

Probabilistic model of realistic pesticide concentrations in surface waters in the Netherlands due to spray drift

Henk Jan Holterman^{*1}, Jan van de Zande¹, Paulien Adriaanse², Jos Boesten² Wageningen University & Research Centre (WUR) ¹Plant Research International ²Alterra

<u>Overview</u>

- Introduction
- Methods
- Results
- Conclusion

Introduction

- In the Netherlands about 300,000 km of watercourses is present. Preserving these from contamination with hazardous chemicals remains a major challenge.
- Monitoring studies occasionally indicate pesticide concentrations that exceed predefined acceptable levels.
- A new procedure to authorize plant protection products is being developed: 'Dutch interim scenario'; it focuses on modelling and assessing the processes involved with the spreading and fate of pesticides in edge-of-field watercourses.
- Spray drift is an important entry route of pesticides.
 From spray drift deposits onto surface waters PEC levels can be computed.
 Given a spray application technique, three major factors affect PEC levels:
 - geometry of the watercourse
 - average wind velocity
 - average wind direction

Aims of this study

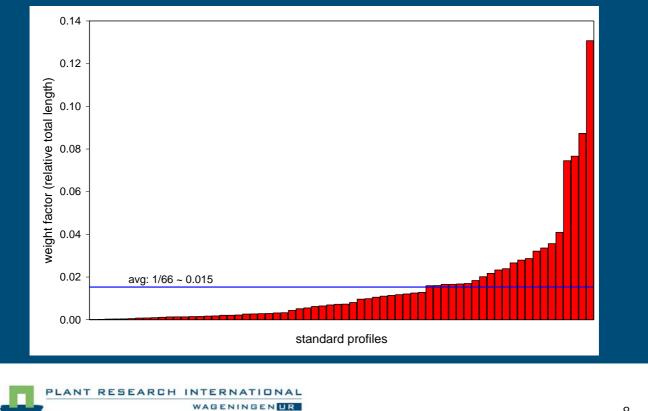
- To gain insight into the variation in PEC values occurring in watercourses in the Netherlands due to spray drift.
- To develop a model that predicts probabilities of these PEC levels, taking into account the natural variation in
 - geometry of the watercourse
 - average wind velocity
 - average wind direction
- What are the major causes of such variation?
 - spatial: variation in watercourses
 - temporal: probabilistic variation in wind velocity and direction
- Can specific water body types be selected as references? (e.g. in monitoring studies)

Boundary conditions

- Watercourses:
 - Surface width <6 m
 - 66 standard profiles
- Wind:
 - Average velocity <5 m/s
 - Direction: only downwind field edges
- Drift is considered only entry route:
 - Assuming a conventional spray application in a potato crop (NL: nozzle DG 11004 @ 3 bar; crop free buffer zone 1.5 m)

<u>Overview</u>

- Introduction
- Methods
 - Watercourses
 - Drift and PEC
 - Wind velocity and direction
- Results
- Conclusion


Water body standard profiles

- 66 standard profiles are distinguished in the Netherlands
- 3 water body classes (22 profiles each):
 - Ditches
 - Water bodies <3m width
 - Water bodies 3-6m width
- 6 hydrological regions: sandy soil areas (33), marine clay areas (15), fluvial clay areas (6), peat areas (6), dune areas (3), stream valley areas (3)
- Each standard profile has its own geometry
 - Water surface boundary positions (x_1, x_2) are determined for each profile
 - Slopes, depth, volume
- Weighting factor:
 - Relative occurrence of a profile: total occurrence (length) of one profile total occurrence (length) of all profiles summed

WAGENINGENUR

PLANT RESEARCH INTERNATIONAL

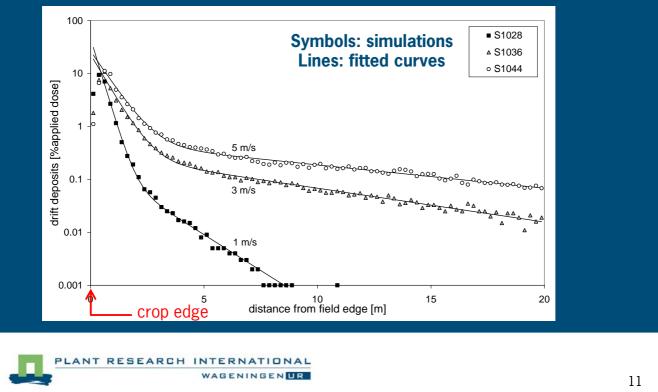
Weight factors of standard profiles

 X_2

<u>Overview</u>

- Introduction
- Methods
 - Watercourses
 - Drift and PEC
 - Wind velocity and direction
- Results
- Conclusion

Determining drift onto surface waters


- Spray drift as entry route to surface waters: estimated from simulations using the IDEFICS model (v3.4):
 - Wind direction perpendicular to field edge
 - Crop: potato, height 0.50 m, crop free buffer zone: 1.50 m
 - Pesticide dose: 1kg/ha
 - Nozzle type: DG 11004, liquid pressure 300 kPa
 - Sprayer boom height above the crop: 0.50 m
 - Weather conditions:
 - temperature 15°C,
 - relative humidity 60%
 - neutral atmospheric conditions
 - Avg wind velocity range: 0.25, 0.50, .., 5.00 m/s
 → 20 simulations

water surface

crop free

Examples of drift deposits curves

IDEFICS, various wind velocities, wind direction perpendicular to crop edge

Computation of PEC from drift

- Drift simulations are fitted using an empirical function (sum of 2 exponential functions → 4 parameters)
- These parameters are implicit functions of wind velocity only: they were fitted empirically (polynomials of wind velocity)
- This yields a simple empirical model of drift deposits: a function of wind velocity (0–5 m/s) and downwind distance
- Calculation of PEC from drift deposits at water surface:

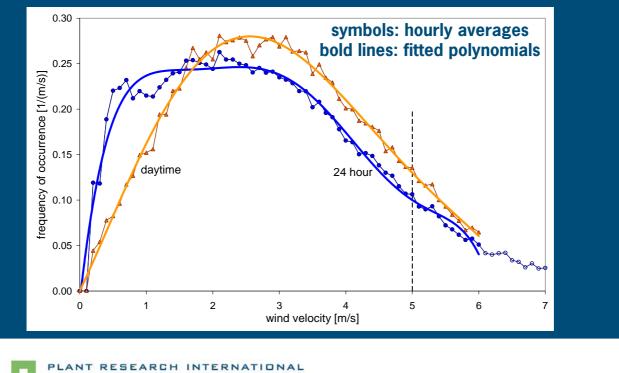
LANT RESEARCH INTERNATIONAL WAGENINGENUR

<u>Overview</u>

- Introduction
- Methods
 - Watercourses
 - Drift and PEC
 - Wind velocity and direction
- Results
- Conclusion

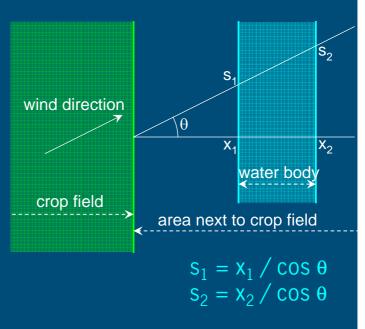
Wind velocity variations

 Required: frequency distribution of probabilistic variation of wind velocities in the Netherlands


Current approximation:

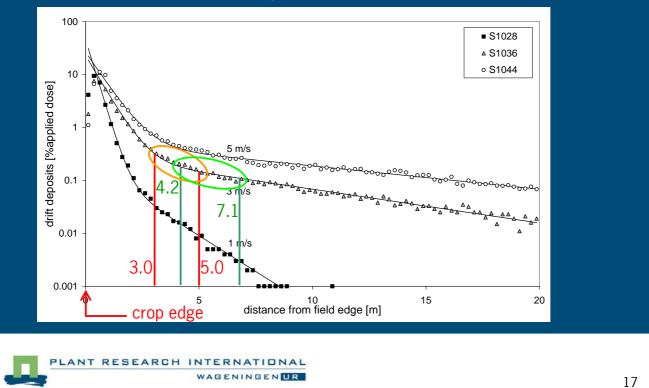
- Local weather station near Wageningen
- Hourly averaged weather data: e.g. wind velocity at 2 m height
- Calculate averages over last 10 years (1998–2007)

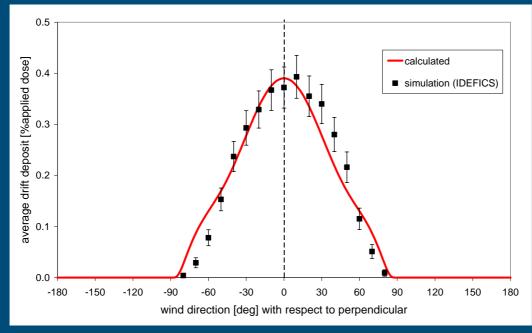
Wind velocity: avg frequency distribution


Hourly averaged wind velocities, Wageningen, 1998-2007

WAGENINGENUR

Wind direction


- All wind directions are equally likely
- Assumption: drift deposits for non-perpendicular wind directions can be derived from the perpendicular case:
 - Compute boundary points (s₁, s₂) for actual wind direction
 - Compute average drift on that range, using drift curve for perpendicular wind direction


ANT RESEARCH INTERNATIONAL WAGENINGEN

Effect of wind direction on spray drift deposits

Example: wind direction of 45 degrees

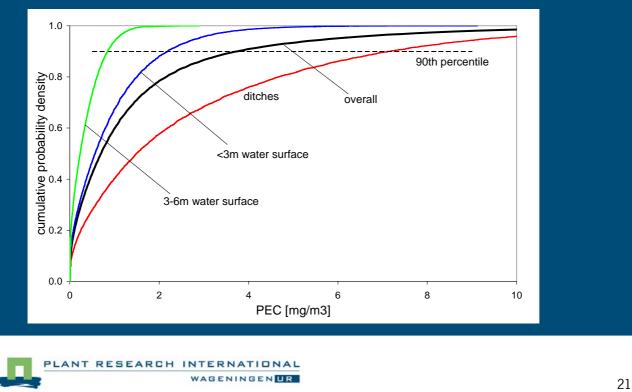
Wind direction and drift deposits

Fixed spraying conditions, fixed water body

<u>Overview</u>

- Introduction
- Methods
- Results
- Conclusion

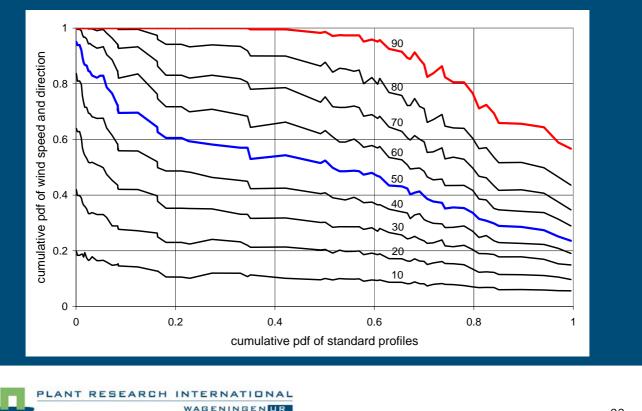
Summary of situations and weighting factors


- 66 standard profiles:
 - Weighting factor: relative total length per profile
- 20 wind velocities:
 - 0.25, 0.50, .., 5.00 m/s
 - Weighting factor derived from frequency distribution

35 wind directions:

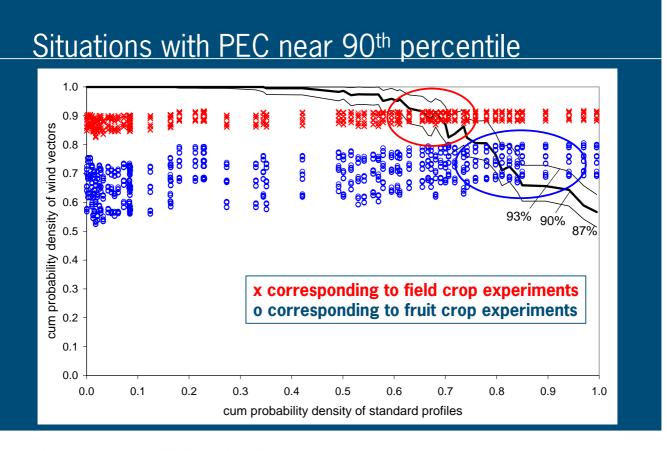
- -85, -80, ..., +80, +85 degrees (downwind directions only)
- Weighting factor 1/35 (all directions equally likely)
- This totals up to 46200 situations:
 - Each having its own PEC value and (overall) weighting factor
 - All situations are sorted with respect to increasing PEC

Cumulative probability density functions

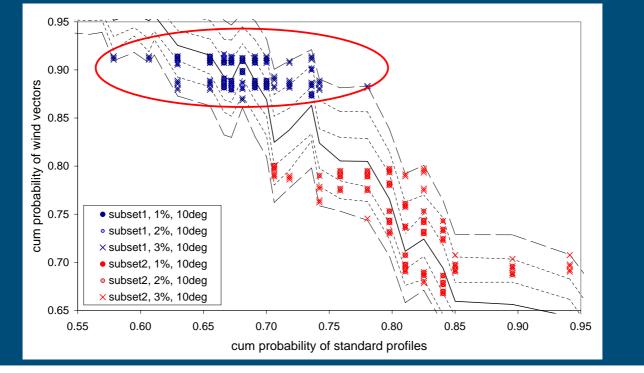

Overall and per water body class

Effects due to wind vectors and watercourses

- Which is the more important factor causing PEC variations:
 - natural variation in occurring wind velocity and direction?
 - variation in geometry of standard profiles?
- For each standard profile (N=66):
 - Calculate pdf by varying wind velocity and direction only (N=700)
 - Compute median (PEC50) from this pdf
 - Sort standard profiles according to increasing PEC50
 - Plot overall PEC percentiles as function of cumulative probability functions of standard profiles and wind vectors
 - Draw percentile lines


'PEC plot': probability contour plot

23


Situations with PEC near 90th percentile

- In which situations do the PEC values approach the 90th percentile?
- Limit these cases to those corresponding to drift measurements for
 - Field crops: wind velo 3.25-3.5 m/s; direction -10..+10 deg
 → 10 wind vector cases
 - Fruit crops: wind velo 2.0-2.5 m/s; direction -10..+10 deg
 → 15 wind vector cases
 - Approaching the 90th percentile within 1, 2 or 3%
- Find the standard profiles within the above limitations

PLANT RESEARCH INTERNATIONAL WAGENINGEN

Situations with PEC near 90th percentile

Field crop	situations	near 90 th	percentile
•			

WB-code	Water body class	Hydrological region	Hydrotype	#cases within 3% boundaries	Weight factor of profile	Cum w.factor of profile
601006	< 3m width	sandy soil	keileemprofiel	3	0.01674	0.579
601015	< 3m width	sandy soil	Tegelen/Kedichem profiel	3	0.00733	0.607
601003	< 3m width	sandy soil	dekzand profiel	10	0.03567	0.629
601009	< 3m width	sandy soil	Nuenengroep profiel	10	0.01591	0.655
600002	ditch	fluvial clay	Betuwe- stroomruggronden	10	0.00647	0.666
601011	< 3m width	sandy soil	open profiel	10	0.00513	0.672
600019	ditch	marine clay	Westland_DH-profiel	10	0.01253	0.681
601004	< 3m width	dune area	duinstrook	10	0.00723	0.691
601005	< 3m width	sandy soil	Eem en/of keileemprofiel	10	0.01141	0.700
600008	ditch	sandy soil	loss profiel	5	0.00079	0.706
600013	ditch	stream valley	Singraven-beekdalen	7 (0.02333	0.718
600012	ditch	sandy soil	Peelo profiel	10	0.01174	0.736
601008	< 3m width	sandy soil	loss profiel	5	0.00085	0.742
600001	ditch	fluvial clay	Betuwe-komgronden	2	0.01106	0.780

PLANT RESEARCH INTERNATIONAL WAGENINGEN UR

27

Overview

- Introduction
- Methods
- Results
- Conclusion

Conclusion

- PEC values vary considerably under naturally occurring conditions and circumstances.
- Wind velocity, wind direction and type of watercourse are major causes of PEC variation.
- High PEC levels mainly occur in ditches, low PEC levels mainly occur in wide watercourses.
- Quite different combinations of wind velocity, wind direction and standard profile may give rise to similar PEC levels.
- Next step: look at situations for drained parcels only. First results show similar graphs, but a different set of standard profiles in the selection procedure.

Thank you for your attention

© Wageningen UR

