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Abstract Secondary metabolites like pyrrolizidine
alkaloids (PAs) play a crucial part in plant defense.
We studied the effects of soil-borne microorganisms
and soil-type on pyrrolizidine alkaloids in roots and
shoots of Jacobaea vulgaris. We used clones of two
genotypes from a dune area (Meijendel), propagated
by tissue culture and grown on two sterilized soils and
sterilized soils inoculated with 5% of non-sterilized
soil of either of the two soil-types. Soil-borne micro-
organisms and soil-type affected the composition of
PAs. By changing the composition rather than the

total concentration below and aboveground, plants
have a more complex defense strategy than formerly
thought. Interestingly, a stronger negative effect on
plant growth was found in sterilized soils inoculated
with their ‘own’ microbial community suggesting that
pathogenic and/or other plant inhibiting microorgan-
isms were adapted to their ‘own’ soil conditions.
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Abbreviations
PA Pyrrolizidine alkaloid
LC Liquid chromatography
MS Mass spectrometer
N Nitrogen

Introduction

Many plants synthesize a diversity of compounds
as a defense against herbivores and pathogens. This
diversity seems to be one of the strategies of the plant
to cope with the great variety of potential environ-
mental threats. The composition of defense com-
pounds depends on the genotype of the plants,
showing variation within species and even among
individual plants within a population. All this genet-
ically based variability can also be influenced by the
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abiotic and biotic environment (Karban and Baldwin
1997; Agrawal 1998; Macel and Klinkhamer 2009).

When the root system is exposed to belowground
organisms (e.g. herbivore insects, nematodes, root
pathogens and mycorrhizal fungi) plants can show
several direct defense responses in the shoots that may
affect aboveground herbivores and, thus plant fitness
(van Loon et al. 1998; van der Putten et al. 2001; Paul
et al. 2000; Gange et al. 2002; Dicke and Hilker 2003;
van Dam et al. 2003; Bezemer et al. 2005; Bezemer
and van Dam 2005).

Jacobaea vulgaris (syn Senecio jacobaea) is a
suitable system to study chemical defense, because it
contains a well studied group of defense compounds;
pyrrolizidine alkaloids (PAs). The concentration and
composition of PAs in J. vulgaris depend on the
genotype and environment (Vrieling et al. 1993; Hol
et al. 2003; Macel et al. 2004). Macel and Klinkhamer
(2009) noticed, in a field experiment, that in genotypes
of J. vulgaris the composition of defense compounds
(pyrrolizidine alkaloids) changed compared to the
initial composition of clones in the laboratory. The
composition also differed between the aboveground
parts of clones grown on two different experimental
field sites. This raises the question if soil-type and/or
soil-borne microorganisms could have an impact on
defense compounds in below and aboveground plant
parts.

We expect that if the net effect of the soil-borne
microbial community on plant growth is negative the
plant responds by increasing its PA concentration in
order to suppress the effect of pathogens. However,
because the production of these defense compounds
takes place in the roots, the interactions with soil-
borne pathogens can also reduce the production of
PAs by inducing root damage and increasing the
shoot/root ratios of the plants (Frischknecht et al.
2001; Hol et al. 2003) in combination with a reduced
plant growth (Bever 1994; Klironomos 2002).

In addition the PA composition could be changed by
activating particular transforming enzymes that are
responsible for the diversification of the PAs (Hartmann
and Dierich 1998).

The most recent study on the defense of J. vulgaris
indicated that plants with high jacobine levels suppress
the growth of microbes by inducing a lower diversity
of fungi in the rhizosphere compared to plants lacking
high levels of jacobine alkaloids (Kowalchuk et al.
2006). This implies that the PA composition may have

an important influence on fungi in the rhizosphere.
Interestingly, the J. vulgaris alkaloids; retrorsine and
retrorsine N-oxide showed to have inhibitory effects
on mycelium growth of several plant-associated
fungi (Hol and van Veen 2002). Apart from the
studies mentioned above, so far little is known about
the specific effects of different PAs on soil-borne
microorganisms.

In the present study we tested if soil-borne microbial
communities effect PA concentration and composi-
tion in J. vulgaris. In a laboratory experiment we
grew cloned plants of two genotypes, on two different
sterilized soils and sterilized soils inoculated with 5%
of non-sterilized soil of either of the two soil-types.
To obtain a detailed picture of the PA concentration
and composition of the plants after 6 weeks, LC-MS/
MS was used to analyze the root and shoot extracts.

Material and methods

Experimental design

We selected two different genotypes with high (A)
and low (B) total plant PA concentration, which
originated from different populations at Meijendel.
The genotypes were propagated by tissue culture. Eight
cloned replicates per genotype per treatment were
planted in two different sterilized soil-types in 1.3 L
pots. The two soil-types used were ‘Meijendel soil’,
calcareous sand from a coastal dune area in the North of
The Hague (52°9’N, 4°22’E) and ‘Heteren soil’, a
mixture of sand and potting soil from an experimental
garden that has been in use since 1994 (51°57’N,
5°44’E) in the Netherlands. For each soil we compared
three treatments 1. control (sterilized soil) 2. sterilized
soil treated with inoculum (5%) of non sterilized soil of
the same origin 3. sterilized soil treated with inoculum
(5%) of the other soil-type. In total this resulted in 96
plants (8 replicates *2 genotypes *2 soils *3 treatments).
Soil sterilization was done by 25 kilo Gray gamma-
radiation (Isotron, Ede, The Netherlands). Soil for the
inocula was collected within a radius of one meter from
naturally occurring J. vulgaris plants.

Plants were randomly distributed and grown for
6 weeks in a climate room (relative humidity 70%,
light 16 h at 20°C, dark 8 h at 20°C). Demi-water was
given three times a week with additions of 20 ml of
Steiner nutrient solution (Steiner 1968) once every
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fortnight. After 6 weeks the plants were harvested and
cut above the root crown by a scissor. Harvested plant
parts (shoots and roots) were kept at-25°C for
approximately 2 weeks before being freeze-dried for
72 h under vacuum with a collector temperature of
−55°C (an Labconco Free Zone® 12 L Freeze Dry
System). Plant dry mass was measured as a proxy for
the net effect of the inoculum on plant growth.

Pyrrolizidine alkaloid analysis

Freeze-dried plant material (approximately 10 mg)
was extracted with 2% formic acid in a 1 to 100
weight to volume ratio. Heliotrine, monocrotaline
and monocrotaline N-oxide were added as internal
standards to the extraction solvent at a concentration
of 1μg /ml. After centrifugation an aliquot of the
solution (10μl) was diluted with water (990μl) and
injected in the LC-MS/MS system (an Agilent HP1100
HPLC system coupled to a Waters Micromass Micro
tandem mass spectrometer).

Chromatographic separation was achieved on a
Waters Xbridge 150×3.0 mm HPLC column, run with
a water/acetonitrile linear gradient containing 0.05%
ammonia at a flow of 0.4 ml/min. The gradient started
at 100% water and during analysis the acetonitrile
percentage was raised to 70%.

The MS system was operated in positive electro-
spray mode and data were recorded in multiple
monitoring mode using one selected precursor ion to
product ion transition per compound. Cone and collision
energy settings were optimized for the individual
compounds. Obtained peak areas were internally cali-
brated using the internal standards and the individual
compounds were quantified against a standard solution
of the PAs in water. Fourteen individual PA standards
were available for this study, representing over 90% of
the total amount of PAs present in the plants extracts.
The remaining PAs, being tertiary base as well as N-
oxides, were quantified by using the mean response of
the tertiary amine standards and the N-oxide standards,
respectively. Data processing was conducted with
Masslynx 4.0 software.

Data analysis

Plant dry mass, shoot/root ratio and total PA concen-
trations in shoots and roots were statistically analyzed
by GLM (General Linear Model) univariate analyses

procedure. With PA concentration as the dependent
variable, genotype (Genotype A and B), soil-type
(Meijendel and Heteren) and inoculum (Sterilized,
Meijendel and Heteren soil inoculum) as fixed factors
and plant dry mass and shoot/root ratio as covariates.

In order to assess the effects of soil-type and
inoculum treatments on the composition of the PAs in
roots and shoots for each genotype we used discrim-
inant analyses to predict to which treatment a sample
belonged on basis of its alkaloid pattern. An F-test
(Wilks' lambda) was used to test if the four discrim-
inant models (roots and shoots of both genotypes) as a
whole were significant. The relative concentrations
(expressed as the percentage of the total PA concen-
tration) and the total PA concentration were included
as independents variables. All tests were conducted
with SPSS 15.0 for Windows.

Results

Plant dry mass

Soil-type had a greater impact on plant dry mass than
genotype or inoculum (Table 1). The mean dry mass
of plants grown on the two soil-types, Heteren and
Meijendel was across treatments, 1.42 and 0.48 g
respectively (Fig. 1a). Mean plant dry mass of
genotype A was 0.82 g, while that of genotype B
was 1.09 g. Mean dry mass was highest on sterilized
soils (HS and MS) indicating an overall negative
effect of the soil borne microbial community. Plant
dry mass was lowest on sterilized soils inoculated
with non-sterilized soil of the same origin (HH and
MM) leading to a significant soil-type × treatment
interaction. In addition the effects on plant dry mass
depended on the three-way interaction between
genotype, soil-type and inoculum treatment.

Shoot/root ratio

The largest difference in shoot/root ratio was found
between the two genotypes (Table 1). Mean shoot/
root ratio of genotype A was 0.59, while that of
genotype B was 0.38 (Fig. 1b). Shoot/root ratio was
significantly higher in Heteren soils than in Meijendel
soil, 0.42 and 0.55 respectively. Inoculation lowered
the shoot/root ratio of the plants especially when soils
inoculated were inoculated with non-sterilized soil of
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the other soil-type (HM and MH). In addition the
effects on shoot/root ratio depended on the three-way
interaction between genotype, soil-type and inoculum
treatment.

Total pyrrolizidine alkaloid concentration

Soil-type, did not significantly affect the mean total
PA concentration of roots and shoots (Table 2). In
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Fig. 1 A Plant dry mass (Mean±SE, n=8) per soil-type per
inoculum treatment of both Jacobaea vulgaris genotypes. B
Shoot/root ratio (Mean±SE, n=8) per soil-type per treatment of
both Jacobaea vulgaris genotypes. Left bar = genotype A;
Right bar = genotype B; MM = sterilized Meijendel soil
inoculated with non-sterilized Meijendel soil; MH = sterilized

Meijendel soil inoculated with non-sterilized Heteren soil;
MS = sterilized Meijendel soil; HM = sterilized Heteren soil
inoculated with non-sterilized Meijendel soil; HH = sterilized
Heteren soil inoculated with non-sterilized Heteren soil; HS =
sterilized Heteren soil

Table 1 ANOVA of the effect of genotype, soil-type and inoculum treatment on plant dry mass, shoot/root-ratio of Jacobaea vulgaris

Dependent variables Fixed factors df (k-1) Df (N-k) F P

Plant dry mass Genotype 1 94 88.413 0.000

Soil-type 1 94 1,041.942 0.000

Inoculum treatment 2 93 63.355 0.000

Genotype x soil-type 1 94 31.732 0.000

Genotype x inoculum treatment 2 93 2.506 0.088

Soil-type x inoculum treatment 2 93 49.908 0.000

Genotype x soil-type x inoculum treatment 2 93 4.731 0.011

Error 84

Total 96

Shoot/root ratio Genotype 1 94 99.704 0.000

Soil-type 1 94 43.309 0.000

Inoculum treatment 2 93 26.397 0.000

Genotype x soil-type 1 94 7.192 0.009

Genotype x inoculum treatment 2 93 2.966 0.057

Soil-type x inoculum treatment 2 93 8.437 0.000

Genotype x soil-type x inoculum treatment 2 93 3.308 0.041

Error 84

Total 96
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contrast to our expectation, shoot and root dry mass
and shoot/root ratio did not significantly affect total
PA concentration either. Genotype had the largest
impact on the total PA concentration in the roots
(Fig. 2a). Across soil-type and treatments, the total PA
concentration in the roots of genotype A and B, was
11.3 mg and 6.6 mg/g dry root material respectively.
The mean total PA concentrations in the shoots of
genotypes A and B, was 8.5 mg and 7.7 mg/g dry
shoot material, respectively. The PA concentration of
the two genotypes was affected differently by the
two soil-types and the combination of soil-type and
treatment as can be seen by the two and three way
interactions (Table 2). Inoculation with non-sterilized
soils decreased the total PA concentration in the roots
of both genotypes. In addition inoculation decreased
the total PA concentration in the shoots of genotype
B. For genotype A, the effect of inoculation was less
clear.

Pyrrolizidine alkaloid composition

In this study in total 13 different PA N-oxides and 13
different tertiary amines were detected in root and
shoot extracts (Table 3). These PAs have all been
described for Jacobaea vulgaris (Witte et al. 1992).
However, compared to previous studies on J. vulgaris
plants, a high number of PAs was detected simulta-
neously within a single genotype (Witte et al. 1992;
Macel et al. 2002; Macel et al. 2004; Kowalchuk et al.
2006). This is in part due to the low concentrations of
PAs that can be detected with LC-MS/MS in plant
material compared to previously used GC-NPD and
GC-MS techniques (Wuilloud et al. 2004; Betteridge
and Colegate 2005). Another advantage of LC-MS/
MS is that it can determine both N-oxides and tertiary
amine directly, without the necessity of reduction of
N-oxides to the corresponding tertiary amines, as
is required for GC-based methods. As a result the

Table 2 ANOVA of the effect of shoot dry mass, root dry mass, genotype, soil-type and inoculum treatment on the mean total PA
concentration of roots and shoots

Dependent variables Fixed factors df (k-1) Df (N-k) F P

Total PA conc. root Root dry mass (covariate) 1 94 0.925 0.339

Shoot dry mass (covariate) 1 94 1.314 0.255

Genotype 1 94 128.023 0.000

Soil-type 1 94 0.407 0.525

Inoculum treatment 2 93 9.296 0.000

Genotype x soil-type 1 94 3.282 0.074

Genotype x inoculum treatment 2 93 0.368 0.693

Soil-type x inoculum treatment 2 93 2.170 0.121

Genotype x soil-type x inoculum treatment 2 93 3.484 0.035

Error 82

Total 96

Total PA conc. root Root dry mass (covariate) 1 94 1.244 0.268

Shoot dry mass (covariate) 1 94 1.762 0.188

Genotype 1 94 4.038 0.048

Soil-type 1 94 0.425 0.516

Inoculum treatment 2 93 0.854 0.430

Genotype x soil-type 1 94 17.370 0.000

Genotype x inoculum treatment 2 93 8.410 0.000

Soil-type x inoculum treatment 2 93 1.122 0.330

Genotype x soil-type x inoculum treatment 2 93 11.740 0.000

Error 82

Total 96
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number of PAs detected in the extracts is effectively
doubled. Moreover, the relative proportion of PA N-
oxides and tertiary amines can be accurately deter-
mined for each individual PA. One individual PA type
could not be identified with certainty but based on its
retention time and molecular mass (367, M+H+: 368)
it is probably eruciflorine N-oxide. In the roots of

both genotypes nearly 98% of all alkaloids were N-
oxides. Senecionine N-oxide was the most abundant
PA with a percentage up to 76% of the total PA
concentration in the roots. The average percentage of
N-oxides in the shoots was much lower and the PA
composition was more diverse. In the shoot of genotype
A, 35% of the PAs occurred as tertiary amines and in

PAs (mg/g plant dry mass) Root Shoot

N-oxide Tertiary amine N-oxide Tertiary amine

1. Senecionine 6.1332±0.2632 0.0768±0.0056 2.1148±0.0973 0.1933±0.0145

2. Seneciphylline 1.1884±0.0394 0.0023±0.0011 1.7267±0.0995 0.1674±0.0120

3. Acetyl-seneciphylline 0.4370±0.0211 0.0077±0.0006 0.0257±0.0025 0.0072±0.0014

4. Integerrimine 0.5707±0.0273 0.0046±0.0003 0.3166±0.0133 0.0163±0.0013

5. Retrorsine 0.0992±0.0102 0.0035±0.0004 0.0811±0.0049 0.0066±0.0007

6. Jacobine 0.1961±0.0111 0.0658±0.0047 0.9370±0.0823 1.8734±0.1063

7. Jacoline 0.0050±0.0003 0.0031±0.0001 0.0232±0.0020 0.0375±0.0027

8. Jacozine 0.0067±0.0003 0.0003±4.9E-5 0.0169±0.0007 0.0161±0.0010

9. Jaconine 0.0002±4.1E-5 - 0.0036±0.0004 0.0072±0.0012

10. Dehydro-jaconine - - - 0.0003±5.9E-5

11. Erucifoline 0.0610±0.0017 0.0071±0.0005 0.1459±0.0087 0.0462±0.0026

12. Acetyl-erucifoline 0.0075±0.0006 - 0.2490±0.0119 0.0176±0.0011

13. Riddelliine 0.0339±0.0011 0.0002±3.9E-5 0.0674±0.0003 0.0027±0.0002

14. 368 (eruciflorine) 0.0188±0.0009 - 0.0111±0.0004 -

Total PA concentration 8.7577±0.3362 0.1919±0.0116 5.7187±0.2228 2.3921±0.1134

Table 3 The concentration
of different PAs in roots and
shoots (Mean±SE, n=96)
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Fig. 2 A Total PA concentration (Mean±SE, n=8) for root per
soil-type per inoculum treatment of both Jacobaea vulgaris
genotypes. B Total PA concentration (Mean±SE, n=8) for
shoot per soil-type per inoculum treatment of both Jacobaea
vulgaris genotypes. Left bar = genotype A; Right bar =
genotype B; MM = sterilized Meijendel soil inoculated with

non-sterilized Meijendel soil; MH = sterilized Meijendel soil
inoculated with non-sterilized Heteren soil; MS = sterilized
Meijendel soil; HM = sterilized Heteren soil inoculated with
non-sterilized Meijendel soil; HH = sterilized Heteren soil
inoculated with non-sterilized Heteren soil; HS = sterilized
Heteren soil
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genotype B, nearly 25%. Senecionine N-oxide, seneci-
phylline and jacobine were the three major PAs present
in the shoots. Jacobine is mainly responsible for the
relatively high amount of tertiary amines found in the
shoots. Less than 10% of senecionine and seneciphyl-
line is present in the shoots as tertiary amine, for
jacobine this is 65%.

Effect of soil-type and inoculum treatment
on the pyrrolizidine alkaloid composition

In order to assess the effects of the treatments on the
composition of the PAs in shoots and roots we

performed four discriminant analyses (roots and shoots
of two genotypes). In all four analyses the relative
concentration of different PAs discriminated the six
treatment groups significantly (Meijendel soil inocu-
lated with Meijendel soil Heteren soil or sterile: MM,
MH, MS and Heteren soil inoculated with Meijendel
soil Heteren soil or sterile: HM HH, HS). In all four
analyses all eight replicates per treatment clustered
together (Fig. 3). In total five functions were needed
to classify all cases correctly. The first two functions
classified around 80% of all the cases correctly for
all four discriminant analyses. Figure 4 shows the
structure matrixes, presenting the correlations of
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each individual PA with the first two discriminant
functions.

Roots of genotype A: discrimination of the three
treatments (sterile and 2 inocula) was mainly explained
by function 1 and discrimination of the two soil-types
by function 2. Function 1 classified 59.4% correctly
and together with function 2 the discriminant analysis
classified in total 82.9% of the cases correctly (Fig. 3).
So, the inoculum treatment had more effect on the
belowground PA composition than soil-type.

Shoots of genotype A: discrimination on soil-type
was mainly explained by function 1 (52.0% classified
correctly) and discrimination on inoculum treatment
by function 2 (30.1% classified correctly), meaning
that soil-type had more influence on the aboveground
PAs than the inoculum.

Roots and Shoots of genotype B: soil-type and
inoculum treatment were discriminated by both func-

tions to the same extend. Thus the effects of soil-type
and inoculum treatment on the alkaloid composition in
the plant were equally strong.

The relative concentration of jacobine, jacobine N-
oxide, jacoline, jacoline N-oxide and jacozine, was
significantly higher in Heteren soil (HS, HM, HH), as
is shown by combining the information provided in
Figs. 3 and 4. For example, the mean relative shoot
concentration of both jacobine and jacobine N-oxide
in genotype A on Heteren soils was around 51% of
the total PA concentration while on Meijendel soils
around 32% of the total PA concentration consisted of
this PA. The mean relative root concentration of both
jacobine and jacobine N-oxide in genotype A was
more than twice as high in Heteren soils compared to
Meijendel soils, 4.4 and 1.8% respectively.

Remarkably, in roots and shoots of both genotypes,
the concentration of retrorsine N-oxide was highest
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riddelliine N-oxide, 368=PA N-oxide with molecular mass 368
(eruciflorine)
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in the soils treated with Heteren inoculum (MH and
HH). In genotype A grown on MS and HS soil the
mean relative concentration was 0.4% while for MH
and HH soils the mean relative concentration was
significantly higher, 2.7 and 2.4% respectively. Also
the tertiary amine retrorsine was higher in both sterilized
soils treated with non-sterilized Heteren inoculum.

Discussion

We found that the PAs composition below and
aboveground was significantly affected by both soil-
type and soil-borne microbial community. The effect
on total PA concentration was, however, relatively
small.

Plant dry mass was also influenced by both soil-
type and soil-borne microorganisms but the changes
in the relative concentrations of individual PAs were
not associated with these changes in dry mass. For
instance, the difference between plant dry mass of
plants grown on Meijendel soils was largest between
the sterile soil (MS) and the soil inoculated with
Meijendel soil (MM). However, the discrimination
between these two treatments based on the relative
concentration of the individual PAs was not very
strong (Fig. 3).

Plant dry mass was highest on sterilized soils (HS
and MS) while it was lowest on soils inoculated with
the non-sterilized same soil. The negative influence of
the ‘own’ inoculum treatment on plant growth might
be the result of a pathogenic effect or the result of
competition for nutrients by the introduced microorgan-
isms. The increased occurrence of microorganisms that
act as plant pathogens and/or inhibitor microorganisms
in the ‘own’ soil might be due to adaptations to local
soil conditions.

After addition of only a small inoculum (5%) into
the ‘biologically empty’ sterilized own soil, micro-
organisms may have developed into a community that
is capable of reducing plant growth. Inoculation with
the other soil may have also introduced potential
pathogens, but these pathogens may be less adapted
to these new soil conditions compared to potentially
pathogen suppressive agents in that same inoculum.
This also holds for the sterilized soils that were not
inoculated. The soil probably did not remain sterile in
the course of the experiment, but will have been
inoculated randomly by air-borne microorganisms.

At this point we cannot draw any hard conclusions
on the above mentioned since the soil microbial
community is a black box. Although we clearly show
an overall effect of the microbial community on PA
composition of the plant we cannot pinpoint which
microorganisms caused these effects.

Soil-type and soil-borne microorganisms influ-
enced the composition of defense compounds in the
roots and shoots of the plant primarily by changing
the concentration of specific PAs. Changes in the
concentration of individual PAs aboveground may
attract specialist herbivores while deterring generalists
(Macel and Vrieling 2003; Macel et al. 2005; Macel
and Klinkhamer 2009). In our study, the levels of
retrorsine and retrorsine N-oxide were raised in the
plants grown on soils inoculated with non-sterilized
Heteren soil. Retrorsine N-oxide is formed by the
addition of a hydroxy group to senecionine N-oxide.
We can conclude that this process is stimulated by the
Heteren inoculum. In a previous study, retrorsine and
retrorsine N-oxide showed to have inhibitory effects
on mycelium growth of several plant-associated fungi
(Hol and van Veen 2002). In addition to changes in
retrorsine and retrorsine N-oxide, the levels of jaco-
bine and jacobine N-oxide were raised in shoots of
plants grown on Heteren soils, especially sterilized
Heteren soil inoculated with Meijendel soil (HM).
Jacobine is especially interesting because jacobine
was mainly responsible for the relative high amounts
of tertiary amines found in the shoots. Tertiary amines
are considered as the toxic state (Lindigkeit et al.
1997), by acting as highly reactive alkylating agents
(Mattocks 1986). While being toxic for generalist
herbivores, several specialists prefer plants containing
high levels of jacobine (van Dam et al. 1995; Macel
and Klinkhamer 2009). A previous study on soil-
borne microorganisms showed that J. vulgaris plants
containing high levels of jacobine alkaloids had a
lower fungal diversity in the rhizosphere than J.
vulgaris plants lacking high levels of jacobine
alkaloids (Kowalchuk et al. 2006). Apart from the
above, at this stage there is still too less known about
the functions of specific alkaloids to predict the
ecological consequences of the change in alkaloid
composition. Further research on the influence of
specific PAs on fungal and bacterial growth in vivo is
warranted.

In conclusion this study shows that plants have a
more complex chemical defense strategy as previously
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thought. Our results demonstrate that inoculating
sterilized soils with only 5% of non-sterilized soil has
a great impact on the plant growth and the plant’s
defense system. This may have considerable ecological
consequences for instance for the invasive success and
biological control of plants. In addition this has many
practical implications for the design of experiments on
plant defense. We will continue to investigate this
functional response and the consequences of these
changes in chemical defense for plant fitness and the
influence on herbivore and pathogen pressure above
and belowground.
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