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Brassica rapa 

Brassica rapa L. is a diploid crop in the family of Brassicaceae. This family contains about 

3500 species and 350 genera and is one of the economically most important plant families 

(Rich, 1991, Quijada et al., 2007). The family of Brassicaceae is an important source of 

edible roots, stems, leaves, buds and inflorescences, as well as of edible or industrial oils, 

condiments and forage. B. rapa and B. campestris were first described as two species by 

Linnaeus, with B. rapa being the turnip form and B. campestris the wild weedy form. Later on 

it was shown that these were the same species so the taxa were combined under the name B. 

rapa (Toxopeus et al., 1984).  

There are six Brassica species which have the highest agricultural importance and are referred 

to as ‘crop Brassicas’ (Gómez-Campo 1999). The triangle of U (U, 1935) shows the 

relationship between these ‘crop Brassicas’. Initially three ancestral diploid species: B. rapa 

(AA, n=10), B. nigra (black mustard) (BB, n=8) and B. oleracea (CC, n=9) existed. Through 

spontaneous hybridization followed by chromosome doubling, three amphidiploid species 

emerged: B. napus (AACC, n=19), B. carinata (BBCC, n=17) and B. juncea (AABB, n=18). 

Artificial resynthesis of B. napus from B. rapa and B. oleracea showed the same agreement 

with the triangle of U (Olsson, 1960), which has been confirmed by molecular analysis 

(Warwick and Black, 1991).  

B. rapa, which is the putative ancestor of many oriental Brassica vegetables, originates from 

the high plateau regions in today’s Iran–Iraq–Turkey (Dixon, 2007) and seems to have spread 

naturally to the Western Mediterranean region and to Central Asia. B. rapa is the first 

domesticated Brassica crop and it has the widest distribution, with secondary centers of 

diversity in Europe, Western Russia, Central Asia, and the Near East (Quijada et al., 2007). 

Various Brassica leafy vegetables have been differentiated in East Asia. 

Wild B. rapa subssp. oleifera is regarded as the subspecies from which var. rapa L. 

(cultivated turnip) and var. silvestris (Lam.) Briggs (turnip-rape) originated. Prakash and 

Hinata (1980) suggest that oleiferous B. rapa developed in two places giving rise to two 

different races, one European and the other Asian. The Asian or Indian forms: ssp. 

trilocularis, known as “yellow sarson” and ssp. dichotoma known both as “toria” and “brown 

sarson”; and the west European and north American form: B. rapa ssp. oleifera. The earliest 

reference to yellow sarson was in the Sanskrit book by Upanisadas and Brahamanas (c. 1500 

BC) where it was referred to as ‘Siddhartha’ (Prakash, 1961) and used as an oil plant. Yellow 

sarson is characterized by yellow colored seeds and self-compatibility. Because many of the 

cultivars have three to four carpels, it was previously named B. trilocularis (Gómez-Campo, 

1999). In Europe, the first oil types of B. rapa are believed to have been planted in the early 

middle ages and commercial plantings of rapeseed were recorded in the Netherlands as early 

as the 16th century. Rapeseed oil was used primarily as oil for lamps. Later it became used as 
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a lubricant for steam engines. Although widely used as edible oil in Asia, through breeding 

for improved oil quality and development of improved processing techniques, B. rapa has 

become important in western nations. Since the Second World War, rapeseed production 

(now predominantly B. napus) in Europe and Canada has increased dramatically as a result of 

improved oil and meal quality. 

In addition to the oil and turnip types, there are many leafy and inflorescence vegetable types 

of B. rapa such as, var. campestris, var. pekinensis, var. chinensis, var. parachinensis, var. 

narinosa, and var. japonica, predominantly originating from Asia. Zhao et al. (2005) used 

AFLP fingerprints on 161 B. rapa accessions collected from different parts of the world, and 

divided them in two main groups: one of Asian and the second of mainly European origin. 

There are different morphotypes (morphological variation within a species population) in both 

groups. He concluded that either there is an independent origin for both groups and/or a long 

and separate domestication and breeding history in both regions (Zhao et al., 2005). 

 

Breeding  

B. rapa is an important oil and vegetable crop in many parts of the world, with seed used for 

oil, and leaves, flowers, stems and roots used as vegetables. It is also an important source of 

healthy food components, such as vitamins, minerals and anti-carcinogenic compounds. In 

general, breeding has focussed on important production traits, such as yield and quality. In 

Asian countries, greater seed yield and yield stability were the primary objectives, besides 

breeding for quality of the harvested product (Quijada et al., 2007). The seed yield is the 

resultant of several determining components, i.e., the number of siliques per unit area 

(determined as the number of siliques per plant and the number of plants per unit area), 

branch number, number of seeds per silique, and seed size.  

The oil content in air-dried seeds varies between 36 and 44 % for B. rapa. The yellow seed 

coat trait has been shown to be associated with lower fiber content and higher oil and protein 

content (Stringam et al., 1974). Oil content is influenced by the environment, particularly 

temperature and moisture stress, and soil nitrogen, but there is also genetic variation for oil 

content in B. rapa. Selection for oil content has led to slow but steady improvement. During 

the last two decades, Brassica species became the second largest oilseed crop after soybean 

(Scarth and Tang 2006), mainly due to the growth of B. napus as oil crop. Seed oil quality is 

determined by its fatty acid composition, while antinutritional factors, particularly 

glucosinolate levels and protein/fiber proportions, determine meal quality (Quijada et al., 

2007). 

Rapeseed oil on average has 65% γ-tocopherol and 35% α-tocopherol (Goffman and Becker, 

2001). Tocopherols are essential nutrients that act as anti-oxidants in human food. B. rapa is a 

valuable source of diverse health-promoting antioxidant metabolites. Hydrogen-1 Nuclear 
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Magnetic Resonance ( 1H NMR) spectroscopy has been used to uncover qualitative and 

quantitative differences of various cultivars of B. rapa; and different cultivars were 

differentiated by elucidated metabolites, several organic and amino acids, carbohydrates, 

adenine, indole acetic acid (IAA), phenylpropanoids, flavonoids and glucosinolates (Abdel-

Farid et al., 2007). Glucosinolates are sulphur-containing substances that are broken down 

upon cell disruption by the enzyme myrosinase to give bitter-tasting, toxic, and goitrogenic 

compounds. The need for modification of the fatty acid composition of the oil and the 

elimination of glucosinolates from the seed meal attracted great attention in the past from 

Brassica breeders. Erucic acid has been identified as an anti-nutritional compound for human 

consumption.  The first low erucic acid B. rapa cultivar Span (Downey et al., 1975) was 

obtained by introducing the responsible alleles into an adapted cultivar resulting in the 

development of nutritionally superior Canola (=Canadian oil, low acid) cultivars. On the 

other hand, demand for higher levels of erucic acid for the industrial oil market has 

encouraged breeders to try to produce cultivars with levels greater than 50%. Rapeseed (B. 

napus and B. rapa) methyl ester (biodiesel), which is environmentally friendlier than fossil 

fuel, has become an important fuel for diesel engines in the EU (Rakow 2004). The EU 

Directive on biofuels requires member states to have a minimum 5.75% of biofuels in all fuel 

sold for transport by the end of 2010. Biofuels are important as they can reduce carbon 

emissions by up to 70%.  

The main types of oilseed rape currently grown are “Double low” and “HEAR”. “Double 

low” (“00”) commercial varieties of both B. napus and B. rapa dominate the oilseed Brassica 

production area in developed countries. These varieties are grown for food and characterized 

as having a very low (<1%) content of erucic acid in the fatty acid profile of the seed storage 

lipid and a very low content of glucosinolates (<18 µmoles per gram seed at 8.5% moisture) 

in their seed and meal. The term “canola quality” is normally applied to seed, oil and meal 

from such varieties. High erucic acid rape (HEAR) varieties are grown specifically for their 

erucic acid content - typically 50-60 % of oil. 

Except for oil seed types, most major types of B. rapa are self-incompatible and pure line 

selection is complicated, labor intensive and often leading to severe inbreeding depression. 

Therefore, most cultivars are produced by mass or family selection. As a consequence, single 

cultivars often have a wide genotypic variation, even if they show a uniform morphological 

appearance. Nevertheless some hybrid varieties are available. The first hybrid cultivar of 

Chinese cabbage was released by the Takii Seed Co., Japan, in 1950 (Quijada et al., 2007).  

Hybrid cultivars show a more uniform appearance, and are suitable for simultaneous 

harvesting. As such, they are welcomed by growers and already have a big market share. Self-

incompatibility is used as the system to prevent self-fertilization in case of hybrid seed 

production. 
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Chinese cabbage, a vegetable crop of B. rapa, has been recorded in ancient China and Korea. 

Chinese cabbage types are as diverse as B. oleracea cabbage types. Heading versus non-

heading, shape, size and storability of the head are important traits in breeding vegetable B. 

rapa types. Tightly heading Chinese cabbage is a relatively new crop, first recorded in China 

in the eighteenth century. This crop may have originated from either a non-heading or a 

loosely heading type and is now widely cultivated in China, Japan, and Korea (Hirai and 

Matsumoto, 2007). As Chinese cabbage is cultivated all year round, cultivars with various 

types of growth characters are bred and used. Early-maturing types can be harvested within 50 

days after sowing, while late-maturing Chinese cabbage types require prolonged cultivation 

for as long as 120 days. Resistances to high and low temperatures are needed for summer and 

winter cultivation, respectively. Bolting resistance is required in cultivars for spring harvest. 

Chinese cabbage is susceptible to almost all the pathogens, pests and environmental stresses 

affecting B. oleracea (Dixon, 2007). 

Arabidopsis thaliana, another species of the Brassicaceae family, is the model system of 

choice for research in plant biology and genome analysis and the first flowering plant to have 

its entire genome sequenced (The Arabidopsis Genome Initiative, 2000). It has a small 

genome size (125 Mbp), a low amount of repetitive DNA and a high gene density (Meinke et 

al., 1998). The ancestral lineages of Arabidopsis and Brassica diverged between 12.2 and 

19.2 million years ago and the two species share extensive co-linearity and 87% sequence 

identity between orthologous exons (Love et al., 2005; Yang et al., 2006; The Arabidopsis 

Genome Initiative, 2000). The genome size of B. rapa  is about four times (550 Mbp) the size 

of the Arabidopsis genome (Park et al., 2005). Due to the close phylogenetic relationship of 

B. rapa with A. thaliana, many opportunities emerged in transferring knowledge from the 

model to B. rapa for further improvement. Some breeders are now also working with less 

well known Brassicaceae species, such as Brassica carinata, as a source of valuable genes for 

resistance to pathogens, pests and other characteristics of economic importance (Dixon, 

2007). 

 

Genetics and genetic linkage map 

Although B. rapa and A. thaliana share considerable DNA identity, the direct transfer of 

knowledge on gene function based on DNA sequence is not as straightforward as previously 

anticipated. This is largely due to extensive chromosomal duplications and subsequent 

deletions in these duplicated regions. The genomes of many flowering plants have undergone 

one or more rounds of duplication. Analysis of the genome sequence of A. thaliana shows 

large scale gene duplications (Blanc et al., 2003). Comparative genetic mapping often 

revealed six copies of each A. thaliana gene in Brassica species (Lagercrantz 1998; Parkin et 

al., 2003). Genomes of the Brassica species are composed of three rearranged variants of an 
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ancestral genome, basically similar to that of Arabidopsis, and the tribe Brassicaceae 

probably descended from a hexaploid ancestor (known as the triplication theory). 

Chromosome rearrangements, including fusions and/or fissions, subsequently resulted in 

diploid Brassica species with variation in chromosome number. Still, syntenic regions 

corresponding to Arabidopsis chromosome segments could be identified within the 

allopolyploid genome of B. napus, each in triplicate (Parkin et al., 2003). The genome 

triplication has led to an approximately 1.7-fold increase in the B. rapa gene number (49,000 - 

63,000) compared to that of Arabidopsis (Hong et al., 2008; Yang et al., 2006). Chinese 

cabbage is considered a typical representative of the Brassica A genome. Due to the small 

genome size relative to the other Brassica species, together with the extensive genetics and 

genomics resources available, it has been adopted as the subject for the first whole genome 

sequence arising from the Multinational Brassica Genome Project (MBGP; 

http://www.brassica.info/). For its whole-genome sequencing, the B. rapa Genome 

Sequencing Project (BrGSP) consortium has developed suitable genomic resources and 

constructed genetic and physical maps. The Chinese cabbage (B. rapa ssp. pekinensis) inbred 

line Chiifu-401- 42 has been selected as the sequencing template (Choi et al., 2007).  

Identifying molecular markers closely linked to a target gene is one of the most important 

steps of map-based cloning. Existence of a high-quality map will be of great importance in the 

process of map-based cloning. The development of genetic maps will be helpful for applied 

genetics and breeding of Brassica crops. A range of DNA marker types, including Restriction 

Fragment Length Polymorphisms (RFLPs), Random Amplified Polymorphic DNA (RAPD), 

Simple Sequence Repeats (SSRs) and Amplified Fragment Length Polymorphisms (AFLPs), 

have been produced for B. rapa. The simplest and easiest populations to develop are F2 and 

back cross (BC) populations. Unfortunately they are difficult to maintain in this state unless 

by vegetative propagation. Recombinant inbred lines (RILs) and doubled haploid (DH) 

populations are easy to maintain, as these homozygous lines can simply be propagated 

sexually after self-fertilization. They are therefore considered to be immortal and very useful 

for repeated genetic analysis. There are more than 20 independent maps available for B. rapa, 

mainly made for F2 populations (12), but also for a few RIL (4) and DH (4) populations, and 

mostly using Chinese cabbage as one of the parents (Song et al., 1991; Teutonico and Osborn 

1994; Nozaki et al., 1997; Kole et al., 2002; Kim et al., 2006; Suwabe et al., 2006; Soengas et 

al., 2007). The first genetic map of B. rapa was developed based on an F2 population of 95 

individuals derived from the cross between a Chinese cabbage cultivar and an accession of 

spring broccoli (Song et al., 1991). The first recombinant inbred population was constructed 

as a set of 87 RI lines (F6), developed by single plant descent from F2 plants of a cross 

between B. rapa cultivars Per (a biennial winter turnip rape) and R500 (an annual spring 

yellow sarson) (Kole et al., 1997). The reference genetic linkage map of B. rapa was 
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constructed by Choi et al. (2007), for the Multinational B. rapa Genome Sequencing Project. 

Seventy-eight doubled haploid lines derived from anther culture of the F1 of a cross between 

two Chinese cabbage inbred lines, ‘Chiifu-401-42’ (C) and ‘Kenshin-402-43’ (K) were used 

to construct the map. The map comprises a total of 556 markers, including 278 AFLP, 235 

SSR, 25 RAPD and 18 Expressed Sequence Tag Polymorphism (ESTP), Sequence Tagged 

Sites (STS) and Cleaved Amplified Polymorphic Sequence (CAPS) markers. The total length 

of the linkage map is 1,182 cM with an average interval of 2.83 cM between adjacent loci. 

 

QTL mapping 

Natural variation is caused by spontaneously arising mutations that have been maintained in 

nature by evolutionary processes such as artificial and natural selection. Thus, natural 

variation embraces the enormous diversity present within wild plant species as well as most of 

the genetic variants that are found in domesticated plants (Alonso-Blanco et al., 2009). Some 

of the phenotypic differences existing in wild or cultivated plants are due to single-gene 

(monogenic) allelic variants and cause distinct non-quantitative phenotypes. However, most 

of the natural variation is quantitative and determined by molecular polymorphisms at 

multiple loci and genes (multigenic). These are referred to as quantitative trait loci (QTLs) 

and quantitative trait genes (QTGs). The natural variation present in crop plants has been 

exploited since their domestication thousands of years ago by the genetic manipulation of 

developmental traits and physiological features related to adaptation to agriculture. Methods 

for genetic analysis and mapping of natural quantitative variation were developed a few 

decades ago for crop species, in which many more studies have been performed than in wild 

plants. Currently, genomic resources have been developed for important crop plants such as 

rice (Oryza sativa), maize (Zea mays), barley (Hordeum vulgare), and tomato (Solanum 

lycopersicum), enabling the identification of the genes and nucleotide polymorphisms 

underlying QTLs involved in domestication, yield, biotic and abiotic stress, and quality traits. 

QTL analysis in B. rapa has been used to identify loci related to a wide range of 

developmental and morphological traits including heat resistance, disease resistance, linolenic 

acid content, and flowering time. Genes controlling simply inherited traits, like seed colour, 

seed erucic acid content and the presence of leaf hairs have been mapped in an F3 population 

(Teutonico and Osborn, 1994). QTL mapping of leaf aliphatic glucosinolate loci has been 

carried out in two double haploid (DH) population of B. rapa and 16 loci controlling aliphatic 

glucosinolate accumulation has been identified (Lou et al., 2008). 

Morphological traits related to leaf and stem along with flowering characteristics (days to bud 

formation, days to flower and days from bud formation to flower) have been studied by QTL 

analysis in an F2 population of B. rapa (Song et al., 1995). Brassica cultivars are classified as 

biennial or annual based on their requirement for a period of cold treatment (vernalization) to 
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induce flowering. Genes controlling the vernalization requirement were identified in a B.  

rapa F2 population derived from a cross between an annual and a biennial oilseed cultivar. 

Two major (VFR1, 2) and one minor (VFR3) QTLs for vernalization-responsive flowering 

time were detected (Teutonico and Osborn, 1995). The two genomic regions containing VFR1 

and VFR2 showed homology to two regions in B. napus, which contain QTLs (VFN1 and 

VFN2) controlling vernalization responsive flowering time variation in segregating 

populations derived from annual and biennial oilseed cultivars. The Brassica regions 

containing VFR2 and VFN2 were also found to be homologous to a region at the top of 

chromosome 5 of A. thaliana, where several flowering-time genes are located (Osborn et al., 

1997), including FLC. Diploid Brassica species contain three copies of this genomic region.  

Thus, multiple copies of a gene homologous to a flowering-time gene on At5, such as FLC, 

could contribute to the wide range of variation in flowering time observed in Brassica species 

(Schranz et al., 2002). 

 

Mutagenesis and Transformation  

Transgenic technology provides the means for identifying and isolating genes controlling 

specific characteristics in one kind of organism, and for moving copies of those genes into 

another quite different organism, which will then also have those characteristics. This 

powerful tool enables plant breeders to generate more useful and productive crop varieties 

containing new combinations of genes and it expands the possibilities beyond the limitations 

imposed by traditional cross-pollination and selection techniques. Transgenic plants are 

proving to be powerful tools to study various aspects of plant sciences. They can be used for 

the functional analysis of plant genes e.g. in model plants and then making a link to their 

utilization in transgenic crops. For Brassica oilseed improvement, total seed oil yield and 

qualitative differences in oil composition are important breeding aspects. Transgenic Brassica 

with altered seed oil composition has been obtained. In addition, herbicide-, pathogen- and 

insect-tolerant transgenic Brassica cultivars have already been produced (Lim et al., 1998; 

Moon et al., 2007). 

The A. tumefaciens DNA delivery system is still the most commonly used strategy to 

transform plants. This is for both historical reasons (it was the first available DNA delivery 

system) and a variety of advantages compared to direct DNA transformation methods. The A. 

tumefaciens transformation system is simple, in many cases efficient, and inexpensive (Block, 

1993). In transgenic plants, insertional mutagenesis using heterologous maize transposons or 

Agrobacterium mediated T-DNA insertions, has offered valuable tools for the identification 

and isolation of genes based on a mutant phenotype (Gibson and Somerville, 1993). The gene 

functions discovered by insertional mutagenesis and silencing strategies along with 

expression pattern analysis will provide an integrated functional genomics perspective and 
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will offer unique applications in transgenic crops. More than forty genes have been identified 

by T-DNA tagging in Arabidopsis by 1997 (Azpiroz-Leehan and Feldmann, 1997) and since 

then many more have been isolated. The strategy of activation tagging was employed for the 

first time in tobacco cell lines by Walden (Walden, 1994) to generate overexpression mutants 

and isolate genes involved in plant growth and development. Activation tagging generates a 

dominant gain-of-function mutation which allows a direct selection of a desired phenotype in 

primary transformants. With a strong constitutive enhancer such as that derived from the 

CaMV 35S promoter, gene expression can be increased above normal levels. In this way, also 

redundant genes might display an overexpression phenotype if their product is limiting or a 

change in the concentration of gene products creates an imbalance that is manifested as a 

phenotype. These phenotypes can either directly reveal the gene function or provide a clue to 

the pathway in which the gene is involved. A transposon-based activation tagging method 

using the En/I Maize transposon system was reported for Arabidopsis (Marsch-Martinez et 

al., 2002). This technique is far more superior than T-DNA based activation tagging because 

of the higher frequency of gene-activated phenotypes found in transposon-tagged populations 

compared to T-DNA based populations (Weigel et al., 2000), probably due to methylation and 

subsequent silencing of multicopy T-DNA insertions (Chalfun et al., 2003).  

It would be very useful to have access to a high efficiency mutagenesis tool in B. rapa to do 

functional genomics studies. There is no report about insertional mutagenesis in Brassica so 

far. One of the reasons could be the low frequency of transformation in Brassica. B. rapa is 

known as one of the most recalcitrant members of Brassica genus to regenerate shoots in vitro 

(Moon et al., 2007) and production of B. rapa transgenic plants is less advanced than others 

like B. oleracea and B. napus (Liu et al., 1998; Kuvshinov et al., 1999; Cho et al., 2000). 

Nonetheless, several B. rapa crop types have been transformed via Agrobacterium- mediated 

methods (Liu et al., 1998; Kuvshinov et al., 1999; Cho et al., 2000), but still there is no 

routine protocol for A. tumefaciens- mediated transformation of B. rapa. The transformation 

efficiency may be influenced by several factors, including genotype, explant type, donor plant 

age, concentration of growth regulators, Agrobacterium type and culture parameters (Earle et 

al., 1996). 

Agrobacterium rhizogenes mediated transformation could be an alternative to get transgenic 

B. rapa plants. A. rhizogenes is a soil bacterium responsible for the development of the hairy 

root disease on a range of dicotyledonous plants. This phenotype is caused by genetic 

transformation in a manner similar to the development of crown gall disease by A. 

tumefaciens. Infection of wound sites by A. rhizogenes is followed by the transfer, integration, 

and expression of T-DNA from the root-inducing (Ri) plasmid and subsequent development 

of the hairy root phenotype (Christey and Braun, 2005). Ti and Ri plasmids both contain 

genes encode enzymes for producing organic compounds termed opines, which are produced 



Chapter 1  General introduction 

 10 

by infected plant cells and delivered to the pathogen as nutrients. In addition, Ti plasmids 

contain three T-DNA genes that direct synthesis of the plant hormones, cytokinin and auxin. 

In Ri plasmids the rol genes (root loci) A and B, play primary roles in adventitious root 

induction. A. rhizogenes-mediated transformation is a useful, easy and fast technique for 

introducing interested genes into plant cells, especially for species recalcitrant to 

transformation this technique is a valuable tool. When tested on Brassicaceae, within five to 

seven days after inoculation with A. rhizogenes, the vascular bundles of storage root disks of 

turnip or radish developed small outgrowths with numerous root hairs (Tanaka et al., 1985; 

Tepfer 1990). Hairy roots can be induced on a wide range of plants and many can be 

regenerated into plants, often spontaneously (Christey and Sinclaira 1992). Although the 

presence of the rol genes usually results in an altered phenotype, several studies have shown 

segregation of Ri and tumor-inducing (Ti) T-DNA, meaning that insertion of Ri and vector T-

DNA may occur on different chromosomes during transformation, and segregation in the 

subsequent generation allows the recovery of transgenic plants with a normal phenotype 

(Puddephat et al., 2001; Christey and Braun, 2005).  

There is variation in Agrobacterium-mediated transformation responses between 

different Brassicaceae species (Poulsen, 1996). Research in Arabidopsis has shown heritable 

variation for A. tumefaciens binding to the plant cell or for T-DNA integration. Further 

analysis of the plant genes involved, has made use of T-DNA-tagged A. thaliana mutant lines 

that are resistant to transformation by A. tumefaciens (rat mutants) (Nam et al., 1999). In B. 

oleracea, Cogan  et al. (2002) identified QTLs for transgenic and adventitious root production 

using an A. rhizogenes-mediated co-transformation system in conjunction with a doubled 

haploid (DH) mapping population. The transfer and integration of Agrobacterium T-DNA 

into the plant genome is mediated through expression of the vir genes present on the virulence 

plasmid native to Agrobacterium strains. The virulence genes are highly conserved, and the 

key events in T-DNA transfer are common to the two principal species of Agrobacterium 

used in plant transformation. Consequently, the analysis of plant genes regulating 

transformation using either A. rhizogenes or A. tumefaciens will allow an understanding of a 

process common to both. 
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Scope of the thesis 

At the time when this research started the main aim was to develop an En/I based activation 

tagging population in B. rapa to provide possibilities for studying plant gene functions. The 

first question that had to be answered was, would the En/I transposon system be active in B. 

rapa? This question is dealt with in chapter 2. Because B. rapa is known as one of the most 

recalcitrant members of Brassica genus to regenerate shoots in vitro, and also successful 

transformation of B. rapa by A. tumefaciens has been hampered by the lack of efficient plant 

transformation, it was tried to quantify transformation frequency by hairy root transformation 

using an A. rhizogenes transformation system in a segregating population. An F2 population 

of B. rapa derived from a cross between genotype L58, which is rapid–flowering, self–

compatible Cai-xin line, and R-o-18, a doubled haploid spring oil genotype was developed. 

The construction of a genetic linkage map and the QTL analysis for some morphological traits 

will be discussed in chapter 3. The result of QTL analysis showed that the F2 population 

displays variation for many traits. By making a RIL population it was tried to fix the 

recombination events as much as possible to obtain an “immortal” mapping population. 

Genotyping the recombinant inbred population (F7) and QTL analysis of some morphological 

traits is the topic of chapter 4. In chapter 5 the same population is used for the QTL analysis 

of seed metabolites, focusing on putative health-beneficial secondary metabolites. Finally, in 

chapter 6 all findings of this research are discussed. 
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Abstract 

A high-efficiency mutagenesis system would be very advantageous in Brassica rapa to 

generate mutations, isolate plant genes and gain insights into its biology. Activation of a 

heterologous En/I transposon was verified by the analysis of transgenic tissue of B. rapa 

Yellow Sarson L143 containing an En/I activation tagging construct. The En-I activation 

tagging construct contained the En (Spm) transposase coding sequence under control of the 

CaMV 35S promoter and terminator; a mobile non-autonomous I (dSpm) element harboring a 

tetramer of the CaMV 35S enhancer to act as activator; the NPTII gene conferring kanamycin 

resistance as positive selection marker; and the SU1 gene that converts the pro-herbicide 

R7402 into the herbicide sulfonylurea inhibiting or reducing the growth of plants that contain 

it, as negative selection marker in plants. The construct was introduced into B. rapa L143 by 

Agrobacterium rhizogenes hairy-root-mediated transformation. Insertion of the transposon 

construct and excision of the I element from the original construct was confirmed by PCR. 

Sequencing of cloned PCR products further confirmed the presence of an empty donor site in 

the donor T-DNA. Transgenic plants of B. rapa were obtained by inoculating hypocotyls with 

Agrobacterium tumefaciens AGL0 carrying the binary vector pCAMBIA-2301, harboring a β-

glucuronidase (GUS) gene driven by the CaMV 35S promoter. A histochemical GUS assay 

showed a transformation frequency of 2%. To establish a stable transposon mutant population 

of B. rapa, A. tumefaciens mediated transformation of the En/I transposon activation tagging 

construct was employed. Unfortunately the transformation of B. rapa cotyledons and 

hypocotyls with A. tumefaciens AGL1 carrying the the En/I transposon activation tagging 

construct was not successful. This could be either due to the length of the construct, or the 

expression of the SU1 gene which may not be viable in green B. rapa tissue.  
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Introduction 

Brassica rapa is a crop which is receiving increasingly more interest for functional genomics 

studies, in view of its economic importance and the genomic advantages as a close relative of 

the plant reference species Arabidopsis thaliana, with genome sequencing in progress 

(http://www.brassica.info/resource/sequencing.php). While QTL-analysis and genome or EST 

(expressed sequence tags) sequencing projects are being set up, mutant populations are still 

scarce. The availability of a mutant resource would be helping researchers in their quest to 

gain insights into the biology of this commercially important crop. These efforts are critical to 

understand gene function and, ultimately, the biology of B. rapa. 

Insertional mutagenesis through T-DNA or transposon tagging, are valuable tools for isolating 

plant genes. Snapdragon and maize contain well-characterized endogenous transposable 

elements, which have been used in the past to isolate genes such as viviparous-1 (involved in 

seed development), opaque-2 (encoding a transcriptional regulator), and several genes 

involved in anthocyanin production and flower development (McLaughlin and Walbot 1987; 

Gibson and Somerville 1993; Azpiroz-Leehan and Feldmann 1997). Subsequently, these 

transposons have been used to design heterologous systems for use in plants for which 

endogenous transposons have not been characterized in sufficient detail. These systems 

proved to be successful, leading to the isolation of many genes, including the MALE 

STERILITY 2 gene of Arabidopsis (Aarts et al., 1993), Tomato dwarf D (Bishop et al., 1996), 

and the disease resistance genes N from tobacco (Whitham et al., 1996), L6 from flax 

(Lawrence 1995), and Cf-9 from tomato (Jones et al., 1994). 

The strategy of activation tagging was employed for the first time by Walden et al. (1994) in 

tobacco cell lines to generate mutations and to isolate the corresponding genes involved in 

plant growth and development. Many activation tagging constructs have four copies of the 

enhancer element of the constitutively active cauliflower mosaic virus (CaMV) 35S promoter. 

These enhancers can cause transcriptional activation of nearby genes, and because activated 

genes will be associated with a T-DNA insertion, this approach has become known as 

activation tagging. Activation tagging generates a dominant gain-of-function mutation which 

allows a direct selection of a desired phenotype in primary transformants. Later on it was used 

in Arabidopsis by Weigel and co-workers (Weigel et al., 2000) for the isolation of over 30 

dominant mutants with various phenotypes, using resistance to the antibiotic kanamycin or 

the herbicide glufosinate to select for plants with the activation construct. The frequency with 

which activation tagging produces visible, dominant activation tagged mutants ranged from 

0.07% (Weigel et al., 2000) to 2.2% in Arabidopsis (Ichikawa et al., 2003). A T-DNA-based 

activation system has the disadvantage that it creates a complex integration pattern and 

chromosomal rearrangement at the insertion site (Marsch-Martinez et al., 2002). A 

transposon-based activation tagging method using the maize En/I transposon was reported for 
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Arabidopsis (Marsch-Martinez et al., 2002). This technique is far more superior than T-DNA 

based activation tagging because of the higher frequency of gene-activation phenotypes found 

in transposon-tagged populations compared to T-DNA based populations (Weigel et al., 

2000), probably due to methylation and subsequent silencing of multicopy T-DNA insertions 

(Chalfun-Junior et al., 2003). 

Ac-Ds (Activator-Dissociation) and En-I (Enhancer-Inhibitor) are two systems of maize 

transposable elements which have been used in transposon tagging. In Arabidopsis, the En-I 

system showed a high frequency of independent transpositions of 7.8% to 29.2% (Aarts et al., 

1995; Speulman et al., 1999). Transposon tagging is an attractive system to use for 

transformation-recalcitrant plant species, because just a few primary transformants are 

sufficient to generate a tagged population (Marsch-Martinez et al., 2002). The En-I 

transposon activation tagging construct, which was used by Marsch-Martinez et al. (2002), 

carries the BAR gene, conferring resistance to the herbicide Basta, and the SU1 gene from 

Streptomyces griseolus that confers sensitivity to the proherbicide R7402 The later acts as a 

negative selectable marker to select against the presence of the T-DNA upon transposition of 

the I-element carrying the activation tag. Thus, stable transposants can be selected by 

applying Basta and R7042 to soil-grown seedlings. For B. rapa, such a high-efficiency 

mutagenesis system will be very advantageous. A collection of many independent 

transposants can be generated and screened for morphological mutants and mutants altered in 

e.g. abiotic stress response (drought, salt, mineral deficiency, mineral access) or phytonutrient 

content. Verified mutants can be used to identify and clone the tagged gene and analyze its 

function. 

Instead of first trying to generate many stable transformants for this transformation-

recalcitrant species, a swift prescreening can be performed based on Agrobacterium 

rhizogenes-mediated root transformants. A. rhizogenes is a soil bacterium responsible for the 

development of hairy root disease on a range of dicotyledonous plants. This phenotype is 

caused by genetic transformation in a manner similar as the development of crown gall 

disease by A. tumefaciens. A. rhizogenes is capable of transferring the T-DNA of the Ri (root 

inducing) plasmid to plants (Christey 2001). Hairy roots can be induced on a wide range of 

plants and many can be regenerated into plants, often spontaneously. Transgenic plants have 

been obtained after A. rhizogenes-mediated transformation in 89 different taxa, representing 

79 species from 55 genera and 27 families, including B. rapa (Christey 2001). Hairy roots are 

easily distinguished by their rapid, highly branching growth on hormone-free medium and 

plagiotropic root development. The Ri plasmid carries rol (root locus) and aux genes that are 

transferred to the plant and that are responsible for the hairy root phenotype (Christey and 

Braun 2005). Plants regenerated from hairy roots often exhibit an altered phenotype 

characterized by several morphological changes including wrinkled leaves, shortened 
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internodes, reduced apical dominance, reduced fertility, altered flowering, and plagiotropic 

roots due to expression of rol genes. To be of use in crop improvement, A. rhizogenes-

mediated co-transformation will have to yield transgenic plants that do not display the 

deleterious hairy-root phenotype (Puddephat et al., 2001). Where Ri and binary vector T-

DNAs insert independently into the genome during co-transformation, meiotic segregation 

can lead to recovery of phenotypically normal plants bearing binary vector T-DNA only, as 

was shown by Puddephat et al. (2001) upon A. rhizogenes-mediated co-transformation of B. 

oleracea. 

Ultimately, the production of stable transgenic plants through A. tumefaciens mediated 

transformation is desired, as it would not need the outcrossing of the Ri-T-DNA to obtain 

morphologically normal plants. The capability of a plantlet to regenerate from a transformed 

cell appears to be a critical factor affecting the overall transformation efficiency of B. rapa. In 

general, the regeneration from explants (i.e. isolated or excised tissues or organs from an 

intact plant) can occur via two major pathways, organogenesis and somatic embryogenesis 

(Zuo et al., 2002). The organogenesis pathway depends on a high cytokinin:auxin ratio and 

leads to the direct formation of shoots from the so-called ‘organogenic’ cells. The formation 

of somatic embryos, which can directly germinate into adult seedlings, requires a high 

concentration of 2, 4-D. Other important factors that may influence the infection frequency 

are the duration of inoculation, ethylene concentration, Agrobacterium co-cultivation 

temperature and co-cultivation time. Ethylene produced from a plant inoculated with A. 

tumefaciens inhibits virulence (vir) gene expression in A. tumefaciens and, as a result, 

Agrobacterium-mediated genetic transformation is inhibited (Nonaka et al., 2008). AgNO3, an 

anti-ethylene agent, was critical to the regeneration of transformed shoots of B. oleracea and 

was thought to reduce wounding stress and stimulate regeneration from transformed cells 

(Puddephat et al., 2001). The vir genes in Agrobacterium can be also induced by 

acetosyringone or similar phenolic compounds (Takasaki et al., 1997). Tissue culture involves 

complex interactions and thus experiments to improve tissue culture rely to a great extent on 

empirical data. Many parameters have to be investigated such as media, genotype, variation 

among different explants and the amount of growth regulators applied and physiological 

condition of the starting material. With all mentioned factors interacting during the formation 

of transgenic plants, it is obvious that establishing optimal conditions are extremely difficult 

(Poulsen 1996). In general among the Brassica species, B. oleracea is the easiest species to 

regenerate from tissue culture, whereas B. rapa is the most recalcitrant one (Narasimhulu et 

al., 1988).  

Here we present the development of a transposon-based activation tagging system in B. rapa 

using hairy root transformation and we report on various methods to obtain stable 

transformation of B. rapa by A. tumefaciens. 
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 Material and Methods 

Vector constructs and bacterial strains 

Four different constructs introduced into A. rhizogenes MSU440 were used for this study. The 

pRedRoot binary vector (Limpens et al., 2004), expressing the DsRed1 gene encoding the red 

fluorescent protein as a non-destructive selectable marker. The binary vector pCAMBIA-2301 

harbouring the β-glucuronidase (GUS) gene and selectable kanamycin resistance gene 

(http://www.cambia.org/daisy/bios/585.html). An Ac/Ds activation tagging construct carrying 

the green fluorescent protein (GFP) gene as visible marker, and an En/I activation tagging 

construct carrying the kanamycin resistance gene as selectable marker (Fig 1). All constructs 

were used to transform B. rapa. The En/I construct (made by Marsch-Martinez et al., 2002) 

contains an En-transposase source, a nonautonomous transposable I element, which contains a 

tetramer of the CaMV 35S enhancer sequence, and the NPTII kanamycin resistance gene. The 

construct includes positive and negative greenhouse-selectable markers to select for stable 

transpositions. The BAR gene confers resistance to the herbicide Basta and SU1 gene, which 

encodes a protein that converts the pro-herbicide R7402 (DuPont, Wilmington, DE) into the 

herbicide sulfonylurea inhibiting or reducing the growth of plants that contain it. The binary 

vectors were introduced into MSU440 by electrotransformation and grown for 2 d at 28 °C 

under antibiotic selection (50 µg ml–1). Integrity of inverted repeat constructs was checked by 

mini-prepping and restriction-digestion. 

                  

 Fig 1 Schematic representation of the En/I construct (En/I::4X35SEnh) transposon activation 

tagging construct. LB, Left border; RB, right border; 35SP, 35ST, CaMV 35S promoter and 

terminator, respectively; EnTPase, En immobile transposase source; ILtir, IRtir, I-element 

left and right terminal-inverted repeat,respectively; 4 Enh., tetramer of the CaMV 35S 

enhancer; BAR, Basta resistance gene; Pnos, Tnos, promoter and terminator sequences from 

the nopaline synthase gene, respectively; SSU5, SSU3, promoter and transit signal peptide to 

the chloroplast and terminator of the small subunit of Rubisco gene, respectively (reproduced 

from Marsch-Martinez et al., 2002). 
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The Agrobacterium tumefaciens strains used in this study were AGL0 and AGL1 (Lazo et al., 

1991). Both strains carry pTiBo542DT, a hypervirulent Ti helper plasmid that transforms 

many dicotyledonous plants at very high frequencies. If these strains are to function in 

transformation they must also carry a binary vector in which the T-DNA is defined by both 

left and right border repeats. AGL1 is distinguished from AGL0 by an insertion mutation in 

the recA recombination gene (Lazo et al., 1991), which suppresses recombination of large T-

DNA plasmids. AGL0 harbors the binary vector pCAMBIA-2301 and is referred to as AGL0-

GUS and the En/I transposon construct (AGL0-En/I). AGL1 harbors the En/I transposon 

activation tagging construct (AGL1-En/I) (Marsch-Martinez et al., 2002).  

 

Agrobacterium rhizogenes hairy root transformation  

Brassica seeds were surface-sterilized by incubating for 30 seconds in 70% ethanol, washing 

in sterile water, then 2 min in 2% hypochlorite (commercial bleach), washing three times in 

sterile water, and subsequently plated on half MS medium (Murashige and Skoog 1962) 

without sucrose. Roots of 5-day-old seedling were cut with a schalpel and inoculated with a 

pellet of A. rhizogenes carrying pRedRoot-DsRed placed at the cutting surface as explained 

by Limpens (Limpens et al., 2004). Infected seedlings were put on the petri dishes having the 

same medium as germination one with a half-round filter paper (5 seedlings per plate). The 

Petri dishes were not completely closed by parafilm to enable aeration. Petrie dishes were 

placed vertically in a growth chamber maintained at 25˚C with a 16h light/8h dark 

photoperiod at a light intensity of 60 mEm-2s-1. Four- day-old seedlings transferred to the 

medium containing 200 mg/l ticarcillin. The same protocol was employed for A. rhizogenes 

carrying pCAMBIA-2301-GUS and inoculated roots were placed on kanamycin medium. Co-

transformation also was done using both A. rhizogenes carrying pRedRoot-DsRed and A. 

rhizogenes carrying pCAMBIA-2301-GUS. Inoculated roots containing the En-I transposon 

activation tagging construct were transferred to kanamycin medium with tricarcillin and 

inoculated roots containing the Ac/Ds-GFP construct were transferred to medium with 

tricarcillin. On selection medium, the roottips were marked on the plate to distinguish 

transformed and growing roots from untransformed ones.  

 

Plant material and plant growth media 

Two varieties of B. rapa L58 (Caixin line) and L143 (Yellow Sarson) were used for 

transformation. Seeds were surface-sterilized for 20 min and sown in half-strength MS-salts 

(Murashige and Skoog 1962) and vitamins with 0.5% sucrose and 0.6% phyto agar. Seeds 

were germinated and grown in a cell culture room maintained at 22-24 !C with a 16 h light/8 

h dark photoperiod at a light intensity of 45-55 mEm-2s-1. Cotyledon and hypocotyl explants 
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were used for transformation. For each of the different transformation experiments different 

protocols were used. 

 

Experiment 1: 

For callus induction, MS medium supplemented with 3% sucrose, 4 mg/l Kinetin, 2 mg/l 

NAA and 0.1 mg/l 2,4-D was used. For shoot regeneration MS medium with 1% sucrose, 2 

mg/l NAA, 4mg/l BAP and 3mg/l ABA was used. All media were adjusted to pH 5.8 and 

solidified by 0.6% phyto agar.  

Cotyledons and hypocotyls of 5-day-old seedlings were placed on callus induction medium 

for one week and then transferred to shoot regeneration medium. Every two weeks 

regeneration medium was refreshed. For plant transformation, A. tumefaciens strains (AGL0-

GUS and AGL1-En/I) were cultivated on LB-agar plates supplemented with 50 mg/l 

kanamycin and 75 mg/l carbenicillin respectively for 2 days (d) at 27 °C, followed by 

cultivation on liquid LB medium for 2 d. Bacteria were collected by centrifugation at 3000 × 

g for 15 min, and the pellet was suspended in liquid MS medium to give OD600 = 0.5, which 

was subsequently used in the transformation experiments. For transformation first we tried 

AGL0-GUS transformation. 10 µl of the Agrobacterium suspension was applied on the 

explant cut surface in the callus induction medium for two days, upon which they were 

transferred to callus induction medium with tricarcillin (100 mg/l) to prevent overgrowth of 

Agrobacterium. After 5 days they were transferred to shoot regeneration medium with 

kanamycin (50 mg/l) and tricarcillin (100 mg/l). Six weeks later transformation and/or 

regeneration was scored. In total 300 explants were used in the first experiment, half with 

Agrobacterium (for transformation) and half without (for regeneration). 

 

Experiment 2: 

In this experiment the Radke protocol was followed (Radke et al., 1992). We used 1 mg/l 2,4-

D in the induction medium and 3 mg/l BA+1 mg/l Zeatin in the shoot regeneration medium. 

AgNO3 (5 mg/l) was applied to shoot regeneration medium to reduce the effect of ethylene. 

For transformation we used AGL0-GUS on 300 explants of both genotypes.  

 

Experiment 3: 

As experiment 2, but using 1000 explants, 500 for each genotype. Instead of ALG0-GUS, 

AGL1-En/I was used. 

 

Experiment 4: 

As experiment 3, but using 600 explants and using 0.5 mg/l 2, 4-D and 0.5 mg/l BA in the 

shoot regeneration medium.  
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Experiment 5: 

As experiment 3, but replacing AgNO3 with Aminoethoxyvinylglycine (AVG). We used 1 

µM and 5 µM AVG in shoot regeneration medium. Five hundred explants were used for this 

experiment. B. rapa L58 and L143 and Agrobacterium AGL1-En/I were used for this 

experiment. 

 

Experiment 6: 

Experiment 3 was repeated but a liquid shoot regeneration medium was used, which was 

refreshed every two weeks and shaken at low speed for six weeks. B. rapa L58 and L143 and 

Agrobacterium AGL1-En/I were used for this experiment. 

 

Experiment 7: 

As experiment 3, but to induce direct shoot formation in organogenesis, we used a higher 

cytokinin:auxin ratio as suggested by Zuo et al., (2002). We applied 5 mg/l BA and 0.5 mg/l 

NAA in the shoot regeneration medium to resemble the medium Zhang used to get maximum 

shoot regeneration (Zhang et al., 1998). 400 explants were used.  

 

Experiment 8: 

As experiment 3, with alterations of the hormone concentrations in the shoot regeneration 

medium. Five concentrations of BA were applied (1, 2, 3, 4 and 5 mg/l) in combination with 

three concentrations of NAA (0.5, 1 and 3 mg/l) and two concentrations of GA3 (0 and 0.2). 

Fifty explants were used for each treatment. 

 

Experiment 9: 

As experiment 3, but seeds were germinated on medium containing 3 mg/l BAP and 4 mg/l 

NAA. 400 explants were used. 

 

Experiment 10: 

As experiment 3, but explants were pre-cultured on medium with 2 mg/l BA, 1 mg/l NAA and 

0.2 mg/l GA3 for two days, then inoculated with AGL1-En/I and kept for another two days on 

pre-culture medium before transferring to shoot regeneration medium. 400 explants were 

used. 

 

Experiment 11: 

As experiment 3, but the cotyledon with petiole was used as explant. Petioles were inserted 

into the agar. 400 explants were used. 
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Experiment 12: 

As experiment 3, but two concentrations, 0.5mg/l and 1mg/l, of thidiazuron (TDZ) were used 

in the medium. 300 explants were used. 

 

Experiment 13: 

As experiment 3, but 0.03 mg/l brassinolide was added to the medium. 300 explants were 

used.  

 

Experiment 14: 

As experiment 3, but acetosyringone (100 µM) was used to re-suspend the bacteria pellet for 

co-cultivation medium. 300 explants were used for this experiment. 

 

Experiment 15: 

Instead of B. rapa, tobacco explants (cultivar SR1) were used for transformation. We 

followed the protocol reported by Dorlhac et al. (1993), using AGL0-GUS, AGL0-En/I and 

AGL1-En/I. 10 explants of tobacco leaf were used for transformation with each construct.  

 

Experiment 16: 

As experiment 2 but instead of B. rapa the related species B. napus cv. Westar was used. We 

used AGL0-GUS, AGL0-En/I and AGL1-En/I in this experiment.  About 60 explants used for 

AGL0-GUS transformation and more than 300 explants were used for the other two 

constructs. 

 

Experiment 17: 

In planta transformation of B. rapa was tried using genotypes L58 and L39. Two weeks cold 

treatment (4 °C) was applied on the seeds before they were germinated in a growth chamber 

at 24/20 °C day/night, 16/8 h day/night. After 3 weeks they started flowering. The protocol of 

in planta transformation of A. thaliana was followed (Bent 2000) and AGL1-En/I was used 

for dipping. 180 plants of L39 and 140 plants of L58 were used for this experiment. Seeds 

were collected after ripening of the plants and subjected to selection. As the construct 

contains genes for kanamycin and basta resistance, both selective agents were (separately) 

used for screening of transformed seeds. Half of the seeds were germinated on soil and two-

leaf-staged seedlings were sprayed in the greenhouse with 1% Basta solution. The other half 

was screened on solidified MS medium containing 50 mg/l kanamycin.  
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Experiment 18: 

Instead of A. tumefaciens transformation, transformation was performed with A. rhizogenes to 

obtain transgenic hairy roots of B. rapa. A. rhizogenes strain MSU440 was used containing 

the En/I construct. Cotyledon and hypocotyls of accession L58 and R-o-18 were used as 

explants. Inoculation was as with A. tumefaciens. 

 

GUS staining 

For histochemical GUS staining one leaflet was put in staining solution including X-Gluc (0.1 

mg/ul), K2HPO4 (500 mM), KH2PO4 (500 mM) with water and was kept at 37!C in dark for 

overnight. The next day samples were destained in hypochlorite 1% for one hour. 

 

Molecular analysis of excision 

Insertion of the En/I and Ac/Ds activation tagging constructs were confirmed by PCR using 

BAR-specific primers (Bar F: 5’-ACC ATG AGC CCA GAA CGA CGC-3’ and Bar R: 5’-

CAG GCT GAA GTC CAG CTG CCA G-3’) as the selectable marker is within the 

transposable element between the terminal-inverted repeats (Fig 1). The PCR reaction 

comprised a denaturing step of 95°C for 3 min, followed by 40 cycles of 1 min at 95°C, 1 min 

at 60°C, and 1 min at 72°C, ending with an elongation step of 5 min at 72°C. A subsequent 

PCR with primers flanking the jumping elements was performed to detect excision of I or Ds 

element from the T-DNA in the transformed roots (Fig 3). The following primers were 

employed for detection of I element excision and Ds element excision respectively:  

35S-T2, 5’-CCA AAA TCC AGT GGG TAC CGA GC-3’; SSU-301-TF, 5’-GTT GGT TGA 

GAGTCTTGTGGCCT-3’; and AcUp, 5’-CTCAGTGGTTATGGATGGGAGTTG-3’; 

M13F24, 5’-CGCCAGGGTTTTCCCAGTCACGAC-3’. The PCR reaction comprised a 

denaturing step of 95°C for 3 min, followed by 35 cycles of 1 min at 95°C, 1 min at 60°C, and 

1 min at 72°C, ending with an elongation step of 5 min at 72°C. 
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Results 

A. rhizogenes transformation  

One week after transformation transformed roots were visually selected using a fluorescence 

stereo microscope in case of using A. rhizogenes carrying DsRed and the Ac/Ds construct 

carrying 35S::GFP, and by selection of growing roots on antibiotic selection media in case of 

A. rhizogenes carrying En/I activation tagging constructs (Fig 2). The putatively transformed 

roots carrying the GUS construct were evaluated with the histochemical GUS assay. 

 

    
Fig 2 Selection of roots by A. rhizogenes, transformed with pRedRoot, carrying DsRed (A), 

the Ac/Ds construct carrying GFP (B), pCAMBIA-2301 carrying GUS (C), En/I activation 

tagging construct carrying HPT (D), En/I activation tagging construct carrying NPTII (E). A: 

DsRed expression, B: GFP expression, C: GUS expression, D: Selection of transformed roots 

on 20 mg/l hygromycin medium (Left: untransformed, Right: transformed), E: Selection of 

transformed roots on 50 mg/l kanamycin medium (Left: untransformed, Right: transformed).  

 

Twenty seven plants used for transformation with A. rhizogenes carrying DsRed, of which 

nine plants (33%) showed root DsRed expression. The transformation frequency for 

transformation with A. rhizogenes carrying GUS was 55% (15/27). Roots emerging after co-

transformation with both A. rhizogenes carrying DsRed and GUS constructs were first tested 

under a stereo fluorescence microscope. Ten out of fifty plants showed root DsRed expression 

and about four plants out of these ten plants showed root GUS expression. This does not 

suggest a higher transformation frequency upon co-infection. 

 

Activation tagging 

Twelve plants out of thirty (40%) showed root GFP expression (Ac/Ds construct) under the 

stereo fluorescence microscope. Of the roots transformed with A. rhizogenes carrying the En/I 

construct, 58% (26/45) were kanamycin resistant. All roots putatively transformed with 

transposon activation tagging constructs were cut and used for DNA analysis to test for 

excision events. 

C E D A B 
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No excision site was detected in material containing the Ac/Ds transposon activation tagging 

construct, but one excision site was observed among 26 roots containing the En/I activation 

tagging construct (Fig 3). Two more excision sites were obtained when repeating the 

experiment with 50 additional plants of which 27 showed roots to contain the En/I construct. 

The DNA was extracted from the empty donor bands on the gel and cloned using the 

pGEMT-Easy vector. We could clone only one of the excision sites. Sequencing of the cloned 

fragment confirmed the presence of an empty donor site in the T-DNA and thus excision of 

the I element. The I element which was cloned into the En/I activation tagging construct 

carried its left terminal inverted repeat (TIR) originating from the wx844:En-1 locus of maize 

(Pereira et al., 1985) and its right TIR from the a1-m1(6078) locus of maize (Pereira and 

Saedler 1989). The sequence of the empty donor site showed that the I element took one base 

pair of the waxy 1 gene and three base pairs of the a1 gene upon excision. Causing such 

deletions is common for I element excisions (Aarts et al., 1993).  
      

 

 

 

 

 

 

 

Fig 3  PCR analysis of T-DNA insertion and I element excision in B. rapa. 50 bp L.: 50 bp 

ladder;1 kb L.:1 kb ladder; A: PCR using BAR primer shows insertion of En/I activation 

tagging construct in samples 1 and 2 but not in sample 3; B: PCR using primers flanking the I 

element shows excision of the I element in sample 1, 2 and 5. Samples 3 and 4 show no 

excision; C: Flanking DNA sequences of the original I element in the En/I T-DNA (top) and of 

the empty donor site after I element excision.  

 

Stable plant transformation 

For the first transformation experiment we followed the protocol described by Wahlroos et al. 

(2003), who reported a transformation frequency of up to 9% for B. rapa subsp. oleifera using 

A. tumefaciens AGL1 harbouring a binary vector carrying the enhanced green fluorescent 

protein (eGFP, Clontech, Palo Alto, CA, USA) gene controlled by the CaMV 35S promoter. 

Initially we used the same genotype as used by Wahlroos et al. (2003), which we received on 

request. However, based on morphology and upon testing by flow cytometry the provided 

accession appeared to be B. napus, rather than B. rapa and we discontinued using this 

genotype. Instead we used L58 and L143. While the regeneration frequency was about 9%, 

  50bp L.  1     2       3 

500bp 
ggtat�I�tcagggtc  T�DNA + I element 

ggta.......gggtc  empty donor site 

A 

1kbL.      1         2          3         4          5        50bp L 

1500bp 
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only 3% of the explants showed green calli on callus induction medium. Unfortunately they 

stopped growing and none of them regenerated shoots when transferred to shoot regeneration 

medium. 

In experiment 2 we tested the protocol by Radke et al. (1992), who reported a transformation 

frequency of 1-9% using cultivars Tobin and Emma of B. rapa subsp. oleifera. Regeneration 

and transformation percentages are shown in table 1. Two percent of the L58 explants 

regenerated transformed shoots when treated with AgNO3, as confirmed by analysis of GUS 

expression (Fig 4).  

 

 

 

 

Table 1.  Result of regeneration and transformation experiment 2 using AGL0-GUS 
 Regeneration Transformation 

 + AgNO3                  - AgNO3 + AgNO3                  - AgNO3 

genotypes 

Green 

calli 

Regenerated 

shoots 

Green 

calli 

Regenerated 

shoots 

Green 

calli 

Regenerated 

shoots 

Green 

calli 

Regenerated 

shoots 

L143  100              25 90 0 40 0 10 0 

L58  89 16 4 0 42 2 10 0 

 

             

Fig 4 Transformation of B. rapa. A: cotyledons of L143 on shoot regeneration medium with 

AgNO3 after inoculation with AGL0-GUS. B: Hypocotyls of L58 on shoot regeneration 

medium with AgNO3 after inoculation with AGL0-GUS. C: Transformed shoot of B. rapa L58 

with AGL0-GUS. D: GUS expression (blue) in a leaflet of a transformed plant of B. rapa L58. 

 

Experiment 3 followed the protocol of experiment 2, but AGL1-En/I was used instead of 

AGL0-GUS. Only 4% green calli were obtained in this transformation experiment and none 

regenerated into a transformed shoot. In experiment 4, the concentrations of hormones in the 

shoot regeneration medium were adjusted, but still only about 4% green calli emerged, none 

of which regenerated into a shoot. We observed browning of explants which could be a sign 

A B 

C 

D 
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of ethylene production. For experiment 5 we followed experiment 3, but used another 

ethylene biosynthesis inhibitor AVG (aminoethoxyvinylglycine) instead of AgNO3. This 

experiment did not yield any green calli. To further elaborate on limiting ethylene production 

liquid shoot regeneration medium was used. About 4% green calli was observed, which stay 

longer green than in previous experiments, but no transformed shoot regenerated. A high 

cytokinin: auxin ratio to induce direct shoot regeneration (experiment 7) was not successful 

either, as no transformed shoots were formed. In experiment 8 we further experimented with 

the cytokinin (BA) and auxin (NAA) concentrations in the shoot regeneration medium, in the 

presence or absence of gibberellic acid (GA3). Results are shown in table 2. 4 mg/l BA 

produced more green calli than others and 65% regenerated shoots in the absence of 

transformation, but in the presence of A. tumefaciens no transformed shoots were obtained. 
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Table 2.  Result of regeneration and transformation experiment 8 (using AGL1-En/I), 

combining five concentrations of BA, three of NAA and two of GA3 (all in mg/l) in the shoot 

regeneration medium. 

BA(mg/l) NAA(mg/l) GA3(mg/l) Shoot regeneration% Green calli induced% Transformed shoot % 

1 0.5 0 21 0 0 
1 1 0 15 0 0 
1 1 0 8 0.5 0 
1 1 0.2 6 3 0 
1 3 0 3 1 0 
1 3 0.2 5 0.5 0 
2 0.5 0 15 3 0 
2 0.5 0.2 8.3 4.1 0 
2 1 0 12 3 0 
2 1 0 22 15 0 
2 3 0 28 2 0 
2 3 0 21 6 0 
3 1 0 21 10 0 
3 0.5 0.2 25 15 0 
3 1 0 19 10 0 
3 1 0 35 16 0 
3 3 0 42 18 0 
3 3 0 40 15 0 
4 1 0 52 21 0 
4 0.5 0.2 65 35 0 
4 1 0 63 37 0 
4 1 0 45 24 0 
4 3 0 61 28 0 
4 3 0 56 26 0 
5 1 0 35 18 0 
5 1 0 39 15 0 
5 1 0 42 17 0 
5 1 0 31 14 0 
5 3 0 29 15 0 

 

Burnett et al. (1994) reported that the presence of BA or NAA during seed germination 

medium markedly enhanced subsequent shoot regeneration from the base of the excised 

cotyledon explants of Brassica rapa cv. Horizon. We tested this option (experiment 9), and 

although about 3% of green calli were obtained, no significant difference was observed 

compared to previous experiments. 

Block (1993) studied the cell biology of plant transformation and showed that during a 

preculture period dedifferentiation occurs. There are few reports about the effect of preculture 

on the transformation frequency in Brassica (Burnett et al., 1994; Babic et al., 1998; Tang et 

al., 2003; Tsukazaki et al., 2002). Tsukazaki et al. (2002) investigated the effect of the 

preculture period on transformation efficiency in hypocotyl explants of Brassica oleracea var. 

capitata Matsunami P22. The explants that were precultured for 3 days produced the highest 
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number of GUS-positive explants. Unfortunately we did not obtain any transformed shoots in 

this experiment (experiment 10). 

Sharma et al. (1991) studied differentiation of shoots and roots from cotyledon explants of 

Brassica juncea (L.) Czern and observed that organogenesis occurred only if the proximal cut 

end of the petiole was in contact with the medium. In the absence of the petiole, 

differentiation from the lamina was rare. When this was tried (experiment 11) there was no 

significant difference between a cotyledon cut in half and cotyledon with petiole. No 

transformed shoot regenerated. In experiments 12 and 13 we also tested the effect of TDZ 

(Thidiazuron) (Qin et al., 2006), and brassinolide (Cardoza et al., 2004) in the shoot 

regeneration medium, but no significant effect was observed. 

Agrobacterium related parameters such as virulence induction, transfer and integration are 

also important in transformation. Both Agrobacterium strains AGL0 and AGL1 carry a 

hypervirulent Ti helper plasmid. Still addition of acetosyringone to the co-cultivation medium 

was reported by Takasaki (Takasaki et al., 1997) to enhance the T-DNA transfer by inducing 

the vir gene expression of the Ti plasmid. About 4% green calli were obtained in this 

transformation experiment (14), but no transformed shoot regenerated.  

After 14 experiments with no transformed shoots using the AGL1-En/I strain-construct 

combination, we wanted to test if this combination was at all able to transform plants. 

Therefore we used SR1 tobacco rather than B. rapa for transformation in experiment 15. For 

each explant inoculated with AGL0-GUS, on average ten transformed shoots regenerated, 

while for AGL0-En/I and AGL1-En/I this was four and two respectively (Fig 5).  

 

        
Fig 5 Regeneration of transformed shoots of tobacco cv. SR1 ten days after co-cultivation 

with A: AGL0-GUS, B: AGL0 -En/I and C: AGL1- En/I.  

 

This showed that although the transformation with the En/I construct was clearly less efficient 

than with the GUS construct, in both cases transformants were obtained and thus the strain-

construct combinations were all potentially able to give transformed shoots. Of course, 

tobacco is much easier to transform, so therefore we used explants of Brassica napus cultivar 

A B C 
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Westar, which is a Brassica species, but easier to transform than B. rapa (experiment 16). In 

the shoot regeneration medium 90 % of the explants responded and regenerated shoots, in the 

absence of A. tumefaciens. Also in the presence of AGL0-GUS, 19 % (11/56) of the 

inoculated cotyledons regenerated transformed shoots. However, only 0.5 % (2/358) of the 

explants inoculated with AGL0-En/I or AGL1-En/I produced transformed shoots and they 

stopped growing after a few days. This indicates that the problem to obtain transformed 

shoots may not be the transformation protocol, but the construct used, with serious trouble for 

the cells containing the En/I construct to properly regenerate into transformed shoots (Fig 6).  

 

     
Fig 6  Brassica napus regeneration and transformation. A: shoot regeneration on cotyledon; 

B: regeneration of transformed shoots with AGL0-GUS on hypocotyls explants; C: 

transformed shoot with AGL0-En/I on a hypocotyl explant; D: transformed shoot with AGL1-

En/I on cotyledon explants; E and F: regeneration of untransformed shoots on cotyledon 

explants. 

 

As this may be caused by the tissue culture phase of the protocol, we tried alternative 

protocols. An in planta transformation protocol was proposed by Cardoza et al. (2004) for 

Brassica, which would negate the need for tissue culture. The in planta transformation 

protocol has been optimized for Arabidopsis thaliana, in which flowers are immersed in A. 

tumefaciens cultures, and in which ovules are the targets for transformation (reviewed by 

Pelletier and Bechtold, 2003). Following in planta transformation, seeds are harvested and 

transformed seedlings are selected. To date, the only crops to be transformed by this method 

have all been Brassicaceae: Pakchoi (B. rapa ssp. chinensis) (Liu et al., 1998; Xu et al., 

2008), radish (Raphanus sativus L. longipinnatus Bailey) (Curtis and Nam 2001), and canola-

quality B. napus (Wang et al., 2003), all with transformation frequencies of less than 0.20 %. 

A B C 

D E F 
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About 1200 seeds from L39 and 4000 of L58 were obtained after the infiltration. Plants were 

selected for resistance to kanamycin or Basta. No green plants were observed after selection 

for Basta resistance (Fig 7). 

  

Fig 7  In planta transformation of B. rapa. A: Three weeks after germination of seeds (upon 

two weeks of cold treatment) plants are ready for in planta transformation; B: The seeds 

obtained after in planta transformation have been germinated in a greenhouse to be sprayed 

with the herbicide Basta. 

 

Finally, rather then trying transformation with A. tumefaciens, using direct transformed shoot 

regeneration, we used A. rhizogenes to create transformed hairy roots, which could be used to 

select transgenic plants from. Sretenović-Rajičić et al. (2006) reported that up to nine percent 

spontaneous shoot regeneration of excised root cultures grown on the hormone-free medium 

occurred in B. oleracea, but we are not aware of a report of spontaneous shoot regeneration 

using B. rapa hairy roots. When using A. rhizogenes containing the En/I construct on explants 

of accessions L58 and R-o-18 we obtained hairy roots after 10 days (Fig 8). Three percent of 

the hypocotyl explants regenerated untransformed shoots. 100 transgenic hairy roots were 

transferred to hormone free medium or medium with BA and kept for six weeks. No shoots 

regenerated on both media, only white and green calli were observed on BA-containing 

media. 

 

 
Fig 8 Hairy root formation on B. rapa explants. A: Induction of hairy root on cotyledon and 

hypocotyl, B: Untransformed shoot regenerated from a hypocotyl explant inoculated with A. 

rhizogenes- En/I, C: Hairy roots growing after transferring to free hormone medium; D and 

E: Hairy roots in BA-containing medium.  

A B 
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Discussion 

Genetic engineering can potentially be used as a method to add specific characteristics to 

existing varieties. It would be most practical if efficient, genotype independent, and 

reproducible transformation and regeneration techniques are available. The most widely used 

method for the introduction of new genes into plants is based on the natural DNA transfer 

capacity of A. tumefaciens. In this work the aim was to make a mutant population of B. rapa 

using En/I–based activation tagging through A. tumefaciens-mediated transformation. The 

insertion of En/I through A. rhizogenes-mediated transformation and subsequent excision of 

the I element demonstrated that the En/I transposon system is active in B. rapa and could 

potentially be used in this species for heterologous gene tagging. However, re-insertion of the 

I element was not examined and this is needed for a proper insertional mutagenesis system. 

We showed that the En/I transposon activation tagging system should be preferred in B. rapa 

above an Ac/Ds-based system because of the higher transposition frequency. In Arabidopsis, 

also in contrast to the Ac element, a one element En system gave a much higher transposition 

frequency (Cardon  et al., 1993). For gene tagging purposes the occurrence of independent 

transpositions is important, as each independent excision can give rise to independent 

reinsertions. Although we sequenced excision sites from a few different hairy root samples, 

we only detected one excision sequence. Normally excision of En/I is imperfect (Aarts et al., 

1995) and different excisions leave different empty donor sequences, which was not the case 

in this experiment. Although we took great care not to contaminate samples, we cannot 

completely rule out cross-contamination of other samples with DNA from one excision site, 

explaining for the exact same sequence as we found.  

Genotype, type of explant, explant pre-treatment, hormone combination of BA and NAA, 

AgNO3, AVG, acetosyringone are important factors which we included in the stable 

transformation study to induce shoot regeneration. It has been shown that a large variation in 

regeneration frequency exists among B. oleracea (Tsukazaki et al., 2001) and B. rapa (Zhang 

et al., 1998; Narasimhulu and Chopra 1988) cultivars. In this study we used different B. rapa 

genotypes, which were all self-compatible and rapid cycling. When comparing them genotype 

L58 showed more green calli than L143 in transformation with AGL0-GUS and AGL1-En/I.  

The positive role of cotyledon tissue on differentiation of shoots in Brassica, was reported by 

several groups (Sharma et al., 1991; Burnett et al., 1994; Teo et al., 1997). In this study we 

found no significant difference between hypocotyl or cotyledon explants in transformation 

frequency. A positive effect of acetosyringone has been reported for B. rapa transformation 

(Lim et al., 1998; Takasaki et al., 1997). However, we did not observe this in our 

transformation study, probably because both A. tumefaciens strains are already hypervirulent 

and virulence cannot be enhanced further in these strains. 
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Different optimal concentrations of BA and NAA have been reported for shoot regeneration 

of B. rapa. 5 mg/l BA and 0.5 mg/l NAA was reported by Jun II et al. (1995), whereas only 3 

mg/l BA (Radke et al., 1992) or 5 mg/l BA and 3 mg/1 NAA (Mukhopadhyay et al., 1992) 

was reported by others as the best concentrations for shoot regeneration. In our study 4 mg/l 

BA and 0.5 mg/1 NAA showed more green calli when it compared with other combinations 

of BA and NAA. This appears to be more due to the BA than the NAA concentration, as also 

concentrations of 1 or 3 mg/l NAA gave higher percentages of green calli than other 

treatments. 

The production of ethylene in tissue culture is known to increase under stress (Chi et al., 

1990). Inclusion of ethylene biosynthesis or ethylene response inhibitors such as AVG and 

AgNO3 in the shoot regeneration medium was another major factor reported to contribute to 

increased shoot regeneration efficiency in Brassica (Chi et al., 1990; Sethi et al., 1990). These 

compounds stimulate morphogenesis in many monocotyledon and dicotyledon species 

including Brassicas (Chi et al., 1990; Mukhopadhyay et al., 1992).  However, we did not find 

any significant difference in shoot induction using these ethylene inhibitors.  

Our study confirmed that B. rapa is a recalcitrant plant in regeneration and especially 

transformation. While we could optimize the medium to get 65 % shoot regeneration in the 

absence of A. tumefaciens, no transformation was observed in the presence of A. tumefaciens. 

Insertional mutagenesis in Brassica has not been described before to our knowledge. One of 

the reasons could be the low frequency of transformation in Brassica. Moon et al. (2007), 

Tsukazaki et al. (2001) and Narasimhulu and Chopra (1988) previously showed that B. rapa 

is one of the most recalcitrant Brassica species in tissue culture by comparing weedy B. rapa 

and introgressed B. rapa (Moon et al., 2007), comparing B. rapa cultivars with B. oleracea 

(Kuginuki and Tsukazaki et al., 2001), B. nigra and amphidiploid B. juncea, B. napus and B. 

carinata (Narasimhulu and Chopra 1988) genotypes. Zhang et al. (1998) showed large 

genotypic variation in shoot regeneration of B. rapa. When 123 genotypes were tested the 

regeneration frequency ranged from 0% to 95% (Zhang et al., 1998).  

The length of a construct generally has a negative effect on transformation. The T-DNA 

region of the En/I activation tagging construct is 11 kb while the T-DNA size of the GUS 

construct is 5.3 kb. In tobacco, this decreased the transformation frequency by about 60 to 

80%, although tested with a low number of explants. However, as we showed with the B. 

napus transformations, the main inhibiting factor for transformation might be the presence of 

the SU1 negative selection marker gene in the En/I construct, which reduced the frequency of 

transformed Brassica napus plants from 19% to zero. In Arabidopsis expressing the SU1 

gene, even in the absence of selection, exhibits a different morphology compared to 

untransformed plants (Tissier et al., 1999). The transformed plants are shorter, bushier, and 

darker green. Therefore in Arabidopsis the SU1 phenotype served as a visual marker 
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(Schneider et al., 2005; Marsch-Martinez et al., 2002). In developing a transposon activation 

tagging population of rice only the bar gene has proven to work efficiently (Zhu et al., 2007). 

Based on our experiments we conclude that the presence and potential expression of the SUI 

gene in green tissues, when controlled by the promoter of the Rubisco small subunit as in the 

construct we used, leads to a sublethal phenotype in Brassica, which prevents proper 

regeneration of viable shoots.  

Hairy root transformation in B. oleracea (Sparrow et al., 2004) and B. napus (Damgaard and 

Rasmussen., 1991) has led to direct transformed shoot formation. In our study just some green 

and white calli were observed on transformed roots, and no green shoots were formed. Again, 

this can be attributed to expression of the SU1 gene in green tissue.  

In conclusion, we showed that hairy root transformation of B. rapa is a fast and easy method 

to test the action of transformed genes, including the activation of the En/I transposon. 

Omitting the SU1 gene from the activation tagging construct may allow the production of 

transgenic B. rapa plants containing the En/I activation tagging construct, but it will not allow 

the easy selection against the presence of the En transposase gene after excision and 

reinsertion of the activation tag transposon. 
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Abstract 

Two reciprocal F2 populations of 190 individuals each were developed, made by crossing 

Brassica rapa genotype L58, which is a rapid-flowering, self-compatible Caixin line, with R-

o-18, a self-compatible Indian doubled haploid spring oil line. A linkage map was constructed 

for the L58 × R-o-18 population using 97 AFLP markers and 21 publicly available SSRs, 

covering a total map distance of 757 cM with an average resolution of 6.4 cM. A total of 15 

QTLs for eleven traits including flowering time, total plant height, plant height until first open 

flower, number of siliques, number of seeds per silique, seed size, seed weight, seed oil 

content, seed colour, adventitious root and, transgenic hairy root formation were identified. A 

strong QTL explaining 52 % of the seed colour variation was found on linkage group A9. 

Seed colour and seed size were controlled by the maternal plant genotype rather than the seed 

genotype. The seed coat colour QTL co-localized with QTLs for seed size, seed weight, seed 

oil content, number of siliques and number of seeds per silique but no correlation was 

detected between seed coat colour and seed oil content when comparing all genotypes. This is 

probably due to the presence of additional independent loci with opposite effects involved in 

controlling seed coat colour and seed oil content. Instead, a significant positive correlation 

was observed between seed coat colour and seed oil content only in the light coloured classes 

(scored classes of 1- 6 from 13 classes, 1=Yellow till 13=Black). Plants with more siliques 

have more seeds and higher seed oil content but smaller seeds. One QTL on adventitious root 

formation of F3 cotyledons and one on transgenic hairy root formation of F3 seedlings were 

detected on A10. These loci will be important for selection of lines that are more efficient in 

B. rapa regeneration and transformation. 
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Introduction 

Brassica rapa L. belongs to the family of Brassicaceae. This family contains well-known crop 

species such as Brassica oleracea, B. juncea, B. nigra, Raphanus sativus and Sinapis alba, 

but also Arabidopsis thaliana, which is the best studied plant model organism. The haploid B. 

rapa genome, or “A” genome, consists of ten chromosomes (n=10) and is one of the parents 

of the amphidiploid B. napus (U, 1935). Wild B. rapa has a wide distribution from the 

Western Mediterranean region to Central Asia. It is most likely the first Brassica crop that 

was domesticated more than 4000 years ago (Quijada et al., 2007). It is cultivated as a 

vegetable, fodder and oilseed crop. Domestication led to a wide variety of forms, such as the 

leafy vegetables of which B. rapa ssp. chinensis (Pak-choi) and B. rapa ssp. pekinensis 

(heading Chinese cabbage) are best known; root vegetables like B. rapa ssp. rapifera Metzg. 

(turnip) (Quijada et al., 2007); and oil types like ssp. oleifera (Chinese oil turnips) and ssp. 

trilocularis (Yellow Sarson). Zhao et al. (2005) used AFLP fingerprinting on 161 B. rapa 

accessions collected from different parts of the world and distinguished two main groups: one 

of Asian and one of mainly European origin, and a small group of Indian oil types. Each 

group contained mostly similar morphotypes, but different morphotypes from the same origin 

were often more related to each other than to similar morphotypes from different origins. 

Greater seed yield and yield stability besides seed quality are the primary objectives in seed 

crop breeding. Seed contributes directly to the economic success of commercial crops. Seed 

yield is the resultant of some determining components, i.e., the number of siliques per unit 

area, branch number, number of seeds per silique, and seed size (Quijada et al., 2007). The 

seed of B. rapa is mainly used for oil production, although the meal remaining after oil 

extraction is also of economic interest. 

Mainly F2 maps are available for B. rapa (McGrath and Quiros 1991; Chyi et al., 1992; 

Teutonico and Osborn 1994; Ajisaka et al., 1995; Matsumoto et al., 1998; Zhang et al., 2000; 

Lu et al., 2002). The first B. rapa genetic linkage map was made from an F2 population of 95 

individuals derived from the cross between a Chinese cabbage cultivar and a spring broccoli 

accession (Song et al., 1991). Doubled haploid (DH) populations, which are commonly used 

for Brassicas, are difficult to develop for B. rapa as some genotypes respond very poorly to 

DH induction (Kole et al., 1997). In general a higher level of segregation distortion is found 

in DH population due to preferential selection of genotypes responsive to microspore or 

anther culture (Suwabe et al., 2004). By now several DH (Lim et al., 1998; Suwabe et al., 

2004; Wang et al., 2004; Choi et al., 2007; Lou et al., 2007) and Recombinant Inbred Line 

(RIL) (Kole et al., 1997; Novakova et al., 1996; Yu et al., 2003) populations of B. rapa have 

been described which have been used for genetic mapping. Available RIL populations have 

been developed from crossings between the biennial cultivar “Per” and the annual cultivar 

“R500” (Kole et al., 1997), between a Chinese cabbage and a Mizuna line and between two 
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Chinese cabbage lines, respectively (Novakova et al., 1996; Yu et al., 2003). The DH 

population created by Lim et al. (1998), generated from a cross between two morphologically 

diverse Chinese cabbage inbred lines, “Chiifu” and “Kenshin”, is used as a reference for B. 

rapa genetic mapping and for genome sequencing of B. rapa “Chiifu” 

(http://www.brassica.info/resource/sequencing.php). 

More than ten decades ago Smith and Townsend (1907) demonstrated that Agrobacterium 

tumefaciens causes plant tumors. T-(transferred) DNA is transferred from the bacterium to the 

plant cell and expression of several genes in the T-DNA results in tumor formation. These 

genes affect the concentrations of the phytohormones auxin and cytokinin in transformed 

tissue (Akiyoshi et al., 1983). Tumors induced by wild-type Agrobacterium contain high 

concentrations of both cytokinin and auxin relative to untransformed callus. Today the natural 

gene transfer capacity of this soil bacterium is the most widely used method of delivering 

transgenes into many species like Brassica (Puddephat et al., 1996). A number of virulence 

(Vir) proteins are involved in T-DNA transmission from Agrobacterium Ti (tumor inducing) 

or Ri (root inducing) plasmids into the genomes of higher plants. Certain phenolic and sugar 

compounds of the plant defense system from wounded plant cells serve as inducers (or co-

inducers) of the bacterial vir genes (Gelvin, 2000).  

Brassica rapa is known as one of the most recalcitrant members of Brassica genus to 

regenerate shoots in vitro (Narashimhulu and Chopra 1988). Also successful transformation 

of B. rapa by A. tumefaciens has been hampered by the lack of efficient plant transformation 

and regeneration techniques. Therefore there is a need for developing efficient transformation 

methods to overcome genotype dependency. 

Hairy root transformation has become a useful, easy and fast technique for introducing 

interested genes into plant cells. A. rhizogenes-mediated root transformation is a fast method 

to generate adventitious, genetically transformed roots. A. rhizogenes is capable of 

transferring the T-DNA of Ri (root inducing) plasmid to plants (Christey 2001). Especially in 

species recalcitrant to transformation, such as Brassica, this technique is a valuable tool. As 

virulence genes in T-DNA are highly conserved and important factors involved in T-DNA 

transfer are common to both A. tumefaciens and A. rhizogenes, the analysis of plant genes 

regulating transformation using either A. rhizogenes or A. tumefaciens will lead to the 

understanding of process common to both (Cogan et al., 2002). Marker-assisted selection has 

been used for successful breeding of regeneration and transformation frequency. Koornneef et 

al (1993) used a genetic analysis to screen for high or low regeneration potential of 

Lycopersicon esculentum plants in breeding. In Arabidopsis, mutant lines that are resistant to 

A. tumefaciens have been identified (Mysore et al., 2000). Cogan et al (2002) also identified 

quantitative trait loci (QTL) for transgenic and adventitious root production using an A. 

rhizogenes-mediated co-transformation system in conjunction with a Brassica oleracea 
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double haploid (DH) mapping population. Auxin is involved in the process of adventitious 

root initiation. Endogenous auxin levels and the sensitivity of cells to exogenous auxin are 

important parameters in this process (Blakesley et al., 1991; Audus 1959).  

 

In this report we describe a new F2 mapping population, as starting material for the 

development of a new RIL population. The population was derived from a cross between two 

distinct morphotypes, Cai Xin and Yellow Sarson, both early flowering and self-compatible to 

ensure rapid propagation after repeated self-fertilization of each line. Thus a mapping 

population can be obtained that is easy to maintain, once propagated to F8 or beyond through 

single-seed descent and that can be analyzed for a large number of traits. The Cai Xin parent 

is L58, a broccoletto vegetable type originating from China (B. rapa ssp. parachinensis) (first 

described by Wu et al., 2007). The other parent, R-o-18, a doubled haploid Yellow Sarson oil 

type line (B. rapa ssp. trilocularis), which has been used as susceptible parent in F2 

populations for genetic analysis of disease resistance to TuMV and Xanthomonas campestris 

(Rusholme et al., 2007; Soengas et al., 2007). This line is also used for microsatellite 

development (Lowe et al., 2004), and TILLING purposes (McCallum et al., 2000) to identify 

mutations in selected genes using an organized mutated population 

(http://www.brassica.info/research/activities/tilling.php). The parents differ in many traits and 

the population is suited to study characteristics for both vegetable and oil seed types.  
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Results 

Genotyping and the construction of a linkage map 

A linkage map was constructed for the L58 × R-o-18 F2 population consisting of 190 

individuals using 97 polymorphic AFLP markers and 21 publicly available SSR markers, 

covering a total map distance of 757 cM with an average distance of 6.4 cM between markers 

(Figure 1). Selective amplification with the PM (PstI/MseI) primer combinations showed 

more amplification products than with the EM (EcoRI/MseI) primer combinations. In total, 

300 bands were produced using four PM and seven EM primer combinations. Of these, 158 

were polymorphic, which is 52% of the identified bands. 36 AFLP markers were excluded 

from the analysis because they could not be scored for many F2 plants or they showed an 

identical segregation as another marker. 25 AFLP markers could not be assigned to a linkage 

group at the high LOD score. 23 out of 36 SSRs tested showed polymorphisms for the parents 

and 21 of them were mapped, allowing the assignment of  linkage groups to their respective 

chromosomes as presented in the reference B. rapa linkage map (Choi et al., 2007). 

 

Based on the chi-square test for goodness-of-fit to the expected 1:2:1 Mendelian segregation 

ratio, six SSR markers showed a segregation distortion at P<0.005. The corresponding loci are 

found on chromosomes A1, A2 and A5 (Figure 1).  
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Figure 1 Genetic linkage map of the F2 B. rapa L58 × R-o-18 F2 population, showing the 

positions of 97 AFLP and 21 SSR markers distributed over 10 linkage groups. The linkage 

groups correspond to the 10 chromosomes of the B. rapa reference linkage map (Choi et al., 

2007). QTLs mapped to the linkage map for the determined traits are indicated with boxes 

and whiskers representing 1-LOD and 2-LOD confidence intervals (95%) respectively for 

significant QTLs. FT= flowering time; TPH= total plant height; PHF= plant height until first 

open flower; NSPS= number of seeds per silique; OC= seed oil content; SS=seed size; 

SC=seed colour; NS= number of siliques; SW=seed weight; AD: adventitious root and HR: 

hairy root formation. Skewed SSR markers in A1, A2 and A5 are indicated with * and L 

(skewed to L58) or R (skewed to R-o-18).  
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Phenotyping of the F2 population 

Both parents are rapid flowering. L58 and R-o-18 flower on average after respectively 29 

days and 39 days after sowing (Figure 2). The minimum and maximum flowering time for the 

F2 lines was 30 and 58 days respectively. This was similar in the F2 derived from the 

reciprocal cross, which was not used for linkage analysis (respectively 30 and 64 days). 

Different visible phenotypes, as well as seed oil content, were recorded for the L58 × R-o-18 

F2 population.  

A very prominent phenotype segregating in the population was seed colour. L58 has brown-

black seeds and line R-o-18 has yellow seeds. The size and colour of F1 seeds of the 

reciprocal crosses corresponded to that of the female parents, indicating that these seed 

phenotypes reflected the genotype of the mother plant (Figure 2).  

 

 
Figure 2 Morphological phenotypes of plants (A) and seeds (B and C) of parental lines and 

progeny of the L58 × R-o-18 population. A) L58 (left) and R-o-18 plants (right), 30 days after 

sowing. B) Seed colour in the parents (Black: L58; Yellow: R-o-18), F1, F2 and reciprocals of 

the L58 × R-o-18 cross and C) The variation in F3 seeds was divided into 13 different classes 

(1=Yellow till 13=Black). 
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Figure 3 shows the frequency distributions for the number of siliques per plant; number of 

seeds per silique; seed weight; flowering time; plant height; silique length; seed size; seed 

colour; and seed oil content. Transgression beyond the parental values was observed for most 

of the traits except for seed colour. For the number of siliques, seed oil content and flowering 

time, the transgression is mainly beyond the R-o-18 parent, which has the highest parental 

value. For the other traits, transgression is to both sides. 

Correlation analysis of the measured traits showed that flowering time was highly correlated 

with total leaf number, plant height until first open flower and leaf number below 20 cm 

(Table 1). There was no significant correlation between seed colour and seed oil content when 

data for all lines were examined, however, when only taking the lines classified as light 

coloured (seed coat colour clusters 1 to 6, Figure 2) there was a highly significant positive 

correlation (r= 0.62) between seed colour and seed oil content, so genotypes with reddish-

brown seed coat had higher oil content than the yellow-seeded genotypes. Silique number and 

seed number per silique were positively correlated to each other but negatively correlated with 

seed weight. Seed oil content was positively correlated with the number of siliques. Seed 

weight and seed size were highly positively correlated, and they were negatively correlated to 

seed oil content and silique number. In general, plants with more siliques had more, but 

smaller seeds and higher seed oil content.  
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Figure 3 Frequency distributions of non-normalized data of nine traits in the L58 × R-o-18 

F2 population. The vertical axis indicates the number of lines per trait value class and the 

horizontal axis the different trait value classes. (A) seed size (mm); (B) seed weight (of 10 

seeds in mg); (C) seed colour; (D) number of seeds per silique; (E) number of siliques per 

plant; (F) seed oil content (mg); (G) flowering time (days after sowing); (H) total plant height 

(mm); and (I) plant height until first open flower (mm). The parental values are the mean of 

five replicates, indicated with L as L58 and R as R-o-18. 
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Table 1 Pearson correlation analysis of the measured traits.  

NS: Number of siliques; NSPS: number of seeds per silique; SW: seed weight; OC: seed oil 

content; PC: seed protein content; SC: seed colour; SS: seed size; FT: flowering time; LNF: 

leaf number until first flower; TPH: total plant height; SL: silique length; TLN: total leaf 

number; PHF: plant height until first open flower; BN: branch number. ** means significant 

at P≤0.01; * significant at P≤0.05. 
 

Trait NS NSPS SW OC PC SC SS FT LNF TPH SL TLN PHF 

NS 1             

NSPS 0.34**             

SW -0.37** -0.31**            

OC 0.42** 0.38** -0.69**           

PC 0.07 0.04 -0.28** 0.20*          

SC -0.02 -0.02 0.09 0.03 0.09         

SS -0.54** -0.51** 0.95** -0.68** -0.22* 0.1        

FT 0.36** 0.13 -0.37** 0.39** 0.12 -0.25** -0.36**       

LNF 0.02 -0.07 -0.007 0.16* -0.005 -0.16* -0.02 0.50**      

TPH -0.01 -0.11 0.14 0.14 0.03 -0.29** 0.06 0.40** 0.53**     

SL 0.05 0.56** 0.12 0.07 0.01 0.05 0.01 -0.001 0.09 -0.12    

TLN 0.39** 0.18* -0.28** 0.37** 0.13 -0.17* -0.32** 0.88** 0.50** 0.31** 0.1   

PHF 0.34** 0.17* -0.35** 0.32** 0.33** 0.1 -0.33** 0.63** 0.05 0.05 0.03 0.72**  

BN 0.04 -0.28* 0.05 0.02 0.09 0.03 0.01 0.34** 0.33** 0.28** -0.18* 0.40** 0.16* 

 

This F2 population showed segregation for other morphological traits such as leaf glossiness 

(cuticular wax composition), leaf shape, leaf chlorophyll content, petiole length, fertility, 

shattering, carpel number (trilocularis), vivipary, parthenocarpy, fertility, and anthocyanin 

content (stem), but these traits have not been measured. 

 

QTL analysis 

In total 15 QTLs were mapped for eleven different traits (Table 2; Figure 1). The strongest 

QTL was found for seed colour, mapping to chromosome A9. It co-located with other seed-

related QTLs for seed size, seed weight and silique number. Correlation analysis (Table 1) 

already showed significant correlation between these traits, except however for seed colour. 

Figure 4 shows the box plots of phenotypic values for each of the three genotypic classes at 

each QTL region. In case of seed colour, genotypes homozygous for the L58 allele and 

heterozygotes are not significantly different from each other, and many lines classified in 

classes 7 to 13 (most black ones) are actually heterozygote for the QTL on chromosome A9 

(Figure 5). They are significantly different from genotypes homozygous for the R-o-18 allele 

though, indicating that the L58 allele is fully dominant over the R-o-18 allele. In classes 1 to 6 

(most yellow ones) many lines are homozygous for the R-o-18 allele for the QTL on 

chromosome 9. Genotypes homozygous for the L58 allele show a significant difference from 
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genotypes homozygous for the R-o-18 allele and heterozygotes in case of seed weight, seed 

oil content and number of seeds per silique (Figure 4). 

 

 Table 2 QTLs detected in the F2 population for nine different traits: Flowering time (FT); 

plant height at first flower (PHF); total plant height (TPH); number (No.) of seeds per silique 

(NSPS); seed oil content (OC); seed size (SS); seed colour (SC), number of siliques (NS) and 

seed weight (SW). QTLs are numbered according to decreasing LOD score (LOD). %Expl. 

var. is the percentage of total phenotypic variance explained by individual QTLs. For each of 

the QTLs the allelic effect is indicated (Effect). These are calculated as µA-µB (µ= mean), 

where A and B are F2 carrying L58 and R-o-18 genotypes at the QTL positions, respectively. 

µA and µB were estimated by MapQTL. Effects are given in days (flowering time), millimeter 

(plant height, size), milligram per seed (oil content) or without unit (silique or seed number, 

seed colour).  
 

Trait QTL  Linkage group LOD Position of peak LOD 

cM 

% Expl. var. Effect 

Flowering time FT1  

 FT2 

A2 

A3 

4.2 

 4.1 

6.8 

4.2 

10.1 

 9.5 

3.8 

 -5.2 

Plant height until first open 

flower 

PHF1 

PHF2 

A1 

A9 

4.7 

 3.4 

41.3 

45.2 

11.3 

 8.0 

-131.4 

 -110.7 

Total plant height TPH A3 4.9 4.2 13.6 -137.3 

No. seeds/silique NSPS1 

NSPS2 

NSPS3 

A10 

A9 

A6 

3.1 

 2.9 

 2.6 

15.0 

30.1 

17.2 

8.5 

 3.8 

 20.7 

-3.0 

 4.6 

 5.0 

Seed oil content OC A9 6.6 30.1 20.0 0.1 

Seed size SS A9 7.0 30.1 19.0 -0.4 

Seed colour SC A9 26.3 30.1 52.6 +5.4 

Seed weight SW A9 4.6 30.1 12.0 -0.6 

No. siliques NS A9 3.1 30.1 8.5 16 

Adventitious root formation AD A10 5.2 52.0 36.0 -0.3 

Transgenic hairy root 

formation 

HR A10 4.6 15.0 30.0 -0.1 
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Figure 4 Box plots of the phenotypic values of the three genotypic classes in F2 for six seed 

traits for which one co-localizing QTL was found around SSR Ol12F02 on chromosome A9. 

The X-axis shows the genotypic class (LL= homozygote for L58 allele, LR= heterozygote and 

RR= homozygote for R-o-18 allele) and the Y-axis the standard score Z (= X-µ/σ, X= trait 

value, µ= trait mean and σ=trait standard deviation), SC: seed colour. SS: seed size. SW: 

seed weight. NS: number of silique. OC: seed oil content. NSPS: number of seeds per silique. 

Box plots show the median, interquartile range, outliers (!) and extreme cases (• ). a, b and c 

are significance classes at p<0.05 in a t-test comparing mean values of genotypic classes. 
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Figure 5 Frequency of genotypic classes at the SC QTL region in each of the different seed 

colour classes. The X-axis shows the seed colour class and the Y-axis shows the frequency. 

LL= homozygote for L58 allele, LR= heterozygote and RR= homozygote for R-o-18 allele.
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Discussion 

A segregating F2 population of Brassica rapa consisting of 190 individuals was developed 

from two distinct morphotypes that both are early flowering and self compatible. This 

population was used for genetic linkage mapping. Quantitative F2 phenotyping was 

performed for 16 traits. For several traits there is strong transgression of phenotypes beyond 

the parental values, often far beyond the parent with the highest value, suggesting the 

presence of several loci controlling a trait, with contrasting allele effects in this population. It 

makes this population a potentially rich tool for the analysis of genetic variation for B. rapa 

breeding purposes. In total 15 QTLs for 11 of the traits were detected, most of which have not 

been described before for B. rapa. Two new QTLs for “plant height below the first open 

flower” (PHF1, PHF2) were detected, which mapped to A1 and A9 respectively. PHF is a 

poor predictor of total plant height (TPH). We did not find significant correlation between 

both traits (table 1) and also did not find a common QTL (Figure 1). PHF QTLs also do not 

correspond to any of the plant height QTLs mapped by Lou et al. (2007) in F2/F3 populations 

of B. rapa, but the QTL for total plant height (TPH), which we mapped to the top of A3, may 

correspond to one QTL (out of three QTLs they identified), which they mapped to the same 

region.  

Correlation analysis showed a significant positive correlation between flowering time and 

plant height. Although both parents are rapid-cycling, two QTLs were identified for flowering 

time (FT1, FT2). FT2 co-localizes with the TPH-QTL on the top of chromosome A3, the 

other maps to chromosome A2. There are four known flowering time genes in B. rapa; 

BrFLC1, BrFLC2, BrFLC3 and BrFLC5, all corresponding to an orthologous copy of the 

FLC flowering time gene previously discovered in A. thaliana (Koornneef et al., 1994; 

Michaels and Amasino, 1999) and known to play a major role in determining natural variation 

for flowering time in A. thaliana (Shindo et al., 2005). The BrFLC genes are assigned to 

linkage groups A10, A2, and A3 respectively (Schranz et al., 2002; Kim et al., 2006). 

Unfortunately the resolution of the F2 population using anchored SSR markers is not 

sufficiently detailed to confirm co-localization of FT1 with BrFLC2 or FT2 with BrFLC3 or 

BrFLC5. 

In this F2 population, seed weight, seed size, number of siliques, number of seeds per silique 

and seed oil  content are highly correlated, and therefore it was not unexpected to find that 

these traits all share one co-localizing QTL on A9. This is the only QTL we detected for the 

number of siliques, however there are two additional QTLs for the number of seeds per 

silique, on A6 and A10. Both traits are positively correlated with seed oil content, but they are 

negatively correlated with seed size and seed weight. A negative correlation between the 

number of seeds per silique and seed size was previously also established for A. thaliana in 

which several QTLs were found to affect both traits (Alonso-Blanco et al., 1999). When 
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selecting for lines homozygous for the L58 allele at this locus, one will select for plants with 

many siliques and many, but small, seeds per silique with high oil content. Breeding for lines 

with more siliques is one approach to increase seed and oil yield and these loci may be of 

considerable importance for the rapeseed breeding industry.  

Although B. rapa is a minor oilseed crop, it is one of the two ancestral species of B. napus, 

which is the second largest seed oil crop in the world. Seed coat colour is a very important 

trait in oilseed type Brassica crops. Yellow seeds are preferred, since yellow-seededness 

corresponds with significantly higher seed oil contents (Rakow et al., 1999) and the meal of 

yellow-seeded varieties that remains after extracting oil has higher protein and lower crude 

fiber contents than that of black-seeded varieties and is of better quality for use as poultry and 

livestock feed (Tang et al., 1997). We found one major QTL on A9 explaining 52 % of the 

seed coat colour variation (Figure 1 and Table 2). Probably the same locus for seed coat 

colour was previously mapped to A9 by Lou et al. (2007) in two B. rapa DH populations.  

The black seed coat allele is over-dominant over the allele for yellow seed coat. Seed coat 

colour is a maternal trait (Figure 2), in agreement with the fact that seed pigments are 

deposited in the testa layers, which are maternal tissues (Vaughan et al., 1976). Ahmed and 

Zuberi (1971) already reported that a single gene is responsible for the dominant reddish 

brown seed colour in Indian B. rapa Toria's lines. Also Chen and Heneen (1992) showed that 

a single maternal gene controls seed colour with the black allele dominating over the yellow 

allele in B. rapa. However Schwetka (1982) described six genes to be involved in seed colour, 

with one having a pleiotropic effect on hilum colour in turnip rape (B. rapa). In the model 

proposed by Van Deynze and Pauls (1993) for B. napus, black seed colour is controlled by 

dominant alleles at three loci, and only homozygous recessive alleles at all of these loci confer 

yellow seeds.  

Seed colour mutants are also described for A. thaliana as transparent testa (tt) mutants that 

have yellow or pale brown seeds. All known tt mutations are recessive and show maternal 

inheritance of the seed phenotype. The mutants tt1, tt2, tt8, tt9, tt10, tt12, and tt15 appear to 

be altered in seed colour only (Debeaujon et al., 2001), whereas the other genes control 

anthocyanin accumulation in all parts of the plant and often encode flavonoid biosynthesis 

genes (Lepeniec et al., 2006). Orthologues of the Arabidopsis TRANSPARENT TESTA 12 

genes have already been cloned from B. napus, B. oleracea and B. rapa (Chai et al., 2008). 

AtTT12 encodes a membrane-associated MATE transporter that functions as a vacuolar 

flavonoid/H+-antiporter to mediate proanthocyanidin (PA) accumulation in cells of the seed 

coat (Marinova et al., 2007). PA polymers are the major constituents of seed coat pigments of 

Arabidopsis and Brassica. Yellow-seeded oilseed rape varieties generally have thinner seed 

coats that result in reduced acid detergent fibers, mainly comprised of cellulose and lignin. 

Yellow-seededness generally also corresponds to increased seed oil and protein content 
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(Badani et al., 2006; Xiao and Liu 1982). A direct relationship between seed coat thickness 

and seed colour in B. rapa, independent of seed size, was already reported by Stringam et al. 

(1974). Like the testa-controlled seed colour, also seed size is maternally controlled. In 

Arabidopsis most seed pigmentation mutants show reduced seed weight and seed size 

(Debeaujon et al., 2000), which is different when comparing L58 and R-o-18, of which the 

yellow-seeded genotype R-o-18 has the largest seeds. 

One QTL explaining 20% of the phenotypic variance for seed oil content was identified on 

A9, in the same region where the seed coat colour QTL was mapped (Figure 1 and Table 2). 

Oil content at the QTL level is still poorly understood in B. rapa. A RAPD (Random 

Amplified Polymorphic DNA) marker linked to an oleic acid QTL was mapped on A6 by 

Tanhuanpää et al. (2004) in B. rapa ssp. oleifera.  But, in B. napus 6 to 7 QTLs involved in 

seed oil content have been detected (Gül et al., 2003; Qiu et al., 2006; Zhao et al., 2006). 

Based on previous work in B. napus (Badani et al., 2006; Rakow et al., 1999), we expected a 

negative correlation between seed colour and oil content, with dark seeded genotypes having 

lower oil contents. Instead we found a strong positive correlation, but only when examining 

the six “lighter” seed colour genotypic clusters and not when the whole F2 population was 

considered. The reason for this is probably that seed colour is a fully dominant trait and thus 

the dark-seeded genotypes (classes 7-13) are mainly a mix of genotypes homozygous for the 

L58 allele at A9, or heterozygous, with no bias for darker seeds to be homozygous (Figure 5). 

This will be different for oil content or the other traits associated with the A9 QTL, which are 

co-dominant, thus disturbing the correlations. Only when seeds are lighter and largely 

homozygous for the R-o-18 allele at the A9 QTL, the correlation can be detected. Another 

reason why the correlation was not detected could be the presence of additional, though 

undetected, loci with opposite effects that independently control seed oil content. Since the 

A9 QTL still explains only 20 % of the variance for oil content, compared to 52% for seed 

colour, there are likely additional loci controlling oil content that went undetected in this F2 

population.  

The opposite correlation we found between seed colour and oil content, compared to Badani 

et al. (2006) and Rakow et al. (1999), also suggests that it may not always be advantageous to 

select for yellow-seededness when breeding for high seed oil content in Brassicas. Seed 

colour and oil content may however not be controlled by one gene, but by two closely linked 

genes for which favourable alleles happen to be in coupling phase in most genotypes, but by a 

rare recombination in the ancestry of R-o-18 happened to end up in repulsion phase when 

they became fixed in the doubled haploid R-o-18. Ahmed and Zuberi (1971) previously also 

described B. rapa varieties with reddish brown seeds that produced more oil than yellow seed 

coat varieties, suggesting that similar genotypes occur more frequently. In the F2 population 

described here, oil yield per plant is mostly depending on seed size, number of siliques and 
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number of seeds per silique. Since silique number is easy to score, this could be a good 

morphological marker for oil content improvement of B. rapa instead of yellow seed coat 

colour. In a segregating DH population of B. napus oil content showed the strongest 

correlation to seeds per silique (Zhao et al., 2006), which is correlated with silique number in 

our population. Still, the possibility remains that also seed size, the number of seeds per 

silique and the number of siliques per plant are not pleiotropic effects of the same genetic 

locus but caused by two or more closely linked loci.  

Finding markers related to adventitious and transformed root formation is useful to improve 

regeneration and transformation ability of B. rapa. The AD and HR QTLs on A10 are 

controlling adventitious and transgenic root formation respectively. The lines that are 

sensitive to A. rhizogenes are also good candidates for high sensitivity for stable 

transformation by A. tumefaciens. In addition, hairy root cultures are an efficient means of 

producing secondary metabolites that are normally biosynthesized in roots (Hu and Du., 

2006). Also in B. oleracea the QTLs controlling these two traits mapped to the same position 

within the genome (Oldacres et al., 2005), when they used the same explants for the study. 

In conclusion, the F2 population we developed shows substantial variation to map traits of 

agronomic interest and an immortal recombinant inbred line population of this cross will be 

an interesting tool for genetic analysis of such traits and identification of genetic loci that can 

be used in future breeding programs. Detailed analysis involving the generation of near 

isogenic lines and further fine-mapping should allow more insight in the relationships 

between seed properties. 
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Materials and methods 

Plant growth and generation of the F2 population 

Two reciprocal F2 populations were made by crossing B. rapa genotypes L58 and R-o-18. 

For each population 200 F2 seeds were used as starting material. The seeds of L58 (B. rapa 

ssp. parachinensis) were provided by Dr. Xiaowu Wang from the Institute for Vegetables and 

Flowers of the Chinese Academy of Agricultural Sciences, Beijing, China and seeds of R-o-

18 (B. rapa var. trilocularis) were obtained from Dr. Lars Østergaard, John Innes Centre, 

Norwich, UK.  

Individual plants were grown in October 2006 in separate pots in a temperature-controlled 

greenhouse with artificial day length extension to 16 hours. After about four weeks the first 

lines started to flower. The inflorescences were covered with plastic bags to prevent cross-

pollination. In case of poor seed set, hand pollinations were performed. 

 

Trait measurement 

The F2 population derived from the cross L58 (♀) × R-o-18 (♂) was used to determine the 

phenotypes for 16 traits: flowering time, plant height until first open flower, leaf number until 

first open flower, branch number, total leaf number on main axis, total plant height at ripening 

stage, silique number per plant, silique length, number of seeds per silique, seed weight, seed 

size, seed colour, seed oil content, total seed protein content, adventitious root formations and 

transgenic hairy root formation.  

Seed size was measured using the ImageJ 1.390 software (http://rsb.info.nih.gov). Seed colour 

of fully mature F3 seeds was scored by eye and ranked into 13 different classes ranging from 

yellow (1) to black (13) (Figure 2). Silique length was determined as the average length of 

three ripe siliques. The mean number of seeds per silique was determined by averaging three 

ripe siliques. Seed oil was extracted by grinding 10 weighed seeds of each line in 650 µl 

hexane, shaking the mix for two min. followed by one min. of centrifugation at 14.000 rpm in 

an Eppendorf microfuge. 600 µl of supernatant was transferred to a new tube and left in the 

fume hood overnight to evaporate the hexane. The oil content was determined in mg oil per 

mg seed. The seed remains left after oil extraction were used for total protein measurement, 

using the Bradford essay as described by Goossens et al. (1999).  

 

Hairy root transformation 

F3 lines of the cross L58 (♀) × R-o-18 (♂) were used for adventitious and hairy root 

formation. Adventitious root formation was done on 5-day-old cotyledons and transformation 

was done on 5-day-old seedlings. For each experiment 10 seeds were used. Seeds were 

surface sterilized with 70% ethanol (v/v) for 30 seconds, followed by agitation for 5 min in 

sodium hypochlorite (2.0% active chlorite). After three rinses in sterile distilled water, seeds 
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were placed in 15×90 mm petri dishes, each containing 20–25 ml half strength salts and 

vitamins MS medium, without sucrose, solidified with 0.8% (w/v) agar. Petri dishes were 

placed vertically in a growth chamber maintained at 25˚C with a 16h light/8h dark 

photoperiod at a light intensity of 60 mEm-2s-1.  

A. rhizogenes MSU440 were used for hairy root transformation. The pRedRoot binary vector 

(Limpens et al., 2004) contains the DsRed1 gene, coding for the red fluorescent protein as a 

non-destructive selectable marker. It was electroporated into A. rhizogenes MSU440. 

Transgenic cells were cultivated on LB-agar plates supplemented with 50 mg/l kanamycin for 

2 d at 27 °C. Roots of 5-day-old seedlings were cut with a scalpel and inoculated with a pellet 

of A. rhizogenes carrying pRedRoot placed at the cutting surface as explained by Limpens et 

al. (2004). Infected seedlings were transferred to new 9 cm Petri dishes containing half 

strength salts and vitamins MS medium, without sucrose, solidified with 0.8% (w/v) agar and 

a half-round filter paper (5 seedlings per plate). The Petri dishes were not completely closed 

by parafilm to enable aeration. Petri dishes were placed vertically in a growth chamber 

maintained at 25˚C with a 16h light/8h dark photoperiod at a light intensity of 60 mEm-2s-1. 

After 2 days co-cultivation seedlings were transferred to medium containing 200 mg/l 

tricarcillin (Duchefa, NL) to kill the Agrobacterium. The number of adventitious and 

transgenic roots was scored after 10 days on medium. Transformed roots were scored using a 

stereo fluorescence microscope (Figure 6). 

 

 

Figure 6 Adventitious and transformed roots. A: adventitious root formation on cotyledons of 

B. rapa lines on hormone-free medium. B: B. rapa seedlings with A. rhizogenes carrying 

pRedRoot show transformed hairy roots expressing DsRed1 using a stereo fluorescence 

microscope. 

 

DNA extraction and molecular analysis 

Total DNA was extracted from frozen leaves or flower buds as described by Van der Beek et 

al. (1992) and the AFLP and SSR procedure was performed as described by Vos et al. (1995) 

and Choi et al. (2007). Pre-amplification and selective amplification were carried out as 

described by Zhao et al. (2005). For selective amplification seven combinations of EM 

(EcoRI/MseI) (E34M15, E34M16, E37M32, E37M49, E37M56, E40M38, and E40M51) and 

A B 



Chapter 3                    Identification of seed...  

 62 

four combinations of PM (PstI/MseI) (P23M48, P23M50, P21M47and P23M47) primers were 

used. The Pst I and EcoRI primers were labelled with IRD-700 at their 5’ ends (Zhao et al., 

2005). The reaction product of selective amplification was mixed with an equal volume of 

formamide-loading buffer, denatured for 5 minutes at 94! C, cooled on ice and run on a 5.5% 

denaturing polyacrylamide gel using a LI-COR (Lincoln, Neb) 4200 DNA sequencer 

(Myburg et al., 2001). The AFLP gel images were analyzed by the AFLP-Quantar Pro 

software. All distinguishable bands ranging from 50 bp to 500 bp were used in the data 

analysis. The AFLP bands were scored as 1 or 0 for presence or absence of the band 

respectively. All weak and ambiguous bands were scored as “unknown”. In addition, 36 

public SSR primer pairs (Choi et al., 2007) were used to screen for polymorphisms using the 

same LI-COR system to run a 5.5% denaturing polyacrylamide gel .  

 

Construction of a genetic linkage map and QTL analysis  

Linkage analysis and map construction were carried out using the program JoinMap4 

(http://www.kyazma.nl). All markers were grouped using increasing LOD scores (ranging 

from 5 to 15) to identify ten linkage groups. The regression mapping algorithm was used for 

linkage analysis. Recombination frequencies were converted to centiMorgan distances using 

the Kosambi mapping function. MAPQTL 5.0 (http://www.kyazma.nl) was used for QTL 

analysis.  First, an interval mapping test was performed to find putative QTLs. A permutation 

test with 1000 repetitions was applied to determine the LOD thresholds (at p=0.05). A LOD-

score of 2.6 was used as a significance threshold for the presence of a candidate QTL. 

Multiple-QTL model (MQM) mapping also was performed to locate QTLs after the selection 

of cofactors. Linkage maps along with QTLs were visualized using Mapchart (Voorrips 

2002). 



Chapter 3                    Identification of seed...  

 63 

Acknowledgements 

This work was financially supported by a personal grant to Hedayat Bagheri from the 

Ministry of Science, Research and Technology of Iran and the IOP Genomics project 

IGE050010 on Brassica Vegetable Nutrigenomics. We thank Xiaowu Wang and Lars 

Østergaard for providing seeds, Xiaowu Wang and Wu Jian for their comments on the 

manuscript, Joost Keurentjes for his useful advice on data analysis and Corrie Hanhart for her 

technical assistance. 

 

 

References 
Ahmed S.U., Zuberi M.I. (1971). Inheritance of seed coat colour in Brassica campestris L., variety Toria. Crop 

Sci. 11:309-310.  

Ajisaka H., Kuginuki Y., Hida K., Enomoto S., Hirai  M. (1995). A Linkage map of DNA markers in Brassica 

campestris. Breed Sci. 45:195-197.  

Akiyoshi D.E., Morris R.O., Hinz R., Mischke B.S., Kosuge T., Garfinkel D.J., Gordon M.P., Nester E.W. 

(1983). Cytokinin/auxin balance in crown gall tumors is regulated by specific loci in the T-DNA. PNAS 

. 80:407-411. 

Alonso-Blanco C., Blankenstijn-De Vries H., Hanhart C.J., Koornneef M. (1999).  Natural allelic variation 

at seed size loci in relation to other life history traits of Arabidopsis thaliana. Proc Natl Acad Sci USA. 

96:4710-4717. 

Audus L.J. (1959). Plant growth substances. Leonard Hill. London.pp 1-553. 

Badani A.G., Snowdon R.J., Wittkop B., Lipsa F.D., Baetzel R., Horn R., De Haro A., Font R., Lühs W., 

Friedt W. (2006). Colocalization of a partially dominant gene for yellow seed colour with a major QTL 

influencing acid detergent fibre (ADF) content in different crosses of oilseed rape (Brassica napus). 

Genome. 49:1499-1509.  

Blakesley D., Weston G.D., Hall J.F. (1991). The role of endogenous auxin in root initiation Part I: Evidence 

from studies on auxin application, and analysis of endogenous levels. Plant Growth Reg. 10:341-353. 

Chai Y.R., Lei B., Huang H.L., Li J.N., Yin J.M., Tang Z.L., Wang R., Chen L. (2009). 

TRANSPARENTTESTA12  genes from Brassica napus and parental species: cloning, evolution, and 

differential involvement in yellow seed trait. Mol Genet Genomics. 281:109-123. 

Chen B.Y., Heneen W.K. (1992). Inheritance of seed colour in Brassica campestris L. and breeding for yellow-

seeded B. napus L. Euphytica. 59:157-163.   

Choi S.R., Teakle G.R., Plaha P., Kim J.H., Allender C.J., Beynon E., Piao Z.Y., Soengas P., Han T.H., 

King G.J., Barker G.C., Hand P., Lydiate D.J., Batley J., Edwards D., Koo D.H., Bang J.W., Park 

B.S., Lim Y.P. (2007). The reference genetic linkage map for the multinational Brassica rapa genome 

sequencing project. Theor Appl Genet. 115:777-792. 

Christey M.C. (2001). Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cell 

Dev-Pl. 37:687-700. 

Chyi Y-S., Hoenecke M.E., Sernyk J.L. (1992). A genetic linkage map of restriction fragment length 

polymorphism loci for Brassica rapa (syn. campestris). Genome. 35:746-757.  



Chapter 3                    Identification of seed...  

 64 

Cogan I., Lynn R., King J., Kearsey J., Newbury J., Puddephat J. (2002). Identification of genetic factors 

controlling the efficiency of Agrobacterium rhizogenes-mediated transformation in Brassica oleracea 

by QTL analysis. Theor Appl Genet. 105:568-576. 

Debeaujon I., Léon-Kloosterziel K.M., Koornneef M. (2000). Influence of the testa on seed dormancy, 

germination, and longevity in Arabidopsis. Plant Physiol. 122:403-413. 

Debeaujon I., Peeters A.J.M., Karen M., Léon K., Koornneef M. (2001). The TRANSPARENT TESTA12 

gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid 

sequestration in vacuoles of the seed coat endothelium. Plant Cell. 13:853-872. 

Gelvin S.B. (2000). Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu Rev Plant 

Physiol Plant Mol Biol. 51:223-256. 

Gül M., Becker H.C., Ecke W. (2003). QTL mapping and analysis of QTL × nitrogen interactions for protein 

and oil contents in Brassica napus L. Proceedings of the 11th international rapeseed congress. pp:91-93. 

Hu Z-B., Du M. (2006). Hairy root and its application in plant genetic engineering. J Int Plant Biol. 48:121-127. 

Kim J.S., Chung T.Y., King G.J., Jin M., Yang T-J., Jin Y-M., Kim H-I., Park B-S. (2006). A sequence-

tagged linkage map of Brassica rapa. Genetics. 174:29-39. 

Kole C., Kole P., Vogelzang R., Osborn T.C. (1997). Genetic linkage map of a Brassica rapa recombinant 

inbred population. J Hered. 88:553-557. 

Koornneef M., Bade J., Hanhart C., Horsman K., Schel J., Soppe W., Verkerk R., Zabel P. (1993). 

Characterization and mapping of a gene controlling shoot regeneration in tomato. Plant J. 3:131-141. 

Koornneef M., Blankestijn-de V.H., Hanhart C., Soppe W., Peeters T. (1994). The phenotype of some late-

flowering mutants is enhanced by a locus on chromosome 5 that is not effective in the Landsberg erecta 

wild-type. Plant J. 6:911-919. 

Lepiniec L., Debeaujon I., Routaboul J.M., Baudry A., Pourcel L., Nesi N., Caboche M. (2006). Genetics 

and biochemistry of seed flavonoids. Annual review of plant biology. 57:405-430. 

Lim Y.P., Kim J.H., Bang J.W., Nam H.G., Cho K.W., Jang C.S. (1998). Genetic mapping of Chinese 

cabbage (Brassica rapa L. var. pekinensis).Plant & Animal Genome Conf. pp: 221. 

Limpens E., Ramos J., Franken C., Raz V., Compaan B., Franssen H., Bisseling T., Geurts R. (2004). RNA 

interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula. J 

Exp Bot. 55:983-992. 

Lou P., Zhao J., Kim J., Shen S.,  Pino Del Carpio D., Song X., Vreugdenhil D., Wang X., Koornneef M., 

Bonnema G. (2007). Quantitative trait loci for flowering time and morphological traits in multiple 

populations of Brassica rapa. J Exp Bot. 58:4005-4016. 

Lowe A.J., Moule C., Trick M., Edwards K.J. (2004). Efficient large-scale development of microsatellites for 

marker and mapping application in Brassica crop species. Theor Appl Genet. 108:1103-1112. 

Lu G., Cao J.S., Chen H. (2002). Genetic linkage map of Brassica campestris L. using AFLP and RAPD 

markers. J Zhejiang Univ (Sci). 3:600-605. 

Marinova K., Pourcel L., Weder B., Schwarz M., Barron D., Routaboul J.M., Debeaujon I., Klein 

M.(2007). The Arabidopsis MATE transporter TT12 acts as a vacuolar favonoid/H+-antiporter active in 

proanthocyanidin-accumulating cells of the seed coat. Plant Cell. 19:2023-2038. 

Matsumoto E., Yasui C., Ohi M., Tsukada M. (1998). Linkage analysis of RFLP markers for clubroot 

resistance and pigmentation in Chinese cabbage (Brassica rapa ssp. pekinensis). Euphytica. 104:79-86. 

McCallum C.M., Comai L., Greene E.A., Henikoff S. (2000). Targeted screening for induced mutations. Nat 

Biotechnol. 18:455-7. 



Chapter 3                    Identification of seed...  

 65 

McGrath J.M., Quiros C.F. (1991). Inheritance of isozyme and RFLP markers in Brassica campestris and 

comparison with B. oleracea. Theor Appl Genet. 82:668-673. 

Michaels S.D., Amasino R.M. (1999). FLOWERING LOCUS C encodes a novel MADS domain protein that 

acts as a repressor of flowering. Plant Cell .11:949-956.  

Myburg A.A., Remington D.L., O'Malley D.M., Sederoff R.R., Whetten R.W. (2001). Protocol for high-

throughput AFLP analysis using LI-COR IR2 automated sequencers. Biotechniques. 30:348-352, 354, 

356-357. 

Mysore K.S., Nam J., Gelvin S.B. (2000). An Arabidopsis histone H2A mutant is deficient in Agrobacterium 

T-DNA integration. Proc Nat Acad Sci.97:948-953. 

Narashimhulu S.B., Chopra V.L. (1988). Species specific shoot regeneration response of cotyledons of 

Brassicas. Plant Cell Rep. 7:104-106. 

Novakova B., Salava J., Lydiate D. (1996). Construction of a genetic linkage map for Brassica campestris L. 

(syn. Brassica rapa L.). Genetika Slechteni. 32:249-256. 

Oldacres A.M., Newbury H.J., Puddephat I.J. (2005). QTLs controlling the production of transgenic and 

adventitious roots in Brassica oleracea following treatment with Agrobacterium rhizogenes. Theor 

Appl Genet. 111:479-88. 

Puddephat I.J., Riggs T.J., Fenning T.M. (1996). Transformation of Brassica oleracea L: a critical review. 

Mol Breed. 2:185-210. 

Qiu D., Morgan C., Shi J., Long Y., Liu J., Li R., Zhuang X., Wang Y., Tan X., Dietrich E., Weihmann T., 

Everett C., Vanstraelen S., Beckett P., Fraser F., Trick M., Barnes S., Wilmer J., Schmidt R., Li 

J., Li D., Meng J., Bancroft I. (2006). A comparative linkage map of oilseed rape and its use for QTL 

analysis of seed oil and erucic acid content. Theor Appl Genet .114:67-80. 

Quijada P., Wang X.W., Cao J.S., Hirai M., Kole C. (2007). Genome Mapping and Molecular Breeding in 

Plants, Springer Berlin Heidelberg. 2:211-263. 

Rakow G., Relf-Eckstein J., Raney P., Gugel R. (1999). Development of high yielding, disease resistant, 

yellow-seeded Brassica napus. 10th International Rapeseed Congress. pp: 67. 

Rusholme R.L., Higgins E.E., Walsh J.A., Lydiate D.J. (2007). Genetic control of broad-spectrum resistance 

to turnip mosaic virus in Brassica rapa (Chinese cabbage). J Gen Virol. 88:3177-3186. 

Schranz M.E., Quijada P., Sung S.B., Lukens L., Amasino R., Osborn T.C. (2002). Characterization and 

effects of the replicated flowering time gene FLC in Brassica rapa. Genetics. 162:1457-1468. 

Schwetka A. (1982). Inheritance of seed colour in turnip rape (Brassica campestris L.). Theor Appl Genet. 

62:161-169. 

Shindo C., Aranzana M.J., Lister C., Baxter C., Nicholls C., Nordborg M., Dean C. (2005). Role of 

FRIGIDA and FLC in determining variation in flowering time of Arabidopsis thaliana. Plant Physiol. 

138:1163-1173. 

Smith E.F., Townsend C.O. (1907). A plant-tumor of bacterial origin. Science. 25:671-673. 

Soengas P., Hand P., Vicente J.G., Pole J.M., Pink D.A.C. (2007). Identification of quantitative trait loci for 

resistance to Xanthomonas campestris pv. campestris in Brassica rapa. Theor Appl Genet. 114:637-45. 

Song K.M., Suzuki J.Y., Slocum M.K., Williams P.H., Osborn T.C. (1991). A linkage map of Brassica rapa 

(syn. campestris) based on restriction fragment length polymorphism loci. Theor Appl Genet. 82:296-

304. 

Stringam G.R., McGregor D.I., Pawlowski S.H. (1974). Chemical and morphological characteristics 

associated with seed coat colour in rapeseed. Proc.4th Int. Rapeseed Congr. pp: 99-108. 

Suwabe K., Iketani H., Nunome T., Ohyama A., Hirai M., Fukuoka H. (2004). Characteristics of 



Chapter 3                    Identification of seed...  

 66 

microsatellites in Brassica rapa genome and their potential utilisation for comparative genomics in 

cruciferae. Breed Res. 54:85-90. 

Suwabe K., Tsukazaki H., Iketani H., Hatakeyama K., Fujimura M., Konodo M., Nunome T.,Fukuoka H., 

Hirai M., Matsumoto S. (2004). Joint meeting of the 14th Crucifer Genetics Workshop and the 4th 

ISHS Symposium on Brassicas. pp:143. 

Tang Z.L., Li J.N., Zhang X.K., Chen L., Wang R. (1997). Genetic variation of yellow-seeded rapeseed lines 

(Brassica napus L.) from different genetic sources. Plant Breeding. 116:471- 474. 

Tanhuanpää P.K., Vilkki J.P., Vilkki H.J. (2004). Mapping of a QTL for oleic acid concentration in spring 

turnip rape (Brassica rapa ssp.oleifera). Theor Appl Genet. 92:952-956. 

Teutonico R.A., Osborn T.C. (1994). Mapping of RFLP and quantitative trait in Brassica rapa and comparison 

to the linkage maps of B. napus, B. oleracea and Arabidopsis thaliana. Theor Appl Genet. 89:885-894. 

U N. (1935). Genome analysis in Brassica with special reference to the experimental formation of B. napus and 

peculiar mode of fertilization. Jpn J Bot. 7:389-452. 

Van der Beek J.G., Verkerk R., Zabel P., Lindhout P. (1992). Mapping strategy for resistance genes in 

tomato based on RFLPs between cultivars: cf9 (resistance to Cladosporium fulvum) on chromosome 1. 

Theor Appl Genet. 84:106-112. 

Van Deynze A.E., Beversdorf W.D., Pauls K.P. (1993). Temperature effects on seed color in black-and 

yellow-seeded rapeseed. Can J Plant Sci. 73:383-387. 

Van Deynze A.E., Pauls K.P. (1994). The inheritance of seed colour and vernalization requirement in Brassica 

napus using doubled haploid populations. Euphytica. 74:77-83. 

Vaughan J.G., Phelan J.R., Denford K.E. (1976). Inheritance of seed coat colour in Brassica juncea. Can J 

Plant Sci. 59:635-637. 

Voorrips R.E. (2002). MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered. 

93:77-8. 

Vos P., Hogers R., Bleeker M., Reijans M., Van der Lee T., Hornes M., Frijters A. , Pot J., Peleman J., 

Kuiper M. , Zabeau M. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 

23:4407-4414. 

Wang M., Zhang F.L., Meng X.D., Liu X.C., Zhao X.Y., Fan Z.C. (2004). A linkage map construction for 

Chinese cabbage based on AFLP markers using DH population. Acta Agric Boreali-Sin. 19:28-33. 

Wu J., Schat H., Sun R., Koornneef M., Wang X., Aarts M.G.M. (2007). Characterization of natural variation 

for zinc, iron and manganese accumulation and zinc exposure response in Brassica rapa L. Plant Soil. 

291:167-180. 

Xiao D.R., Liu H.L. (1982). Correlation analysis of seed colour and seed oil in Brassica napus L. Acta Agro 

Sinica. 8:24-27. 

Yu S.C., Wang Y.J., Zheng X.Y. (2003). Mapping and analysis QTL controlling heat tolerance in Brassica 

campestris L. ssp. pekinensis. Acta Hort Sin. 30:417-420. 

Zhang L.G., Wang M., Chen H. (2000). Construction of RAPDs molecular genetic map of Chinese cabbage. 

Acta Bot Sin. 42:485-489. 

Zhao J., Becker H.C., Zhang D., Zhang Y., Ecke W. (2006). Conditional QTL mapping of oil content in 

rapeseed with respect to protein content and traits related to plant development and grain yield. Theor 

Appl Genet. 113:33-38. 

Zhao J., Wang X., Deng B., Lou P., Wu J., Sun R., Xu Z., Vromans J., Koornneef M., Bonnema G. (2005). 

Genetic relationships within Brassica rapa as inferred from AFLP fingerprints. Theor Appl Genet. 

110:1301-1314. 



 

  

 
 
 
 

Chapter 4 
 

 
Genetic mapping and QTL analysis of plant morphology and seed related 

traits in a new Brassica rapa recombinant inbred line population 
 

Hedayat Bagheri1, Inge van Oorschot1, Corrie Hanhart1, Tanja Jansen-van den Bosch2, Rolf 

Mank2, Joost Keurentjes1, Maarten Koornneef1,3 and Mark G.M. Aarts1 

1Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The 

Netherlands; 2Keygene N.V., Agro Business Park 90, 6708 PW Wageningen, The Netherlands; 3Max 

Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 , Cologne, Germany. 



Chapter 4                    Genetic mapping and… 

 68 

Abstract 

A recombinant inbred population (F7) of 160 lines was made by repeated selfing of F2 plants 

derived from a cross between genotype L58, which is a rapid-flowering, self-compatible Cai 

Xin line, and R-o-18, a self-compatible Indian doubled haploid spring oil line. The 

Complexity Reduction of Polymorphic Sequences (CRoPS) technology was applied for 

single-nucleotide polymorphism (SNP) detection. The recently developed Illumina 

BeadXpressTM platform combined with the GoldenGate assay was used for genotyping of the 

RIL population. A linkage map was constructed for this population using 86 SNP markers and 

6 publicly available SSRs, covering a total map distance of 400 cM with an average resolution 

of 4.3 cM. A total of 26 QTLs for 19 traits, including flowering time, total plant height, plant 

height until first open flower, leaf number until first open flower, total leaf number, cuticular 

wax appearance, branch number, number of siliques, silique length, silique beak length, 

silique carpel number, seed weight, seed colour, seed shattering, and seed ripening time were 

detected. This study shows that the developed B. rapa RIL population can successfully be 

used to study the genetic basis of many breeding related traits. 

                                                   
 The AFLP®, KeyGene®, CRoPS® technologies are covered by patents and/or patent applications owned by 
Keygene N.V. AFLP, KeyGene and CRoPS, are (registered) trademarks of Keygene N.V.  
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Introduction 

With the smallest genome size in the Brassica genus and the rapid life cycle of some of its 

genotypes, B. rapa can be a model crop for genetic analysis in this family. For genetic 

analysis, so-called immortal mapping populations are very useful in the quantitative genetic 

analysis to identify loci that impact traits of interest. Immortal populations are characterized 

by their homozygous state, allowing propagation through seeds while maintaining the 

genotype of the parents in the progeny. In this study two distinct morphotypes of B. rapa, Cai 

Xin L58 and Yellow Sarson R-o-18, were used to develop a Recombinant Inbred Line (RIL) 

population. Recombinant Inbred Line populations are made by repeated propagation of 

progeny of an F1 plant over many generations by single seed descent until each line has a 

high degree of homozygosity, typically until F7/F8 (Koornneef et al., 2004). As both parents 

are early flowering and self-compatible, the developed RIL population has a rapid 

propagation and is easy to maintain through single seed descent. Doubled haploid (DH) 

populations are also immortal. They are made by induction of haploid embryos through 

culture of microspores from an F1 plant, followed by spontaneous genome doubling of 

regenerated plantlets (Sebastian et al., 2000). Although DH production is common for 

Brassica species (Pink et al., 2008) it is not easy for B. rapa as most genotypes respond very 

poorly to DH induction (Kole et al., 1997). In addition, normally a higher degree of 

segregation distortion is found in DH population compared to sexually propagated 

populations due to the preferential selection of genotypes responsive to microspore or anther 

culture (Voorrips et al., 1997; Suwabe et al., 2004).  

For genetic mapping, the highly abundant single-nucleotide polymorphisms (SNPs) are useful 

genetic markers. SNPs are the most frequent type of genetic polymorphism and can be readily 

detected using appropriate genotyping platforms. However in unsequenced crops with 

duplicated genome sequences the efficiency of SNP discovery is low if not hampered (Li et 

al., 2004). The AFLP-based Complexity Reduction of Polymorphic Sequences (CRoPS) 

technology, as a novel approach for large-scale polymorphism discovery in complex 

genomes, can be used in crops with a complex genome (van Orsouw et al., 2007). Recently 

the Golden Gate assay has been implemented for analysis on the Illumina® BeadXpressTM 

platform. The GoldenGate assay was a very efficient tool for high-throughput genotyping of 

polyploid wheat (Akhunov et al., 2009). In the Illumina Golden Gate assay, cyanine-3 (Cy3) 

and cyanine-5 (Cy5) labeled PCR products, containing different address sequences are 

hybridized to small glass rods (VeraCode “beads”) that are coupled to oligos complementary 

to the Illumicodes. The VeraCode beads have etched bar codes that correspond to a specific 

Illumicode address sequence. Once the beads enter the reader, a laser scans the beads and 

detects the bar code on each bead as well as the Cy3 or Cy5 fluorescent signal. Each bar code 

corresponds to a specific Illumicode address which corresponds to a specific genomic 
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sequence provided in the SNP design file. The ratio of the intensity of the Cy3 and Cy5 

fluorescence is used to determine the allelic state (genotype) at the SNP. 

Several seed characteristics, such as seed number, the number of siliques per unit area, branch 

number, and seed size, determine the value of crops grown for seeds like oilseed rape 

(Bekkaoui and Wilf, 2003; Quijada, 2007). The seed of B. rapa is mainly used for oil 

production, although the meal remaining after oil extraction is also of economic interest. A 

yellow seed coat colour is an important trait in Brassica oilseed crops as it is generally 

associated with thinner seed coat and lower cellulose content, improving the quality of the 

meal (Tang et al., 1997; Badani et al., 2006). In chapter 3 we reported on a strong QTL 

explaining more than 50% of seed colour variance (named SC), which mapped to 

chromosome A9 in the F2 population of the same cross from which the RIL population that is 

studied here is made.  

Some morphological related traits such as shattering, carpel number (trilocularis), plant 

architecture, leaf glossiness (cuticular wax) and vivipary are of interest in plant breeding. 

Plant architecture is of major agronomic importance, strongly influencing the suitability of a 

plant for cultivation, its yield and the harvest efficiency (Reinhardt and Kuhlemeier, 2002). 

Height of the plant at first open flower and leaf number at first open flower are factors that 

contribute to Brassica plant architecture. Brassica vegetables and oil types generally differ 

considerably in height. Pod shattering is an undesirable character in crop breeding. Grain loss 

during harvesting due to shattering decreases seed yield. A loss of 20% of the seed yield has 

been reported for B. napus (Price et al., 1996). Shattering is caused by carpel abscission. Pod 

shatter resistance is a complex trait, partly recessive and difficult to assess because it is only 

seen at maturity (Morgan et al., 2003). As far as we are aware there is no report about 

Brassica loci controlling shattering.  

The outer surfaces of Brassica leaves are coated with cuticular waxes which protect the plant 

from a variety of environmental pressures. Genotypic control of wax formation has been 

studied in many plants; in most cases the normal or glaucous form is dominant and the glossy 

or glabrous form recessive. The difference in appearance has been variously associated with 

the quantity, chemical composition or structure of the epicuticular wax (Baker 1974). Glossy 

leaves often have a reduced wax load. The wax is involved mostly in reduction of water loss 

and in defense against pathogens (Teece et al., 2008). Wax accumulation also potentially 

contributes to drought adaptation (Jefferson 1994). Epicuticular wax is hydrophobic and 

composed of long-chain fatty acids, alcohols, aldehydes and very long-chain wax esters (Wen 

and Jetter, 2009). Arabidopsis eceriferum (cer) mutants defective in normal epicuticular wax 

deposition have been identified by their glossy appearance (Koornneef et al. 1989; 

Beittenmiller 1996).  

Vivipary is the phenomenon of seeds germinating on the mother plant before harvest. In 
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cereals, but also in oilseed rape, this can lead to a large economic loss, as it causes severe 

damage to grain quality. Resistance to vivipary is therefore a very important trait in breeding 

programs (Zhang et al., 2008). Vivipary is caused by the absence of dormancy, which 

normally prevents seeds to germinate prematurely. Too much dormancy, causing the inability 

to germinate, to germinate with a delay or to germinate non-uniformly, also has a negative 

affect on seed quality (Millar et al., 2006). Genetic and physiological studies showed that 

abscisic acid (ABA) is a key player in establishing and maintaining seed dormancy 

(Koornneef et al. 2002). Also in B. napus vivipary is found, causing decreased seed viability 

and vigor (Ruan et al., 2000). Recently a major QTL explaining 50.78% of the total 

phenotypic variance for vivpary has been mapped to chromosome N11 of B. napus (Feng et 

al., 2009). 

Brassica rapa is known as one of the most recalcitrant members of Brassica genus to 

regenerate shoots in vitro (Narashimhulu and Chopra 1988) and routine high frequency 

transformation of B. rapa by A. tumefaciens has been hampered by the lack of efficient plant 

transformation and regeneration techniques. There is still a need to develop efficient 

transformation methods that can be used for many genotypes. 

In this report we describe a new RIL mapping population, derived from a cross between two 

distinct morphotypes, Cai Xin line L58 and Yellow Sarson line R-o-18. A new high-

throughput genotyping platform was designed for Brassica and used for genotyping the RIL 

population. The RIL population was scored for several plant morphology, seed-related and 

root formation traits, which led to the identification of several QTLs. 
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Results 

Genotyping and the construction of a linkage map 

Genotyping of 160 B. rapa lines was performed using the Illumina BeadXpress Reader to 

analyse a GoldenGate assay developed for Brassica SNP detection. Of the 384 SNPs present 

in the GoldenGate assay, 120 were polymorphic, 222 markers gave 100% homozygous or 

heterozygous scores and 42 SNPs did not generate a product or could not be scored 

unambiguously. A linkage map was constructed for the L58 × R-o-18 F7 RIL population 

using 86 polymorphic SNP markers and 6 publicly available SSR markers, covering a total 

map distance of 399.8 cM with an average resolution of 4.34 cM between markers (Figure 1). 

Biased location of markers makes grouping difficult in JoinMap and extra linkage groups 

appear. The SSR markers were included in the mapping to allow the assignment of linkage 

groups to their respective chromosomes as defined by the B. rapa reference linkage map 

(Choi et al., 2007). Six linkage groups (A2, A4, A5, A6, A9 and A10) correspond to defined 

B. rapa chromosomes (Choi et al., 2007). Linkage groups G1, G2, G3, G4 and G5 could not 

yet be assigned to a chromosome. B. rapa has 10 chromosomes, suggesting that two linkage 

groups corresponde to one chromosome. 

The RIL map is shorter than the F2 map of the same cross (Chapter 3) and another B. rapa 

RIL map (Kole et al., 1997). Based on the chi-square test for goodness-of-fit to the expected 

1:1 Mendelian segregation ratio, 28% of the markers showed segregation distortion. For 

highly skewed loci (9.7% of the markers showed >3:1 ratio) the R-o-18 allele was in excess. 

Skewed markers were clustered in regions of the A5, A6 and G3 linkage groups. 
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Figure 1 Genetic linkage map of the B. rapa L58 × R-o-18 RIL population, showing the positions of 86 SNP and 6 SSR markers distributed over 11 linkage groups. Six linkage groups (A2, A4, A5, A6, A9 and 

A10) correspond to defined chromosomes of the B. rapa reference linkage map (Choi et al., 2007). Linkage groups G1, G2, G3, G4 and G5 could not yet be assigned to a chromosome. QTLs mapping to the 

linkage map for the determined traits are indicated with boxes. Whiskers represent 1-LOD and 2-LOD confidence intervals (95%), respectively, for significant QTLs. FT: flowering time; TPH: total plant 

height; PHF: plant height until first open flower; SC: seed coat colour; SN: silique number; SW: seed weight; SH: shattering; WX: wax; SR: seed ripening; Ss: seed setting ; LNF: leaf number until first open 

flower; BN: branch number; CN: carpel number; SL: silique length; BL: beak length; TLN: total leaf number; Vi: seed vivipary; AD: adventitious root formation; and HR; transgenic hairy root formation. 
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Phenotyping the RIL population 
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Figure 2 Frequency distributions of non-normalized data of some traits in the L58 × R-o-18 

RIL population. The vertical axis indicates the number of lines per trait value class and the 

horizontal axis the different trait value classes. (A) number of seeds per silique (B) beak 

length (mm); (C) silique length (mm); (D) seed ripening (days to ripen); (E) flowering time 

(days to flower); (F) seed setting (days from flowering until ripening); (G) pod shattering ; 

(H) adventitious root formation; (I) transgenic hairy root formation; (J) seed oil content; (K) 

Seed colour (from yellow to black); (L) plant height; (M) length of inflorescence; (N) carpel 

number; and (O) branch number. The parental values are the mean of five replicates, 

indicated with L as L58 and R as R-o-18. 

 

In total 21 traits, consisting of 20 morphological phenotypes and seed oil content, were 

recorded for the RIL population. Figure 2 shows the frequency distributions of some 

measured traits including silique length, beak length, seed ripening, flowering time, seed 

setting, pod shattering, adventitious root formation and transgenic hairy root formation, seed 

oil content, seed coat colour, plant height, infloresence length, carpel number and branch 

number. Transgression beyond the parental values was observed for most of the traits except 

for seed colour.  

Correlation analysis of all measured traits showed that flowering time was highly positively 

correlated with total leaf number and leaf number until first open flower (Table 1). Silique 

number, seed number per silique, shattering and silique length were positively correlated. 

Silique length was highly positively correlated with the number of seeds per silique. In 
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general, plants with more siliques had longer siliques with more seeds and higher seed oil 

content. Pod shattering was positively correlated with number of seeds per silique, silique 

number and seed coat colour, but negatively with seed ripening. Branch number was 

correlated with leaf number and flowering time. Cuticular wax showed a significant 

correlation with plant height until first open flower. Seed vivipary was positively correlated 

with seed set and negatively with flowering time. The number of carpels showed a significant 

positive correlation with seed weight. 

 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 



Chapter 4                    Genetic mapping and… 

 77 

Table 1 Pearson correlation analysis of all measured traits in the L58 × R-o-18 RIL population.  

FT: flowering time, TPH; total plant height, PHF: plant height until first flower, LNF: leaf number until first flower, WX: wax cuticular, 

BN: branch number, TLN: total leaf number, SN: silique number, SL: silique length, SH: shattering, BL: beak length, NSPS: number of 

seed per silique, SW: seed weight, CN: carpel number, Vi: vivipary, Infl: length of infloresence, SR: seed ripening, Ss: seed setting, AD: 

adventitious root formation, HR: transgenic hairy root formation, SC: seed colour, SO: seed oil content. ** means significant at P≤0.01; * 

significant at P≤0.05. 

Trait  BL SL SN SR FT Ss PHF LNF BN TLN TPH InfL SH NSPS SW CN WX Vi SC SO AD 

SL 0.41** 1                    

SN 0.19* 0.27** 1                   

SR -0.17 -0.18 -0.19* 1                  

FT -0.01 -.21* 0.1 0.1 1                 

Ss -0.1 0.02 -0.21** 0.66** -0.11 1                

PHF 0.17 0.12 -0.1 -0.12 0.27** -0.29** 1               

LNF -0.02 -0.20* 0.06 0.01 0.86** -0.62** 0.31** 1              

BN -0.05 -0.13 0.02 -0.16 0.38** -0.40** 0.35** 0.56** 1             

TLN -0.02 -0.21* 0.07 0.01 0.88** -0.64** 0.29** 0.98** 0.56** 1            

TPH 0.08 0.11 -0.08 -0.13 0 -0.08 0.63** 0.01 0.16* 0.01 1           

InfL 0.02 0.03 0.16 -0.02 0.13 -0.16 0 0.05 0.14 0.09 0.28** 1          

SH 0.18 0.11 0.42** -0.26** 0.06 -0.23** -0.14 0.03 0.02 0.05 -0.02 0.17 1         

NSPS 0.41** 0.47** 0.55** -0.22* 0.02 -0.16 -0.11 0.02 -0.07 0.03 0 0.26* 0.53** 1        

SW 0.12 0.05 0.1 -0.05 0.11 -0.13 0.05 0.12 0.09 0.11 0.11 0.02 -0.02 0.01 1       

CN 0 -0.15 -0.02 -0.09 0.06 -0.11 0.17 0.17 0.03 0.15 0.12 -0.01 0.04 0.1 0.27** 1      

WX 0.1 0.08 0.01 -0.05 -0.01 -0.02 0.29** 0.04 -0.03 0.02 0.25** -0.11 -0.18* -0.25** 0.02 -0.01 1     

Vi 0.1 0 0.14 0 -0.37** 0.33** -0.18 -0.39** -0.26* -0.39** 0.01 0.07 -0.01 0.04 0.19 -0.14 0.01 1    

SC 0.02 -0.08 0.06 -0.1 0.05 0.02 0.01 -0.12 0 -0.11 0 0.02 0.24** 0.14 -0.07 0.14 -0.23** -0.09 1   

SO -0.04 -0.07 0.34** 0 0.28** -0.20* 0 0.22* 0.07 0.22* -0.11 -0.04 0.11 0.24** -0.17 0.02 -0.02 -0.22* 0.18* 1  

AD 0.28** -0.24 -0.03 0.1 -0.05 0.05 -0.07 -0.05 0 -0.05 -0.09 0 0.22* 0.04 -0.1 -0.2 -0.08 0.27** 0.04 -0.15 1 

HR 0.23* -0.15 -0.14 0.03 -0.04 0 0.06 -0.08 -0.09 -0.07 0.02 -0.07 0 0 -0.02 -0.11 0.1 0.2 -0.15 -0.11 0.12 
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QTL analysis 

In total 26 QTLs were mapped for 19 different traits (Table 2; Figure 1). The strongest QTLs 

were found for seed colour (SC1 and SC2), mapping to chromosome A9 and linkage group 

G2 and explaining 55.4% and 14.3% of the seed coat colour variance respectively. The dark 

coloured allele at SC1 is coming from L58 (black seeded), but the darker allele at SC2 comes 

from R-o-18 (yellow seeded). SC1 co-located with pod shattering (SH) and seed ripening 

(SR) QTLs on A9. 16% of the variance for pod shattering was explained by this locus. 14% of 

the variance for carpel number was explained by a CN QTL on A4. AD and HR QTLs on G1 

and A9 were responsible for adventitious and transgenic hairy root formation. 
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Table 2 QTLs detected for 19 different traits in the L58 × R-o-18 RIL population. 

QTLs are numbered according to decreasing LOD score (LOD). %Expl. var. is the 

percentage of total phenotypic variance explained by individual QTLs. For each of the QTLs 

the allelic effect is indicated (Effect). These are calculated as µA-µB (µ= mean), where A and 

B are RILs carrying L58, respectively R-o-18 genotypes at the QTL positions. µA and µB 

were estimated by MapQTL. Effects are given in days (flowering time), millimeter (plant 

height, size), milligram per seed (oil content) or without unit (silique or seed number, seed 

colour).  
 

Trait QTL  Linkage 

group 

LOD Position of peak 

LOD cM 

% Expl. 

var. 

Effect 

Silique length SL A4 3.81 26.2 14.4 +7.05 

Beak length BL G1 4.23 0.0 15.8 -2.90 

Silique number SN A6 3.67 39.7 10.4 +15.91 

Shattering SH A9 4.83 3.1 16.1 +0.22 

Carpel number CN A4 3.7 16.0 14.0 -0.18 

Seed colour SC1  

SC2 

A9 

G2 

32.42 

12.02 

1.76 

0.0 

55.4 

 14.3 

+3.70 

-2.10 

Seed weight SW A5 3.60 15.9 15.2 -4.33 

Seed ripening SR1 

SR2 

A9 

A5 

5.00 

3.40 

1.9 

0.0 

13.5 

9.1 

-5.96 

+5.05 

Seed setting Ss A5 2.90 0.0 9.0 +8.0 

Vivipary Vi G3 2.40 5.5 14.0 -0.22 

Total plant height TPH G2 4.73 0.0 13.0 -130.00 

Plant height until first flower PHF G1 3.67 3.4 10.5 -100 

Total leaf number TLN A5 3.10 3.7 9.1 -4.06 

Leaf number until first flower LNF1 

LNF2 

LNF3 

A5 

A10 

A4 

3.12 

2.56 

2.21 

3.7 

0.0 

52.00 

8.0 

6.6 

5.3 

-3.85 

-3.58 

+3.06 

Wax WX A9 3.80 12.31 11.0 -0.50 

Branch number BN1 

BN2 

BN3 

A2 

A6 

G2 

4.54 

3.93 

3.48 

42.26 

32.9 

0.0 

10.5 

9.1 

7.9 

+1.86 

+1.75 

+1.77 

Flowering time FT1 

FT2 

G5 

A5 

3.90 

3.54 

26.4 

28.9 

9.8 

8.9 

-5.00 

-6.00 

Adventitious root formation AD G1 3.56 1.32 20.4 -0.41 

Hairy transgenic root 

formation 

HR A9 6.00 1.1 33.0 -0.12 
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Discussion 

A segregating recombinant inbred population of Brassica rapa consisting of 160 lines was 

developed from two distinct morphotypes, both early flowering and self compatible, and used 

for genetic linkage mapping.  

CRoPS technology, as a novel approach for large-scale polymorphism discovery in complex 

genomes, was applied for SNP discovery (van Orsouw et al., 2007). Of about 1300 putative 

SNPs, 384 SNPs with a high probability of detection in genotyping assay were selected. The 

GoldenGate genotyping assay as analyzed using the Illumina® BeadXpressTM platform was 

successfully employed for SNP genotyping of the B. rapa RIL population. This genotyping 

platform has the potential to genotype up to 384 polymorphic sites in 96 individuals in a 

single reaction. One third of the SNPs present in the GoldenGate assay were polymorphic 

between parental lines. The linkage map includes 86 SNPs and 6 publicly available SSRs, 

grouped in 11 linkage groups. The short length of the map could be due to the biased location 

of markers which makes the grouping difficult using the JoinMap mapping software, which is 

why more than 10 linkage groups are found. Over 30 markers could not be mapped so far, 

which suggests that currently part of the genome is not covered by the genetic map. Since not 

all linkage groups were assigned to a reference chromosome, there still is the possibility that a 

chromosome is not represented in the linkage map. Other explanations, like suppression of 

recombination, or strong genetic distortion of markers, are less likely. Although 28% of the 

loci show significant segregation distortion from the expected 1:1 ratio, only 9.7% of the 

markers show highly distorted segregation (>3:1). Even though we made an effort not to 

select during the single seed descent propagation, this is hard to avoid, especially for lines that 

are at the low fertility, germination or growth side of the spectrum. Generally, environmental 

and artificial selection over several generations, causing segregation distortion, is common to 

many mapping populations (Voorrips et al., 1997; Wang et al., 2003; Kianian and Quiros. 

1992). 

 

QTL analysis was performed for 21 traits. For several traits there is strong transgression of 

phenotypes beyond the parental values, often far beyond the parent with the highest value, 

suggesting the presence of several loci with contrasting allele effects controlling a trait in this 

population. It makes this population a potentially rich tool for resolving genetic variation for 

B. rapa breeding purposes. In total 26 QTLs for 19 of the studied traits were detected. Seed 

coat colour is a very important trait in oilseed type Brassica crops. Yellow seeds are 

preferred, since yellow-seededness was found to correspond with higher protein and lower 

crude fiber contents compared to black-seeded varieties and are of better quality for use as 

poultry and livestock feed (Tang et al., 1997; Badani et al., 2006). We already showed in the 

F2 population of L58 × R-o-18 that seed coat colour is a maternal trait and the black seed coat 
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allele is over-dominant over the allele for yellow seed coat. Two strong QTLs for the seed 

colour (SC1 and SC2) were detected on A9 and G2 explaining about 70% of the seed coat 

colour variation. The dark allele at SC1 is derived from the dark-seeded L58 parental 

genotype, but for SC2 the darker allele comes from R-o-18, indicating that there are modifiers 

in R-o-18 that might be epistatic to the yellow alleles at SC1. The SC1 locus was also 

detected in the F2 generation of this population (SC in Chapter 3) and had been reported 

before by Lou et al. (2007). Contrary to what we found in the F2 generation, the QTL for seed 

oil content on A9 in same region as SC1 did not exceed the LOD threshold level and since no 

additional QTL were detected, we did not map a seed oil content QTL in the RIL population. 

For the analysis of seed oil content, both in the F2 as in the RIL population, we used a crude 

method to extract seed oil. This method can be sensitive to differences in extraction, which 

could explain for the inability to detect the A9 seed oil content QTL in the analysis of the RIL 

population. Seed oil has a significant positive correlation with silique number and the number 

of seeds per silique, which is in agreement with our previous observations for the F2 

population (Chapter 3). 

The pod shattering QTL (SH) on A9 is located in the same region as SC1. Correlation 

analysis confirmed that easy shattering lines have black seeds. Therefore selection for yellow-

seeded lines might improve shattering resistance when both traits segregate. Shattering has a 

significant positive correlation with the number of seeds per silique and the silique number. 

The QTL for number of seeds per silique in this region was not significant. There is little 

exploitable variation in pod shattering resistance within the B. napus gene pool (Morgan et 

al., 2003). Introducing pod shattering resistance alleles from B. rapa into a B. napus breeding 

program could be useful. In Arabidopsis the MADS-box transcription factor FRUITFULL 

(FUL) (Gu et al., 1998;) mediates valve development by inhibiting the action of the 

SHATTERPROOF (SHP) (Liljegren et al., 2004) valve margin identity genes. Constitutive 

expression of the FUL gene in B. juncea is sufficient to inhibit valve margin formation and 

seed dispersal (Østergaard et al., 2006).  

R-o-18 is a B. rapa Yellow Sarson type which was previously named B. trilocularis (Gómez-

Campo, 1999); because many fruits have three or four carpels. The allele of the carpel number 

(CN) QTL that maps to chromosome A4, explaining 14% of carpel variance, corresponding to 

higher carpel number, originated from R-o-18. Carpel number showed only a significant 

positive correlation with seed weight and therefore seed size. As R-o-18 has bigger and 

heavier seeds than L58, the CN QTL could be directly involved in determining seed size and 

weight or it may be linked with loci controlling seed size and weight. 

A silique length QTL (SL) is located at chromosome A4. This QTL is different from the QTL 

for beak length (BL) mapped to G1, indicating both are genetically independently controlled. 

In B. rapa DH populations Lou et al. (2007) reported two genomic regions on A1 and A7 
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affecting silique length and three loci on A5, A7 and A9 controlling the beak length. The SL 

QTL is a new locus on A4 but like the BL QTL located on G1, which we could not assign to a 

reference chromosome, it is not clear if this is a new locus too. The number of seeds per 

silique is highly positively correlated with other silique related traits such as silique length, 

beak length and silique number. Therefore SL and BL are likely to have an overall effect on 

silique related traits.  

Seed ripening and seed set traits are highly correlated. Co-location of the SR2 and Ss QTLs 

reveals there is one QTL on top A5 probably active in early stages of seed setting. The second 

QTL of seed ripening (SR1) appears to control seed ripening at later stages of seed 

development. There is no report about seed vivipary QTLs in B. rapa. We detected one QTL 

on G3 explaining 14% of preharvest sprouting variance. Correlation analysis revealed a 

significant negative relation between vivipary and seed oil content. In B. napus vivipary also 

resulted in lower seed oil (Ruan et al., 2000). 

We detected one QTL on A9 for cuticular wax appearance (WX). As we only recorded the 

appearance difference of the leaves and did not analyze the chemical composition of the 

epicuticular wax, it is not clear if this QTL explains the quantity, chemical composition or 

structure of the epicuticular wax.  

Branch number QTLs are found on A2, A6 and G2. Branch number has no correlation with 

silique number, but is highly correlated with leaf number. As every branch originates from the 

bud at the leaf base, this correlation is expected. The outgrowth of buds to branches is 

strongly controlled by hormonal balance, involving cytokinins, auxins and stringolactones 

(Gomez-Roldan et al., 2008).  

Finding markers related to adventitious and transformed root formation would be useful to 

select for regeneration and transformation improved B. rapa genotypes. The AD and HR 

QTLs on G1 and A9 are respectively controlling adventitious and transgenic root formation 

indicating that these are independent traits. In B. oleracea hypocotyls it has been shown that 

performance for transgenic root production is associated with performance for adventitious 

(non-transgenic) root production (Oldacres et al., 2005), contrary to what we describe here. 

As we used different tissues for the adventitious and hairy root production, it is possible that 

these traits are independent. Correlation analysis also did not show a significant correlation 

between these two traits. AD and HR mapped on A10 in the F2 population (Chapter 3). 

Sensitive genotypes of B. oleracea in adventitious root production tend also to perform well 

in transgenic roots production induced by A. rhizogenes but the presence of the bacterium had 

no significant effect on adventitious root production (Oldacres et al., 2005). Therefore it 

would be beneficial to test in the future if the production of non-transgenic roots is enhanced 

by treatment with A. rhizogenes.  
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The B. rapa immortal population we described has two important characteristics which are an 

advantage for maintaining the population and for several phenotypic screens: The population 

is fully self–compatible and plants rapidly complete their life cycle. In addition, the 

population is sufficiently large to have ample statistical power to detect QTLs. The rapid-

cycling properties, and the diverse origin of both parents (vegetable and oilseed rape), make 

this population a potentially very interesting source for genetic analysis of a range of 

agronomic traits, both for leafy vegetables and for oilseed properties. The diverse origin of the 

parents ensured there was sufficient genetic variation in the population to map many 

morphological and seed related QTLs. Some of the QTLs we describe here are reported for 

the first time.  In few cases we could not detect the same QTLs which were detected in the F2 

generation. For example, in the F2 we detected two QTLs for flowering time on A2 and A3. 

In RIL we could not find these, but instead mapped QTLs on G5 and A5. Also the AD and 

HR QTLs related to adventitious and transgenic root formation, which mapped on A10 in the 

F2, mapped to G1 and A9 in the RIL population. We do not think this is due to phenotyping 

or mapping mistakes in either of the two analyses, but simply reflects the contribution of 

genotype × environment interaction to the phenotypes. Although both F2 and RIL populations 

grew in the same greenhouse, they grew in very different seasons. Some QTLs may have been 

lost due to increased segregation distortion due to inadvertent selection during single seed 

descent over 6 generations. Finally, some differences in QTL detection may be caused by 

differences in the accuracy of phenotyping both populations, with more experience gained at 

the time the RIL population was scored. Generally, QTLs with a high LOD score were 

detected in both populations. Probably due to a higher number of recombination events in the 

RIL and a better scoring of recombination by using SNPs in the RIL, compared to dominant 

AFLPs in the F2, we were able to detect an occasional additional minor QTL, as was the case 

for the SC2 locus, the second locus for seed coat colour in addition to the strong SC1 locus.  

In the future the map will be improved by adding additional markers, including the AFLP 

markers scored in the F2, which are expected to enlarge the map, to combine linkage groups 

corresponding to the same chromosome and to add several of the markers that could not be 

mapped as yet. 
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Materials and methods 

Plant growth and generation of the RIL population 

The F2 cross of B. rapa which was made between genotypes L58 (♀) × R-o-18 (♂) (chapter 

3) was propagated through single seed descent until the F7 generation. Individual plants were 

grown in April 2007 in separate pots in a temperature-controlled greenhouse with artificial 

day length extension to 16 hours. After about four weeks the first lines started to flower. The 

inflorescences were covered with plastic bags to prevent cross-pollination. In case of poor 

seed set, hand pollinations were performed. The F7 population of 160 individuals obtained in 

June 2009 was considered as a recombinant inbred line (RIL) population for genetic studies. 

  

Trait measurement 

The RIL population was used to determine the phenotypes of 21 traits; seed related traits 

including: seed colour, seed weight, seed oil, seed ripening, seed setting, seed vivipary and 

morphological traits including flowering time, total height, plant height until first flower, 

branch number, silique length, beak length, silique number, number of seeds per silique, 

number of siliques in main stem, carpel number, pod shattering, total leaf number, leaf 

number until first open flower, length of inflorescence and cuticular wax. Seed colour was a 

very prominent phenotype segregating in the population. L58 has brown-black seeds and line 

R-o-18 has yellow seeds.  

Seed colour of fully mature F8 seeds was scored by eye and ranked into nine different classes 

ranging from yellow (1) to black (9). Silique length was determined as the average length of 

three ripe siliques. The mean number of seeds per silique was determined by averaging three 

ripe siliques. Seed vivipary was scored as no (0), medium (1) and high (2) based on a visual 

estimation of the number of seeds with radicles when harvested. Cuticular wax was scored by 

eye from 1 (glossy), 2 (normal) till 3 (non-glossy) (Figure 3). Shattering was scored at 

harvesting time as 0 (no open siliques), 0.5 (few open siliques) and 1 (many open siliques). 

Seed oil was measured as explained in chapter 3. Seed ripening was scored as days after 

sowing, when more than 50% of siliques were yellow and ready for harvest. Seed setting was 

calculated from reducing flowering time from seed ripening time. 

The correlation analysis was done for all traits to find significant relation between the traits. 

 

 

 

 

 

 
 



Chapter 4                    Genetic mapping and… 

 85 

 

Figure 3 Phenotyping of RIL population of B. rapa L58 × R-o-18. A: Seed vivipary, B: silique  

(SL)and beak length (BL) variation, C: pod shattering, D: carpel number variation, E: 

glaucus plant appearing a bit more dark green at top, and the glossy plant at the bottom. 

 

Adventitious root formation was tested on 5-day-old cotyledons and hairy root transformation 
was performed using 5-day-old seedlings as explained in Chapter 3. A. rhizogenes MSU440 
was used for hairy root transformation (Limpen et al., 2004).  
 
Construction of a genetic linkage map and QTL analysis  

Genotyping was done using a 384 SNP loci assay. DNA was extracted from frozen leaves 

according to a modified CTAB procedure (Van der Beek et al. 1992). Because large amounts 

of DNA are required for the GoldenGate assay, DNA was amplified with the Genomiphi-kit 

(Illustra™ GenomiPhi™ V2 DNA Amplification Kit, GE Healthcare UK).  For SNP discovery 

the CRoPS technology of Keygene N.V. was deployed. This technology was developed as a 

novel approach for single nucleotide polymorphism discovery between two or more samples 

(van Orsouw et al. 2007). CRoPS analysis was performed comparing two Brassica rapa lines 

(Kenshin and Chiifu) and more than 1300 putative SNPs at high quality were discovered. The 

SNP-harboring sequences were sent to Illumina® for processing by the Illumina Assay 

Design Tool (ADT). ADT generates scores for each SNP that could vary from 0 to 1; SNPs 

with the scores above 0.6 have a high probability to be converted into a successful genotyping 

assay. A total of 384 SNPs were selected, all having ADT scores above 0.6. A total of 100-

500 ng of genomic (GenomiPhi) DNA per plant was used for Illumina SNP genotyping at 

Keygene N.V. using the Illumina BeadXpressTM platform and the GoldenGate Assay 

following the manufacturer’s protocol. The fluorescence images of an array matrix carrying 

Cy3- and Cy5-labeled beads were generated with the two-channel scanner. Raw hybridization 

intensity data processing, clustering and genotype calling were performed using the 

genotyping module in the BeadStudio package (Illumina, San Diego, CA, USA). 

Part of the DNA was used for the SSR-detection as described by (Choi et al., 2007) using the 

LI-COR system (Lincoln, Neb) 4200 DNA sequencer (Myburg et al., 2001). All weak and 

B C A D E 

BL 

SL 
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ambiguous bands were scored as “unknown”. Linkage analysis and map construction were 

carried out using the program JoinMap4 (http://www.kyazma.nl/). All markers were grouped 

using increasing LOD scores (ranging from 5 to 15) to identify linkage groups. The regression 

mapping algorithm was used for linkage analysis. Recombination frequencies were converted 

to centiMorgan distances using the Kosambi mapping function. MAPQTL 5.0 

(http://www.kyazma.nl/) was used for QTL analysis. First, an interval mapping test was 

performed to find putative QTLs. A permutation test with 1000 repetitions was applied to 

determine the LOD thresholds (at p=0.05). A LOD-score of 2.8 was used as the significance 

threshold for the presence of a candidate QTL. Multiple-QTL model (MQM) mapping also 

was performed to locate QTLs after the selection of cofactors. Linkage maps along with 

QTLs were visualized using Mapchart (Voorrips 2002).  
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Abstract 

There is a wide variation for nutritional traits in Brassica rapa but the genetic basis of this 

variation is largely unknown. A recombinant inbred population of 160 lines, made by crossing 

genotype L58, which is a rapid-flowering, self-compatible Cai Xin line, with R-o-18, a self-

compatible Indian doubled haploid spring oil line, was profiled to detect quantitative trait loci 

(QTL) controlling seed tocopherol and seedling metabolite variation as detected by High 

Performance Liquid Chromatography (HPLC) and Nuclear Magnetic Resonance (NMR) 

analysis. The two parental lines differed considerably in their metabolite profile. L58 had a 

higher level of glucosinolates and phenylpropanoids whereas levels of sucrose, glucose and 

glutamate were higher in the R-o-18 parent. QTLs related to seed tocopherol (α-, γ-, δ-, α-⁄γ-, 

and total tocopherol) concentrations were detected on chromosomes A6 and A9 explaining 

9.5-36.6% of the seed tocopherol concentration variation. QTLs were identified for 148 of the 

238 signals detected by NMR analysis. NMR signals in organic/amino acid, 

sugar/glucosinolate and aromatic regions could be assigned to 19 different compounds in the 

respective classes. This analysis shows that QTL analysis of metabolites is feasible and useful 

for the future detection of markers and/or genes involved in the biosynthesis of nutritional 

compounds in B. rapa. 
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Introduction 

Brassica rapa is an important crop with a variety of forms: oilseed, leafy vegetable and turnip 

(Zhao et al. 2005) and with a wide distribution in the world. It is a valuable source of diverse 

health-promoting metabolites (e.g. antioxidants, vitamins, glucosinolates). Plants in general 

produce an amazing diversity of low molecular mass natural compounds (Pichersky and 

Gang, 2000). Over 100,000 metabolites have been detected (Wink, 1988), for which the 

structures of close to 50,000 have been elucidated (De Luca and St-Pierre, 2000). Many of 

these compounds are part of secondary metabolic pathways, which are not directly involved 

in the central metabolic processes of the plant but play very important roles in ecological 

interactions like in plant defense against pathogens and herbivores and in response to abiotic 

factors. Primary metabolites, such as carbohydrates, vitamins, amino and organic acids are 

found in all plants and they are directly involved in normal growth, development, and 

reproduction. 

Tocopherols are essential nutrients that humans can only obtain via food. Tocopherol content 

and composition can be determined accurately by High Performance Liquid Chromatography 

(HPLC) (Schledz et al., 2001; Endrigkeit et al., 2009). They are lipid-soluble amphipathic 

molecules that act as anti-oxidants (Porfirova et al., 2002; Collin et al., 2008). The α-, β-, γ-, 

and δ- tocopherols produced by plants are jointly known as vitamin E, α-tocopherol is the 

most interesting component from a nutritional point of view, because it is selectively taken up 

in the human liver and the activity of α-tocopherol is 2–50 times higher than that of the others 

(Gilliland et al., 2006). Seeds generally provide the bulk of the micronutrients to the human 

diet (Gilliland et al., 2006) and also tocopherols are mainly found in plant seeds (Eenennaam 

et al., 2003). On average rape seed oil contains 65% γ-tocopherol and 35% α-tocopherol. 

Generally, no ß-tocopherol is found in B. napus and only very low amounts (<1%) of δ-

tocopherol (Goffman and Becker, 2001). The ratio of the content of α- to γ-tocopherol varied 

from 0.32-1.40 in rapeseed (Goffman and Becker, 1998). Since γ-tocopherol has ten-fold 

lower biological activity than α-tocopherol, increasing the α-tocopherol fraction can improve 

the nutritional value of rape seed (Goffman and Becker 2001). 

There are different aims for tocopherol breeding in plants: the increase of total tocopherol, the 

increase of α-tocopherol for nutritional purposes, and the increase of δ-and γ-tocopherol for 

oil stability. γ-tocopherol is known to be the direct precursor of α-tocopherol (Schultz 1990). 

The enzyme γ-tocopherol methyltransferase (gTMT) catalyzes the conversion from δ- to β- 

and from γ- to α-tocopherol, respectively (Endrigkeit et al., 2009). Between 5 and 7 loci with 

additive and/or epistatic effects have been mapped for γ-tocopherol and total tocopherol 

content and for the α-/γ-tocopherol ratio in a Double Haploid (DH) population of B. napus 

(Marwede et al., 2005). B. rapa is also related to the plant reference species Arabidopsis 

thaliana. Fourteen QTLs affecting seed tocopherol content and composition have been 
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identified in two Arabidopsis RIL populations (Gilliland et al., 2006), while mutation studies 

revealed the tocopherol synthesis genes, VTE1  to VTE5 (Porfirova et al., 2002; Cheng et al., 

2003). Recently the first gene from B. napus involved in tocopherol biosynthesis 

(BnaA.VTE4.a1) has been cloned (Endrigkeit et al., 2009). 

Apart from tocopherol, there are many more secondary plant metabolites in the plant 

metabolome that are suggested to have an effect on health. For instance, it is known that a diet 

rich in cruciferous vegetables can significantly reduce the risk to develop a range of cancer 

types by an intake of as little as 10 g per day (Kohlmeier and Su, 1997). The development of 

high throughput technologies and untargeted methods that use Liquid Chromotography 

combined with Mass Spectrometry (LC-MS) has been instrumental in revealing a large 

genetic variation for many metabolites, also within species (Keurentjes et al., 2006). 

Glucosinolates, for instance, are sulfur containing plant metabolites with anti-carcinogenic 

properties. They form a group of more than 100 plant secondary metabolites present primarily 

in the Brassicacea family; each plant species contains a blend of different glucosinolates in 

significant amounts (Fenwick and Heaney, 1983; Fahey et al., 2001). This blend is largely 

responsible for the typical flavor and odor of Brassicaceae species. There are also significant 

differences within the crop species for their glucosinolate profiles (Ciska et al., 2000). 

Glucosinolates can be grouped into three chemical classes: aliphatic, indole and aromatic, 

according to whether their amino acid precursor is methionine, tryptophan or an aromatic 

amino acid (tyrosine or phenylalanine), respectively (Giamoustaris and Mithen 1996). 

Aliphatic glucosinolates are the most prominent glucosinolates found in Brassica vegetables 

(Mithen et al. 2003). The concentration and chemical structure can vary considerably, 

depending on the genotype, stage of development, tissue type and environmental conditions 

(Cartea and Velasco, 2008).  

More than 90 different aliphatic glucosinolates have been identified among plants (Fahey et 

al., 2001) of which 8-16 are found in B. rapa (He et al., 2000; Padilla et al., 2007; Lou et al., 

2008). QTL mapping of leaf aliphatic glucosinolate loci has been carried out in two doubled 

haploid (DH) populations of B. rapa and 16 loci controlling aliphatic glucosinolate 

accumulation were identified (Lou et al., 2008).   

Flavonoids form a second class of health promoting compounds. These secondary metabolites 

are synthesized from phenylpropanoid and more than 6000 different flavonoids have been 

reported (Harborne and Williams, 2000). Based on the oxidation level of the C-ring, different 

classes of flavonoids are distinguished, including flavonols, flavones, flavanols, and 

anthocyanins (Lepiniec et al., 2006). Flavonoids serve different functions in plants such as 

pigmentation of flowers, insect interaction, protection against UV light, plant defence, lignin 

formation and antioxidant properties (Koes et al., 1993); and are important health related 

compounds in Brassica (Schijlen et al., 2004). The major flavonoid compounds in A. thaliana 
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are the flavonols, predominantly kaempferol glycosides (Veit and Pauli, 1999; Lepiniec et al., 

2006). Altered seed pigmentation mutants in Arabidopsis, such as transparent testa (tt) 

mutants, are often impaired in flavonoid accumulation (Koornneef 1990). 

Amino acids like threonine, valine and isoleucine are essential food ingredients for humans, 

while alanine, asparagine and glutamine can be produced in the human body. Glutamate is 

very important in amino acid metabolism in plants since it is the substrate for the synthesis of 

glutamine from ammonia; in addition the α-amino group of glutamate is transferred to all 

other amino acids (Forde and Lea, 2007). Transfer of the α-amino group of glutamate to 

oxaloacetate creates aspartate which is a precursor of asparagine (Lea et al., 2007), threonine, 

and isoleucine (Azevedo et al., 2006). The α-amino group can be also transferred to pyruvate 

and thus form alanine (Forde and Lea, 2007).  

Carbohydrates such as glucose are other important primary metabolites. Glucose, as primary 

product of photosynthesis, is a major energy source and structural/storage component. Starch 

and cellulose are made up of alpha and beta glucose (glucose isomers) respectively. In the 

Arabidopsis mutant gin1 (glucose-insensitive), glucose repression of cotyledon greening and 

expansion, shoot development, floral transition, and gene expression is impaired (Zhou et al., 

1998). There is no report about QTL analysis of glucose in B. rapa. 

To get unambiguous structural information about a metabolite, Nuclear Magnetic Resonance 

(NMR) and particularly proton NMR (1H NMR analysis) is probably among the most 

selective analytical options available, as it is a non-destructive method and can simultaneously 

detect all proton-bearing compounds (Choi et al., 2006). Although it has a lower sensitivity 

compared to Mass Spectrometry (MS) (Moco et al., 2007), 1H NMR spectroscopy has been 

used to uncover qualitative and quantitative differences of various cultivars of B. rapa. 

Different cultivars could be distinguished by elucidated metabolites, several organic and 

amino acids, carbohydrates, adenine, indole acetic acid (IAA), phenylpropanoids, flavonoids 

and glucosinolates (Abdel-Farid et al., 2007). 

We have used this technique to analyze the genetic variation for a range of (secondary) 

metabolites in a B. rapa seedlings of a recently develop RIL population of 160 lines (chapter 

4). In addition, a targeted approach detecting tocopherols was used to analyze variation for 

these compounds in seeds of the same population. 
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Results 

HPLC result of seed Vit E measurement  

To determine the extent of variation in the predominating vitamine E compounds, 

tocopherols, we analyzed seeds of the parental lines R-o-18 and L58 and all individual lines 

of the RIL population. L58 showed higher levels than R-o-18 for all tocopherols except for δ-

tocopherol. Transgression beyond the parental values was observed for all measured 

tocopherols. In case of δ-tocopherol transgression was beyond R-o-18 only. Some lines 

showed very high α-tocopherol concentration in comparison to the other components. Table 1 

and Figure 1 show the descriptive statistics of tocopherol analysis.  

 

Table 1. Overview of tocopherol analysis, in parents and in the RIL population of L58×R-o-

18. Tocopherol concentration is given in mg per g of seed.  

Tocopherol α-  γ-  δ-  total  α-⁄γ- ratio 

L58 0.317 0.273 0.004 0.595 1.159 

R-o-18 0.250 0.233 0.019 0.502 1.076 

Max value 0.885 0.530 0.034 1.199 8.266 

Min value 0.161 0.086 0.003 0.325 0.537 
Mean 
value(±SD) 0.365(0.123) 0.294 (0.092) 0.015 (0.006) 0.675(0.149) 1.428 (0.943) 

 

 

Figure 1 Frequency distributions of non-normalized data of Vit E in seeds of the L58 × R-o-18 RIL population. The vertical axis indicates 

the number of lines per trait value class and the horizontal axis the different trait value classes. (A) alpha tocopherol (mg/g); (B) gamma 

tocopherol (mg/g); (C) delta tocopherol (mg/g); D) total tocopherol (mg/g); (E) alpha/gamma tocopherol ratio; The parental values are the 

mean of three replicates, indicated with L as L58 and R as R-o-18. 
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Correlation analysis of Vit E components revealed that total tocopherol was highly positively 

correlated with α- and γ- tocopherol. δ-tocopherol was negatively correlated with the ratio of 

α-/γ- tocopherol while its correlation with α- and γ-tocopherol was not significant (Table 2). 

Correlation analysis of Vit E components with seed coat colour (chapter 4) showed that seed 

coat colour had a significant positive correlation with δ-tocopherol but a significant negative 

correlation with α-, α-/γ- and total tocopherol (Table 3).  

 

Table 2 Pearson correlation analysis of Vit E components and seed coat colour in the L58 × 

R-o-18 RIL population. AL: α-tocopherol; Ga: γ-tocopherol; De: δ-tocopherol; To: total 

tocopherol; ALGa: α / γ tocopherol ratio; and SC: seed coat colour. ** means significant at 

P≤0.01; * significant at P≤0.05. 
 

 Trait SC AL Ga De ALGa 
AL -0.44** 1    
Ga 0.18 -0.09 1   
De 0.231* -0.16 0.15 1  
ALGa -0.373** 0.69** -0.65** -0.23* 1 

To -0.249* 0.78** 0.54** -0.01 0.19 
*  Correlation is significant at the 0.05 level (2-tailed). 

**  Correlation is significant at the 0.01 level (2-tailed). 

 

NMR  results of seedling metabolites detection 

To assess the variation in metabolites present in the B. rapa RIL population we performed 

NMR analysis on young seedlings. Usaually an NMR spectrum consists of hundred signals. 

Among these, 19 compounds in the organic/amino acid, sugar/glucosinolate and aromatic 

regions of NMR spectra were annotated by 1H-NMR (Table 2), but for many unknown signals 

further 2D NMR measurements are required to be identified. 1H-NMR data of RIL were 

subjected to principal component analysis (PCA). PCA of seedling metabolites revealed that 

the two parental lines were quite different, especially in PC2. PC2 was mostly composed of 

progoitrin, polypropanoids and organic compounds, while PC1 mostly corresponded to 

neoglucobrassicin (Figure 2).  
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Figure 2 PCA analysis of seedling metabolites of the L58 × R-o-18 RIL population. Parental 

values are indicated in box.  

 

The PCA analysis (Figure 2) revealed that L58 had a higher level of glucosinolates and 

phenylpropanoids whereas the levels of sucrose, glucose and glutamate were higher in R-o-

18. The major phenylpropanoid was sinapoyl glucose. There were at least two more aliphatic 

glucosinolates, one very similar to progoitrin. Their exact identity can be determined upon 

two-dimensional (2D) spectrum analysis. In the aromatic area, there were signals from indole 

compounds (tryptophan or indole acetic acid (IAA)), but this also needs to be confirmed by 

2D spectra. As an example, in Figure 3 the 1 H NMR spectra of L58 are shown, expanded for 

organic/amino acid, sugar/glucosinolate, and aromatic regions. 
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Figure 3 1 H NMR spectra of L58 expanded for organic/amino acid (δ 0.8- δ 4.0), 

sugar/glucosinolate (δ 4.5- δ 6.0), and aromatic regions (δ 6.2- δ 8). The X-axis shows the 

chemical shift in ppm or δ. 1: asparagine, 2: malate, 3: glutamine, 4: glutamate, 5: citrulline, 

6: alanine, 7: threonine, 8: valine, 9: isoleucine, 10: progoitrin, 11: sinapoyl glucose, 12: 

glucose, 13: flavonoid 1, 14: flavonoid 2, 15: neoglucobrassicin, and 16: phenylpropanoid. 
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QTL analysis of seed Vit E 

Each tocopherol component was subjected to QTL analysis and QTLs related to seed 

tocopherol (α-, γ-, δ-, α-⁄γ-, and total tocopherol) concentrations were detected on 

chromosomes A6 and A9 (Figure 4, Table 3). About 46% of the variance for α-tocopherol 

was explained by two QTLs (AL1 and AL2, respectively on chromosomes A9 and A6). Two 

QTLs were found for total tocopherol (To1 and To2), explaining almost 42% of the vit E 

variance. WhileTo2 co-located with AL1 on A9, To1 did not co-locate with AL2 on A6, but 

instead co-located with the only QTL for γ-tocopherol (Ga) on A6. The QTL for delta 

tocopherol (De) maps to the same region of A9 where also AL1 and To2 were mapped. In this 

region also the seed coat colour QTL (SC1) was mapped. 

 

 
 Figure 4 Vitamin E related QTLs identified in the B. rapa L58 x R-o-18 RIL population. 

QTLs mapped to the linkage groups A6 and A9 are indicated with boxes and whiskers 

representing 1-LOD and 2-LOD confidence intervals (95%) respectively for significant QTL. 

AL: α-tocopherol; De: δ-tocopherol; To: total tocopherol, and ALGa: α-⁄γ- tocopherol ratio. 

Also the location of seed colour QTL SC1 is shown. 
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Table 3 QTLs related to Vitamin E concentration as detected in seeds of the B. rapa L58 × R-

o-18 RIL population.  Peak position indicates the location of the highest LOD score for each 

QTL. % Expl. var. is the percentage of total phenotypic variance explained by individual 

QTLs. The allelic effect of each QTL is indicated (Effect), which is calculated as µA-µB (µ= 

mean), where A and B are RILs carrying L58, respectively R-o-18, genotypes at the QTL 

position. Effects are given in mg/g or without unit (ratio of α⁄γ).  
 

Trait 
QTL  Linkage 

group 

LOD Peak position 

(cM) 

% Expl. var. Effect 

α-tocopherol 
AL1 

AL2 

A9 

A6 

9.15 

3.35 

4.3 

36.7 

36.6 

9.5 

-0.15 

+0.08 

γ-tocopherol Ga A6 4.75 81.7 21.0 +0.09 

δ-tocopherol De A9 2.83 5.14 13.0 +0.004 

Total tocopherol 
To1 

To2 

A6 

A9 

7.96 

4.68 

81.7 

1.9 

27.0 

14.5 

+0.17 

-0.12 

α⁄γ tocopherol ratio ALGa A9 5.14 2.37 22.3 -0.92 

 

 

QTL analysis of seedling metabolites 

Genetic analysis of 238 signals detected in the NMR spectra enabled the identification of 

QTLs for 148 signals (summarized in Table 3). Six QTLs related to malate, citrulline and 

choline were identified in the organic region of the spectrum. The strongest QTL was 

belonging to the class of phenylpropanoids explaining 41% of the variation in seedlings. This 

QTL is one of six QTLs detected for phenylpropanoid compounds. The major 

phenylproponoid was sinapoyl glucose showing QTLs on A6 and A9. In the amino acid 

region at least 12 QTLs controlling variation for alanine, asparagine, glutamine, isoleucine, 

threonine and valine were detected. One of them on G7 explained more than 30% of 

asparagine variance. QTL analysis of the glucosinolate region of the NMR spectrum detected 

six significant loci, with the highest one for progoitrin. About 40% of progoitrin and more 

than 30% of asparagine variation in seedlings was explained by co-locating QTLs on G7. 

Alpha and beta glucose QTLs on G8 and G7 explain 19% and 15% of the seedling glucose 

variation. In the aromatic region three QTLs for flavonoids and three QTLs for sinapoyl 

glucose were detected. Additional QTLs were detected for compounds of which the chemical 

identity is not known. 
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Table 4 Overview of QTLs related to seedling metabolites detected in the B. rapa L58 × R-o-

18 RIL population. Peak position indicates the location of the highest LOD score for each 

QTL. % Expl. var. is the percentage of total phenotypic variance explained by individual 

QTLs. 
compound Linkage 

group 
LOD Peak position 

(cM) 
% Expl. Var. 

Alanine G11 3.4 27.4 12.5 

G7 11.2-12.3 44.1 33.0-36.2 Asparagine 

A5 4.0- 4.6 24.2 10.0-11.7 

A4 3.3 0 11 

G7 3.4 24.8 9.7 

G8 3.8-7 12.5, 23.18 12.5-23.0 

Glutamine 

G11 2.5-5.7 27.4 8.4-15.0 

Isoleucine G8 3.1-4.6 23.1 11.4-16.7 

Threonine G7 4.6 3.3 16.8 

G8 4.0-4.9 23.1 15.0-16.5 Valine 

A9 3.4 20.5 10.7 

G8 4.3-7.0 12.5, 4.8, 8.4 15.7-24.5 

G7 3.4-3.6 24.8 10.4-11.2 

Glutamate 

G11 2.9-3.6 27.4 09.0-11.2 

Citrulline A6 2.5-3.3 8.4 9.3-12.4 

G7 3.4 24.8 12 Choline 

A6 1.9 56.9 6.5 

A10 5.3-8.6 23.6, 13.5 19.2-27.2 Malate 

A6 3.3 59.0 9.4 

A6 5.0 8.4 18.1 

A9 4.0 1.5 12 

Phenylpropanoids 

A10 6.5-13.2 7.5, 13.5 20.2-41.3 

A5 4.6-5.3 24.2 11.0-12.5 

G7 9.7-14.4 44.1 28.3-39.5 

Progoitrin 

G8 4.4 23.1 14.5 

A5 2.9-4.8 0 11.1-18.0 Neoglucobrassicin 

G8 3.6-5.8 4.8, 46.4 10.6-17.7 

Glucose (alpha) G8 5.3 12.5 19 

Glucose(beta) G7 4.2 24.8 15.6 

Flavonoid 1 
(Kaempferol 
glycoside) 

A10 5.1 13.5 18.5 

Flavonoid 2 
(Kaempferol type) 

A6 3.9 79.6 14.4 

Flavonoid 3 A5 2.9 0 11 

A6 2.6-4.8 70.1, 8.4, 0 09.0-17.6 Sinapoyl glucose 

A9 2.7-5.6 1.5 09.1-17.5 

Unknown A5 4.3-35 30.6 24.0-80.8 

Unknown G8 4-13 4.8 34.0-41.0 

Unknown G8 4.4 8.4 16 

Unknown G7 3. 3.0 12.5 

Unknown G8 3.9 2.9 13.3 

Unknown G8 2.7 0 10.3 

Unknown G8 9.5-15.2 4.8 31.6-45.4 

Unknown G11 3.3-4.4 23.1 11.0-14.2 
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G8 3.6-4 27.4 12.0-12.7 

Unknown G7 5.5 44.1 19 

Unknown G7 4.4 24.8 16 

Unknown A6 3.8-4.8 0 12.0-17.2 

Unknown G11 2.6-3.9 27.4 08.0-12 

Unknown G8 3-6.2 12.5, 23.1 10-19.4 

Unknown G11 2.7-3.2 27.4 10-10.4 

Unknown A6 5-5.9 8.4 16.0-21.0 

Unknown A5 3.6 0 13.8 

Unknown G4 3.2 5.5 12 

Unknown G4 3 0 11.2 

Unknown A10 3.5-5.5 13.5 13.6-17.3 

Unknown G7 3.1 3.3 11.8 

Unknown A5 2.9-5.1 0 11.4-19.0 

Unknown G7 6.7-16.1 44.1 22.6-46.5 

Unknown A10 5.1-13.9 7.5 15.1-36.7 

Unknown A5 3.1-4.6 0 12.0-17.1 

3.2-4.6 12.5 12.3-18.0 Unknown G8 

4 8.4 14.7 

Unknown G11 3.6 17.2 12.2 

Unknown G8 2.7-3.1 8.4, 23.1 10.3-12.0 

G10 3.4-4.5 15.0 12.7-16.4 Unknown 

A5 2.5-2.7 0 10.0-11.0 

Unknown A6 4.6 79.6 16.8 

A10 2.6-4.6 52.0 10.0-17.0 Unknown 

A5 4.4-23.4 24.2 16.0-60.0 

Unknown A6 4.3 6.4 15.8 
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Discussion 

The determination of the concentration of metabolites in a recombinant inbred line population 

enables the mapping of quantitative trait loci for the individual metabolites and discovery of 

co-locating and possibly co-regulated compounds. The obtained map positions and insights in 

the genetic control of the various metabolites can help improving the breeding for healthy 

compounds in crop plants. 

Tocopherols are important dietary nutrients as they constitute the essential vitamin E. The 

presence of variation in vitamin E seed concentration in the RIL population under study 

allowed the detection of QTLs for all tocopherols. Considerable transgression of tocopherol 

levels beyond the parental values revealed that both parents contribute alleles with positive 

effects at the different loci, in case of the two major QTL for alpha and total tocopherol 

respectively on A6 and A9. This observation also indicates a potential for improvement of 

vitamin E content and composition through classical breeding. As α-tocopherol is highly 

positively correlated to the total tocopherol concentration and one of their respective QTLs 

maps to the same position, it suggests that the concentration of α-tocopherol, and not of the 

intermediate γ-tocopherol, has the major contribution to the overall tocopherol concentration. 

However, the second locus for total tocopherol concentration co-locates with the γ-tocopherol 

QTL on A6, showing that indeed both tocopherols with highest concentrations contribute to 

the total tocopherol concentrations. The absence of a significant correlation between α-, γ- 

and δ concentrations and the finding that these were controlled by different QTLs indicates 

their independent genetic regulation, which is in agreement with findings of Marwede et al. 

(2004) in canola. Thus, with three independent loci controlling α- and γ-tocopherol it should 

be possible to enhance the concentration of both. This will have a negative effect on δ-

tocopherol concentration though, since the co-locating De and AL1 loci have opposite allele 

effects and although both QTLs may be caused by different genes, the corresponding alleles 

may be difficult to separate genetically. A similar antagonistic effect was seen for 

Arabidopsis, where over-expression of the AtVTE3 gene, encoding the tocopherol 

biosynthetic enzyme 2-methyl-6-phytylbenzoquinol methyltransferase, increases 

accumulation of δ-tocopherol but decreases the γ-tocopherol content in seeds (Van 

Eenennaam et al., 2003).  

The seed colour locus SC1 is also located on the top of A9 and correlation analysis indeed 

showed yellow seeds to contain higher amounts of α- and total tocopherol and lower amounts 

of δ- tocopherol. Since there is no biochemical or genetic reason to suggest a common 

biochemical basis of biosynthesis of tocopherol and the flavonoids contributing to seed 

colour, a close linkage of different genes rather than one common gene is the most likely 

explanation for this correlation. 
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An adequate diet must contain essential amino acids. There is not much known about genetic 

variation in amino acid content in Brassica. Here we identified four QTLs for the essential 

amino acids isoleucine and valine, co-locating on G8. The isoleucine biosynthesis pathway is 

almost parallel to valine biosynthesis, except for its first step which involves a threonine 

deaminase and dehydrase. This locus possibly corresponds to the gene encoding the 

biosynthetic threonine dehydratase (TD) isozyme, as what has been isolated from tomato and 

potato (Samach et al., 1991; Hofgen at al., 1995). Non-essential amino acids are equally 

important as the essential amino acids in our body. Eight QTLs for non-essential amino acids 

were identified in the RIL population. These were all independent, except for one, which was 

shared between alanine and glutamine. Glutamate also shared a QTL with this co-located 

region. As glutamate is the substrate for the glutamine synthesis and the α-amino group of 

glutamate can be transferred to pyruvate to form alanine (Forde and Lea, 2007), this locus can 

regulate the accumulation of glutamate along with glutamine and alanine synthesis and is 

somewhere upstream in the biosynthesis pathway of all these compounds.  

Six glucosinolates (progoitrin and neoglucobrassicin) related QTLs localized on A5, G7 and 

G8. Previously five QTLs related to progoitrin were mapped to chromosomes A1, A3, A4, A8 

and A10 by Lou et al. (2008) in B. rapa DH population. He used forty-day-old leaves for 

metabolite analysis and there is likely to be difference in the regulation of glucosinolate 

biosynthesis in mature leaves, compared to young seedlings, which may even still carry 

glucosinolates originally present in the seed. In any case the progoitrin QTL on A5 is a new 

locus to regulate progoitrin accumulation in young seedlings. Additional markers are needed 

to assign linkage groups G7 and G8 to the B. rapa reference map (Choi et al., 2007) and thus 

rule out similarity of these loci with loci mapped by Lou et al. (2008). Extensive studies about 

aliphatic glucosinolates in Arabidopsis have led to the identification of genes encoding AOP 

(2-oxoglutarate-dependent dioxygenase) and MAM (methyl-thioalkylmalate synthase), 

controlling the modification of side-chain moiety and elongation respectively (Field et al., 

2004; Heidel et al., 2006). The regulation of aliphatic glucosinolate biosynthesis enzymes is 

controlled in Arabidopsis by the R2R3 myb-like transcripton factors, myb28 and myb29 

(Hirai et al., 2007).  

 Flavonoids are most commonly known for their antioxidant activity. Three QTLs were 

detected for flavonoids (kaempferol derivatives) on A5, A6, and A10. The last QTL on A10 

co-located with malate and phenylpropanoids QTLs. As flavonoids are synthesized via the 

phenylpropanoid pathway, the locus on A10 is probably involved in upstream 

phenypropanoid biosynthesis. 

Alpha glucose QTL was mapped on the same position as the glutamate locus while beta 

glucose QTL was mapped together with glutamine, glutamate, and choline related QTLs. 

Possibly glucose QTLs have role in carbon metabolism during amino acid synthesis.  
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The markers which we detected here can be used to establish a diagnostic marker assisted 

selection in plant breeding. Gaining Knowledge about the genetics behind the accumulation of 

healthy compounds is necessary while new opportunities for pathway elucidation and 

identification will be created. Genetic improvement of healthy compounds improves 

nutritional quality which is an important objective in crop breeding programs.  
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Materials and methods 

Seed preparation for HPLC  

F7 seeds derived from one plant per line of recombinant inbreds of the B. rapa L58 × R-o-18 

population were used for Vitamin E (tocopherol) measurement (two replicates of lines with 

two technical replicates from the same plant). To validate the data, 20 lines chosen at random 

were re-measured after measuring all samples. For the tocopherol extraction 10-40 mg seeds 

were ground in 2-ml reaction tubes with a Geno/Grinder 2000 (SPEX-Sample Prep, 

Metuchen, USA) using n-heptane and 3.0 - 4.0 mm metal beads. The samples were incubated 

at -20 °C for 2 h. Further applications and HPLC analyses were performed as described by 

(Dähnhardt et al., 2002; Falk et al., 2003; Schledz et al., 2001).  

Quantification of the tocopherols was done by fluorescence detection (excited at λ=290 nm, 

emission at λ=328 nm). To identify the individual tocopherols, the retention times were 

compared with standard substances (Merck). 

 

Seedling preparation for NMR 

Thirty seeds per RIL of the B. rapa L58 × R-o-18 were used. Seeds were surface sterilized 

with 70% ethanol (v/v) for 30 seconds, followed by agitation for 5 min in sodium 

hypochlorite (2.0% active chlorite). After three rinses in sterile distilled water, 30 seeds of 

each individual (for every experiment) were placed in 15×90 mm petri dishes, each containing 

20–25 ml half strength MS salts and vitamins, without sucrose and solidified with 0.8% (w/v) 

agar. Petri dishes were placed vertically in a growth chamber maintained at 25˚C with a 16h 

light/8h dark photoperiod at a light intensity of 60 mEm-2s-1. Five-day-old seedlings without 

roots were harvested and freeze-dried.  

 

Seedling Extraction and NMR Analysis  

20 mg seedlings (dry weight) were extracted with a mixture of 500 µl methanol-d4 and 500 µl 

D2O (KH2PO4 buffer, pH 6.0) containing 0.05% TSP (trimethyl silyl propionic acid sodium 

salt, w/v) by ultra-sonication for 20 min. After centrifugation, 800 µl supernatant were 

transferred to an NMR tube. 1H NMR spectra were recorded at 25oC on a 600 MHz Bruker 

AV600 spectrometer equipped with a cryoprobe operating at a proton NMR frequency of 

600.13 MHz. CD3OD was used as the internal lock. Each 1H NMR spectrum consisted of 128 

scans using following parameters: TD=51200, Spectrum width=16.02 ppm, 0.25 Hz/point, 

pulse width (PW) = 30o (6.6 µsec), acquisition time = 1.70 sec. and relaxation delay (RD) = 

2.0 sec. A pre-saturation sequence was used to suppress the residual H2O signal with low 

power selective irradiation at the H2O frequency at µ 4.869 (2915.9 Hz) by 60.59 dB during 

the recycle delay. Free Induction Decay (FID)s were Fourier transformed with LB = 0.3 Hz 

and the spectra were zero filled to 32 K points. The resulting spectra were manually phased 
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and baseline corrected, and calibrated to TMSP at 0.0 ppm, using Topspin (version 2.1, 

Bruker). 

The 1H NMR spectra were automatically reduced to ASCII file. Spectral intensities were 

scaled to the internal standard (TSP) area and reduced to integrated regions of equal width 

(0.04 ppm) corresponding to the region of δ 0.3–δ 10.0. The region of δ 4.75–δ 4.90 and δ 

3.28–δ 3.34 was excluded from the analysis because of the residual signal of HDO and 

CD3OD, respectively. Bucketing was performed by AMIX software (Bruker). Principal 

component analysis (PCA) was performed with the SIMCA-P software (v. 12.0, Umetrics, 

Umea, Sweden) with scaling based on the Pareto method.  
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Insertional mutagenesis using heterologous maize transposons or Agrobacterium mediated T-

DNA insertions, has been a valuable tool for the identification and isolation of genes that 

display a mutant phenotype (Pereira, 2000). The phenotype associated with the altered 

expression of a gene is often the best clue to its functional role in the plant. Mutant 

phenotypes can be broadly defined at the morphological, biochemical or physiological levels 

and provide information on the interaction between different processes. The maize transposon 

systems Ac–Ds and En-I (Spm/dSpm) have been shown to transpose after being introduced 

into numerous heterologous hosts. These heterologous transposons can be modified in vitro 

and thus offer several advantages for transposon mutagenesis over the endogenous systems 

(Pereira, 1998), which are also not available in many plant species. Activation tagging 

provides an alternative to knockouts or RNA-silencing induced knockdowns, through the 

upregulation, rather than abolition, of native gene expression. Employing insertion sequences 

that carry a strong enhancer element near the border, activates the adjacent gene ectopically or 

just enhances its expression level resulting in dominant phenotypes (Pereira, 2000). A 

dominant mutant frequency of about 1% was obtained using En/I transposon based-activation 

tagging in Arabidopsis by Marsch-Martinez et al., (2002). 

It would be very useful to have access to a high efficiency mutagenesis tool in Brassica rapa, 

which is receiving increasingly more interest for functional genomics studies, in view of its 

economic importance, its development as a model Brassica crop species 

(http://www.brassica.info/) and the genomic advantages as a close relative of the plant 

reference species Arabidopsis thaliana. The initial goal of this research project was therefore 

to develop an En/I transposon–based activation tagging population in B. rapa. This mutant 

population, together with an EMS-generated M2 population for tilling purposes as developed 

by Østergaard e.a. at the John Innes Center (Norwich, UK) (http://www.jic.ac.uk/) could 

provide valuable and complementary tools to study plant gene function in B. rapa. 

The first question that had to be answered was if the En/I transposon system is active in B. 

rapa. In chapter 2, the activation of a heterologous En/I tagging construct was shown in B. 

rapa using Agrobacterium rhizogenes hairy root transformation as an easy and fast gene 

transfer method. Although in principle activation tagging could be achieved with a collection 

of root cultures containing independent activation tag insertions to screen for altered root 

phenotypes, we considered a collection of stable activation tag insertion lines a more widely 

applicable tool. Therefore we initiated A. tumefaciens mediated transformation of B. rapa. B. 

rapa is known as a species recalcitrant to transformation (Moon et al., 2007; Tsukazaki et al., 

2002; Narasimhulu and Chopra 1988), so we expected low transformation frequencies, as we 

obtained upon transformation with the pCAMBIA2301 construct expressing 35S-GUS. 

Unfortunately we did not get any transformed shoots carrying the En/I activation tagging 

construct, not even in B. napus, which is much less recalcitrant to transformation. Since 
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tobacco could be easily transformed with the construct we concluded that one of the genes 

present on the construct poses particular problems upon expression in B. rapa. Previously this 

construct was transformed to Arabidopsis upon A. tumefaciens dip-inoculation, also at 

relatively low transformation frequencies (Marsch-Martinez et al., 2002). The transformants 

that were obtained all showed a dark-green, dwarfed phenotype, which could be attributed to 

sequences at the En/I construct, even after transposition of the I-element activation tag. This 

construct contains the SU1 negative selection marker gene, encoding a protein that converts 

the pro-herbicide R7402 into the herbicide sulfonylurea. Since this gene is expressed under 

control of the promoter of the Rubisco small subunit, which is mainly active in green tissue, it 

also explains that production of transgenic roots or calli with this construct was not much of a 

problem, but that regeneration of photosynthesizing green shootlets turned out to be 

impossible. 

It took a long time and many transformation experiments to find this out. Although the best 

way to proceed towards an activation tagging procedure was to delete the SU1 gene from the 

construct and restart transformation, time was too short to be able to achieve this and still 

obtain an activation tagged population which could be screened. Instead, the focus of the 

research was shifted towards analysis of genetic variation for transformation ability in B. 

rapa, since the transformation experiments with a few different genotypes showed striking 

differences in regeneration and in their response to A. tumefaciens and A. rhizogenes. 

Previously Zhang et al., (1998) observed a large variation in regeneration frequency in B. 

rapa when testing 123 genotypes. Also Sparrow et al. (2004) showed that a number of stages 

within the transformation process in B. oleracea were under strong genetic control, suggesting 

that altering the tissue culture conditions alone would have only a limited effect on 

transformation and regeneration efficiencies of recalcitrant material. This study by Sparrow et 

al. (2004) led to the finding of highly significant quantitative trait loci (QTL) associated with 

susceptibility to A. tumefaciens. Therefore we decided to test if there are any QTLs associated 

with susceptibility to A. tumefaciens in B. rapa. Since A. tumefaciens-mediated 

transformation is very time-consuming with the low transformation frequencies that are 

expected when using a transformation-recalcitrant species, we considered A. rhizogenes-

mediated hairy root transformation as an alternative to test for transformation competence. 

Since the virulence genes of Agrobacterium are conserved between A. tumefaciens and A. 

rhizogenes and since other important factors needed for T-DNA transfer are common to both, 

the analysis of plant genes regulating transformation by A. rhizogenes was expected to also 

shed light on the response to A. tumefaciens (Cogan et al., 2002). In chapter 3, the generation 

of two reciprocal F2 populations of about 200 individuals each, derived from crossing 

genotypes L58 and R-o-18 was described. These genotypes were chosen based on their 

difference in susceptibility to A. rhizogenes hairy root transformation, but also based on 
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morphological characteristics, such as plant architecture (vegetable type × oilseed type), 

different geographical origin, self-compatibility and rapid-cycling, to allow the rapid 

development of a large segregating population and the prospect to carry this on towards the 

generation of a Recombinant Inbred Line population. An Amplified Fragment Length 

Polymorphism (AFLP) platform was used to genotype the F2 population. A great advantage 

of this technique is that it is quick, relatively cheap and usually produces many polymorphic 

bands using a single PCR reaction. A disadvantage is that these markers are mostly dominant, 

which particularly for an F2 population, in which many loci are still heterozygous, is 

inconvenient for genetic mapping. Therefore Simple Sequence Repeat (SSR) markers were 

added to provide semi-dominant markers and to be able to assign the identified linkage groups 

to their respective chromosomes as presented in the B. rapa reference linkage map (Choi et 

al., 2007). 

The genetic map that was made for one of the two reciprocal F2 populations was sufficiently 

detailed to allow QTL analysis. Initially traits related to transformation and regeneration were 

studied, revealing two QTLs for adventitious and hairy root production. These QTLs can be 

used for future selection of B. rapa lines that are more efficient in regeneration and 

transformation. In addition to these traits, the population segregated for many more traits for 

which QTLs could be identified. A total of 13 QTLs for nine traits including flowering time, 

total plant height, plant height until first open flower, number of siliques, number of seeds per 

silique, seed oil content, seed size, seed weight and seed colour were found. All of these traits 

are interesting for breeding purposes, both for vegetable crop characters (as found in L58) as 

for oilseed properties (R-o-18). 

Yellow seededness has often been promoted for oilseed Brassicas as it often corresponds with 

significantly higher seed oil contents (Rakow et al., 1999) and the meal of yellow-seeded 

varieties that remains after extracting oil has higher protein and lower crude fiber contents 

than that of black-seeded varieties and is of better quality for use as poultry and livestock feed 

(Tang et al., 1997). However, surprisingly there are no yellow-seeded modern commercial 

varieties in many parts of the world, due to a common believe among farmers that rape seed 

should be black (R.J. Snowdon, pers. communication). There may be some experimental 

ground for that, as we found. The F2 population segregated for a strong QTL explaining 52 % 

of the seed colour variation mapping to chromosome A9 (chapter 2). The black seed coat 

allele was fully dominant over the allele for yellow seed coat. The seed coat colour QTL co-

localized with QTLs for seed size, seed weight, seed oil content, number of siliques and 

number of seeds per silique. Seed colour and seed size were controlled by the maternal plant 

genotype rather than by the seed genotype. Much to our surprise, no correlation was detected 

between seed coat colour and seed oil content when comparing all genotypes. We 

hypothesized that this absence of correlation is mainly due to the complete dominance of 



Chapter 6   General discussion 

 115 

black seededness over yellow seededness, while seed oil content shows additive allelic 

effects. However, a significant positive correlation was observed between seed coat colour 

and seed oil content when examining the light coloured classes only. This correlation 

contradicts the previously found negative correlation between dark seededness and oil 

content, as described by Badani et al. (2006) and Rakow et al. (1999). As also black seeded 

genotypes in general have higher oil seed contents than yellow-seeded genotypes it may not 

always be advantageous to select for yellow-seededness when breeding for high seed oil 

content in Brassicas. Our observation also questions the presence of one gene controlling seed 

colour and oil content at the QTL on chromosome A9. Although further detailed genetic 

analysis will be needed, it may well be that there are two closely linked genes at the A9 QTL, 

for which favourable alleles for low fibre content due to yellow seededness and for high oil 

content happen to be in coupling phase in most genotypes, but not in one or both of the L58 

and R-o-18 parents used to make the population. 

The major drawback of using an F2 population is that it is not immortal, in the sense that F3 

progeny will still segregate for many of the traits observed in the F2 and thus the population 

cannot be easily maintained as stable genotypes. For Brassicas this is normally achieved 

through the development of doubled haploid derived populations. However, these generally 

have the disadvantage of showing self-incompatibility and sterility hampering production of 

sufficient seeds, and the tissue culture phase appears to be a considerable selection bottleneck 

(Kole et al., 1997) often leading to strong skewedness towards the alleles of only one of the 

parents (Suwabe et al., 2004). Therefore instead a Recombinant Inbred Line (RIL) population 

was developed from this F2 population by single seed descent, as described in chapter 4. The 

Illumina® BeadXpressTM genotyping platform combined with the GoldenGate assay (van 

Orsouw et al. 2007) as recently developed by KeyGene N.V (Wageningen, The Netherlands) 

was used to genotype the RIL population in F7. This platform provided 86 SNP polymorphic 

markers that could be mapped. We subsequently added 6 publicly available SSRs also used to 

map the F2 population to compare both and to relate the linkage map to the B. rapa reference 

map (Choi et al., 2007). The RIL genetic map covers a total distance of 399.8 cM with an 

average resolution of 4.34 cM. Still 28% of the markers showed considerably distorted 

segregation but this is less comparing with Brassica rapa DH populations (more than 50%)  

(Wu et al., 2007; Lou et al., 2007; Suwabe et al., 2004).  

A total of 26 QTLs were detected in the RIL population for 19 traits including adventitious 

and hairy root production, flowering time, total plant height, plant height until first open 

flower, leaf number until first open flower, total leaf number, cuticular wax appearance, 

branch number, number of siliques, silique length, silique beak length, silique carpel number, 

seed weight, seed colour, shattering and seed ripening. Two strong QTLs for the seed colour 

(SC1 and SC2) were found, explaining about 70% of the seed coat colour variation. Dark 
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alleles for SC1 derive from L58 and for SC2 from R-o-18. QTLs for relevant breeding traits 

such as carpel number, pod shattering, seed vivipary and cuticular wax were also detected in 

this RIL population. 

Next to an important vegetable and oil seed crop, Brassica rapa is a valuable source of 

diverse health-promoting antioxidant metabolites. There appears to be a wide variation for 

these compounds in B. rapa, for which the genetic basis is largely unknown. In chapter 5 the 

genetic analysis of health related compounds, as well as other primary and secondary 

metabolites, is presented and discussed. QTLs for seed tocopherol (α-, γ-, δ-, α-⁄γ-, and total 

tocopherol) content were detected on A6 and A9 explaining a large fraction (up to 37%) of 

the observed phenotypic variance for seed tocopherol content. Previously Abdel-Farid et al. 

(2007) demonstrated the use of 1H NMR spectroscopy to uncover qualitative and quantitative 

differences in metabolite concentrations in various cultivars of B. rapa, therefore this tool was 

used to detect elucidated metabolites, several organic and amino acids, carbohydrates, 

phenylpropanoids, flavonoids and glucosinolates in seedlings of the RIL population. 

This yielded a large dataset of NMR spectra comprising 238 signals. The conversion of NMR 

signals to compounds is not easy, especially if no two-dimensional NMR spectra are 

available. So far, 19 compounds, distributed over organic/amino acid, sugar/glucosinolate and 

aromatic regions could be annotated. Out of the 238 signals, QTLs were determined for 148 

signals. Among these are six glucosinolates (progoitrin and neoglucobrassicin), four essential 

amino acids and eight non-essential amino acids. Although this is a first screen for seedling 

metabolites, it shows the potential of the use of this population for further development of 

genetic markers suitable for breeding for improved nutritional quality in B. rapa. Further 

analysis is needed for the cloning of genes involved, which could be used for future genetic 

engineering of nutritional quality.  

The developed RIL population is a self compatible and rapid cycling population and a useful 

source for genetic analysis and identification of genetic loci that can be used in future 

breeding programs. The results described in chapters 4 and 5 are mainly illustrating the 

potential of the population for genetic analysis. We did not focus in detail on traits 

particularly useful for vegetable or oilseed morphotypes, which will be segregating in this 

population considering the origin of both parents. Such traits could be shoot tenderness, 

resistance to particular pathogens, storability, adaptation to required growth conditions, etc. 

The population can also be used to directly select suitable lines as starting material for further 

breeding. For instance, the genotypes with better regeneration and transformation abilities 

could be used in future transformation experiments. Since transposon based activation 

mutagenesis is still an important goal to pursue in B. rapa they would be the genotypes of 

choice for transformation with improved activation tagging constructs. The genetic map of the 

RIL population can be further improved by adding the AFLP markers used for the F2 map. 
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This would enhance the resolution of the map and allows a much better comparison of traits 

and QTLs analysed in both populations. Further studies are therefore needed to refine the map 

positions and improve the correlation of the RIL genetic map to the B. rapa reference map. 

This reference map is expected to be integrated soon with the physical map based on genomic 

DNA sequence (http://www.brassica-rapa.org/BRGP/status.jsp). This will simplify 

identification of candidate genes, and facilitates the comparison to functional analyses for 

related genes performed in Arabidopsis, or other Brassicaceae species for which genome 

sequence and functional genetic information is available. 
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Summary 
 

 

Brassica rapa is an important crop with a variety of forms, and a wide distribution in the 

world. It is used as oil seed and vegetable crop and a valuable source of diverse health-

promoting metabolites. It also can serve as a model for genetic and molecular analysis in the 

Brassica genus, to which all rapes, kales and cabbages belong, as it has the smallest genome 

size and some genotypes with a rapid life cycle. 

Insertional mutagenesis using heterologous maize transposons has been a valuable tool for the 

identification and isolation of genes in Arabidopsis. Transposon-based activation tagging 

systems use a construct with constitutive enhancer elements that can cause transcriptional 

activation of flanking plant genes, which can result in dominant mutant phenotypes and 

subsequent isolation of the genes involved. Chapter 2 describes the action of an En/I 

activation tagging construct in B. rapa through Agrobacterium rhizogenes–mediated hairy 

root transformation. Successful transformation of this construct to B. rapa ssp. by A. 

tumefaciens was not achieved, probably due to the combination of an inefficient plant 

transformation and regeneration system, the length of the construct and most importantly the 

presence of the SU1 gene in the construct that appears to inhibit the regeneration of 

transformed shoots.  

 

As an alternative to the insertional mutagenesis approach to identify genetic loci that impact 

traits, there is a genetic approach based on quantitative trait locus (QTL) analysis. Segregating 

populations are needed to map QTLs for traits of interest. Chapter 3 describes the analysis of 

an F2 population derived from a cross between two distinct, but early flowering and self 

compatible, B. rapa genotypes, L58 and R-o-18. Amplified fragment length polymorphism 

(AFLP) markers together with simple sequence repeat (SSR) markers were used to genotype 

this F2 population and anchor the linkage map to the reference genetic map of B. rapa. Highly 

significant QTLs associated with the production of adventitious roots and the transformation 

competence to A. rhizogenes were detected, which will allow the selection of lines that are 

more efficient in transformation experiments. The analysis detected a strong QTL associated 

with seed coat color as well as QTLs for various morphological traits.   

 

To fix the recombination events as much as possible and to obtain an “immortal” mapping 

population, a recombinant inbred line (RIL) population was developed from this F2 

population. Chapter 4 describes development of this RIL population, for which a genetic 

linkage map was constructed using the Illumina® BeadXpressTM genotyping platform of 

Keygene NV and additional SSR markers. Analysis revealed an additional QTL for seed coat 
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colour as well QTL for pod shattering, carpel number, cuticular wax and seed vivipary. 

Chapter 5 describes the detection of QTLs related to primary and secondary metabolites in 

this RIL population. The two parental lines show clear differences in metabolite profile, 

which allowed the finding of QTLs for glucosinolates, phenylpropanoids, glucose, glutamate 

and amino acids after analysis with H1- NMR. HPLC analysis of tocopherols revealed four 

QTLs controlling the levels of this important antioxidant.  

 

The information on the genetic control of health related compounds indicates the potential to 

improve nutritional quality in classical crop breeding programs. 
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Samenvatting 
 

 

Brassica rapa is een belangrijk gewas met een verscheidenheid aan planttypes en een brede 

wereldwijde verspreiding. Het gewas wordt gebruikt voor olie- en groenteproductie en is een 

waardevolle bron van verschillende gezondheidsbevorderende metabolieten. Het is ook een 

modelsoort voor genetische en moleculaire analyse in het genus Brassica (met daarin alle 

kolen en rapen vertegenwoordigd) met het kleinste genoom en sommige genotypes met een 

korte generatieduur. 

Insertiemutagenese met behulp van maïstransposons is een waardevol hulpmiddel gebleken 

voor de identificatie en isolatie van genen uit Arabidopsis. “Activation-tagging” systemen 

gebaseerd op transposons maken gebruik van een construct met constitutieve expressie 

inducerende “enhancer” elementen die de transcriptie van flankerende plant genen kunnen 

activeren. Dit kan resulteren in dominante mutante fenotypes, op basis waarvan nieuwe genen 

geïdentificeerd kunnen worden. Hoofdstuk 2 beschrijft de werking van een En/I activation-

tagging construct in B. rapa na worteltransformaties met Agrobacterium rhizogenes. Dit 

construct kon niet met behulp van A. tumefaciens naar B. rapa overgebracht worden om 

stabiele transgene planten te krijgen. Waarschijnlijk kwam dit door de combinatie van een 

inefficiënt plant transformatie- en regeneratieprotocol; de lengte van het construct; en vooral 

door de aanwezigheid van het SUI gen op het construct. De aanwezigheid van dit gen lijkt de 

regeneratie van transgene scheuten sterk te remmen. 

 

Een alternatief voor insertiemutagenese om genetische factoren die een effect op 

planteigenschappen hebben te bepalen, is een genetische aanpak gebaseerd op de analyse van 

genetische loci voor kwantitatieve eigenschappen (“Quantitative Trait Loci – QTLs”). 

Uitsplitsende populaties zijn nodig om QTLs in kaart te brengen. Hoofdstuk 3 beschrijft de 

analyse van een F2 populatie afkomstig van een kruising tussen twee verschillende, maar 

vroegbloeiende en zelfcompatibele, B. rapa genotypes, L58 en R-o-18. “Amplified Fragment 

Length Polymorphism” (AFLP) merkers en “Simple Sequence Repeat” (SSR) merkers zijn 

gebruikt om deze F2 populatie te genotyperen en om de genetische koppelingskaart van de 

populatie te verankeren aan de genetische referentiekaart van B. rapa. Na analyse zijn enkele 

QTLs gevonden met een hoge statistische betrouwbaarheid voor associatie met de productie 

van adventiefwortels en transformatiecompetentie voor A. rhizogenes. Hiermee kunnen in de 

toekomst lijnen geselecteerd worden die efficiënter zijn in transformatie-experimenten. 

Verder is een sterke QTL gevonden voor zaadhuidkleur en QTLs voor diverse morfologische 

kenmerken. 
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Om de verschillende recombinatiegebeurtenissen in deze F2 populatie zo veel mogelijk vast 

te leggen en om zodoende een “onsterfelijke” populatie voor genetische analyse te krijgen, is 

een zogenaamde recombinante inteeltlijn (RIL) populatie ontwikkeld. Hoofdstuk 4 beschrijft 

deze ontwikkeling. Voor de constructie van een genetische kaart van deze populatie is gebruik 

gemaakt is van het Illumina® BeadXpressTM genotyperingsplatform van Keygene NV, 

aangevuld met SSR-merkers. Na analyse van de gegevens is een nieuwe QTL voor 

zaadhuidkleur gevonden, evenals QTLs voor voortijdige zaadval, het aantal vruchtbladen, de 

bladwaslaagkleur en voortijdige zaadkieming. Hoofdstuk 5 beschrijft de vondst van QTLs 

gerelateerd aan primaire en secundaire metabolieten in deze RIL populatie. De twee 

ouderlijnen vertonen duidelijke verschillen in metabolietprofiel, waardoor het mogelijk was 

om met behulp van H1- NMR QTLs te vinden voor de gehaltes aan glucosinolaten, 

fenylpropanoiden, glucose, glutamaat en aminozuren. HPLC-analyse van tocoferolen leverde 

vier QTLs op betrokken bij de productie van deze belangrijke antioxidant. 

 

De informatie over de genetische controle van de gehaltes aan gezondheidsbevorderende 

stoffen is illustratief voor de mogelijkheden om met behulp van klassieke 

veredelingsprogramma’s de voedingskwaliteit van gewassen te verbeteren.



 Acknowledgements 

 125 

Acknowledgements 
I am glad to acknowledge many people who helped me to reach this step here. Without their 

help, support and advices it would have been impossible to finish this work. 

First of all I would like to thank my promoter, Prof. dr. ir. Maarten Koornneef for his support, 

valuable advices and critical reading of my manuscripts. 

I would like to appreciate my supervisour, Dr. Mark Aarts for his guidance, the patient 

supervision, useful discussions, and critical reading of the manuscript. Dear Mark: I learned a 

lot form you. I enjoyed the work discussions we had weekly in your research group. I would 

like to thank your family also for the kind hospitality. 

I would like to thank Prof. Andy Pereira for his supervision in transposon tagging and 

providing the activation tagging constructs. 

Special thanks to Corrie Hanhart for her valuable help with population growing, harvesting, 

phenotyping and specially with translating the Dutch letters. 

I would like to thank all the members of the Genetic laboratory, memebers who left already: 

Sangita Talukdar, Judith van de Mortel, Artak Ghandilyan, Ana Assuncao, Wessel van 

Leeuwen, Jian Wu, Juan Du, Wu Huilan, Vanessa Stein, and the current members: Zeshan 

Hassan, Ya-Fen Lin, Mohamed El Soda, Ana Carolina Atala Lombelo Campos, Charles Neris 

Moreira, Inge van Oorschot, Padraic Flood, Hetty Blankestijn and Frank Becker. Dear Wessel 

and Artak, thanks for your valuable advices throughout my study.  

I also had the pleasure to be in the same office with Diana Zuluaga Agudelo, Tjoa Aiyen, and 

Duy Nguyen in new Radix building. I am glad that we could interact and help each other 

nicely.  

I would like to thank the memebers of Plant Phisiology group: Dr. Dick Vreugdenhil, Dr. 

Joost Keurentjes (especially for his useful ideas and discussions), Dr. Wilco Ligterink, Diaan 

Jamar, Jochem Eigenhuijsen, Lidiya Sergeeva, Myriam Olortegui Guzman, Rashid Kazemi, 

Noorullah Khan, and Ronny Joosen.  

I would like to thank Casper Pillen and Taede Stoker, especially Casper for watering and 

taking care of my plants in greenhouse. 

I would like to thank people in Plant Breeding department: Dr. Guusje Bonnema, Dunia Pino 

Del Carpio, Jianjun Zhao, and specially Johan Bucher for his help with LI-COR system to run 

molecular markers.  

I would like to extend my gratitude to secretaries: Aafke van der Kooi, Corrie Eekelder and 

Wytske Nijenhuis for their administrative help. 

Having some Iranian friends in abroad is a valuable opportunity. I would like to thank the 

Iranian community in Wageningen for creating a friendly atmosphere here. My special thanks 

to Reza, Mohammad and Benyamin and their families for nice talks, discussions and trips we 

had together.  



 Acknowledgements 

 126 

I would like to thank the Ministry of Science, Research and Technology of Iran and the IOP 

Genomics project IGE050010 on Brassica Vegetable Nutrigenomics for the financial support. 

 

My sincere thanks to my parents, father and mother-in-law, brothers and sister for their 

continuous emotional supports. My deepest gratitude is to my mother and father.   

Finally, my special gratitude to my wife Taeibah for her helps and supports and my daughter 

Mozhdeh for creating precious moments in my life.  

 

 

Hedayat Bagheri  

Wageningen, December 2009 

 



  

 127 

About the author 

Hedayat bagheri was born March 26, 1973 in Meybod-Yazd, Iran. After completing his high 

school, he studied Plant Agronomy in Isfahan University of Technology (Isfahan-Iran). He 

continued his studies at Tarbiat Modares University (Tehran-Iran) where he obtained his MSc 

in the field of Plant Breeding. In 2001 he was employed at BU Ali Sina University in 

Hamadan-Iran. He was awarded a scholarship from the Ministry of Science, Research and 

Technology of Iran in 2005 to do a PhD abroad. In June 2005 he started his PhD program at 

Wageningen University, Lab of Genetics. This dissertation presents the results of his PhD 

study on genetic analysis of breeding-related traits in Brassica rapa.  

 



  

 128 



  

 129 

Hedayat Bagheri
15 December 2009
Laboratory of Genetics, Wageningen University

date
► May 15, 2006

► Mar 2006

► 

Aug 2005
Dec 2005

► 

Oct 03-05, 2006
12.0 credits*

date
► 

Sep 19, 2006
Sep 13, 2007

Oct 02 & 03, 2008
► 

Nov 10, 2006
Feb 18, 2009

► 

Apr 03-04, 2006
Apr 02-03, 2007

Apr, 2008
Apr 06-02, 2009

May 18, 2007
► 

2005-2006
Mar 26, 2007
Feb 09, 2007
May 10, 2007
Feb 16, 2007
Aug 30, 2007
Sep 21, 2007
Sep 24, 2007
June 23,2008
Nov 03, 2008
Sep 17, 2009

► 

► 

Sep 30-Oct 04, 2006
Feb 03-06, 2008

► 

Sep 30-Oct 04, 2006
Apr 02-03, 2007
Feb 03-06, 2008
Aug 26-29, 2008
Jan 10-14, 2009

► Sep 14, 2007
► 

12.3 credits*

date
► 

Nov 20-24, 2006
Dec 11-14, 2006

May 30-Jun 05, 2007
Aug 26-29, 2008

► 

2004-2009
► 

8.1 credits*

date
► 

Sep-Nov 2005
Feb 2006

Oct-Dec 2006 
► 

► 

4.2 credits*

36.6
Herewith the Graduate School declares that the PhD candidate has complied with the educational requirements set by the
Educational Committee of EPS which comprises of a minimum total of 30 credits

physical cell biology

Regulation of Phase change in plants by MiRNAs, Prof. Scott Poethig

Seeds, microRNA and Darwin?, Dr. Hiro Nonogaki 
Small RNAs in abiotic stress, Jian-Kang Zho

comparative genomics of barley and rice:, Prof:A.Graner

Coordination of cell polarity formation in plant tissues, Prof. Zhenbiao Yang

Oral presentation: Molecular mapping and marker assisted selection in plants,Austria
Poster: Natural Variation in Plants, Wageningen
Poster: PAGXVII, San Diego

Molecular mapping and marker assisted selection in plants, Austria
Presentations
Poster: 15th Crucifer Genetics Workshop, Wageningen (NL)
Poster: Lunteren days

Membership of Board, Committee or PhD council

3) In-Depth Studies

Subtotal Personal Development

EPS courses or other PhD courses

Natural Variation in Plants, Wageningen
Journal club

Skill training courses

WGS - PhD competence assessment

* A credit represents a normative study load of 28 hours of study

TOTAL NUMBER OF CREDIT POINTS*

4) Personal development

2) Scientific Exposure 

EPS PhD student day, Wageningen University
EPS PhD student day, Wageningen University
PhD Student Retreat (EPS, SDV & IMPRS), Wageningen
EPS theme symposia

Theme 3 symposium 'Metabolism and Adaptation' , University of Amsterdam

NVBMB Spring Symposium, Wageningen

NWO-ALW Experimental Plant Sciences, Lunteren
NWO-ALW Experimental Plant Sciences, Lunteren

Issued to:

Gene Technology MOB-20306

Date:
Group:

Development of a transposon-based activation tagging population of Brassica rapa

Safe handling of radioactive material (level 5B)

Writing or rewriting a project proposal

Education Statement of the Graduate School

Experimental Plant Sciences

First presentation of your project

Subtotal Start-up Phase

1) Start-up phase 

Construction of an activation tagging system in B. rapa

MSc courses

International symposia and congresses
15th Crucifer Genetics Workshop, Wageningen (NL)

Laboratory use of isotopes
GATC GEN-30306

EPS PhD student days

Theme 3 symposium 'Metabolism and Adaptation' , University of Amsterdam

NWO-ALW Experimental Plant Sciences, Lunteren
NWO-ALW Experimental Plant Sciences, Lunteren

NWO Lunteren days and other National Platforms

Excursions

Building plant walls, F.Assaad
Studing microtubule organization, Dr. Marcel Janson
From molecular to morphology, Dr. Anja Geitmann

Seminars (series), workshops and symposia
6 seminars
Diversification of small RNA pathways in plants, prof.J.Carrington

IAB interview

Seminar plus

Gateway to Gateway Technology
System biology course: statistical analysis of ~omics data

Subtotal Scientific Exposure

Organisation of PhD students day, course or confere nce

Individual research training

Academic Writing II

WGS Project and Time Management

Member of a literature discussion group at Genetics

Subtotal In-Depth Studies

Statistics for the life science

 



  

 130 

The research described in this thesis was performed in the Lab of Genetics of Wageningen University 

and financially was supported by the Ministry of science, Research, and Technology of Iran and the 

IOP Genomics project IGE050010 on Brassica Vegetable Nutrigenomics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thesis layout and cover design: by the author 

Front page: zero in on the B. rapa. B. rapa is a valuable source of diverse metabolites which can be 

      studied by marker analysis to find related genes.   

Back page: seed coat color in B. rapa. seed coat color is controlled by the maternal plant  

                 genotype and its variation in F2 and RIL can be mapped with QTL analysis. 

 

Printed by: Wohrman Print service, Postbus 92, 7200 AB, Zutphen, The Netherlands./380 

 


