from the cell might cause 

proteins to dissociate from the complex. As the interaction is not tested in vivo, deviated 

condition might cause association and dissociation of proteins, resulting in false results. 

Affinity purification can identify multimeric protein assemblies, but does not indicate the 

precise physical associations within them. As several interacting partners can be found in one 
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screening, the method can be considered high-throughput, although it requires the availability 

of a specific antibody or the introduction of a tagged protein in a cell or organism.  

A                               B

C                               D

 

Figure 1. Systems for detection of protein interactions. (A) Tandem affinity procedure; The TAP 
sequence is fused to the coding sequence. Protein extracts from the organism expressing the TAP-
tagged protein are subjected to two sequential affinity purification steps. Purified protein complexes 
are separated by denaturing gel electrophoresis and identified by mass spectrometry. (B) Bimolecular 
fluorescence complementation. Bait-prey interaction reconstitutes the YFP. Reconstitution can be 
detected by measuring fluorescence upon excitation at a suitable wavelength. (C) Classical yeast two-
hybrid. A bait protein is fused to the DNA-binding domain of a transcriptional activator, whereas a 
prey protein is fused to the activation domain. The physical interaction between bait and prey 
reconstitutes the transcription factor, resulting in the expression of the reporter gene, thereby enabling 
the yeast cell to grow on selective medium. (D) Membrane based yeast two hybrid. The bait, 
membrane protein, is fused to the C-terminal half of ubiquitin, followed by a transcription factor, 
whereas a prey protein is fused to the N-terminal half of ubiquitin. Bait-prey interaction reconstitutes 
native ubiquitin, which is then cleaved by endogenous ubiquitin specific protease. The transcription 
factor enters the nucleus and activates reporter gene expression. Figure adapted and modified from 
Suter et al., 2008. 
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Fluorescence microscopy for analysis of protein-protein interactions 

The use of fluorescent proteins (FPs) enables a variety of approaches to probe protein-protein 

interactions in living cells. A commonly used method for the co-localization of two labeled 

proteins is the bimolecular fluorescence complementation assay (BiFC). In this method the 

two proteins tested for interaction are each fused to a non-fluorescence half of a FP. The 

interaction between the two proteins of interest induces the complementation of the 

fluorescent protein by bringing the two dissected halves in each others vicinity, and restores 

fluorescence (Fig. 1B). This complementation is based on the inability of the two separate 

protein domains to reconstitute in the absence of the covalent linkage between the two 

subunits (Hu and Kerppola, 2003; Hu et al., 2002). The reconstitution from YFP fragments in 

the BiFC system has a higher dynamic range with practically no fluorescence in the absence 

of an interaction to high levels of fluorescence after fusion to interacting proteins (Magliery et 

al,. 2005). Therefore, this method is, in principle, very sensitive. The possibility to study 

intact cells, in vivo, also avoids the risk of changes in protein interactions as a result of cell 

lysis and mixing of the contents of different cellular compartments. A disadvantage of the 

BiFC system is that protein folding of the fluorescent protein interferes with the dynamics of 

association-dissociation processes, as upon interaction the fragments are not able to release 

and stay fluorescent. Furthermore, this approach is not suitable for high throughput screening 

as it needs two fusion proteins expressed in a cell or organism. 

 

Classical yeast two hybrid system 

Another prominent technique for discovering protein interactions is the yeast two-hybrid 

system (YTH). As with the BiFC system the yeast two hybrid system is based on the concept 

that two separately expressed domains of a split protein cannot complement each other 

without an additional trigger for interaction. In the classical YTH system, this protein is a 

transcription factor that is split genetically into a DNA-binding and a transcription activation 

domain. The two domains are not able to reconstitute a functional transcription factor 

independently, they require the help of an interaction. The interaction of two fused proteins 

reconstitutes the activity of the split transcription factor, thus allowing the use of a simple 

growth selection in yeast to identify interactions (Fig. 1C). 

This system is very cost effective, convenient to use, and easily adaptable for high throughput 

screening procedures making the YTH the most widely used method to assess both individual 

protein-protein interactions, in a one to one screening, and entire interactomes, which display 

the affinity of a bait against a cDNA prey library. Since the interactions between all bait and 
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prey proteins are confined in the nucleus of a lower eukaryote, PPI analysis by YTH suffers 

from a lack of contextual specificity. This also means that integral membrane and membrane-

associated proteins are unsuitable for analysis by YTH due to their hydrophobic nature and 

non-nuclear localization. As nearly one-third of all genes encode proteins containing at least 

one TMD (Suter et al., 2008), this is an important limitation of the system. Another major 

drawback is the number of false positive interactions that occur upon self-activation of 

reporter genes by individual bait and prey proteins. A wide range of methods have been 

developed to improve the YTH system and made it more suitable for different purposes. The 

YTH is a high throughput method for the analysis of protein protein interactions and it allows 

the identification of new interactors by the screening of a cDNA library. 

 

Membrane-based yeast two-hybrid system 

The membrane-based yeast two-hybrid (MbYTH) system was developed to overcome the 

limitations of the classical YTH as it allows the identification of PPIs of membrane bound bait 

proteins with either membrane or cytosolic preys. The MbYTH system is based on the 

reassembly of the N- and C-terminal halves (Nub and Cub, respectively) of the ubiquitin 

protein when the fused proteins are able to interact. The reassembled quasi-native ubiquitin is 

recognized by ubiquitin-specific proteases, which then cleaves the C-terminally attached 

transcription factor (TF) from Cub and thereby provide an immediate readout of the Nub-Cub 

re-association. NubG (Ile-13-Gly), a mutant of Nub, has very low intrinsic affinity for Cub 

and therefore can interact with Cub only if both ubiquitin fragments are linked to proteins that 

interact. The TF A-LexA-VP16 (PLV) is attached to the C-terminus of Cub. PLV is liberated 

upon cleavage from Cub and activates the lacZ and HIS3 reporter genes, thereby providing a 

useful selection for interaction (Fig. 1D). In conclusion this system is able to detect PPI 

between membrane bound proteins by expression in yeast. Similar to the classical yeast two 

hybrid system this is a high throughput system. One disadvantage of this system is that the 

interaction occurs in yeast where the environment might be different from the one in planta. 

Another limitation is that the system detects one to one interactions, whenever an additional 

protein is needed, as intermediate, the interaction will not be detected.  

 

MbYTH assay as preferred approach to identify candidate genes involved in cell wall 

biosynthesis 

The methods described here differ in their sensitivity and specificity; thus selection of a 

suitable method is crucial for a given investigation. The characterization of the organization of 
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the cellulose synthesizing rosette complex will allow a better understanding of cellulose 

biosynthesis. For this a method is needed which is able to determine the one to one interaction 

between the known constituents, whereas the identification of new components of the rosette 

complex requires a high throughput approach. In previous studies the BiFC assay has been 

used for the characterization of primary and secondary CESA complexes (Desprez et al., 

2007; Timmers et al., 2009). Although this method generated valuable information about the 

composition of these complexes it is not feasible to identify new players involved in cellulose 

biosynthesis, as it entails the testing of each of the several thousand protein combinations in 

planta. The BiFC assay was consequently not chosen as primary method as the goal of this 

research was to identify new candidate genes involved in cell wall biosynthesis.  

The affinity purification approach is potentially able to identify all proteins located in the 

complex together with the protein of interest. Using the affinity tag method, it has been 

possible to confirm the presence of three different CESA proteins in the primary and 

secondary rosette complex (Desprez et al., 2007; Atanassov et al., 2009); however it has not 

been possible to identify other components of the complex using this method. The yeast two 

hybrid systems are able to detect interactions in a high throughput way and therefore able to 

screen for new candidate genes. Although the classical yeast two hybrid was used to study the 

ability of CESA proteins to interact, it was only possible to test the interaction between partial 

proteins, as no membrane bound proteins can be tested in this system (Kurek et al., 2002). 

The applicably of this system in cell wall research is limited, as many proteins involved cell 

wall biosynthesis are membrane proteins, which cannot be screened in this assay. Therefore 

the MbYTH system was chosen to identify candidate genes involved in cell wall biosynthesis. 

The system enables to study the interaction between two proteins without the interference of 

other endogenous proteins. Two hybrid screens measure direct binary interactions, whereas 

immunoprecipitation-based methods and fluorescence methods measure the presence of a bait 

protein in a complex. The MbYTH approach is able to determine interactions between two 

known proteins as well as identifying unknown interactors, both soluble and insoluble.  

 
Set up, implementation and practical considerations of the MbYTH method 
 
The MbYTH system has proven to be a powerful tool to determine the interaction between 

membrane proteins (Peng et al., 2006). Although, the protocol of the MbYTH system is very 

straightforward, this method, as any other, has its pitfalls. Therefore the MbYTH system was 

optimized for identifying candidate genes involved in cell wall biosynthesis, first for one to 



  Chapter 2 

  27 

one protein interaction approaches, and later for the identification of new interactors by the 

screninf of a cDNA library. 

 

Plasmid construction 

The first critical step for MbYTH was the cloning of the membrane proteins with the right 

open reading frame (ORF) in the appropriate plasmid. A limited number of plasmids were 

available at the starting point of this research. The plasmids differed in promoter and fusion 

site (N- or C-terminal end) of the ubiquitin fragment. The protocol supplied by Dualsystems 

advices to use the strongest promoter to start the experiments, however, when thee is an over-

expression of the fusion proteins, the use of an expression vectors with weaker promoters is 

recomended. An important feature to consider before cloning the open reading frames into the 

vectors is the topology of the proteins. In order to produce a read-out in the nucleus, the Cub-

TF and NubG fusions both must be present at the cytosolic site of the membrane, the system 

does not allow for analysis of proteins in which both N- and C-termini are located inside an 

organelle or outside the cell. This can be achieved by choosing the appropriate plasmid so the 

ubiquitin part is either N- or C-terminally fused based upon the topology of the proteins.  

In many cases the SfiI restriction enzyme can be used to clone the insert in the plasmid. SfiI 

has the recognition sequence GGCCNNN’NGGCC, with a variable core of five nucleotides 

(the cleavage site is indicated by ’). There are two SfiI sites in the pADSL-Nx vectors: 

GGCCATTA’CGGCC and GGCCGCCT’CGGCC. The two SfiI sites have different 

overhangs which allow unidirectional cloning of cDNA in the vectors. Their long recognition 

sequence has to be preceded by eight nucleotides for an efficient digestion by the enzyme, 

therefore the primer for adding this restriction-site in front of a cDNA is very large which 

hampers the specificity of the PCR reaction. As the plasmids for the bait (pTFM) and prey 

(pADSL-Nx) contain different multiple cloning sites, it is not possible to ligate the same 

insert in these plasmids due to different restriction sites and possible frame shifts. The limited 

number of restriction sites in the multiple cloning sites of the plasmids might lead to a one 

restriction enzyme strategy or the use of blunt end restriction ligation strategy which both 

decrease the efficiency of the construction of a functional expression vector. These limitations 

can be solved by introduction of an identical multiple cloning site in both plasmids, which has 

been done in the newer versions of the system.  

Membrane proteins can be toxic when expressed in E. coli, and the first step for the 

generation of Nub/Cub fusions is the cloning in E. coli. This toxicity dramatically decreases 

the efficiency of generating full-length functional proteins, as plasmids with a non functional 
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reading frame, due to errors and mutations will appear more frequently. Therefore, sequencing 

of the constructs is essential.  

 

Determining the optimal screening conditions in a one to one interaction assay 

When the bait and prey plasmids are constructed they can be transformed to the yeast strain. 

As the bait and prey plasmids both have a different selection marker in yeast, leucine and 

tryptophan respectively, growth on SD medium lacking the appropriate amino acids selects 

for the presence of the plasmid. Upon interaction of the bait and the prey the TF is released, 

which in turn activates the HIS3 reporter gene allowing growth on medium lacking histidine. 

However, background cleavage of the bait protein can release trace amounts of TF, which 

causes selection leakage as it activates the HIS3 reporter gene. Therefore 3-amniontriazole (3-

AT) is added to the selection medium, which is a competitive inhibitor of the imidazole 

glycerolphophate dehydratase involved in histidine biosynthesis (Klopotowski and Waiter, 

1965), to inhibit the basic leakage but not the strong activation of the histidine reporter gene. 

As the cleavage of the protein can be different for each protein expressed in yeast, the 

concentration is unique for each bait protein. To determine the concentration of 3-AT specific 

for the baits, a concentration range of 3-AT was added to selective medium. SD-medium 

lacking leucine, tryptophan (for selection on presence of respectively the bait and prey 

plasmids), and histidine (for selection on interaction). At the appropriate concentration of 3-

AT interaction can initiate yeast growth, whereas in absence of an interaction there is no 

background growth, this can be tested with a positive and negative control.  

The negative control can be a random protein not related to the bait, in these experiments the 

yeast protein ALG5 fused to NubG was used. Co-expression of the bait proteins with prey 

protein ALG5-NubG should not result in an interaction, and therefore not in activation of the 

system, as it is not involved in the pathways of interested. As a positive control the ALG5 

protein was fused to the wild-type ubiquitin domain. In contrast to the I13G mutant (NubG), 

the wild-type N-terminal ubiquitin domain (NubI) can readily interact with the C-terminal 

ubiquitin domain. Thus the co-expression of the bait, containing the CUB, with a prey fused 

to the NubI will lead to an interaction and therefore may be used to test for bait expression 

and accessibility without the need for the fused proteins to interact. Growth of the yeast 

(expression of the positive control) on selective medium therefore not only indicates that the 

bait protein is expressed, but also that the Cub-TF is available for interaction. The use of two 

different auxotrophic markers increases the reliability of the system dramatically as two 

different pathways have to be circumvented to auto-activate the system. Therefore the yeast 
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strain DSY-5 (phenotype; MATalpha leu2 trp1 ura3-52 his3::GAL1-GAL4 pep4 prb1-1122), 

which was used in initial screens, was replaced by the strain NMY51 (phenotype; MATalpha 

his3delta200 trp1-901 leu2-3,112 ade2 LYS2::(lexAop)4-HIS3 ura3::(lexAop)8-lacZ 

(lexAop)8-ADE2 GAL4). This yeast strain allows autotrophic selection on both histidine and 

adenine, therefore increasing the reliability of the results. In addition, a colorimetric marker 

was used to confirm the interactions.  

One to one interactions were tested by transforming yeast, containing the bait plasmid, with a 

prey plasmid and plate them on selective medium. To get an objective result the number of 

colonies grown was counted after five days at 30°C. Although there was a clear difference 

between a positive result and a negative one, usually a large variation was found between 

repeat experiments, due to transformation efficiency and colony density influenced the colony 

number. To obtain a repeatable readout of the system without disruptions by transformation 

efficiency and colony density a different method was applied in which the yeast containing 

the bait and prey plasmid was first grown on non selective plates. One hundred of the colonies 

then were picked, diluted and plated on selective plates to screen for growth. Results showed 

that this method gave reliable and repeatable numbers in a one to one interaction (Chapter 3). 

 
Determining the optimal screening conditions in a library screen  
In order to identify new candidate genes involved in cell wall biosynthesis the MbYTH 

system can also be used in a higher throughput method. This can be achieved by screening a 

cDNA library for interactors with the bait. The cDNA library consists of DNA copies of all 

mRNAs transcribed at a certain stage and in a specific organ of an organism inside the prey 

plasmid. When transformed into yeast, each yeast colony will express one protein, encoded by 

the cDNA, fused to the NubG. Transformation of the library into yeast containing the bait 

results in expression of the bait and a prey, which can be tested for interaction. In contrast to 

the one to one approach, this yeast is directly plated on selective medium (-leu, -trp, and –his) 

to eliminate colonies expressing a protein combination which does not interact. Using the 

parameters defined above, the bait can be used to screen a cDNA library of for instance 

Arabidopsis thaliana. The A. thaliana library (Dualsystems P02210) was constructed of six-

day-old seedlings from a mixture of dark grown (etiolated seedlings) and seedlings exposed to 

blue and far red light. The library consists out of 1.7*107 independent clones with an average 

insert size of 1.7 kb (ranges from 1.2-2.5kb). The Arabidopsis cDNA library was transformed 

into yeast containing a CESA as bait and grown for five days at 30° C on selective plates (-

leu, -trp-, -his containing the appropriate amount of 3-AT). These colonies grown were 
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transferred to plates lacking adenine as well as histidine, leucine and tryptophan (-A-H-L-T 

with the appropriate amount of 3-AT), and therefore have a double auxotrophic selection for 

interaction. Activity of the LacZ gene (blue staining) is a third screening method for 

interaction. Only when the colony passes all three screens, the interaction between the bait 

and the prey was considered positive.  

 

Identification of the interactor 

Although the bait is known the prey can be any gene of the cDNA library. To identify which 

gene is expressed as prey the plasmid has to be sequenced. As the prey plasmid has a low 

copy number in yeast, it is difficult to obtain enough plasmid DNA for sequencing. To obtain 

the pADSL-Nx plasmids encoding the resulting positive library clones, total yeast DNA was 

isolated and transformed into E. coli strain XL-blue. E.coli colonies containing a pADSL-Nx 

library plasmid were obtained by ampicilin selection. pADSL-Nx DNA was purified from 

E.coli, as this DNA isolation step is much more efficient, and the plasmids were sequenced. 

The strategy to transfer the prey plasmid to E.coli and then sequence was very laborious. 

Therefore a different approach was optimized in which the insert in the prey plasmid is 

multiplied by PCR. The yeast is first washed with Milli Q water, and then boiled in 1M 

NaOH, to fracture the yeast cells and release the plasmid DNA. The NaOH is then neutralized 

by the buffer Tris at pH7. This mixture, containing the prey plasmid can be used as template 

for a PCR reaction and using plasmid specific primers the insert region can be amplified. The 

resulting PCR fragment can be sequenced using nested primers located at the 3’prime end of 

the forward primer to prevent artifacts. The obtained sequences were blasted against the NCBI 

database and the prey protein identified. 

 

Recognition of false interactors  

In the screening of a cDNA library in yeast, several combinations of two proteins are able to 

grow even though the bait and prey do not interact in planta. There are several reasons for 

these false positive results. One source of false positives in YTH screens is auto activators, 

which emerge during the course of the screen by spontaneous mutations allowing the yeast to 

grow on selective medium (Rual et al., 2005). The use of two auxotrophic markers however 

greatly reduces the number of these false positives. In addition, false positives may arise from 

proteolysis of the fusion and release of the TF by unknown processes (e.g. the quality control 

mechanisms in the ER). This type of false positives can be eliminated by testing for reporter 

activity with a non related protein which should result in a negative signal. As it is known that 
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there are proteins which are able to auto activate the system, a list of known false positive 

proteins contains among others ATPases and Ubiquitin (Table I Dualsystems). Proteins 

known to cause auto activation of the system can be disregarded as candidate proteins, unless 

there are indications that they might play a role in the relevant pathway.  

 

Table I. List of known auto activators of the MbYTH system. As indicated by the Dualsystems 
website. 
Interactor  Frequency Comments 
ATPases Frequent Mostly vacuolar ATPases, may be connected with sorting 

of particular bait proteins to the vacuoles of yeast. 
Proteolipid 
proteins 

Frequent  

Ubiquitin Frequent Frequently isolated from X-NubG libraries, less 
frequently from NubG-X libraries. Confirmed false 
positive, interacts with the Cub portion of the bait via the 
wild type ubiquitin. Isolated sequences often encode 
partially truncated ubiquitin, thereby creating a wild type 
Nub (N-terminal part of ubiquitin) fused to the NubG 
portion. 

ADE2 Frequent Frequently isolated when screening on SD-trp-leu-ade. 
Encodes the mammalian homologue of the yeast ade2 
protein, capable of complementing the ade2 deficiency in 
the NMY32 and NMY51 reporter strains. Can be avoided 
by screening on SD-trp-leu-his-ade instead of SD-trp-leu-
ade medium. 

Translocon 
components 

Rare May interact with the bait upon translocation through the 
membrane due to spatial proximity. This is not a true 
false positive, as it reflects a biologically relevant 
interaction. 

Signal peptidases Rare May reflect an interaction of the signal peptidase with 
type I baits upon cleavage of the signal sequence peptide. 

Cytochrome C Rare  
SelenoproteinK Rare  

 
Other protein combinations do not induce an activation of the system although the bait and 

prey interact in vivo. These false negatives may arise from low abundance of the bait and prey 

due to low expression or low stability of the fusion protein in yeast or to the lack of 

accessibility of the protease cleavage site. Additional false negative might arise due to toxicity 

of the proteins, the expression of two proteins might influence the growth rate of the yeast. 

The size and the number of transmembrane domains of both bait and prey increase the toxicity 

for the yeast and will decrease growth rate preventing them to be picked up in a library-

screen. Due to the expression in yeast proteins can also be improperly folded due to the 
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conditions in yeast and post translational modifications which can hamper interaction. Due to 

the absence of yeast growth false negatives are difficult to detect. 

 

Final remarks 

 

Several methods are able to successfully identify interaction between proteins. All methods 

mentioned in this chapter have been used to study proteins involved in cell wall biosynthesis. 

The MbYTH system was chosen to identify candidate proteins involved in this process, as 

most proteins involved in cell wall biosynthesis are membrane bound and because there is a 

need for a high throughput system. Although this assay is a straight forward powerful tool, 

working with the membrane based yeast two hybrid system entailed several (practical) 

problems to identify interaction between proteins involved in cell wall biosynthesis. Several 

simple steps introduced by the author have improved the efficiency of this system.  

Modification of the multiple cloning site might improve the efficiency of producing both the 

bait and prey plasmid. Also the ability to sequence the prey without additional transformation 

steps increases the speed of this system. The MbYTH will be valuable method to get more 

insight in plant cell wall biosynthesis, whereas the other described methods for protein 

interaction studies might confirm and compliment the results found. 
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Abstract 

 

It has not been reported how the secondary CESA proteins are organized in the rosette 

structure. A membrane-based yeast two hybrid approach was used to analyze the interactions 

between the CESA proteins involved in secondary cell wall synthesis of Arabidopsis and 

confirmed in planta by Bimolecular Fluorescence Complementation assay. Results indicated 

that although all CESA proteins can interact with each other, only CESA4 is able to form 

homodimers. A model is proposed for the secondary rosette structure. The RING-motif 

proved not to be essential for the interaction between the CESA proteins. 
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Introduction 

 

Cellulose synthases (CESAs) are components of membrane-localized complexes (rosettes), 

and catalyze cellulose fibers elongation. Three CESA family members (#4, #7, and #8) have 

shown to be required for the formation of a rosette protein complex involved in secondary cell 

wall cellulose biosynthesis in Arabidopsis thaliana (Taylor et al., 2003), hereafter referred to 

as the secondary CESA proteins. The secondary CESAs are not functionally redundant and 

gene expression suggest that CESA4, CESA7 and CESA8 are the only CESAs involved in 

cellulose synthesis in the secondary cell wall (Brown et al., 2005). Immunoprecipitation 

experiments showed that these CESA proteins co-precipitate (Taylor et al., 2003; Atanassov 

et al., 2009). Although, this is a step towards the clarification of the CESA protein complex, 

the specific composition and structure of the rosette complex remain elusive.  

All CESAs contain eight transmembrane domains (TMDs) and two putative N-terminal zinc-

fingers. These zinc-fingers are thought to mediate protein–protein interactions between the 

CESAs (Saurin et al., 1996). However, the disrupted-rosette phenotype of the rsw1 mutant 

(V549A) (Arioli et al., 1998) and domain swapping experiments (Wang et al., 2006) suggest 

that also other regions of the CESA protein play a role in rosette assembly. The most accepted 

model of the rosette has been proposed by Scheible and co-workers (Scheible et al., 2001) in 

which the rosette structure has six symmetrically arranged subunits that in turn consist of six 

CESA proteins. However, there is no experimental evidence as to how the different CESA 

proteins are arranged within the complex or the subunits. To form such a regular structure, the 

interactions between the CESA proteins are expected to be highly specific. To get more 

insight into the different interactions, a method to detect one-to-one protein interactions of 

membrane-bound proteins is essential. The split-ubiquitin membrane-based yeast two-hybrid 

system (MbYTH) allows the screening for interaction between the different membrane-bound 

CESA isoforms in yeast (Fetchko and Stagljar, 2004). The bimolecular fluorescence 

complementation (BiFC) assay (Hu et al., 2002) was implemented to confirm the interactions 

in living plant cells. This technique provided evidence that the primary CESA proteins can 

interact in vivo, and therefore are present in the same complex (Desprez et al., 2007). In this 

report the possible interactions between the secondary CESA proteins is discussed, and a 

model for the rosette organization is proposed. Finally the role of the RING-finger motif in 

protein interaction is discussed. 
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Materials and methods 

 

Membrane-based yeast two-hybrid (MbYTH) screen 

Yeast strain NMY51 (Dualsystems Biotech AG) was transformed according to the protocol 

(DUALmembrane Kit 1). Interactions were quantified by 100 colonies spotted on SD medium 

(lacking Leucine, Tryptophan, Histidine and Adenine) containing the appropriate 

concentration of 3-ammonium-triazole (130mM, 10mM, and 75mM, for baits CESA4, 

CESA7, and CESA8, respectively) and grown at 30°C for five days, the number of spots 

grown was scored. Detection β-galactosidase activity was performed with the filter-lift assay 

(Breeden and Nasmyth, 1985). Experiments have been done twice to confirm results. 

 

Constructs for the MbYTH system 

The full-length cDNAs were obtained from the Riken Bioresource Center (Seki et al., 1998; 

Seki et al., 2002) ATCESA4 (RAFL15-30-K05), ATCESA7 (RAFL09-35-F05), and 

ATCESA8 (RAFL09-65-M12). Restriction sites were generated by PCR with primers as 

indicated in Supplementary data (Table SI). The resulting PCR-products were digested and 

ligated in the pTFB1 vector (Bait) and the pADSL-Nx vector (Prey) (Dualsystems Biotech 

AG). Bait and prey expression is regulated by the TEF1 and ADH1 promoter, respectively. 

The sequences of the inserts were confirmed by Sanger sequence analysis. Experiments have 

been done four times to confirm results. 

 

Site directed mutagenesis 

The QuikChange Multi site-Directed MutagenesisKit from Stratagene (200514) was used to 

introduce point mutations into the RING-motif of CESA7 using primers CESA7C37, 

CESA7C56, CESA7C64, and CesA7C79 (Table SI) to introduce mutations C37A, C56A, 

C64A, C79A, respectively. 

 

Bimolecular fluorescence complementation screen 

Genes were cloned in the pBIFP-2 and pBIFP-3 plasmids and regulated by the constitutive 

35S promoter (Hu et al., 2002). The sequence of the primers used are in Table SI. Leaves of 

3-week-old tobacco (Nicotiana benthamiana) plants were transformed by infiltration (Desprez 

et al., 2007). YFP (yellow fluorescent protein) fluorescence was detected 3 days after 

infiltration by using the 514-nm laser line of a SP2 AOBS confocal laser scanning microscope 
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(Leica, Solms, Germany) equipped with an argon laser. To check the YFP reconstitution, 

spectral analysis was performed with the 496-nm laser line. 

 

Results 

 

Interactions between the secondary CESA proteins 

The regular structure of the rosette suggests that the assembly of this complex is highly 

regulated. In order to understand these complexes, the first step is the identification of specific 

interaction between the building-blocks of the complex, the different CESAs. The membrane-

based yeast two-hybrid (MbYTH) method was used to identify the interactions between 

membrane-bound CESAs as it avoids the need to co-purify membrane proteins present in the 

same complex. In this system the protein of interest (bait) is fused to Cub-transcription factor 

(TF) and expressed in yeast together with another protein (prey) fused to NubG (Fetchko and 

Stagljar, 2004). Upon interaction between the bait and prey, the Cub-TF and NubG 

reconstitute and the TF is released by a protease so it can activate reporter gene expression. As 

the interaction is detected by a protease, the location of interaction is therefore not restricted 

to the nucleus but might also occur at the plasma membrane (Fetchko and Stagljar, 2004).The 

selection with two different auxotrophic markers increased the reliability of the system 

dramatically in that the prey had to circumvent two different pathways to auto-activate the 

system, as well as a colorimetric marker. The screening was optimized for each bait by 

addition of appropriate amounts of inhibitor (3-AT) to the selected medium so that growth of 

the yeast expressing a bait protein and the positive or negative control were significantly 

different, to rule out auto activation and to make it possible to screen for interactions between 

different proteins. All possible combinations of fusion proteins were grown on selective 

medium to determine their interactions. Fig. 1A shows the results of the interactions when 

CESA4 was used as bait, indicating strong interaction with itself and CESA8, and a weaker 

yet still significant interaction with CESA7. 
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Figure 1. Interactions between the secondary CESA visualized by yeast growth. Yeast expressing 
CESA 4 (A), CESA7 (B) or CESA8 (C) as bait with the ALG5 protein fused to NubI and NubG, pos. 
and neg. control respectively, and different CESA proteins NubG fused proteins, as indicated. The 
percentage of colonies that show visible growth after 5 days at 30°C on selective medium is shown. 
Standard deviation is visualized by the error bar.  
 

When CESA7 was used as the bait, strong interactions were detected with CESA4 and 

CESA8, however, CESA7 did not homodimerize (Fig. 1B). Similar results were obtained with 

CESA8 as a bait; CESA8 interacted with the other CESAs, but was unable to homodimerize 

(Fig. 1C).  

 

Identification of CESA interactions in planta 

The interactions were also tested in planta using BiFC assays. In this system a YFP fragment, 

either YFP/N or YPF/C, was linked to the N-terminal part of the secondary CESA proteins 

and transiently expressed in N. benthamiana. To determine whether heterodimers could be 

formed, two different CESA proteins were co-expressed YFP/N-CESA4/YFP/C-CESA7, 

YFP/N-CESA7/YFP/C-CESA4 (Fig. 2F), YFP/N-CESA4/YFP/C-CESA8 (Fig. 2G), YFP/N-

CESA8/YFP/C-CESA4, YFP/N-CESA7/YFP/C-CESA8 (Fig. 2H), or YFP/N-CESA8/YFP/C-

CESA7 (all interactions are shown in Fig. S2) To prevent false positives all fusion proteins 

were tested for interaction with the negative control, the aquaporin PIP2-1 protein, and all 

combinations showed no interaction. Although not all combinations were able to restore the 

YFP fluorescence, results indicated that all isoforms can interact with each other. Some 

combinations gave a weak signal, indicating that this dimerization is less efficient, particularly 

the combination of CESA7 and CESA8 even lacked fluorescence above the threshold in some 

of the repeat experiments. Also homodimerization of the CESA proteins was tested. A strong 

signal was found for the combination YFP/N-CESA4/YFP/C-CESA4 (Fig. 2B) whereas 

YFP/N-CESA7/YFP/C-CESA7 (Fig. 2C) was unable to restore YFP fluorescence, and 

YFP/N-CESA8/YFP/C-CESA8 (Fig. 2D) only gave a very weak fluorescence signal. 

Whenever CESA8 was expressed the signal was weaker and punctuate structures appear. 
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Figure 2. BiFC in N. benthamiana shows in vivo dimerization between the secondary 
CESAs. Positive controls PIP/PIP (A), negative control CESA7/PIP (E), homodimerization of 
CESA4 (B), CESA7 (C) and CESA8 (D) and the different heterodimerizations YFP/N-
CESA7/YPF/C-CESA4 (F), YFP/N-CESA8/YFP/C-CESA4 (G), and YFP/N-CESA7/YFP/C-
CESA8 (H). Scale bar = 100µm.  
 

Role of RING-finger in CESA interactions 

The N-terminal region of each CESA protein contains a double zinc-finger motif 

(CX2CX12FXACX2CX2PXCX2CXEX5GX3CX2C) highly homologous to the RING-finger 

domain. RING-fingers have been implicated in mediating protein-protein interactions, in a 

redox regulated bridging between cysteine residues (Saurin et al., 1996). Protein–protein 

interaction studies with only these zinc-finger domains, showed that they were able to interact 

with themselves and with the zinc-fingers of other family members (Kurek et al., 2002). In 

order to get more insight in the mechanism of interaction between the CESA proteins, the 

RING-finger motif of CESA7 was mutagenized and cysteines (C) at different positions were 

substituted by alanines (A) using site-directed mutagenesis. Also combinations of the 

substitutions were made (Fig. 3).  

          *  *               *  *    *  *           *  * 
CESA7Wt        CEICGDQIGLTVEGDLFVACNECGFPACRPCYEYERREGTQNCPQC 
CESA7C37A        AEICGDQIGLTVEGDLFVACNECGFPACRPCYEYERREGTQNCPQC 
CESA7C56A        CEICGDQIGLTVEGDLFVAANECGFPACRPCYEYERREGTQNCPQC 
CESA7C64A        CEICGDQIGLTVEGDLFVACNECGFPAARPCYEYERREGTQNCPQC 
CESA7C79A        CEICGDQIGLTVEGDLFVACNECGFPACRPCYEYERREGTQNAPQC 
CESA7C37A + C56A   AEICGDQIGLTVEGDLFVAANECGFPACRPCYEYERREGTQNCPQC 
CESA7C37A + C64A   AEICGDQIGLTVEGDLFVACNECGFPAARPCYEYERREGTQNCPQC 
CESA7C37A + C79A   AEICGDQIGLTVEGDLFVACNECGFPACRPCYEYERREGTQNAPQC 
CESA7C56A + C64A   CEICGDQIGLTVEGDLFVAANECGFPAARPCYEYERREGTQNCPQC 
CESA7C56A + C79A   CEICGDQIGLTVEGDLFVAANECGFPACRPCYEYERREGTQNAPQC 
CESA7C64A + C79A   CEICGDQIGLTVEGDLFVACNECGFPAARPCYEYERREGTQNAPQC 
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Figure 3. Sequence alignment of the CESA7 RING-motif indicating the substitutions. The 
alignment of the RING-motif of CESA7 (AA38 until AA79). * indicate the essential cysteines, the 
substitutions (C→A) are highlighted (grey) in the different mutated proteins.  
 
The interactions between the different mutated CESA7 proteins and the other secondary 

CESAs were tested with the MbYTH. The interaction between CESA8 and CESA7 decreased 

only slightly when one cysteine was mutated (C37A, C56A, C64A, or C79A). Double 

substitution affected the interaction more in only one combination (C37A+C79A), however 

the interaction was not abolished (Fig. 4). The interaction between CESA4 and CESA7 also 

decreased upon introduction of mutations (Fig. SI). 

 

Figure 4. Effects of the substitution mutations on the interactions between CESA7 and CESA8. 
Yeast expressing CESA8 as bait with the wild type CESA7 (CESA7wt), NubG-ALG5 (Neg), and the 
different mutated CESA7 proteins as prey, that show visible growth after 5 days at 30°C on selective 
medium as a percentage of the interaction with wild type CESA7 protein. 
 

Discussion 

 

Different models for the structure of the CESA complex are possible, but the rosette structure 

model, proposed by Scheible and co-workers (Scheible et al., 2001) and modified by Doblin 

and co-workers (Doblin et al., 2002), is the most widely accepted. In this model three types of 

CESAs (α1, α2, and β) are assembled hexagonally in different proportions one α1, two α2, 

and three β isoforms (Fig. 5A). Three types of protein–protein interactions were proposed: 

α2–β and α1–β to form each subunit, and α2–α2 between subunits to form rosettes, therefore 

type-α1 can only bind type-β, type-α2 can bind types α2 and β, whereas type-β can bind to 

types α1 and α2. Although more complex variants of this model are also possible, less 

complex models seem unlikely, based on simple geometric considerations (Scheible et al., 

2001). The interaction in yeast using the MbYTH method were confirmed with in planta 
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studies by the BiFC assays, except for the combination YFP/N-CESA7 and YFP/C-CESA8, 

which might be due to specific interference of the interaction-site of CESA7, and the ability of 

the CESA8 protein to form homodimers, there a very weak but detectable signal was observed 

in planta. The reasons for this discrepancy are not clear but it might be that this weak signal is 

not caused by a direct interaction but by a bridging endogenous protein of N. benthamiana 

that brings CESA8’s in the vicinity of each other resulting in the assembly of the YFP. 

Furthermore punctuated structures were found in all CESA8 interactions indicate towards a 

different role for CESA8 compared to the others. In a recent publication pull down 

experiments indicate that in absence of one CESA the remaining isoforms form mono- and di-

mers (Atanassov et al., 2009), which confirms the results described in this article. In a dual 

tagging assay a 240kDa band was found which might be assign to CESA7 homodimer. As the 

authors mention, it is difficult to find solid prove that this band is indeed a CESA7 

homodimer as the three CESA proteins possess very similar molecular masses (Atanassov et 

al., 2009). In the MbYTH system expression of CESA7 alone is not sufficient for the 

formation of a dimer, a result confirmed with the BiFC system by heterologous expression in 

N. benthamiana. 

 

 

Figure 5. Proposed models for the structure of the rosette. (A) Six subunits, containing six CESA 
polypeptides, interact to form a rosette as suggested by Doblin and co-workers. (B) The modified 
model based upon the results described in this work between the different isoforms, CESA4 (4) 
interacts with all isoforms, the homodimerization links the subunits together, the two other position are 
filled by CESA7 and CESA8.  
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If our results are projected onto the rosette model of Scheible and co-workers, CESA4 self-

interacts and therefore it has to occupy position α2. However CESA7(α1) and CESA8(β) both 

interact with the other two CESA of the rosette, but not with themselves, indicating that next 

to the three proposed types of protein–protein interactions (α2–β, α1–β, α2–α2) there is also 

interaction between α1 and α2. We adapted the model with these findings by replacing one β 

position by a α1 position (Fig. 5B). This results in a complex in which the subunits contain the 

same number of proteins of each of the isoforms and the homomeric interaction is responsible 

for the interaction between two subunits. Although the subunits themselves are not symmetric 

the overall complex is (Fig. 5B). The stoichiometry of the model is that each individual CESA 

protein is present in the same number, which is supported by the co-expression and regression 

score between the different secondary CESA genes (Persson et al., 2005). However to date 

this has not been confirmed at protein level. The specificity of the interaction suggests a non-

random incorporation of CESA proteins into the rosettes, and might hint towards a specific 

function of each of the CESA proteins in the rosette. 

The RING-finger motif was the best candidate to facilitate the interactions between the 

CESAs, as it has been shown that the RING-finger domains themselves can interact with each 

other when expressed separately (Kurek et al., 2002). It was found that a mutation in the 

RING-motif abolishes the interaction between two RING-fingers. When this motif is indeed 

essential for interaction between two CESA proteins, mutations in the RING-finger of CESA7 

should abolish the interactions found between CESA7 and CESA4 and CESA8. Although 

some of the single mutations in the zinc-finger resulted in a decrease in interaction, the 

interaction itself was still observed and certainly not completely abolished. Combinations of 

cysteine substitutions did not result in a further decrease of the interaction (Fig. 4), suggesting 

that other domains than the RING-finger are involved in the interaction. Domain swapping 

experiments of Wang et al. (Wang et al., 2006), showed that the catalytic and/or C-terminal 

domains were the most important for entering the specific site in the complex, which is 

consistent with our results. 

Our results do not exclude involvement of the RING-motif in protein interaction. The 

localization of the RING-motif at the cytoplasmic face of the plasma membrane suggests a 

role in recruiting proteins other than CESA. It has also been speculated that the RING-motifs 

under reduced conditions promote their own degradation (Voinnet et al., 2003). The 

introduced mutations within this motif reduce the zinc coordination to zinc-fingers, and may 

therefore lead to the degradation of the subsequent CESA protein. This might be a reason for 

decreased interaction between the mutated CESA7 proteins and the other CESA isoforms. 
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In conclusion, our screens have revealed that the CESA proteins involved in secondary cell 

wall synthesis specifically interact with each other. The interactions found result in an adapted 

version of the model for the rosette composition in which the homodimerization of CESA4 

links the subunits to form the complete rosette. Interaction studies also indicated that the 

RING-motif is not essential for the interaction between different CESA proteins. More 

research will be required to understand the architecture of the rosette and the domains 

involved in the specific interaction between the different CESA within the complex. 
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Abstract 

 

Cellulose is synthesized by the so-called rosette complex, which comprises at least three 

different cellulose synthases (CESAs). Although several other proteins are known to be 

essential for cellulose biosynthesis, it has not been possible yet to link them physically to the 

rosette complex. One of these proteins is the cellulase KORRIGAN, and it has been 

hypothesized that this enzyme is an integral part of the rosettes, as mutations in this gene 

result in an altered cellulose content in both the primary and secondary cell wall. Using 

different methods, both in vitro and in planta, it was shown that KORRIGAN specifically 

interacted with CESA proteins. The interacting regions of korrigan were probed by analyzing 

the interaction of truncated forms of korrigan with CESA proteins. It was shown that the 

transmembrane domain of the korrigan is responsible for the interaction with the CESA 

proteins. 
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Introduction 

 

Cellulose is a major component of the plant cell wall. In the primary cell wall, where it is 

considered a vital component of the load bearing network and an important determinant of the 

orientation of cell expansion. After a period of expansion some cell types lay down a thick 

cell wall layer in the inner side of the primary wall, the secondary cell wall. The cellulose 

microfibrils are synthesized by a multi-protein-complex at the plasma membrane, called 

rosette complexes, which consist of six globules. Each globule contains multiple cellulose 

synthase proteins (CESAs). Genetic analysis of cellulose-deficient mutants in plants resulted 

in the hypothesis that the rosette complex contains at least three different non-redundant 

cellulose synthases. CESA1, CESA3 and CESA6 were found to be involved in the cellulose 

biosynthesis in the primary cell wall, whereas CESA4, CESA7 and CESA8 are essential for 

the cellulose synthesis of the secondary cell wall. Hereafter, these proteins are referred to as 

the primary and secondary CESAs, respectively. Mutation in any of their genes causes defects 

in the assembly of cellulose microfibrils (Taylor et al., 2003). 

On the basis of Arabidopsis mutant analysis, some proteins were predicted to be associated 

with the complex, although their interaction with the complex has never been demonstrated. 

One of these proteins is KORRIGAN (KOR1), a membrane-bound endo-1,4-β-D-glucanase. 

Enzymatic analysis of a recombinant soluble form of a KOR1 homologue from Brassica 

napus showed substrate specificity for low substituted carboxymethyl cellulose and 

amorphous cellulose, but no hydrolysis of crystalline cellulose or cellotriose to cellopentaose 

(Mølhøj et al., 2001). Mutations in the KOR1 gene, like rsw2, have a clear effect on the 

primary wall, as they exhibit abnormal plant morphology, defects in cell wall formation, 

reduced cellulose content, increased pectin synthesis, and aberrant cell division features, also 

found in the CESA1 mutant rsw1 (Nicol et al., 1998; Peng et al., 2000; Zuo et al., 2000; Sato 

et al., 2001; Lane et al., 2001). Two independent mutations in the KOR1 genes showed 

similar phenotypes as the irx mutants, i.e. collapsed xylem cell walls due to reduced cellulose 

synthesis in the secondary cell wall (Szyjanowicz et al., 2004). Based on the phenotype of the 

mutants, KOR1 appears to be involved in cellulose biosynthesis, but thus far it has not been 

possible to assign a specific role to this protein in this process. It has been suggested that 

KOR1 is involved in recycling sterol glucoside primers (Robert et al., 2004). KOR1 might 

also have a kind of proof-reading activity involved in hydrolyzing disordered amorphous 

cellulose to relieve stress generated during assembly of glucan chains in cellulose microfibrils 

(Mølhøj et al., 2002). Alternatively, KOR1 may determine the length of individual cellulose 



  Chapter 4 

  49 

chains during or subsequent to microfibril assembly or termination of the cellulose synthesis, 

releasing the cellulose microfibril from the synthase complex. Read and Bacic (2002) 

suggested that KOR1 might be an integral part of the rosettes. However, until now there is no 

experimental evidence for this, neither with co-precipitation experiments, nor with 

localization studies (Szyjanowicz et al., 2004). The membrane-based yeast two hybrid system 

(MbYTH; Fetchko and Stagljar, 2004) which has already been proven to be a powerful tool to 

determine interactions between glycosyltransferase involved in cell wall biosynthesis 

(Timmers et al., 2009), was used to determine the interaction between KORRIGAN and the 

different CESA proteins in vitro. The bimolecular fluorescence complementation method 

(BiFC) was used to confirm these results in planta. Our results show that the interaction 

between KOR1 and the CESA proteins is specific, and takes place in the membrane. 

 

Material and Methods 

 

Constructs for the MbYTH system 

The contructs for the MbYTH system concerning the secondary CESAs were described 

previously (Timmers et al., 2009). The full-length cDNAs were obtained from the Riken 

Bioresource Center (Seki et al., 1998; Seki et al., 2002) AtCESA1 (RAFL09-89-G08), 

AtCESA3 (RAFL05-19-M03), AtCESA6 (RAFL05-02-P19) and KOR1 (RAFL05-02-G06). 

Restriction sites were generated by PCR with specific primers (primers for AtCESA1)  

5’-AAGACTGCAGAATGGAGGCCAGTGCCGGC/ 

5’-AACAGGCGCCCTAAAAGACACCTCCTTTGCC  

and 5’AAGAGGCCATTACGGCCATGGAGGCCAGTGCCGGC/  

5’-AAGAGGCCGAGGCGGCCAAGTAAAAGACACCTCCTTTGCCAT (for bait and prey 

plasmid respectively); primers for AtCESA3 

5’AGAACCATGGAATGGAATCCGAGGAGAAACC/  

5’-AAGAACTAGTTCAACAGTTGATTCCACTTCC and  

5’-AGAACGGCCATTACGGCCATGGAATCCGAAGGAGAAACC/ 

5’-GAGGCCGAGGCGGCCGTCAACAGTTGATTCCACATTCCAGAAT (for bait and prey 

plasmid respectively); primers for AtCESA6 5’-AGAACCATGGAATGAACACCGGTGGTCGG/ 

5’AAGAACTAGTTCACAAGCAGTCTAAACCA and  

5’-AGAACGGCCATTACGGCCATGAACACCGGTGGTCGGTTAATCGC/  

5’-GAGGCCGAGGCGGCCGTCACAAGCAGTCTAAACCACAGATCTCGAGAAT (for bait and 

prey plasmid respectively); primers for KOR1  
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5’-AAGACGTCATGTACGGAAGAGATCCATGGGG/ 

5’TTTACTAGTCAAGGTTTCCATGGTGCTGGTGG and  

5’-AACAGGCCATTACGGCCATGTACGGAAGAGATCCATGGGG/  

5’-AAGAGGCCGAGGCGGCCATCAAGGTTTCCATGGTGCTGGTGG (for bait and prey 

plasmid respectively);  primers for KOR1C  

5’-AAAGACGTCAAGATCTTCGTCTGGACTGTTGGT/ 

5’TTTACTAGTCAAGGTTTCCATGGTGCTGGTGG and  

5’-AACAGGCCATTACGGCCAAGATCTTCGTCTGGACTGTTGGT/  

5’-AAGAGGCCGAGGCGGCCATCAAGGTTTCCATGGTGCTGGTGG (for bait and prey 

plasmid respectively); primers for KOR1N  

5’-AAGACGTCATGTACGGAAGAGATCCATGGGG/ 

5’TTTACTAGTTTAACGATCAAGGTAATGAA and  

5’-AACAGGCCATTACGGCCATGTACGGAAGAGATCCATGGGG/ 

5’-AAGAGGCCGAGGCGGCCTTTAACGATCAAGGTAATGAA (for bait and prey plasmid 

respectively); primers for KOR1TMD  

5’-AAAGACGTCAAGATCTTCGTCTGGACTGTTGGT/ 

5’-TTTACTAGTTTAACGATCAAGGTAATGAA and  

5’-AACAGGCCATTACGGCCAAGATCTTCGTCTGGACTGTTGGT/  

5’-AAGAGGCCGAGGCGGCCTTTAACGATCAAGGTAATGAA (for bait and prey plasmid 

respectively); primers for KOR1SOL 5’-AAGACGTCATGTACGGAAGAGATCCATGGGG/ 

5’-GCGGCTAACGATAATACAACC/5’-ACTGTGCCGCGTCATCATCC/ 

5’-TTTACTAGTCAAGGTTTCCATGGTGCTGGTGG and  

5’-AACAGGCCATTACGGCCATGTACGGAAGAGATCCATGGGG/ 

5’-GCGGCTAACGATAATACAACC/5’-ACTGTGCCGCGTCATCATCC/ 

5’-AAGAGGCCGAGGCGGCCATCAAGGTTTCCATGGTGCTGGTGG (for bait- and prey-

plasmid respectively). The resulting PCR-products were digested and ligated in the pTFB1 

vector or the pADSL-Nx vector (bait and prey plasmid, respectively) (Dualsystems Biotech 

AG). The sequences of the inserts were confirmed by Sanger sequence analysis. 

 

Membrane based yeast two hybrid screen 

The bait and prey constructs were co-transformed into the yeast strain NMY51 (Dualsystems 

Biotech AG) according to the provided transformation procedure (DUAL membrane Kit 1). 

The yeast, containing both plasmids, was plated onto synthetic medium lacking leucine and 

tryptophan (SD med.-L-T), and grown at 30ºC for three days. To quantify the interactions 

between different preys 100 colonies of each combination were spotted onto selection 
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medium containing the appropriate amount of 3-ammonium-triazole (3-AT) and grown at 

30ºC for three days. The number of spots grown was then counted. Detection of β-

galactosidase activity was performed with the filter-lift assay (Breeden and Nasmyth, 1985).   

 

Bimolecular Fluorescence Complementation screen 

Leaves of 3-week-old plants (Nicotiana benthamiana) were transformed by infiltration as 

described (Voinnet et al., 2003). YFP fluorescence was detected 3 days after infiltration by 

using the 514-nm laser line of a SP2 AOBS confocal laser scanning microscope (Leica, 

Solms, Germany) equipped with an argon laser. To check the YFP reconstitution, spectral 

analysis was performed with the 496-nm laser line. The fluorescence with all constructs was 

detected at the same photo-multiplier tube (PMT) settings (760), except for the negative 

interactions for which the PMT was increased up to 880. 

 

Results 

 

Interaction between KORRIGAN and the primary cellulose synthases  

In order to test the hypothesis that KORRIGAN is part of the primary cellulose synthase 

complex, the interaction between KOR1 and three members of the primary cell wall cellulose-

synthesizing rosette (CESA1, CESA3 and CESA6) were tested using the MbYTH system. 

Interactions were tested with KOR1 fused to C-terminal part of the ubiquitin (Cub) and the 

transcription factor (bait), whereas the CESA1, 3 and 6 proteins were fused to the N-terminal 

part of the ubiquitin (Nub) (preys). Upon interaction between the bait and the prey the 

transcription factor (TF) is released into the nucleus where it activates reporter genes allowing 

the yeast to grow on selective medium. The results indicated that KOR1 is able to interact 

with all three of the CESA proteins as most yeast colonies were able to grow on selective 

medium (Fig. 1). 
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Figure 1. Interactions between KOR and the different CESA proteins using the Membrane-
based Yeast Two Hybrid. The bars represent the percentage of yeast colonies grown for 3 days on 
selective medium at 30 ºC. KOR1 was expressed in yeast as bait and the different CESA proteins as 
prey (as indicated in the legend).  
 

The lack of growth in the negative control indicated that the interaction with KOR1 was 

specific as an unrelated protein expressed as prey is not able to activate the system. Reverse 

experiments, in which the different CESA proteins were the bait and the KOR1 the prey, 

confirmed these findings in that all combinations were able to induce the reporter genes, 

allowing the yeast to grow on selective medium (Fig. 2). The results were confirmed in planta 

with the bimolecular fluorescence complementation method (BiFC). Using this system, the 

interaction between the primary CESAs and KOR1 were tested in Nicotiana benthamiana. 

Two YFP fragments, either YFP/N or YPF/C, each linked to the N-terminus of the proteins, 

were transiently expressed in the plant. Upon interaction between the two proteins, the 

fragments restore fluorescence, which can be detected. Expression of CESA1 together with 

KOR1 (both fused to YPF fragment) resulted in a strong fluorescent signal at the plasma 

membrane (Fig. 3A). The location of the interaction, at the plasma membrane, is an indication 

that the proteins were folded properly and not disrupted by the fluorescent tag as they were 

transported to the same sub-cellular localization as they are predicted to be located in vivo. 

These results indicated that the KOR1 protein is a physical component of the primary rosette 

complex, as it can bind to the major constituents (the CESA proteins) of the complex. 

Preliminary results have shown an interaction between KOR1 and CESA6 and the interaction 

between CESA3 and KOR1 still have to be determined in planta with BiFC. 
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Figure 2. Interactions between the different KOR1 domains and the different CESA proteins 
using the Membrane-based Yeast Two Hybrid. The bars represent the percentage of yeast colonies 
grown for 3 days on selective medium at 30 ºC. The different CESA proteins were expressed in yeast 
as bait (as indicated in the legend) and the different KOR1 protein domains as prey.  
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KORRIGAN also interacts with the secondary CESA proteins 

Reduction in cellulose content of the secondary cell wall in the KOR1 irx mutants links 

KOR1 also to cellulose synthesis in the secondary cell wall. To test interaction between 

KORRIGAN and the secondary CESA proteins (CESA4, CESA7 and CESA8) the KOR1 was 

expressed as bait (fused to the Cub and TF) in combination with the secondary CESA as prey 

(fused to the Nub). The combination KOR1 with CESA4 or CESA8 activated the reporter 

genes, and therefore able to grow on selective medium whereas no growth was detected when 

KOR1 and CESA7 were tested (Fig. 1). The interaction between KORRIGAN and CESA4 or 

KORRIGAN and CESA8 were comparable, however no significant interaction was detected 

for CESA7. The results were confirmed by the interaction between the CESA proteins (fused 

to the Cub and the transcription factor) and the KOR1 protein fused to the Nub which resulted 

in the same interactions (Fig. 2). 

The physical interaction of KOR1 with the secondary CESA protein found with the MbYTH 

system was tested also in planta. Both KOR1 and the different secondary CESA proteins were 

fused to fragments of the YFP and expressed in Nicotiana leaves in different combinations. 

Restored fluorescence indicated interaction between the two fusion proteins. The combination 

CESA7 and KOR1 only showed a background fluorescent signal (Fig. 3E), whereas both 

CESA4 and CESA8 show a distinct signal when expressed in combination with KOR1 (Fig. 

3D and 3F, respectively). Judging from the fluorescent signal, the interacting proteins were 

located at the plasma membrane, the location of the cellulose synthezing complex in vivo. The 

interactions found in planta by the BiFC system confirmed the results found with the yeast 

two hybrid system. 

 

 

Figure 3. BiFC in N. benthamiana shows in vivo dimerization between KORRIGAN and various 
CESA proteins. The KOR1 expressed together with different CESA proteins; CESA1 (A), CESA4 
(B), CESA7 (C), and CESA8 (D), respectively. The scale bar is 100µm. 
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The transmembrane domain is essential for interaction 

The KOR1 protein is a membrane-anchored protein containing a short N-terminus located in 

the cytosol, a transmembrane domain (TMD), and an extra cellular catalytic (Fig. 4). To get 

more insight in the interaction between KOR1 and the CESA proteins several truncated 

KOR1 proteins were engineered. The N-terminal part of the protein together with the TMD 

was used to test whether the cytosolic portion of the protein (KORN; Amino Acids 1 to 94, 

Fig. 4B) is responsible for the interaction. The TMD with the C-terminal portion of the 

protein (KORC; AA 70 to 621, Fig. 4C) was tested for interactions between the catalytic 

domain and the CESA proteins. The TMD was also tested separately, by expressing only the 

TMD (KORTMD; AA 70 to 94, Fig. 4D). These truncated proteins were fused to the Nub and 

used as prey to test for interaction with the different CESA proteins. All the truncated proteins 

of KOR1 interacted with all CESA proteins, except for the CESA7 (Fig. 2). To confirm these 

results in planta, truncated forms of KOR1 were tested for interaction using the BiFC assay. 

The results indicated that the fluorescent signal was comparable with the full length KOR1 

protein (Fig. 6A-C). As all tested KOR1 domains were able to interact with the same proteins 

as the full length KOR1, and they all contained the TMD, it was deduced that the TMD might 

be involved in these interactions. To test this hypothesis and to determine whether this domain 

is essential for the interaction another recombinant protein was made, of which the TMD was 

removed resulting in a soluble protein (KORSOL AA 1 to 69 + 95 to 621, Fig. 4E). Because 

there are other glycosyl hydrolase family 9 members, which lack the TMD it was assumed 

that KORSOL was folded correctly. No interaction between the KORSOL and any of the 

CESA proteins was found (Fig. 2). The reverse experiments confirmed these results and 

showed no interaction between the KORSOL (fused to the Cub and the transcription factor) 

and the CESA proteins (fused to the Nub). 
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Figure 4. Representation of different truncated KORRIGAN proteins used in this study. A) 
KOR1 is the complete protein (AA 1 to 621), B) KOR1N: the N-terminal part with the TMD (AA 1 to 
94), C) KOR1C: TMD  plus the C-terminal part of KOR1 (AA 70 to 621), D) KOR1TMD only the 
TMD of KOR1 (AA 70 to 94), E) KOR1SOL is the KOR1 protein without the TMD; in which the N-
terminus is fused directly to the C-terminal part (AA 1 to 69 + 95 to 621). 
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KORRIGAN is able to form a homodimer in planta 

It is known that type II membrane proteins, like KOR1, often form dimers to perform their 

function. Using the MbYTH assay, KOR1 was expressed both as bait and as prey to test the 

ability of KOR1 to form homodimers. It appeared that KOR1 could form a homodimer, as the 

yeast was able to grow. To test whether a protein domain can be found responsible for this 

interaction the truncated KOR1 proteins were tested for interaction with each other. Growth 

was found in all combinations of truncated proteins except for those which lack a TMD. The 

combination of the KOR1C and the KOR1N, showed a weak yet significant interaction, 

whereas the reverse combination lacked detectable interaction (Fig. 5).  
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Figure 5. Interactions between the different KOR1 domains using the Membrane-based Yeast 
Two Hybrid. The bars represent the percentage of yeast colonies grown for 3 days on selective 
medium at 30 ºC. KOR1 domains represented in the legend were expressed in yeast as bait and the 
different KOR1 domains indicated at the x-axis as prey. 
 
To confirm these findings the interactions were tested in planta. Our results showed that 

fluorescence was restored when two different fusion proteins (YFP/C-KOR1 and YFP/N-

KOR1) were expressed in Nicotiana, indicating the formation of a homodimer of KOR1 

proteins (Fig. 6A). Different parts of the protein [KOR1N or KOR1C (Fig. 4B and C)] were 

also tested for interaction with the full-length or portions of KOR1 protein and fluorescence 

was found in all combinations tested. The partial proteins KOR1N and KOR1C could interact 

with the full-length KOR1 protein (Fig. 6E and F, respectively) as well as with each other (Fig 

6G) and form homodimers (Fig 6H and I, respectively), although the interaction between the 

KOR1N and KOR1C (Fig. 6G) was significantly weaker. As all (truncated) proteins in this 

test contained the TMD, these results indicate that this domain is also essential in the 

dimerization of KOR1.  
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Figure 6. BiFC in N. benthamiana shows in vivo dimerization between KORRIGAN domains and 
the CESA1 protein. Dimerization between the different truncated forms of KORRIGAN 
KOR1/KOR1 (D), KOR1/KOR1N (B), KOR1/KOR1C (C), KOR1N/KOR1C (G), KOR1N/KOR1N 
(H), KOR1C/KOR1C (I) and the partial KOR1 proteins with the CESA1 protein KOR1/CESA1 (A), 
KOR1N/CESA1 (E), and KOR1C/CESA1 (F). The scale bar is 100µm. 
 

Discussion 

 

Our interaction studies presented in this study showed a physical interaction between the 

KOR1 and CESA proteins, indicating that the KOR1 protein is part of the rosette complex 

both in vitro in one-to-one interactions and in planta. Although KORRIGAN has shown to 

play an important role in cellulose biosynthesis, based on gene expression and mutant 

phenotype analysis, direct interaction between KOR1 and CESA proteins has never been 

proven due to experimental limitations (Szyjanowicz et al., 2004). 



  Chapter 4 

  57 

The result that KOR1 interacted with CESA1, 3 and 6 indicated that KOR1 is involved in the 

cellulose biosynthesis of the primary cell wall, whereas the interaction with CESA4 and 

CESA8 indicates that KOR1 is also part of the rosette structure of the secondary cell wall. 

The different reaction between the primary and the secondary cell wall proteins is difficult to 

explain as the specific functions of the different CESA proteins are not known. The binding of 

KORRIGAN with CESA1, 3, and 6 might be related to the lower degree of polymerization of 

the cellulose [8000 glucose residues in a chain (Brown, 2004)] in the primary cell wall 

compared to the secondary cell wall [14.000-15.000 glucose residues in a chain (Brett, 2000)], 

as korrigan has been implicated in severing the cellulose form the rosette structure (Taylor et 

al., 2008). The binding of KOR1 to the different CESA proteins is specific, as KORRIGAN 

does not bind to all of them. Not only does this imply that the methods used are sensitive 

enough to specifically determine interactions between these highly homologous proteins, it 

also indicates that the KOR1 protein has a specific position within the rosette. 

The mutant phenotype of kor1 results in a severe reduction in crystalline cellulose, both in the 

primary and secondary cell wall, underlining the importance of glucan trimming during 

cellulose biosynthesis. 

A more detailed view on the interaction between KOR1 and the CESA proteins revealed that 

all portions which contain the TMD were able to interact and this led to the conclusion that 

the TMD was essential for the interaction. Therefore it is assumed that the interaction takes 

place within the membrane, between the TMD of KORRIGAN and the TMDs of the CESA 

proteins. This domain is also important in the homodimerisation of the KOR1 protein as all 

partial proteins containing this domain are able to interact, however other domains of the 

KOR1 protein might also play a role in the dimerization as the combination KOR1C and 

KOR1N only showed a weak interaction in both assays. The function of this dimerization is 

thus far unknown, however one could speculate that the dimer enables a more efficient 

hydrolysis of the glucan chains or binding to the cellulose, or the interlinking of KORRIGAN 

might result in a more stable rosette complex.  

In conclusion, we have determined that the KOR1 protein interacts with both primary and 

secondary CESA proteins both in vitro and in planta and proved the hypothesis that KOR1 

makes up a part of the rosette structure. The physical interaction also indicates that KOR1 is 

directly involved in cellulose biosynthesis, and probably does so in the form of a homodimer. 

Furthermore, our study showed that the TMD of KOR1 is essential in the interaction with the 

different CESA proteins.  
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Abstract 

 

Cellulose is one of the major components of the plant cell wall. This polysaccharide is 

synthesized at the plasma membrane by a rosette complex. Although the main constituents of 

this protein complex, the cellulose synthases (CESA), are well characterized, it has been 

difficult to identify other components of the rosette complex. In this study, a protein 

interaction approach was used to identify other members of the rosette complex. A library 

screening was performed with the membrane-based yeast two-hybrid system using each of the 

three different CESA proteins as bait (CESA 4, 7 and 8). This resulted in a list of 

approximately one hundred candidates, of which twelve showed interaction with at least two 

out of three CESA proteins. The list consists of proteins known to be involved in cell wall 

metabolism, such as the endo-chitinase-like gene CTL2, whereas other proteins (transporters, 

transcription factors) had no previous link to cellulose biosynthesis and might be promising 

targets for future research.  
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Introduction 

 

Plant cell walls are composed of different classes of polysaccharides including cellulose, 

hemi-cellulose, and pectins and the percentage of each of the polysaccharides depends on the 

plant species. Cellulose is a major component of both primary and secondary cell walls. 

Chemically, cellulose is simple polysacharide: it is linear polymer of β-(1,4) glucose. The 

substrate for cellulose synthesis is UDP-glucose, the glucose moiety of which is incorporated 

into linear glucan chains by cellulose synthases (CESAs). The CESA proteins are organized in 

rosette complexes localized in the plasma membrane of plant cells, and believed to be formed 

by six subunits which in turn consist of six CESA proteins. Biochemical evidence and 

transcript analyses revealed that distinct CESA proteins are necessary for the correct assembly 

of the rosette structure. The different CESA proteins have a similar expression pattern, and it 

has been suggested that at least three different CESA proteins are required for a functional 

CESA complex. Three proteins, CESA4, CESA7, and CESA8, are required for cellulose 

synthesis during secondary cell wall formation in vascular tissues. The irx1 (Atcesa7), irx3 

(Atcesa8) and irx5 (Atcesa4) mutants show changes in cellulose content in the secondary cell 

wall, indicating that all three CESAs are essential for proper cellulose synthesis (Taylor et al., 

2003). Previous studies have revealed that these proteins specifically interact to form the 

rosette structure (Timmers et al., 2009).  

Reverse genetics have uncovered additional components affecting cellulose biosynthesis. 

Proteins like the β-(1,4)-glucanase KORRIGAN and endo-chitinase-like protein CTL-1 have 

been linked to the cellulose machinery because of a reduced cellulose content in the mutant 

background (Schindelman et al., 2001; Zhong et al., 2002). Also the kobito, knopf and 

botero1 mutants show a compromised cellulose content. Although these mutants have an 

effect on the cellulose synthesis, it is unknown whether the corresponding proteins are an 

integral part of the cellulose synthesizing machinery. 

Interaction with constitutive components of the rosette structure, the CESA proteins, might be 

an indirect indication that a particular protein might be involved in cellulose biosynthesis. The 

membrane-based yeast two-hybrid system (MbYTH) was used to determine the interaction 

between the secondary wall CESA proteins (Timmers et al., 2009), and proved a valuable tool 

to analyze interactions between CESAs. In this study, we extend this approach by using 

CESAs as baits to identify other constituents of the rosette complex.  
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Materials and Methods 

 

Constructs for the MbYTH system 

The full-length A. thaliana cDNAs were obtained from the Riken Bioresource Centre [12, 13] 

A full-length AtCES4 (NM_123770) was obtained for the RBC (RAFL15-30-K05)A SstII 

restriction site at the 5’ end and a SpeI restriction site at the 3’end were generated by PCR 

with primers 5’-AAACCGCGGATGGAACCAAACACC and  

5’-AAACTAGTTAACAGTCGACGCCACA. A full-length AtCESA7 (NM_121748) was 

obtained from the RBC (RAFL09-35-F05). A SstII restriction site at the 5’ end and a Eco47III 

restriction site at the 3’end were generated by PCR with primers  

5’-AAGACCGCGGATGGAAGCTAGCGCCGGTCTTGT and  

5’- AGCGCTTCAGCAGTTGATGCCACACTTG. A full-length AtCESA8 (NM_117994) was 

obtained from the RBC (RAFL09-65-M12). A PstI restriction site at the 5’ end and a NcoI 

restriction site at the 3’end were generated by PCR with primers  

5’- AAGACTGCAGAATGATGGAGTCTAGGTCTCCC and  

5’-AGAACCATGGCATTAGCAATCGATCAAAAGACAGTTC. The proof-reading polymerase 

Pfu (Fermentas) was used in all PCR set-ups. The resulting PCR-products were digested and 

ligated in the pTFB1 vector (Bait) (Dualsystems Biotech AG). The bait expression is 

regulated by the TEF1 promoter. The sequences of the inserts were obtained by Sanger 

sequence analysis. The library, a Nubg Arabidopsis cDNA-library (Dualsystems P02210), 

was constructed for six-day-old seedlings. a mixture of dark grown (etiolated seedlings) and 

seedlings exposed to blue and far red light. The library consists out of 1.7*107 independent 

clones with an average insert size of 1.7 kb (ranges from 1.2-2.5kb).  

 

Membrane based Yeast two hybrid (MbYTH) screen 

The yeast strain NMY51 (Dualsystems Biotech AG) was transformed according to the 

protocol (DUAL membrane Kit 1). Yeast containing the bait plasmids were transformed with 

the Arabidopsis thaliana library plasmids resulting in approximately 1.8*106 transformants 

and grown on SD medium (lacking leucine, tryptophan, and histidine) containing the 

appropriate concentration of 3-ammonium-triazole (130mM, 10mM, and 75mM, for baits 

CESA4, CESA7, and CESA8, respectively). After five days of growth at 30ºC, the colonies 

grown were scored. In order to identify interacting proteins, the yeast, containing both bait 

and prey, was plated on SD medium (lacking leucine, tryptophan, histidine, and adenine) 

containing the appropriate concentration of 3-ammonium-triazole (130mM, 10mM, and 
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75mM, for baits CESA4, CESA7, and CESA8, respectively). After five days of growth at 

30ºC, the colonies grown were scored. Detection of β-galactosidase activity was performed 

with the filter-lift assay (Breeden and Nasmyth, 1985). The interactors were identified by 

PCR, Sanger sequence analysis and consecutively a blast search on the NCBI website 

(Altschul et al., 1997). The list of known auto-activators can be found on the Dual membrane 

website (www.Dualsystems.com).  

 

Results  

 

Identifying candidate proteins interacting with the cellulose synthezing complex 

Several proteins are suggested to be physically linked to the rosette structure. However, so far 

the only protein, other than CESAs, for which this has been established an interaction is the 

cellulase KORRIGAN (Chapter 4). In order to find other members of the secondary CESA 

complex, each of the secondary CESA proteins was used as bait to screen a plasmid library, 

which expressed the cDNA of Arabidopsis as prey. Only colonies able to grow in the absence 

of the four auxotrophic markers, and able to activate the LacZ gene, were considered as 

potential interactors with the CESA complex. The preys expressed in these colonies were 

identified using colony-PCR and subsequent sequence analysis. The corresponding genes 

were identified by highest similarity to genes of the A. thaliana genome available at the NCBI 

database (Altschul et al., 1997). This resulted in a list of 50, 50, and 109 proteins, with several 

proteins found more than once, potentially interacting with CESA4, CESA7, and CESA8, 

respectively (Table SII). The list of interactors contained proteins with diverse functions, 

which were divided in ten groups based on enzymatic activity or metabolic pathway involved 

(Figure 1A, Table SII), or in seven groups based on sub cellular localization (Figure 1B, Table 

SII). Several of these groups might contain proteins involved in cellulose biosynthesis as their 

location and function is associated with cell wall biosynthesis, like the group of proteins 

located at the plasma membrane. 
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Figure 1. Grouping of the interactors with CESA4, CESA7 and CESA8 based on protein 
function and localization in the cell. The sum of interactors involved in a similar pathway (A) or sub-
cellular location (B) is indicated; the number between brackets is the sum of interactors with the three 
CESA proteins, CESA4, CESA7 and CESA8, after elimination of biologically non-relevant proteins. 
 

Biological relevance of the protein interactions 

In spite of the power of MbYTH to characterize protein-protein interactions, as in all 

heterologous analyses systems, the biological relevance of the identified interactors needs to 

be further evaluated. One of the drawbacks of this system was the false positives generated by 

auto-activation, without interaction between the bait and the prey. These false positives have 

been identified (see M&M) and consequently discarded as candidates (so-called Filter I to 

reduce the number of potentially relevant proteins, Table SII). Twenty proteins could be 

related to auto-activation of the system.  

The current view is that the rosettes are assembled in the Golgi apparatus, where the complex 

exists in an inactive state. The complexes are subsequently transported via cytoplasmic 

vesicles from the Golgi to the plasma membrane, where they are activated for cellulose 

synthesis (Haigler and Brown, 1986). Proteins, which do not reside in Golgi, cytosol or 

plasma membrane, are therefore considered as unlikely candidates of the secondary CESA 

complex (Filter II, Table SII). Using both criteria the number of candidate genes decreased 

from one hundred eighty-one to one hundred and one (Table I), as the original list of proteins 

contained several chloroplast and nuclear proteins (Table SII).  
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Table I. List of relevant interactors with the three CESA proteins. The list of interactors with the 
different CESA proteins after elimination of biological non-relevant proteins. 
Group Locus Name Cellular location Function 
Cell wall 
metabolism 

At2g20750 AtExpB1 cell wall expansin 

 At2g42840 PDF1 cell wall protodermal factor 1 
 At1g56700   pyrolidone-carboxylate 

peptidase family 
 At5g40390 SIP1 endomembrane seed imbibition 1-like 

(GH 36) 
 At4g14130 AtXTH15 endomembrane xyloglucan 

endotransglycosylase 
hydrolase (GH16) 

 At2g06850 AtXTH4 cell wall xyloglucan 
endotransglycosylase 
hydrolase (GH16) 

 At2g05790  endomembrane endo-glucanase (GH16) 
 At2g32990 AtGH9B8 endomembrane endo-1,4-glucanase 

(GH17) 
 At1g75680 AtGH9B7 endomembrane endo-1,4-glucanase 

(GH9) 
 At3g16920 CTL2 endomembrane endo-chitinase like 

(GH19) 
 At3g27540  membrane (GT17) 
 At5g47780 GAUT4 membrane galacturonosyltransferas

e (GT8) 
 At3g61130 GAUT1 membrane (alpha-1,4)-

galacturonosyltransferas
e activity (GT8) 

 At5g60920 COBRA membrane glycosylphosphatidylino
sitol anchored protein 

 At2g01610  membrane invertase 
pectinmethylesterase 
inhibitor 

 At1g28580  endomembrane carboxylic ester 
hydrolase activity 

 At4g13660   pinoresinol reductase 
Transporters At4g17340 Delta-Tip2 membrane delta tonoplast integral 

protein 
 At2g37180 RD28 membrane plasma membrane 

intrinsic protein 
 At3g61430 PIP1A membrane plasma membrane 

intrinsic protein 
 At1g01620 PIPC1 membrane plasma membrane 

intrinsic protein 
 At3g53420 PIP2A membrane plasma membrane 

intrinsic protein 
 At3g26520 TIP2 membrane tonoplast intrinsic 

protein 2 
 At2g39010 PIP2 membrane water channel 
 At4g35100 PIP3 membrane water channel 
 At3g16240 Delta-Tip membrane water channel 
 At2g45960 PIPB1 membrane water channel 
 At1g76850 SEC5A plasma membrane exorcist complex  



  Chapter 5 

  67 

 At5g58060 YKT61 trans Golgi membrane fusion 
 At1g06400 AtRab11E  regulation of vescular 

trafficking 
 At1g76520  endomembrane auxin efflux carrier 

family protein 
 At2g34250 SEC61 membrane protein translocase 

activity 
 At1g22530 SEC14 membrane transporter activity 
 At1g14660 AtNHX8 membrane Na+/H+ exchanger 
 At3g45600 TET3 endomembrane tetraspanin3 
Transcription 
factor 

At1g06040 AtSTO  salt tolerance zinc finger 

 At3g11400 EIF3G1  translation initiation 
factor 3G1 

 At2g21320  endomembrane zinc finger B-box type 
 At1g69570   DOF-type zinc finger 

containing protein 
 At3g22840 ELIP1  early light inducible 

protein 
 At1g15380   lactosyl glutathione 

lyase/ glyoxalase 
Protein 
metabolism 

At1g14320 60S cytosol 60S acidic ribosomal 
protein 

 At5g01020   protein kinase 
 At3g63490   ribosomal protein L1 

family 
 At1g58684 40Srib S2  ribosomal protein 
 At3g47360 AtHSD3 endomembrane short-chain 

dehydrogenase/ 
reductase (SDR) family 
protein 

 At4g13180 AIS3  short-chain 
dehyrogenase/ reductase 
SDR family 

 At5g18140 DNAJ  heat shock N-terminal 
domain containing 

 At1g08570   thioredoxin family 
 At1g80440   kelch repeat-containing 

F-box family 
 At5g04530  endomembrane beta-ketoacyl-CoA 

synthase family 
 At5g20050   protein kinase 
 at3g53870 RPS3B cytosol ribosomal protein 
 At3g52190 PHF1 endoplasmic 

reticulum 
phosphate transporter 
traffic facilitator 1 

 At3g09200 RPPOB cytosolic ribosome 60S acidic ribosomal 
protein 

 At2g42810 PAPP5 cytoplasm protein phosphatase 5 
Lipid 
metabolism 

At1g49660 AtCXE5  carboxyl esterase 5 

 At4g19860 LACT  cholesterol 
acyltransferase fam. 

 At2g03980   GDSL-motif 
lipase/hydrolase family 



Identification of new components of the rosette complex  
 

  68 

 At3g21720   cytrate lyase 
 At5g13640 ATPDAT membrane phospholipid 

diacylglycerol 
acyltransferase 

Stress response At1g78380 AtGSTU19 cytoplasm glutahione transferase 
 At5g27380 GSH2 cytosol glutathione synthase 
 At2g37130 PER21 endomembrane peroxidase activity 
 At3g16420 PBP1 cytosol PYK10-binding protein1 
 At3g32980 PER32  peroxidase activity 
 At2g32150   dehalogenase-like 

hydrolase family protein 
 At1g76680 OPR1  12-oxophytodienoate 

reductase 1 
 At1g62380 ACO2  1-aminocyclopropane-1-

carboxylate oxidase 
 At5g57970   methyl adenosine 

glycosylase fam. 
Sugar 
metabolism 

At2g21170 TIM  triosephosphate 
isomerase 

 At1g71170   6-phosphogluconate 
dehydrogenase NAD-
binding domain 
containing 

Unknown At1g60010   unknown 
 At4g38280   unknown 
 At4g25670 CPuORF12  unknown 
 At1g62780   unknown 
 At5g16110   unknown 
 At5g42765   unknown 
 At3g15450   unknown 
 At1g19990   unknown 
 At4g27450   unknown 
 At1g18490 DUF1637  unknown 
 At2g20670   unknown 
 At1g19400   unknown 
 AT1g11440   unknown 
 At1g18740 DUF793   unknown 
 At3g59300   unknown 
 At3g49140   unknown 
 At3g05280   unknown Yip! Family 
 At3g60800 DHHC type  unknown Zinc finger 

protein 
 At4g38160 PDE191  Pigment defective 191 
 At4g32460  endomembrane unknown 
 At5g55940 EMB2731 endoplasmic 

reticulum 
Embryo defective 2731 

 At4g08950 PHI1 cell wall Phosphate induced 
protein (PHI1) 

 At5g14430  cell wall dehydatation responsive 
 At4g38770 PRP4 cell wall proline rich protein 
 At4g20260 DREPP membrane polypeptide family 

protein 
 At5g59500  Membrane unknown 
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 At1g09070 SRC2 endoplasmic 
reticulum 

soybean gene regulated 
by cold-2 

 At2g38750 ANNAT4 membrane calcium ion binding 
 At2g32150   dehalogenase-like 

hydrolase family protein 
 

Indications for involvement in cellulose synthesis 

Several of remaining interactors (Table I) have previously found indications that implicate 

their involvement in cell wall biosynthesis. Some of them can be directly linked to cellulose 

biosynthesis based on their enzymatic function. Two members of the glycosyl hydrolase 

family 9, AtGH8B7 and AtGH8B8, were thought to be involved in cellulose metabolism based 

on their endo-glucanase activity. Another member of this family, KOR1, was found to interact 

directly with CESA4 and CESA8 (Chapter 4). As KOR1 is important for cellulose synthesis, 

the action of these other family members enzymes might also be required for proper cellulose 

synthesis. At2g05790 encodes a family 17 glycosyl hydrolase. These enzymes are able to 

hydrolyze callose (β (1,3) glucan). As it has been suggested that the CESA proteins can be 

involved in callose synthesis (Doblin et al., 2002), it might be speculated that the family 17 

hydrolase has a similar function in callose biosynthesis as KORRIGAN in cellulose 

biosynthesis.  

The endo-chitinase-like protein (CTL1) homolog, CTL2, was found interacting with CESA7 

and has previously been linked to cellulose biosynthesis in the secondary cell wall, based on 

its high level of co-expression with CESA4, 7, and 8 (Persson et al., 2005). Disruption of this 

gene caused a Fourier transform infrared phenotype, indicative of alterations in the cell wall 

composition. Both our findings and those of Persson et al., (2005) are indications that CTL2 is 

involved in cellulose biosynthesis in the secondary cell wall.  

COBRA, found to interact with CESA4, has been previously associated with primary cell wall 

cellulose biosynthesis, as it had an expression pattern resembling that of the primary cell wall 

CESAs (Persson et. al., 2005). The interaction between COBRA and CESA4 is an indication 

that this protein might also be involved in secondary cell wall cellulose biosynthesis. Also 

KOR1 has been associated with both primary and secondary cell wall cellulose biosynthesis 

(Nicol et al., 1998; Szyjanowicz et al., 2004). 

A group of transporters (Table I) might be directly linked to cellulose biosynthesis. The 

mechanism by which the growing glucan chain is translocated over the plasma membrane, has 

not been experimentally demonstrated although several models are proposed. One of the 

models is that the eight transmembrane helices of the CESA protein itself form a pore in the 

membrane through which the glucan chains are extruded into the cell wall (Delmer, 1999). In 
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other models, porin-like proteins are proposed to translocate the chains (Bessueille and 

Bulone; 2008). The water channels found interacting with the different CESA proteins might 

represent such porin-like proteins. The fact that they were found with all CESA proteins and 

in almost all cases more than once (Table SII) supports this possible role. 

The proteins involved in vesicle transport, like SEC5 and AtRAB11E, might transport the 

cellulose biosynthesis complex from Golgi to the plasma membrane, the actual site of 

cellulose biosynthesis. It has previously been found that the CESA proteins are essential and 

non-redundant and interaction studies have revealed that the CESA proteins specifically 

interact forming the rosette structure (Timmers et al., 2009). This indicates that each CESA 

protein might fulfill a unique function in cellulose biosynthesis. Interestingly, not all CESA 

isoforms had a similar number of interactors (Fig. 2). Twenty-one proteins were found more 

than once, thirteen proteins were found with two different CESA isoforms as bait (Fig. 2). 

Two proteins, a water channel (Delta-TIP) and a defense response protein (PBP1) showed 

interaction with all three CESA proteins. Eight proteins are able to interact with both CESA4 

and CESA8, four with CESA7 and CESA8, whereas no proteins were found interacting only 

with both CESA4 and CESA7 (Fig.2). The relatively low number of common interactors 

between CESA4 and CESA7 might suggest that these proteins have a different function 

during the formation of cellulose.  

 

Figure 2. Number of interactors found with the different CESA proteins as bait 
The number of proteins, after elimination of biologically non-relevant proteins, found interacting with 
the different CESA specifically, and simultaneously. 
 

Discussion 

 

Although it has been known for some time that cellulose is produced in a multi protein 

complex only the main constituents of the rosette complex have been identified. Using a 

protein-protein interaction approach new candidates have been identified. The interaction with 
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the secondary CESA proteins is a strong indication for the involvement, of the interactor, in 

cellulose synthesis. The screen of the cDNA library resulted in the identification of a large 

number proteins able to interact with the secondary CESA proteins in yeast. The size 

limitations of the cDNA library, which is restricted to 2.5kb explains the absence of the CESA 

proteins, as they are 3kb in size. The absence of KOR1 in turn suggests that the screen is not 

saturated or that KOR1 is in present in the library. Because the protein interactions were 

tested in vitro in an heterologous expression system, additional experiments are needed to 

establish the relevance of the interactions in planta as is illustrated by the PIP2 water channel 

did not show an interaction in the BiFC assay (Timmers et al., 2009). In vivo localization of 

protein can be used to identify false positives and confirm the potential biological relevance of 

a candidate. Additional knowledge of an interactor can confirm its involvement in cellulose 

biosynthesis. Proteins of the GH9 family are therefore likely to be involved in cellulose 

biosynthesis as they are known cellulases, however thus fare only one member of this family, 

the KOR1 protein, has been identify based on its mutant phenotype. This might indicate that 

the other family members found are not essential in cellulose synthesis or might be redundant. 

Proteins like COBRA and CTL2, although previous implicated in cellulose biosynthesis, do 

not have a known function and therefore it is difficult to speculate about their specific role in 

the rosette complex without additional research. Also other proteins need addition data to 

asses their role in cellulose biosynthesis. This study revealed a list of proteins (physically) 

linked to cellulose biosynthesis, and these proteins might be a promising starting point for 

future research in this topic.  
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Abstract  

 

Besides cellulose, xyloglucan is a major component of the plant cell wall. The synthesis of 

xyloglucan occurs in the Golgi, and the resulting polysaccharide is transported to, and 

inserted into, the plant cell wall. Although the structure of xyloglucan is well established, the 

enzymes involved in its synthesis are poorly understood. Several glycosyltransferases 

involved in xyloglucan synthesis, like the xylosyltransferases XXT1, XXT2 and the 

glucosyltransferase (CSLC4) thought to be responsible for the polymerization of the glucan 

of the backbone, have been identified. Based on the regular, multiple glycosyl residue 

structure of xyloglucan, our hypothesis was that, like cellulose, xyloglucan is synthesized by 

a complex of proteins. In order to characterize this complex, a membrane based yeast two 

hybrid system was used to characterize the interactions between the XXT1, XXT2, and 

CSLC4. A model for the protein complex involved in the synthesis of xyloglucan is 

proposed. Furthermore, several hitherto unknown proteins, like two xyloglucan endo-

transglucosylase-hydrolases, were found to interact with XXT1, and are suggested to play a 

role in xyloglucan biosynthesis. 
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INTRODUCTION  

 

The plant cell wall is a complex structure that is composed of cellulose, hemicellulose, 

pectin, lignin, protein, and various inorganic compounds (Carpita and MacCann, 2000). 

Xyloglucan (XyG) is one of the most abundant hemicelluloses and is believed to play an 

important role in cell wall structure, where it functions as a cross-linker to form a cellulose-

xyloglucan network that constitutes the major load-bearing structure during cell expansion 

(Veytsman and Cosgrove, 1998). In Arabidopsis XyG is composed of a β-(1,4)-glucan 

backbone that is substituted with α-(1,6)-xylosyl residues in a regular pattern (Vincken et al., 

1997), called XXXG in a standardized nomenclature (Fry et al., 1993), where the letters G 

and X refer to an unbranched β-D-glucose and an α-D-xylose-(1,6)-β-D-glucose segment, 

respectively. The xylosyl residues can be further substituted at the second and/or third xylose 

residue from the non-reducing end, by the addition of (1,2)-β-D-galactosyl (segment L) 

residues and the subsequent addition of α-(1,2)-L-fucose (segment F) at the galactosyl unit 

(Fig. 1).  

 

Figure 1. Repetitive structure of xyloglucan. The repetitive structure of XyG and the 
glycosyltransferases involved in its synthesis. 
 
Considerable progress has been made in the identification of glycosyltransferases involved in 

the biosynthesis of XyG. The Atfut1 gene encodes a XyG fucosyltransferase from 

Arabidopsis (Perrin et al., 1999). Plants with a mutated Atfut1 gene lack fucosylated XyG in 
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all major organs; however, the plants do not show any changes in their growth or physiology 

(Vanzin et al., 2002). The Arabidopsis mur3 defect results in a failure of attachment of the 

galactosyl residue on the third xylosyl unit within the XXXG core structure, and also these 

plants were phenotypically normal (Madson et al., 2003). Identification of a pea 

xylosyltransferase led to the discovery of an Arabidopsis gene family consisting of seven 

putative XyG xylosyltransferases (Faik et al., 2002). It seems that XXT1, XXT2, and XXT5 

family members are involved in xyloglucan synthesis and are able to add one xylose unit to 

unsubstituted glucans; under high donor substrate concentrations they can also add the second 

and even third xylose residue to the adjacent glucosyl residues (Cavalier and Keegstra, 2006). 

The xxt1 and xxt2 double mutant produced slightly smaller plants and lacked detectable XyG, 

whereas the single mutants did not show a growth reduction, although the glucan backbone 

was less substituted (Zabotina et al., 2008 and Cavalier et al., 2008). It has been suggested 

that XXT1 and XXT2 are partially redundant, because of the modest reductions of XyG 

content in the single mutants, which is enhanced in the double mutant (Briggs et al., 2006). 

As the xxt5 mutant shows similar reduction of backbones substitution with xylose residues, it 

has been suggested that all three proteins (XXT1, XXT2 and XXT5) are partly redundant 

(Zabotina et al., 2008). To identify proteins responsible for the synthesis of the glucan-

backbone transcriptional profiling of developing Nasturtium (Tropaeolum majus) seeds, 

which contain high amounts of XyG, was used. A gene with high similarity to the 

Arabidopsis cellulose synthase-like (CSL) gene family was identified (Cocuron et al., 2007). 

The subfamily CSLC in Arabidopsis contains five family members. The Nasturtium protein 

and its homologue from Arabidopsis (AtCSLC4) both show β-glucan synthase activity when 

expressed in Pichia pastoris. Although the atcslc4 mutant did not show an altered XyG level, 

Cocuron and co-workers (2007) suggested that the AtCSLC4 protein from Arabidopsis is 

involved in XyG biosynthesis.  

In order to investigate whether XyG is produced in a protein complex, we tested the 

interactions between the xylosyltransferases and the glucosyltransferase with each other and 

the ability to form homodimers. Also a library screen was performed to identify proteins, 

which are involved in xyloglucan synthesis, using the same method.  
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MATERIALS AND METHODS 

 

Construction of plasmids for the split-ubiquitin system 

To construct the bait plasmid, the vector pTMF1 encoding the Cub fragment was used. The 

reporter in this plasmid consists of the LexA-DNA binding domain and the VP16-activation 

(TF) (Dualsystems Biotech AG).  

The full-length XXT1 gene (NM_116137) was obtained from the Riken Bioresource Center 

(Seki et al., 1998 and Seki et al., 2002) (RAFL09-34-I12). The PstI restriction site at the 

5’end and the SpeI restriction site at the 3’end were generated by PCR with primers  

5’-ACCGCGGATGATAGAGAAGTGTATAGGAG and  

5’-TACTAGTCACGTCGTCGTCGTACTAA (restriction sites are underlined). A full-length 

XXT2 (NM_116484) was obtained from the RBC (RAFL09-33-I10). The SstII restriction site 

at the 5’end and the SalI restriction site at the 3’end were generated by PCR with primers  

5’-AAACCGCGGATGATTGAGAGGTGTTTAGG and  

5’-TTGTCGACTCACGTCGTCGTCGTACTAA. A full-length AtCSLC4 (NM_113737) was 

obtained from the RBC (RAFL08-13I06). The NcoI restriction site at the 5’end and the SpeI 

restriction site at the 3’end were generated by PCR with primers  

5’-AAACCATGGAATGGCTCCAAATTCAGTAGCAGTGAC and  

5’- AAACTAGTTTCTAGCTGATCTGTTCTCCGATCAAATCC. The proof-reading polymerase 

Pfu (Fermentas) was used in all PCR set-ups. The resulting PCR-products were digested and 

ligated in the pTFB1 vector (Dualsystems Biotech AG).  

The vector pADSL-Nx, which encodes the Nub fragment, was used to construct the prey 

plasmid (Dualsystems Biotech AG). For making the prey constructs, an EcoRI linker and a 

SalI linker were generated by PCR, at the 5’and 3’ end, respectively. For the XXT1 gene the 

primers 5’-AAAGAATTC AATGATAGAGAAGTGTATAGGAG and  

5’- TTTGTCGACTCACGTCGTCGTCGTACTAA were used, for XXT2 primers  

5’-AAAGAATTC AATGATTGAGAGGTGTTTAGG and  

5’-TTTGTCGACTCAAACTTGATTGGTTTGTAC, and for AtCSLC4 primers  

5’- TTTGAATTCAATGGCTCCAAATTCAGTAGCAGTGAC and  

5’-TTGTCGACTTTCTAGCTGATCTGTTCTCCGATCAAATCC. The resulting PCR-products 

were digested and ligated in the pADSL-Nx vector (Dualsystems Biotech AG). The 

sequences of the inserts were confirmed by Sanger sequence analysis. 
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Yeast two-hybrid assay 

The bait and prey constructs were co-transformed into the yeast strain NMY51 (Dualsystems 

Biotech AG) according to transformation procedure (DUAL membrane Kit 1). The yeast, 

containing both plasmids, was plated onto synthetic medium lacking leucine, tryptophan (SD 

med.-L-T), and grown at 30ºC for three days. To quantify the interactions between different 

preys, 100 colonies of each combination were spotted on selection medium (synthetic 

medium lacking leucine, tryptophan, histidine, and adenine (SD med.-L-T-H-A)) containing 

the appropriate 20mM of 3-Ammonium-triazole and grown at 30ºC for three days. The 

number of spots grown was then counted, to confirm the results the experiment is replicated. 

Detection of β-galactosidase activity was performed with the filter-lift assay (Breeden and 

Nasmyth, 1985). 

 

Yeast two-hybrid library screening 

The library used for the screening for new interactors was a Nub Arabidopsis cDNA-library 

(Dualsystems P02210) constructed for six-day-old seedlings of a mixture of dark grown 

(etiolated seedlings) and seedlings exposed to blue and far red light. The library consisted of 

1.7*107 independent clones with an average insert size of 1.7 kb (ranges from 1.2-2.5kb). The 

yeast strain NMY51 (Dualsystems Biotech AG) containing the bait plasmid was transformed 

with the cDNA library and plated onto synthetic medium lacking leucine, tryptophan, and 

histidine (SD med.-L-T-H), and grown at 30ºC for five days. Colonies were plated onto 

synthetic medium lacking leucine, tryptophan, histidine, and adenine (SD med.-L-T-H-A), 

and grown at 30ºC for three days. Colonies were tested for β-galactosidase activity using the 

filter-lift assay (Breeden and Nasmyth, 1985).  

 

RESULTS 

 

Xyloglucan is produced in a protein complex 

The XXT1, XXT2, and CSLC4 were tested for interaction using a membrane based yeast two 

hybrid (MbYTH) system. Interactions were first tested with XXT1 fused to the C-terminal 

part of the ubiquitin (Cub) and the transcription factor (bait), whereas the XXT2 and CSLC4 

proteins were fused to the N-terminal part of the ubiquitin (Nub) (preys). Upon interaction 

between the bait and the prey the ubiquitin is restored, and subsequently the transcription 
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factor (TF) is released into the nucleus where it activates reporter genes allowing the yeast to 

grow on selective medium. Yeast growth indicates that XXT1 is able to interact with both 

proteins (Fig. 2A). When XXT2 was used as bait, similar results were found in that it also 

interacted with XXT1 and AtCSLC4 (Fig. 2B). The interactions were confirmed using 

AtCSLC4 as bait and the XXT1 and XXT2 as preys; both combinations were able to grow on 

selective medium. The capacity of these enzymes to form homodimers was also tested, and 

both xylosyltransferases and the AtCSLC4 protein were able to do so (Fig. 2). All 

combinations activated the colorimetric marker, which confirmed the interactions, whereas 

the negative control indicated that the interactions were specific.  
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Figure 2. Interactions between the glycosyltransferase involved in XyG synthesis visualized by 
yeast growth. Yeast expressing XXT1, XXT2 or CSLC4 as bait with different NubG fusion proteins. 
The percentage of colonies that show visible growth after 5 days at 30ºC on selective medium is 
shown. Standard deviation is visualized by the error bar. 
 

Identifying new candidates which are part of the xyloglucan synthezing complex 

To identify, other proteins comprised in the XyG synthesizing machinery, the XXT1 protein 

was used as bait to screen a cDNA library. Yeast containing the XXT1 as bait was 

transformed with an Arabidopsis cDNA library and plated on selection plates lacking 

histidine (20mM 3-AT). A total of fifty-eight independent colonies were able to grow. 

Additional selection on the autotrophic marker adenine and colorimetric marker LacZ 

identified two colonies to be false positives. The remaining fifty-six colonies were considered 

true interactors. These fifty-eight colonies corresponded to forty-one different proteins 

interacting with XXT1 in yeast (Table I). 
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Biological relevance of the protein interactions 

As the protein interactions were tested in yeast, these results might not always reflect 

biologically relevant interactions, and false positives need to be filtered out. Some proteins 

are known to activate the reporter genes without an interaction between the bait and the prey. 

Seven of these known auto-activators were found in the list and disregarded as interactors 

(Table SIII, filter 1). A second filter was based on localization. Expression of proteins in 

yeast might cause them to be present at a different location in the cell, which makes them 

available for interaction with proteins they would normally not encounter in planta. As XyG 

synthesis takes place in the Golgi, only Golgi-localized proteins should be considered as 

interactors. Proteins which are located in different cell organelles in planta, like the cell 

nucleus or the chloroplast, are unlikely candidates to be involved in XyG biosynthesis. 

Therefore, twenty-one proteins were discarded as candidate genes base on localization (Table 

SIII, filter 2). The remaining list of interactors (Table I) was studied in more detail as they 

might represent proteins able to interact in planta with XXT1. 

 

Table I. List of relevant interactors with the XXT1 protein. The list of interactors with the 
different CESA proteins after elimination of biological non-relevant proteins. 
 
Locus Protein name Protein name  Localization 
At1g61250 SCAMP3 secretory carrier 3  post Golgi / 

cytosol 
At4g15780 ATVAMP724 vesicle-associated 

membrane protein 724 
 post Golgi / 

plasma-
membrane 

At5g09440  phosphate-responsive 
protein 

  

At1g20630 CAT1 catalase 1 H202 to water en 
oxygen 

 

At1g78630 EMB1473 embryo defective 
1473 

structural 
constituent of 
ribosome 

 

At3g26650 GAPA Glyceraldehyde 3 
phosphate 
dehydrogenase A 
subunit 

  

At4g13940 HOG1 homology-dependent 
gene silencing 1 

adenosyl 
homocysteinase 

 

At2g38080 LAC4 laccase 4 copper ion binding/ 
oxidoreductase 

 

At4g37540 LBD39 LOB domain-
containing protein 39 

  

At1g80070 SUS2 abnormal suspensor2 transcriptionfactor  
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At1g12780 UGE1 UDP-D-glucose/UDP-
D-galactose-4-
Epimerase 1 

  

At4g28850 AtXTR18 xyloglucan endo-
transglycosylase 
hydrolase 

xyloglucosyl 
transferase 

 

At4g14130 AtXTH15 xyloglucan endo-
transglycosylase 
hydrolase 

xyloglucosyl 
transferase 

 

 

Indications for involvement in xyloglucan synthesis 

The remaining interactors (Table I) were screened for indications which strengthen the 

relevance of the interaction with XXT1. Some proteins detected can be linked directly to 

xyloglucan synthesis based on their catalytic function. The UGE1 produces UDP-galactose 

which might be used as a donor substrate for the galactosyl side chain of xyloglucan. The two 

xyloglucan endo-transglucosylase-hydrolases (XTH), found interacting, can cleave donor 

xyloglucan chains and rejoin the newly formed reducing end to the non-reducing terminus of 

an available acceptor xyloglucan chain or oligosaccharide (EC 2.4.1.207). 

Co-expression of genes might also be an indication for the function of the interaction with the 

XXT1. The two interactors found in the library screen, LACCASE4 (LAC4) and 

ABNORMAL SUSPENSOR2 (SUS2), are both involved in secondary cell wall synthesis. 

The lac4 gene showed a similar gene expression pattern as the Atcesa7, which is part of the 

complex required for cellulose biosynthesis in the secondary cell wall (Brown et al., 2005). 

Furthermore, the phenotype of the corresponding mutant, a mild irregular xylem, is indicative 

for a secondary cell wall defect. Both are indications that LAC4 is involved in cell wall 

biosynthesis. Also sus2 has been confirmed as differentially expressed during cell wall 

development, and is therefore thought be involved in the construction of the secondary cell 

wall (Yang et al., 2008). Although xyloglucan is one of the major components of the primary 

cell wall it is also found as a secondary cell wall storage polysaccharide (Buckeridge et al., 

2000; Reid et al., 1985). Based on the expression patterns of the lac4 and sus2 it is likely that 

these genes are involved in this phase of the cell wall production. 
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DISCUSSION 

 

Although there are indications that some of the polysaccharides of the cell wall are 

synthesized in a complex, this has only been confirmed for the cellulose synthesis. The 

conserved structure of XyG within plants implies that the synthesis of XyG needs to be 

precisely orchestrated which might indicate XyG is synthesized in a protein complex. Results 

of the one to one interaction study show that the proteins, which attach xylosyl side chains to 

the growing glucan backbone, physically interact with the protein which is thought to 

produce this glucan chain. This corroborates the idea that AtCSLC4 synthesizes the backbone 

of XyG, as well as the hypothesis that XyG is produced in a protein complex. Our results lead 

us to propose the topology for the XyG synthesizing complex as indicated in Fig. 3.  

 

Figure 3 Model of the xyloglucan synthezing complex. A model based on the interactions between 
the known enzymes involved in XyG synthesis and found to interacting. The integral membrane 
protein, CSLC4 (Blue), forms a homodimer and the two active sites form a disaccharide which is 
attached to the growing glucan chain, the XXT proteins (Grey) add xylosyl side chains to the 
backbone (the presents of a third xylosyltransferase in the complex still has to be established.). The 
XTH protein (green) cleaves the xyloglucan and attaches it to an acceptor molecule. 
 

The ability of AtCSLC4 to homodimerize might be an indication that this enzyme is 

functional as a dimer during XyG biosynthesis. The CESA are thought to be a processive 

enzymes, adding two glucosyl residues simultaneously to the growing chain (Richmond and 

Somerville, 2000). Two active sites are needed for this, in which subsequent glycosyl units 
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are flipped 180 degrees, such as in chitin (Yeager and Finney, 2004). This might also apply to 

the synthesis of the β-(1,4) glucan backbone of XyG. Another possibility might be that the 

homodimer of CSLC4 produces two β-glucan chains, as is thought each of the cellulose 

synthase of the rosette complex produces one glucan chain of the microfibril (Somerville et 

al., 2004) and the dimerizations stabilize the protein complex. 

As at least two of the known xylosyltransferases interact with the AtCSLC4 protein, it is 

speculated that the XyG biosynthesis complex consists of at least two (and possibly three) 

different xylosyltransferase each adding one specific xylosyl side-chain, which is consistent 

with previous research (Zabotina et al., 2008 and Cavalier et al., 2008).  

The XTH proteins, AtXTH15 and AtXTH26, found interacting with XXT1 are members of 

the xyloglucan endo-transglycosylase hydrolase family 16. Members of this family were 

found to internally cleave xyloglucan and ligate the newly generated reducing ends onto the 

O-4 of the non-reducing terminal glucosyl residue of an acceptor, which can be a xyloglucan 

or an oligosaccharide of xyloglucan (Uozu et al., 2000). The ability of the XTH proteins to 

remodel XyG molecules might have several functions during synthesis, such as disconnecting 

nascent chains from the actual biosynthetic machinery, and thus terminating chain elongation. 

A similar function is ascribed to korrigan, a protein also found to be part of the complex 

synthesizing cellulose (Mølhøj et al., 2002; Chapter 3). Atxth15 shows a similar expression 

pattern as xxt1, which lends further support to the hypothesis that XTH is part of the complex.  

XXT1 was also found interacting with UGE1, an enzyme that interconverts UDP-glucose and 

UDP-galactose. A family of five UGE isoforms is encoded in the Arabidopsis genome, some 

of them known to be involved in the galactosylation of xyloglucan (Rösti et al., 2007). It has 

been suggested that UGE1 is the dominant isoform in green plant parts (Dörmann and 

Benning, 1998). Knock-down of UGE1 however, neither induces a morphological phenotype 

nor alters cell wall polymers or any other galactose containing carbohydrate (Rösti et al., 

2007). The UDP-galactose produced by UGE1 can be used as a donor substrate for the 

galactose side chain of XyG. The production of UDP-galactose might be an indication that 

the galactosyl side chain is also added within this complex. The on-site production of the 

donor substrate for the galactosyltransferase might ensure a more efficient incorporation of 

galactose in xyloglucan, a concept also suggested for cellulose biosynthesis. SUSY, the 

enzyme that  produces the donor substrate, UDP-glucose, for cellulose synthesis suggested to 
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be part of the complex involved in the biosynthesis of this polysaccharide (Carlson and 

Chourey, 1996).  

Two proteins found (SCAMP3 and VAMP724) are known to be involved in the control of 

protein and lipid trafficking by vesicle sorting at the trans-Golgi network and transportation 

to the plasma membrane (Sanderfoot et al., 2000). The interaction with the xylosyltransferase 

might target the vesicle containing XyG to the plasma membrane and therefore might be a 

temporal interaction. In the list of interactors there are some genes with a putative function 

which can not be directly linked to XyG biosynthesis to date. Future research has to reveal 

whether their interaction with XXT1 has a biological relevance and what their place in the 

XyG machinery is. Several new candidate genes were found using the library screen, 

however it cannot be ruled out that more glycosyltransferases are involved in the synthesis of 

XyG, as a few known interactors of XXT1 where not identified in this screen. 

The characterization of the protein complex involved in xyloglucan synthesis is a step 

forward in the understanding of xyloglucan biosynthesis and the proteins involved. The 

further characterization of the interactors identified in this study might be a valuable starting 

point for future research. 
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General discussion 

 

The research described in this thesis was performed to generate more in-depth knowledge of 

cell wall biosynthesis, and notably to identify the different proteins interacting to form the 

cell wall biosynthetic complexes. Previous studies using common genetic approaches have 

proven to be successful in obtaining valuable knowledge in cell wall research. However 

several questions remain which due to the limitations of these approaches need to be 

addressed in a different way. In this thesis, a different approach to characterize the plant cell 

wall biosynthesis was chosen, i.e. one embarking on protein-protein interactions, which 

might provide a more detailed view on the protein complexes involved in plant cell wall 

biosynthesis. The membrane-based yeast two-hybrid system (MbYTH) was chosen to study 

the in vitro interactions of proteins involved in the synthesis of cellulose and xyloglucan, and 

the BiFC was used to confirm these interactions in planta. Although other protein interaction 

assays could have been used, the MbYTH system was chosen as it is a high throughput 

method, not only enabling verification of interactions between known interactors but also 

enabling discovery of new interactors. The MbYTH method was optimized to identify new 

components of and insights in the cell wall biosynthesizing machinery (Chapter 2).  

 

Cellulose synthesizing complex 

 

Specific interactions between CESAs in the rosette complex 

To get more insight in the protein complex responsible for the synthesis of cellulose in the 

secondary cell wall, the interactions between the cellulose synthases (CESA4, 7 and 8) have 

been determined. The first step was the understanding of the organization of the CESA 

proteins in the rosette complex. Although, it had been suggested that homodimerization of 

these CESA proteins is the first step of the rosette formation (Kurek et al., 2002), it was 

found that only CESA4 was able to form homodimers. As no homo-dimerization of CESA7 

and CESA8 was detected it was concluded that the method was able to identify the specific 

interactions between the highly homologous CESA. The specific interaction was also an 

indication that the CESA proteins have a specific position in the organization of the rosette 

and the model proposed Doblin and co-workers (Doblin et al., 2002) was modified 

accordingly (Timmers et al., 2009). In the new model the homo-dimerization of CESA4 leads 
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the subunits to form the rosette structure (Timmers et. al., 2009; Chapter 3). Several 

assumptions were made based on previous research by others. For the secondary cell wall 

complex the stoichiometry of the complex has never been resolved, although gene expression 

indicates a 1:1:1 ratio between the different secondary CESA genes (Person et al., 2005). 

Another indication for this proposed stoichiometry of the secondary cell wall CESA complex 

is the stoichiometry of the complex synthesizing the cellulose for the primary cell, which has 

been determined at 1:1:1 for the three primary CESA proteins (Elizabeth Crowell, INRA, 

France, personal communication). The specific position of each of the CESA proteins might 

also hint towards an individual function of the proteins in the synthesis of cellulose, however 

as each of the CESA isoforms is essential for assembly of the rosette, it is difficult to 

determine their specific functions. This specific position of one CESA in the complex might 

explain the failure for compensation by another CESA protein. Identifying orthologs with a 

similar interaction pattern might be able to complement the knock out of a specific CESA 

protein. This might also enable the incorporation of exogenous CESA in the rosette complex, 

thereby modifying the cellulose produced.  

 

Identification of proteins interacting with the rosette complex 

Several proteins linked to cellulose biosynthesis have been identified and among them is the 

cellulase KORRIGAN. The mutant phenotype for the knockout of this gene resembles the 

phenotype obtained with plants containing mutated CESA proteins (Nicol et al., 1998; 

Szyjanowicz et al., 2004), and it has been suggested that KOR1 digests the growing glucan 

chains during cellulose synthesis (Nicol et al., 1998). Therefore, it was thought that the 

KOR1 protein might be an additional component of the rosette complex. To confirm this 

hypothesis, the interactions between the CESA proteins and KOR1 were tested. It was found 

that KOR1 was able to bind to three different primary CESA proteins (#1, #3, and #6), as 

well as specifically to the CESA proteins of the secondary cell wall, as it bound to both 

CESA4 and CESA8; however no interaction was found between CESA7 and KOR1 (Chapter 

4). The specific interactions with KOR1 suggest that the different CESA proteins might have 

a specific function, which is also implied by their specific position in the complex. The 

ability of the KOR1 protein to form homodimers indicates that this protein might function as 

a homodimer in the rosette complex.  
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Additional proteins involved in cellulose biosynthesis were found by using the MbYTH 

system to screen an A. thaliana cDNA library for interactors with the secondary CESA 

proteins (Chapter 5). This resulted in a list of proteins with very diverse catalytic functions. 

The list did not contain any of the proteins found interacting with the CESA proteins in 

previous studies, like KOR1 and the different CESA proteins themselves. The absence of the 

CESA a proteins among the interactors can be explained by the size limitations of the cDNA 

library, as it is restricted to 2.5kB, whereas the absence of KOR1 might indicate an 

incomplete screening of the library or absence of the kor1 gene in the library. The list of 

interactors also contains proteins which Several proteins could be directly linked to cellulose 

biosynthesis and the rosette complex based on their protein function. Two examples are 

COBRA and CTL2, found to interact with CESA4 and CESA7, respectively. These proteins 

have been previously implicated in cell wall biosynthesis (Roudier et al., 2005). The direct 

interaction with the rosette links both COBRA and CTL2 to cellulose biosynthesis. Several 

cellulases have been found interacting with CESA8. An explanation for the interactions 

found between all CESA proteins and water channels might be that these proteins form a pore 

through which the growing glucan chain is transported trough the plasma membrane. The 

protein interaction approach did not only reveal proteins previously related with cellulose 

biosynthesis, it also identified interactions with gene function thus far not implicated in 

cellulose biosynthesis. Therefore this screen is a powerful tool to limit the number of 

candidate genes involved in a specific pathway or process like polysaccharide biosynthesis. 

 

Identification of motives critical for protein-protein interactions 

To understand the nature of the interaction between KOR1 and the CESAs, different domains 

of these proteins were studied in more detail. It has been suggested that the RING-finger 

motif of the CESA protein might be responsible for the interaction between these proteins 

(Kurek et al., 2002). However, modification of the essential cysteines in the RING-finger 

motif did not result in a complete disruption of the interactions (Chapter 3). Therefore it was 

concluded that the RING-finger was not essential for the interaction between the different 

isoforms and might be involved in the binding of proteins other then the CESA. As KOR1 

did not comprise a specific domain related to protein-protein interaction, based on sequence 

analysis, different parts of the protein were tested for interaction with the CESA proteins. It 

was found that the transmembrane domain (TMD) was responsible for the interaction 
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between KOR1 and CESA proteins, as all partial proteins containing this domain are able to 

interact. The lack of interaction in absence of TMD led to the conclusion that this domain is 

essential for the interaction with the CESA proteins (Chapter 4). As the TMD of KOR1 is 

essential in the interaction with the CESA proteins, it is expected that the CESA counterpart 

is also one (or more) of its eight TMDs, as it is known that transmembrane helices can 

interact with each other in a specific way (Schneider et al., 2007). This insight in the 

incorporation of proteins in the complex allows a new approach in cellulose modification. 

The TMD of KOR1 can be used as a tool to attach proteins to the CESA proteins and 

therefore the rosette complex as it is sufficient for the interaction with the CESA proteins. 

Using this domain one might be able to anchor an enzyme into the protein complex during 

cellulose synthesis, which then can be involved in or interfere with the synthesis of this 

polymer. A possibility might be the incorporation of a more active cellulase to replace KOR1, 

in order to obtain shorter glucan chains incorporated in the microfibril.  

 

Xyloglucan synthesizing complex 

 

Interactions between proteins involved in xyloglucan biosynthesis 

Xyloglucan is another major constituent of the plant cell wall, and considerable progress has 

been made to identify glycosyltransferases involved in xyloglucan biosynthesis. Although 

several indications suggest the polysaccharide to be produced in a protein complex, this has 

not been established experimentally. The interaction between several of the known 

glycosyltransferases involved in this process has been tested to confirm this. Our results 

indicate that two different xylosyltransferases, XXT1 and XXT2, can both form homo- and 

heterodimers as well as bind with the glucosyltransferase (AtCSLC4), thought to be 

responsible for the synthesis of the glucan backbone. Also the AtCSLC4 protein is able to 

form homodimers. These results do not only corroborate the involvement of AtCSLC4 in 

xyloglucan biosynthesis, it also indicated that xyloglucan in produced in a protein complex. 

The core of the protein complex is suggested to be composed of two AtCSLC4 

homodimerized proteins, which produce the glucan backbone, and three different 

xylosyltransferases, which add the xylosyl groups to three of the four glucose residues 

(Zabotina et al., 2008 and Cavalier et al., 2008; Briggs et al., 2006). As the amino acid 

sequence of AtCSLC4 is very homologues to that of the CESA proteins and the 
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xylosyltransferase are type II membrane proteins as is the KOR1 protein, one might suggest 

that these proteins have a similar way of interacting. Therefore, the interaction might also 

take place in the membrane between the transmembrane domains. This could be an 

interesting subject for future studies. 

To identify other constituents of this complex a cDNA library was screened for interactors 

with MbYTH system using the XXT1 protein as bait. After the screen, based on biological 

relevance, this resulted in a list of thirteen proteins which can interact to the xyloglucan 

producing complex. UDP-galactose epimerase, found interacting with XXT1, can be directly 

linked to xyloglucan synthesis. The presence of this protein in the complex might be an 

indication that galactosyl side chains are also added in the complex, although these residues 

are less evenly distributed than xylosyl residues. This indicates that, although not found in 

this study, a galactosyltransferase might be part of the complex synthesizing xyloglucan. 

Although the xyloglucan endo-transglucosylase-hydrolases (XTH) are known to be involved 

in cell wall metabolism, in that they cleave and rejoin xyloglucans in the cell wall, they have 

thus far not been implicated in xyloglucan biosynthesis. The interaction with the XXT1 

protein links these proteins to the location where the xyloglucan is synthesised, where they 

might release the growing xyloglucan chain from the complex, and attach it to another 

xyloglucan in the Golgi. Other proteins, like the vesicle proteins, might be only temporally 

part of this complex to regulate translocation of the complex, or its product xyloglucan, 

towards the cell wall. Other proteins do not have an obvious link to xyloglucan biosynthesis 

but need follow up experiments to confirm their interaction in planta and to indicate what 

their involvement is in xyloglucan biosynthesis.  

 

The membrane based yeast two hybrid assay 

The ability of the MbYTH system to test one to one protein interactions between membrane 

bound proteins revealed several new insights in the biosynthesis of both cellulose and 

xyloglucan. These one to one screens show repeatable results which have been confirmed by 

the reverse experiments and the BiFC method in planta. The large number and diversity of 

interactors found in the library screens reveal the power and the weakness of the system. As 

the screen is independent of the protein function very diverse proteins can be identified in this 

assay as interactors. The list of interactors is too large to be confirmed in planta in detailed 

follow-up experiments without removing biological irrelevant interactions. As the 
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Arabidopsis proteins are expressed heterologously in yeast we expect to come across 

interactions which will not take place in planta. The simultaneous expression in one cell of 

two proteins might enable them to interact whereas in vivo these proteins never occur at the 

same time in the same cell. Also differences in post translational modifications between 

Arabidopsis and yeast can influence protein interactions. Although follow-up experiments are 

required to confirm proteins interacting in planta, a number of false positives can be 

identified without additional experiments. Several proteins are known to cause autoactivation 

of the system and therefore cannot be tested with this method. Other proteins can be excluded 

based on their different subcellular localization or distinct gene expression profiles.  

In the library screens performed with either the secondary CESA proteins or XXT1, several 

of the previously identified interactors have not been detected suggesting an unsaturated 

screen, which is also supported by the low frequency of each of the interactors. Several 

factors contributed to their absence in the 1.8 million colonies screened: i) the library 

contains only fragments between 1.2 and 2.5 kb, ii) only the clones comprising the full cDNA 

sequence in frame with the Cub will be able to generate a functional fusion protein.  

 

The MbYTH has proven to be a powerful tool in the identification of interactions between 

protein involved in the synthesis of different polysaccharides in the plant cell wall. This 

strategy based on protein interaction allows the identification of new components of the 

biosynthetic machinery independently of their function. This method entails an approach to 

shorten the list of candidate genes involved in the biosynthesis of a specific polysaccharide. 

Additional experiments are required in order to identify the specific function within the 

polysaccharide biosynthesis.  
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Supplementary data 

 

 
Figure S1. Effects of the substitution mutations on the interactions between the different 
CESAs. Yeast expressing CESA4 (A), CESA7 (B), and CESA8 (C) as bait with the wild type CESA7 
(CESA7wt), NubG-ALG5 (Neg), and the different mutated CESA7 proteins as prey, that show visible 
growth after 5 days at 30°C on selective medium as a percentage of the interaction with wild type 
CESA7 protein. 
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Figure S2. BiFC in N. benthamiana shows in vivo dimerization between the secondary CESAs. 
Homodimerization of CESA4 (A), CESA7 (D) and CESA8 (G) and heterodimerization YFP/N-
CESA4/YFP/C-CESA7 (B), YFP/N-CESA7/YFP/C-CESA4 (C), YFP/N-CESA4/YFP/C-CESA8 (E), 
YFP/N-CESA8/YFP/C-CESA4 (F), YFP/N-CESA7/YFP/C-CESA8 (H), and YFP/N-CESA8/YFP/C-
CESA7. Scale bar = 100µm 
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Table SI. Primers used for cloning and Site-Directed Mutagenesis. Restriction sites used for 
cloning are underlined. 
Primer name Sequence(5’-3’) 

FwCESA4SstII AAACCGCGGATGGAACCAAACACC 

RvCESA4SpeI AAACTAGTTAACAGTCGACGCCACA 

FwCESA7SstII AAGACCGCGGATGGAAGCTAGCGCCGGTCTTGT 

RvCESA7Eco47II
I 

AAGAAGCGCTTCAGCAGTTGATGCCACACTTG 

FwCESA8PstI AAGACTGCAGAATGATGGAGTCTAGGTCTCCC 

RvCESA8NcoI AGAACCATGGCATTAGCAATCGATCAAAAGACAGTTC 

FwCESA4XhoI AAACTCGAGATGGAACCAAACACCATG 

RvCESA4XhoI AAACTCGAGTTAACAGTCGACGCCA 

FwCESA7SfiI AAGAGGCCATTACGGCCATGGAAGCTAGCGCCGGTCTTGT 
RvCESA7SfiI AAGAGGCCGAGGCGGCCATCAGCAGTTGATGCCACACTTG 
FwCESA8SfiI AAGAGGCCATTACGGCCATGATGGAGTCTAGGTCTCCC 
RvCESA8SfiI AAGAGGCCGAGGCGGCCATTAGCAATCGATCAAAAGACAGTTC 
CESA7C37A CTAGATGGACAATTCGCTGAGATCTGTGGAGATCAGATTGG 
CESA7C56A GACCTCTTCGTAGCTGCCAATGAGTGTGGTTTTCCGGCG- 
CESA7C64A GTGGTTTTCCGGCGGCTAGACCTTGCTATG 
CESA7C79A AAGGAACACAAAACGCTCCTCAGTGTAAGACTCG 

FwCesA4gw 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCC 
ATGGAACCAAACACCATGGCC 

RvCesA4gw 
GGGGACCACTTTGTACAAGAAAGCTGGG 
TTCAACTTAACAGTCGACGCCACATTGC 

FwCesA7gw 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGGAAGCTAGCGCC
GGTCT 

RvCesA7gw 
GGGGACCACTTTGTACAAGAAAGCTGGGTTCAACTCAGCAGTTGATG
CCACAC 

FwCesA8gw 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGATGGAGTCTAGG
TCTCCC 

RvCesA8gw GGGGACCACTTTGTACAAGAAAGCTGGGTTAGCAATCGATCAAAAG 
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Table SII. List of all the proteins found to interact with the three CESA proteins. The list of 
proteins found interacting with the secondary CESA proteins in yeast. Bait indicates the CESA 
protein which was used as bait to identify the interactor (between bracktes it the number of times the 
interactor was found), Filter I (F. I) indicates the proteins known to be auto-activators of the system, 
whereas Filter II (F. II) indicates proteins that do not localize at the same intracellular localization as 
the CESA proteins. 

Group Locus Name Cellular 
location 

Function  Bait F.  
I 

F. 
II 

Cell wall 
metabolism 

At2g20750 AtExpB
1 

cell wall expansin  7   

 At2g42840 PDF1 cell wall protodermal 
factor 1 

embryogenesis 7(2) 
8(1) 

  

 At1g56700   pyrolidone-
carboxylate 
peptidase 
family 

assimilate 
ammonium 

8(2)   

 At5g40390 SIP1 endo 
membrane 

seed 
imbibition 
1-like / 
glycohydrol
ase family 
36 

GH family 36 4   

 At4g14130 AtXTH
15 

endo 
membrane 

xyloglucan 
endotransgly
cosylase 
hydrolase 

GH family 16 4   

 At2g06850 AtXTH
4 

cell wall xyloglucan 
endotransgly
cosylase 
hydrolase 

GH family 16 4(1) 
8(2) 

  

 At2g05790  endo 
membrane 

endo-
glucanase 

GH family 17 8   

 At2g32990 AtGH9
B8 

endo 
membrane 

endo-1,4-
glucanase 

GH family 9 8   

 At1g75680 AtGH9
B7 

endo 
membrane 

endo-1,4-
glucanase 

GH family 9 8   

 At3g16920 CTL2 endo 
membrane 

endo-
chitinase  

GH family 19 7   

 At3g27540  membrane  GT family 17 8   
 At5g47780 GAUT4 membrane galacturonos

yltransferase  
GT family 8 8   

 At3g61130 GAUT1 membrane  (alpha-1,4)-
galacturonos
yltransferase 
activity 

GT family 8 8(2)   

 At5g60920 COBR
A 

membrane glycosylpho
sphatidyl-
inositol 
anchored 
protein 

cellulose 
microfibril 
organization 

4   

 At2g01610  membrane invertase 
pectinmethy
lesterase 
inhibitor 

pectin 
metabolism 

8   

 At4g13660   pinoresinol 
reductase 

lignan 
biosynthesis 

4   
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 At1g28580  endo 
membrane 

carboxylic 
ester 
hydrolase 
activity 

pectin 
metabolism 

7   

Transporters At4g17340 DELTA
-Tip2 

membrane delta 
tonoplast 
integral 
protein 

water channel 4(2) 
8(2) 

  

 At2g37180 RD28 membrane plasma 
membrane 
intrinsic 
protein 

water channel 8   

 At3g61430 PIP1A membrane plasma 
membrane 
intrinsic 
protein 

water channel 7(1) 
8(1) 

  

 At1g01620 PIPC1 membrane plasma 
membrane 
intrinsic 
protein 

water channel 8(2)   

 At3g53420 PIP2A membrane plasma 
membrane 
intrinsic 
protein 

water channel 4(1) 
8(1) 

  

 At3g26520 TIP2 membrane Tonoplast 
intrinsic 
protein 2 

water channel 4(2) 
8(6) 

  

 At2g39010 PIP2 membrane water 
channel 

water channel 7(2)   

 At4g35100 PIP3 membrane water 
channel  

water channel 7(7) 
8(1) 

  

 At3g16240 DELTA
-Tip 

membrane water 
channel 

water channel 4(4) 
7(2) 
8(2) 

  

 At2g45960 PIPB1 membrane water 
channel 

water channel 4   

 At1g76850 SEC5A plasmamembra
ne 

exocyst 
complex 
component 

vesicle 
transport 

7   

 At5g58060 YKT61 trans Golgi membrane 
fusion 

vesicle 
transport 

7   

 At1g06400 AtRab1
1E 

 regulation of 
vesicular 
trafficking 

 8   

 At1g76520  endo 
membrane 

auxin efflux 
carrier 
family 
protein 

membrane 
trafficking 

4   

 At2g34250 SEC61 membrane protein 
translocase 
activity 

membrane 
trafficking 

7   

 At1g22530 SEC14 membrane transporter 
activity 

membrane 
trafficking 

8   

 At4g27540 PRA1  arginine N-
methyltransf
erase 

membrane 
trafficking 

7 ‡  
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 At1g14660 AtNHX
8 

membrane Na+/H+ 
exchanger 

membrane 
trafficking 

8   

 At5g47030  mitochondrial  hydrogen ion 
transporting 
ATP synthase 

8 ‡ ‡‡ 

 At2g10940  chloroplast protease 
inhibitor 

Lipid transfer 
protein family 

4(1) 
7(1) 

 ‡‡ 

 At1g17530 ATTIM
23-1 

mitochondrial 
membrane 

protein 
translocase 

 4  ‡‡ 

 At3g26570 PHT1 chloroplast  phosphate 
transporter 2 

 8  ‡‡ 

 At3g45600 TET3 endo 
membrane 

tetraspanin3  8   

Trans-
cription 
factor 

At1g06040 AtSTO  salt 
tolerance 
zincfinger 

transcription 
factor 

7(1) 
8(1) 

  

 At5g44190 GLK2 nucleus chloroplast 
development 

Transcription 
factor 

7(2)  ‡‡ 

 At3g11400 EIF3G1  translation 
initiation 
factor 3G1 

transcription 
factor 

8   

 At2g21320  endo 
membrane 

zinc finger 
B-box type 

transcription 
factor 

8   

 At1g69570   DOF-type 
zinc finger 
containing 
protein 

transcription 
factor 

8   

 At3g22840 ELIP1  early light 
inducable 
protein 

chlorophyll 
binding 

7   

 At1g15380   lactosyl 
glutathionel
yase 

detoxification 7   

 At1g51950 IAA18 nucleus indoleacetic 
acid-induced 
protein 

transcription 
factor 

8  ‡‡ 

 At2g77080 MAF1 nucleus MADS 
affecting 
flowering 

transcription 
factor 

8  ‡‡ 

 At3g01470 ATHA
B-1 

nucleus homeobox-
leucine 
zipper 
protein 
HAT5 

transcription 
factor 

8(2)  ‡‡ 

 At1g77080 MAF1 nucleus MADS 
affecting 
flowering 

transcription 
factor 

8  ‡‡ 

 At4g01280  nucleus MYB 
transcription 
factor 

 4  ‡‡ 

 At3g32605  mitochondrion  transcription 
factor 

8  ‡‡ 

 At3g16770 AtEBP nucleus  transcription 
factor 

8  ** 

 At5g10960 CCR4N
OT 

nucleus transcription 
complex 

 7  ‡‡ 
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Protein 
metabolism 

At5g01020   protein 
kinase 

 4   

 At5g60390 AF-1-
alpha 

nucleus elongation 
factor 

 7(2)  ‡‡ 

 At4g20360 AtRAB
E1 

chloroplast 
thylakoid 
membrane 

Rab 
GTPasw 
homolog 
E1b 

translation 
elongation 

8  ‡‡ 

 At1g07930 EF-1-
alpha 

mitochondrion elongation 
factor 

 7  ‡‡ 

 At1g14320 60S cytosol 60S acidic 
ribosomal 
protein 

 8   

 At3g66654  chloroplast protein 
folding 

 7  ‡‡ 

 At4g33410  endo 
membrane 

signal 
peptide 
peptidase 
family 

 8 ‡  

 At4g02890 UBQ14  protein 
interaction 

 4 ‡  

 At4g39093 RD19 endo 
membrane 

responsive 
to 
dehydration 
peptidase 

protein 
metabolism 

8(2)   

 At3g63490   ribosomal 
protein L1 
family 

protein 
metabolism 

7(1) 
8(1) 

  

 At1g58684 40Srib 
S2 

 ribosomal 
protein 

protein 
metabolism 

8   

 At3g47360 AtHSD
3 

endo 
membrane 

short-chain 
dehydrogena
se/reductase 
(SDR) 
family 
protein 

protein 
metabolism 

8   

 At4g13180 AIS3  short-chain 
dehyrogenas
e/ reductase 
SDR family 

protein 
metabolism 

8   

 At5g18140 DNAJ  heat shock 
N-terminal 
domain 
containing 

protein 
metabolism 

8(2)   

 At1g08570   thioredoxin 
family 

protein 
metabolism 

8   

 At5g20050   protein 
kinase 

 7   

 At5g04530  endo 
membrane 

beta-
ketoacyl-
CoA 
synthase 
family 

protein 
metabolism 

8   

 At5g64960 CDKC2 nucleus cyclin-
dependent 
kinaseC2 

Kinase 7(2)  ‡‡ 
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 At1g80440   kelch repeat-
containing 
F-box 
family 

protein 
metabolism 

8   

 at3g53870 RPS3B cytosol ribosomal 
protein 

 4   

 At3g52190 PHF1 endoplasmic 
reticulum 

phosphate 
transporter 
traffic 
facilitator 1 

 8   

 At3g09200 RPPOB cytosolic 
ribosome 

60S acidic 
ribosomal 
protein 

 8   

 At2g42810 PAPP5 cytoplasm protein 
phosphatase 
5 

 8   

 At5g65200  chloroplast armadillo/be
ta-catenin 
repeat 
family 

ubiquitin 
ligase 

8(2) ‡  

Lipid 
metatbolism 

At1g49660 AtCXE
5 

 carboxyleste
rase 5 

lipid synthesis 4   

 At4g19860 LACT  chlolesterol 
acyltransfera
se fam. 

lipid synthesis 4   

 At3g21720   citrate lyase  lipid synthesis 8   
 At2g03980   GDSL-motif 

lipase/hydro
lase family 

lipid synthesis 8   

 At5g13640 ATPDA
T 

membrane Phospho-
lipid diacyl-
glycerolacyl 
transferase 

lipid synthesis 8   

Stress 
response 

At1g78380 AtGST
U19 

cytoplasm glutahione 
transferase 

stress 
management 

7   

 At5g27380 GSH2 cytosol glutathione 
synthase 

stress 
management 

7   

 At2g37130 PER21 endo 
membrane 

peroxidase 
activity 

defence 
response 

8(2)   

 At3g16420 PBP1 cytosol PYK10-
binding 
protein1 

defence 
response 

4(1) 
7(2) 
8(2) 

  

 At1g76680 OPR1  12-
oxophytodie
noate 
reductase 1 

jasmonate 
forming 

7   

 At2g32150   dehalogenas
e-like 
hydrolase 
family 
protein 

hydrolase 
activity 

7   

 At1g62380 ACO2  1-
aminocyclop
ropane-1-
carboxylate 
oxidase 

Ethylene 
forming 

8   
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 At3g32980 PER32  peroxidase 
activity 

oxidative 
stress response 

8   

 At5g57970   methyladeno
sine 
glycosylase 
fam. 

DNA 
methylation 

8   

Sugar 
metabolism 

At2g39730 RCA chloroplast rubisco 
activase 

 8  ‡‡ 

 At2g44350 ATCS mitochondrion citrate 
synthase 4 

 8  ‡‡ 

 At5g67590 FRO1 mitochondrion FROSTBIT
E1 

NADH 
dehydrogenase 

7  ‡‡ 

 At5g07440 GDH2 mitochondrion Glutamate 
dehydrogena
se 2 

 8  ‡‡ 

 At2g21170 TIM  triosephosph
ate 
isomerase 

glycolysis 8   

 At1g71170   6-
phosphogluc
onate 
dehydrogena
se NAD-
binding 
domain 
containing 

glycolysis 8   

 At5g09660 PMDH2 chloroplast peroxisomal 
NAD malate 
dehydrogena
se 2 

glycolysis 7(1) 
8(1) 

 ‡‡ 

 At4g38970  chloroplast 
stroma 

fructose-
biphosphate 
aldolase 

glycolysis 4  ‡‡ 

 At5g06340  chloroplast 5,5-P1-P4-
tetraphospha
te hydrolase 

 8  ‡‡ 

 At3g26650 GAPA chloroplast glyceraldehy
de 3-
phosphate 
dehydro- 
genase A 
subunit 

glycolysis 4(1) 
7(2) 
8(1) 

 ‡‡ 

 At2g36530 LOS2 mitochondrion phosphoryry
vate 
hydratase 

glycolysis 7  ‡‡ 

 At3g15020 NAD mitochondrion malate 
dehydrognas
e 

 7  ‡‡ 

Unknown At1g60010   unknown  4   
 At4g38280   unknown  4   
 At4g25670 CPuOR

F12 
 unknown  8   

 At1g62780   unknown  4   
 At5g16110   unknown  7   
 At3g15450   unknown  4(1) 

8(1) 
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 At5g42765   unknown  8   
 At1g19990   unknown  4   
 At4g27450   unknown  4   
 At1g18490 DUF16

37 fam 
 unknown  8   

 At2g20670   unknown  4(2)   
 At1g19400   unknown  7   
 AT1g11440   unknown  4   
 At1g18740 DUF79

3 fam 
 unknown  7   

 At3g59300   unknown  8   
 At3g49140   unknown  8   
 At3g05280   unknown 

Yip! Family 
 4   

 At3g60800 DHHC 
type 

 unknown 
Zinc finger 
protein 

 7   

 At4g38160 PDE191  pigment 
defective 
191 

 4(1) 
8(1) 

  

 At4g32460  endo 
membrane 

unknown  8   

 At5g55940 EMB27
31 

endoplasmic 
reticulum 

embryo 
defective 
2731 

 4   

 At4g08950 PHI1 cell wall phosphate 
induced 
protein 
(PHI1) 

 8   

 At5g14430  cell wall dehydatation 
responsive 

 7(2)   

 At4g38770 PRP4 cell wall proline rich 
protein 

 4   

 At4g20260 DREPP membrane polypeptide 
family 
protein 

 4   

 At5g59500  membrane unknown  7   
 At1g50020  chloroplast 

thylakoid 
membrane 

unknown  8  ‡‡ 

 At2g14910  chloroplast unknown  8  ‡‡ 
 At3g21200  chloroplast unknown  8  ‡‡ 
 at5g21920 YGGT chloroplast 

membrane 
unknown 
function 

 4(1) 
7(1) 

 ‡‡ 

 at3g32930  chloroplast unknown  4(1) 
8(1) 

 ** 

 At4g23890  chloroplast 
thylakiod 
membrane 

unknown  8  ** 

 At1g55480  chloroplast 
thylakoid 
membrane 

  8  ‡‡ 

 At5g02500 HSC70-
1 

 heat shock 
cognate 
70kD 
protein 

ATP binding 8 ‡  



  Supplementary data 

  109 

 At2g34560 ERH3  Ectopic 
Root Hair 3 

ATP binding / 
katanin 
putative 

4 ‡  

 At4g32260  chloroplast 
membrane 

ATP 
synthase 
family 

 4(2) ‡ ‡‡ 

 At1g09070 SRC2 endoplasmic 
reticulum 

soybean 
gene 
regulated by 
cold-2 

 8   

 At2g38750 ANNA
T4 

membrane calcium ion 
binding 

 8   

 At3g07670  chloroplast SET 
domain-
containing 
protein 

 8  ‡‡ 

 At5g03290  mitochondrion   8  ‡‡ 
 At1g16880  chloroplast 

membrane 
uridylyltrans
ferase-
related 

 4  ‡‡ 

 At4g03030  chloroplast kelch repeat-
containing 
F-box 
family 

 8  ‡‡ 

 At2g40600  chloroplast appr-1-p 
processing 
enzyme 
family 

 8  ‡‡ 

 At2g32150   dehalogenas
e-like 
hydrolase 
family 
protein 

 8   

 At1g16880  chloroplast 
membrane 

uridylyltrans
ferase-
related 

 4  ‡‡ 

Photo-
synthesis 

At2g34420 LHB1B
2 

chloroplast 
thylakiod 
membrane 

 light 
harvesting 

8(2)  ‡‡ 

 At1g61520 LHCA3 chloroplast   4  ‡‡ 
 At1g15820 LHCB6 chloroplast 

thylakoid 
membrane 

light 
harvesting 
complex 
PSII 

chlorophyll 
binding 

8  ‡‡ 

 At2g05100 LHCB2.
1 

chloroplast 
thylakoid 
membrane 

photosystem 
II light 
harvesting 
complex 
gene 2.1 

chlorophyll 
binding 

8  ‡‡ 

 At3g61470 LHCA2 chloroplast 
thylakoid 
membrane 

 chlorophyll 
binding 

4(2) 
7(1) 
8(2) 

 ‡‡ 

 At5g14740 CA2 chloroplast 
thylakoid 
membrane 

beta 
carbonic 
anhydrase 2 

cabonate 
dehydrase 
activity zinc 
ion binding 

4(1) 
7(1) 
8(1) 

 ‡‡ 
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 At5g38660 APE1 chloroplast 
thylakiod 
membrane 

acclimation 
of 
photosynthe
sis to 
environment 

 8  ‡‡ 

 At2g34430 LHB1B
1 

chloroplast light 
harvesting 
complex 

 7(2) 
8(1) 

 ‡‡ 

 At3g54890 LHCA1 chloroplast light 
harvesting 

 4  ‡‡ 

 At3g47470 LHC4 chloroplast chlorophyll 
binding 

 4  ‡‡ 

 At5g13630 GUN5 chloroplast 
thylakiod 
membrane 

genome 
uncoupled 5 

magnesium 
chelatase 
activity 

8(2)  ‡‡ 

 At1g44575 NPQ4 chloroplast 
thylakoid 
membrane 

NON 
photochemic
al quencing 

 8  ‡‡ 

 At5g54270 LHC-
B3 

chloroplast light 
harvesting 
complex 

 7  ‡‡ 

 At1g30510 AtRFN
R2 

chloroplast root FNR2 oxidoreductase  8(2)  ‡‡ 

 At3g10920 MSD1 mitochondrion manganese 
superoxide 
dismutase 

removal of 
superoxide 
radicals 

8  ‡‡ 

 At2g25080 AtGPX
1 

chloroplast 
thylakoid 
membrane 

gluthathione 
peroxidase 1 

response to 
oxidative 
stress 

8  ‡‡ 

 At1g11360 USP  can bind 
ATP 

response to 
stress 

8 ‡  

 At1g20620 CAT3 chloroplast CATALAS
E 3 

Catalase H2O2 
breakdown 

7  ‡‡ 

 At1g78900   ATP binding 
hydrogen 
ion transport 

 4(1) 
8(1) 

‡  

 At1g30540   ATPase  8(2) ‡  
 At3g42050   ATP binding  8 ‡  
 At2g20020 RAN2 cytoplasm Ras related 

GTP-
binding 
nuclear 
protein 2 

GTP binding 8 ‡  

 At3g18820 RABG3
f/ 

 Rab GTPase 
homolog 
G3f 

 8 ‡  

Amino acid 
metabolism 

At2g36880 MAT3/
MTO3 

 mehionine 
Adenosyl 
transferase 

 7(1) 
8(2) 

‡  

 At1g17290 ALAAT
1 

mitochondrion alanine 
aminotransf
erase 

 4 ‡ ‡‡ 

 At1g23310 GGT1 chloroplast alanine-2-
oxoglutarate 
aminotransf
erase 

 4 ‡ ‡‡ 



  Supplementary data 

  111 

 At1g07780 PAI1 chloroplast phosphoribo
sylanthranila
te isomerase 
1 

 8  ‡‡ 

 At5g49020  chloroplast arginine N-
methyltransf
erase fam. 

 7  ‡‡ 

 At5g17920 AtCIM
S 

cytosol methionic 
biosynthesis 

 7(2) ‡  

 At4g13940 HOG1  adenosyl 
homocystein
ase activity 

Amino acid 
biosynthesis 

7(1) 
8(1) 

‡  

 At5g63570 GSA1  porphyrin 
biosynthetic 
pro 

 4 ‡  
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Table SIII. List of all proteins interacting with XXT1. Filter I indicates protein known to be auto-
activators of the system, filter II indicates proteins that do not localize at the same intra-cellular 
location as the XXT1 protein. # indicates the number of times the protein was found. 
Locus Protein 

name 
Protein name Putative 

function 
Localization # Filter 

1 
Filter  
2 

At1g61250 SCAMP3 secretory carrier 3  post Golgi / 
cytosol 

2x   

At4g15780 ATVAMP7
24 

vesicle-associated 
membrane protein 
724 

 post Golgi / 
plasma-
membrane 

2x   

At5g09440  phosphate-
responsive protein 

  1x   

At1g20630 CAT1 Catalase 1 H202 to 
water en 
oxygen 

 1x   

At1g78630 EMB1473 embryo defective 
1473 

structural 
constituent of 
ribosome 

 1x   

At3g26650 GAPA glyceraldehyde 3 
phosphate 
dehydrogenase A 
subunit 

  1x   

At4g13940 HOG1 homology-
dependent gene 
silencing 1 

adenosyl 
homocysteinase 

 1x   

At2g38080 LAC4 laccase 4 copper ion 
binding/ 
oxidoreductase

 1x   

At4g37540 LBD39 LOB domain-
containing protein 
39 

  1x   

At1g80070 SUS2 abnormal 
suspensor2 

transcription 
factor 

 1x   

At1g12780 UGE1 UDP-D-glucose / 
UDP-D-galactose-
4-Epimerase 1 

  1x   

At4g28850 AtXTR18 xyloglucan endo-
transglycosylase 
hydrolase 

xyloglucosyl 
transferase 

 1x   

At4g14130 AtXTH15 xyloglucan endo-
transglycosylase 
hydrolase 

xyloglucosyl 
transferase 

 2x   

At1g09340 AtCSP41B  RNA-binding  chloroplast 1x  ‡‡ 
At2g34430 LHB1B1/ 

CAB1 
photosystem II 
light harvesting 
complex gene  

chlorophyll 
binding 

chloroplast 5x  ‡‡ 

At1g19150 LHCA2 photosystem I light 
harvesting complex 

chlorophyll 
binding 

chloroplast 1x  ‡‡ 

At1g61520 LHCA3 photosystem I light 
harvesting complex 
gene 3 

chlorophyll 
binding 

chloroplast 1x  ‡‡ 
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At3g47470 LHCA4/CA
B4 

photo system I light 
harvesting complex 
gene 4 

chlorophyll 
binding 

chloroplast 2x  ‡‡ 

At1g15820 LHCB6 light harvesting 
complex PSII 

 chloroplast 1x  ‡‡ 

At1g67090 RBCS1A ribulose-
biphosphate 
carboxylase 

 chloroplast 1x  ‡‡ 

At1g54780 TLP18.3 thylakoid lumen 
18.3kDA protein 

 chloroplast 1x  ‡‡ 

At4g38970  fructose-
biphosphate 
aldolase putative 

 chloroplast 6x  ‡‡ 

At2g17340   pantothenate 
kinase related 

chloroplast 1x  ‡‡ 

At2g42810 PAPP5/ PP5 protein phosphatase 
5 

dephosphorylat
es active Pfr-
phytochromes 

cytoplasm/ER 
membrane 

1x  ‡‡ 

At1g07940 EF-1-alpha elongation factor protein 
synthesis 

cytosol 2x  ‡‡ 

At3g16420 PBP1 PYK10-binding 
protein 1 

 cytosol 2x  ‡‡ 

At4g08950 EXO phosphate-
responsive protein 

 extra cellular 2x  ‡‡ 

At2g13540 ABH1 ABA 
hypersensitive 1 

 nucleus 1x  ‡‡ 

At5g43280 AtDCI1 Delta (3,5), Delta 
(2,4) dienoyl-coa 
isomerase 1 

CoA 
isomeras / 
enoyl-CoA 
hydratase 

peroxisome 1x  ‡‡ 

At4g17340 Delta-
tip2/TIP2 

tonoplast intrinsic 
protein2 

water 
channel 

plasma-
membrane 

2x  ‡‡ 

At5g60660 PIP2;4/ 
PIP2F 

 water 
channel 

plasma-
membrane 

2x  ‡‡ 

At1g71340  Glycerophosphoryl 
diester 
phosphodiesterase 

Cell wall 
organisation 

plasma-
membrane 

2x  ‡‡ 



 



  Summary 

  115 

Summary 
 
The plant cell wall provides a rigid support that allows the plant to stand upright and acts as a 

barrier against invading organisms. The cell wall does not simply constitute the physical 

confinement of the cell, it is a highly dynamic structure with great importance for growth and 

development, cell to cell communication, and transport processes. In addition, cell wall 

polymers make up most of the plant biomass and provide the raw material for many 

economically important products including food, feed, bio-materials, chemicals, textiles, and 

biofuel. This broad range of functions and applications make the biosynthesis of the plant cell 

wall a highly interesting target of scientific research. 

Several approaches, like reverse genetics and expression profiling, have previously been used 

to identify the key components in the biosynthesis of the cell wall. This revealed many 

glycosyltransferase and especially the identification of the CESA superfamily was a big step 

forward in plant cell wall research. Due to the huge number of genes and diversity of the 

polysaccharides constituting the plant cell wall it has been difficult to link enzymes to the 

biosynthesis of a specific polysaccharide. Furthermore, not all mutants in cell wall genes 

show a visible phenotype at the organ or organism level due to the redundancy of 

polysaccharide and gene functions. Furthermore, while expression analysis might indicate the 

involvement of a gene in cell wall biosynthesis, it is difficult to associate it to biosynthesis of 

a specific polysaccharide. Therefore a different approach was chosen to obtain new insights 

in the plant cell wall biosynthesis. 

As there are several indications that the cell wall polysaccharides are synthesized in a protein 

complex we used a protein-protein interaction strategy to gain insight in the cell wall 

biosynthesis of Arabidopsis thaliana and to identify additional genes involved in this process. 

Although there are several methods available to identify interactions between proteins 

involved in cell wall biosynthesis, the membrane based yeast two hybrid (MbYTH) system 

was chosen as this method is able to identify the interaction between membrane bound 

proteins in a high throughput manner. Before this method could be used for the 

characterization of protein complexes involved in cell wall biosynthesis several practical 

improvements were incorporated and a more efficient protocol has been proposed (Chapter 

2). Using this protein-protein interaction assay several distinct goals have been reached in this 

thesis, i) the characterization of the rosette structure by resolving the organization of the 
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different cellulose synthase proteins in the complex, ii) the identification of unknown 

components of the cellulose synthezing machinery, iii) the confirmation of a xyloglucan 

synthesizing complex and the identification of several of its components.  

At the start of the research, it was already known that the three different CESA proteins (#4, 

#7, and #8) are the main constituents of the rosette complex synthesizing cellulose in the 

secondary cell wall, however, the organization of these proteins within the complex was thus 

far unknown. Using the MbYTH system the interactions between the different secondary 

CESA proteins was tested and it was found that all proteins were able to interact with each 

other but only CES4 was able to form homodimers. Based on these results a model was 

proposed in which each of the CESA proteins has its position in the complex and the homo-

dimerization found for CESA4 is responsible for interaction between the subunits (Chapter 

3). Site directed mutagenesis has been used to study the involvement of RING-finger domain 

in the interaction between the CESA proteins, the results revealed that this domain is not 

essential for the interaction between CESA proteins. 

Thus far no other proteins have been identified as components of the rosette structure, next to 

the CESA protein, although several proteins have been implicated in cellulose biosynthesis. 

One of these proteins is the cellulase KORRIGAN, as the mutant phenotype of KOR1 

showed decreased amounts of cellulose in both the primary and secondary cell wall, 

compared to wild type plants. The interaction between the cellulase KORRIGAN (KOR1) 

and the CESA proteins was tested, and it was found that KORRIGAN could bind with three 

different primary CESA proteins whereas it could only bind to two of the secondary CESA 

proteins (Chapter 4). The interactions between the CESA proteins and truncated KOR1 

proteins revealed that the transmembrane domain of KOR1 is essential for interaction 

between these proteins. Additionally, it was found that KOR1 could form homodimers.  

In order to identify additional proteins involved in cellulose biosynthesis a cDNA library 

screen for interactors with the different secondary CESA proteins was performed. A large 

number of proteins were shown to be able to interact with the different CESA proteins in 

yeast (Chapter 5). Some of these proteins have been previously implicated in cell wall 

biosynthesis, others can be directly linked to cellulose biosynthesis based on their function, 

whereas others need additional research to reveal their function in this process.  

In addition to cellulose, xyloglucan is a major constituent of the primary cell wall. There are 

several indications that xyloglucan is synthesized in a protein complex, the regular structure 
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of this polysaccharide. To confirm this idea the interaction between proteins known to be 

involved in xyloglucan synthesis is tested. It was found that two different xylosyltransferases 

(XXT1 and XXT2) were able to interact with each other and the glucosyltransferase 

(CSLC4), which synthesizes the glucan backbone of xyloglucan (Chapter 6). In addition, 

several new candidate genes involved in xyloglucan biosynthesis have been identified in a 

genome wide interaction study with the xylosyltransferase XXT1. Several proteins like 

xyloglucantransferase, which might be involved in removal of the growing xyloglucan from 

the synthesizing complex, and UDP-glucose epimerase is thought to supply the substrate for 

the addition of a galactose site chain have been physically linked to the xyloglucan 

synthesizing complex. 

On the whole, this work has generated an effective tool in cell wall research and identified 

new players in the biosynthesis of both cellulose and xyloglucan  

(Chapter 7). 
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Samenvatting 
 
De celwand verschaft de cel een starre versterking die het de plant mogelijk maakt om  te 
staan en fungeert als een barrière tegen binnendringende organismen. De celwand vormt niet 
alleen de fysieke grens van de cel, is het een dynamische structuur met groot belang voor de 
groei en ontwikkeling, cel aan cel communicatie, en transport processen. Bovendien vormen 
de celwand polymeren het grootste deel van de planten biomassa en verstrekken de 
grondstoffen voor vele economisch belangrijke producten met inbegrip van voedsel, voer, 
biologisch materialen, chemische producten, textiel, en biofuels. Dit brede spectrum van 
functies en toepassingen maken de biosynthese van de plantencelwand een hoogst interessant 
onderwerp van wetenschappelijk onderzoek. Verscheidene benaderingen, zoals reverse 
genetica en expressie onderzoek, zijn eerder gebruikt om de belangrijkste componenten in de 
biosynthese van de celwand te identificeren. Dit leverde vele glycosyltransferases op en 
vooral de identificatie van CESA superfamily was een grote stap voorwaarts in het onderzoek 
van de planten celwand. Vanwegen het enorme aantal genen en diversiteit van de 
polysacchariden die de planten celwand vormen is het moeilijk geweest om enzymen met de 
biosynthese aan een specifiek polysaccharide te verbinden, aangezien niet alle mutaties in 
celwandgenen een zichtbaar fenotype op orgaan of organismeniveau vertonen. Terwijl de 
expressie analyse op de betrokkenheid van een gen in celwandbiosynthese zou kunnen 
wijzen, is het moeilijk om deze aan biosynthese van een specifiek polysaccharide te 
verbinden. Daarom werd een andere benadering verkozen om nieuwe inzichten in de 
biosynthese van de planten celwand te verkrijgen. Aangezien er verscheidene aanwijzingen 
zijn dat de celwand polysacchariden in eiwit complexen worden gevormd is een eiwit-
eiwitinteractie strategie gebruikt om meer inzicht in de celwandbiosynthese van Arabidopsis 
thaliana te verkrijgen en extra genen te identificeren die betrokken zijn bij dit proces. Hoewel 
er verscheidene methodes beschikbaar zijn om de interactie tussen proteïnen te identificeren, 
werd het membraan gebonden gist twee hybride systeem (MbYTH) gekozen aangezien deze 
methode de interactie tussen membraan gebonden eiwitten op een snelle manier kan 
identificeren. Verscheidene praktische verbeteringen en een efficiënter protocol zijn 
voorgesteld voor de karakterisatie van eiwit complexen betrokken bij celwand biosyntheses 
(Hoofdstuk 2). Met behulp van deze eiwit-eiwitinteractie analyse zijn verscheidene 
verschillende doelstellingen bereikt in dit proefschrift, i) de karakterisering van de organisatie 
van de rozetstructuur door de interacties van de verschillende proteïnen van cellulose 
synthase in complex aan te tonen, ii) de identificatie van onbekende componenten van de 
cellulose synthezing machines, iii) de bouw van het xyloglucan producerende complex en de 
identificatie van verscheidene van de componenten. Bij het begin van het onderzoek, wist 
men reeds dat de drie verschillende proteïnen CESA (#4, #7, en #8) de belangrijkste 
constituenten van de complexe dat de cellulose produceert in de secundaire celwand, echter, 
de organisatie van deze proteïnen binnen het complex is tot dusver onbekend was. Met 
behulp van het systeem MbYTH werden de interactie tussen de verschillende secundaire 
CESA eiwitten getest wat uitwees dat al deze eiwitten met elkaar konden interacteren maar 
alleen CES4 kon homodimers vormen. Gebaseerd op deze resultaten werd een model 
voorgesteld met daar in een positie voor elk van de CESAs en de homo-dimerizatie gevonden 
voor CESA4 is verantwoordelijk voor interactie tussen de verschillende subunits (Hoofdstuk 
3). Mutagenese was gebruikt om de betrokkenheid van RING-vinger domein in de interactie 
tussen de verschillende CESAs te bestuderen, de resultaten toonde aan dat dit domein niet 
essentieel voor de interactie tussen deze CESA eiwitten. Tot zover zijn geen andere proteïnen 
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geïdentificeerd als componenten van de rozetcomplex, naast de CESAs, hoewel verscheidene 
andere eiwitten betrokken zijn bij cellulose biosynthese. Één van deze proteïnen is de 
cellulase KORRIGAN (KOR1), aangezien het mutante fenotype van KOR1 een vermindering 
van hoeveelheid cellulose, in zowel de primaire als secundaire celwand, laat zien in 
vergelijking met wild type planten. De interactie tussen de cellulase KOR1 en de CESA 
eiwitten is getest en de resultaten lieten zien dat KOR1 met drie verschillende primaire 
CESAs kon binden terwijl het slechts aan twee van de secundaire CESA eiwitten kon binden 
(Hoofdstuk 4). De interacties tussen de CESAs en partiële KOR1 eiwitten toonde aan dat het 
transmembraan-domein van KOR1 voor interactie tussen deze proteïnen essentieel is. 
Bovendien, is aangetoond dat KOR1 homodimers kon vormen.  
Om extra proteïnen te identificeren die betrokken zijn bij cellulose biosynthese werd een 
cDNA bank gescreend voor interactors met de verschillende secundaire proteïnen CESA. Een 
groot aantal proteïnen werd gevonden die met de verschillende CESA eiwitten een interactie 
aan konden gaan in gist (Hoofdstuk 5). Sommige van deze proteïnen hadden aanvullende 
indicaties dat zij zijn betrokken bij de celwand biosynthese, anderen konden direct met 
cellulosebiosynthese worden verbonden op basis van hun functie, terwijl anderen extra 
onderzoek nodig hebben om hun functie in dit proces te duidelijk te maken. 
Naast cellulose is xyloglucan een belangrijke component van de primaire celwand. Er zijn 
verscheidene aanwijzingen dat xyloglucan in een eiwit complex wordt geproduceerd, 
bijvoorbeeld de regelmatige structuur van dit polysaccharide. Om deze hypothese te 
bevestigen werd de interactie tussen de eiwitten de betrokken zijn de biosynthese van dit 
polysaccharide getest. Twee verschillende xylosyltransferases (XXT1 en XXT2) en een 
glucosyltransferase (CSLC4) konden met elkaar een interactie aangaan (Hoofdstuk 6). 
Bovendien zijn verscheidene nieuwe kandidaat genen betrokken bij xyloglucan biosynthese 
geïdentificeerd, in interactie studie met de xylosyltransferase XXT1. Verscheidene eiwitten 
zoals xyloglucantransferase, die zou kunnen worde geïmpliceerd met het verwijderen van de 
groeiende xyloglucan keten van het complex, en een UDP-Glucose epimerase, welke het 
substraat voor galactose zijketen zou kunnen te leveren, vertoonde interactie met XXT1. In 
het algemeen, heeft dit werk een efficiënt hulpmiddel in celwandonderzoek opgeleverd en 
verscheidene nieuwe componenten geïdentificeerd in de biosynthese van zowel cellulose en 
xyloglucan (Hoofdstuk 7). 
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