Vol. 47, No. 12

Novel Multilocus Sequence Typing Scheme Reveals High Genetic Diversity of Human Pathogenic Members of the *Fusarium incarnatum-F. equiseti* and *F. chlamydosporum* Species Complexes within the United States^{∇}

Kerry O'Donnell,¹* Deanna A. Sutton,² Michael G. Rinaldi,² Cécile Gueidan,³ Pedro W. Crous,³ and David M. Geiser⁴

Microbial Genomics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois¹; Department of Pathology, University of Texas Health Science Center, San Antonio, Texas²; CBS-KNAW Fungal Biodiversity Center, Utrecht, The Netherlands³; and Department of Plant Pathology, The Pennsylvania State University, University Park, Pennsylvania⁴

Received 19 August 2009/Returned for modification 21 September 2009/Accepted 5 October 2009

Species limits within the clinically important Fusarium incarnatum-F. equiseti and F. chlamydosporum species complexes (FIESC and FCSC, respectively) were investigated using multilocus DNA sequence data. Maximumparsimony and maximum-likelihood analyses of aligned DNA sequences from four loci resolved 28 species within the FIESC, within which the species were evenly divided among two clades designated Incarnatum and Equiseti, and four species within the FCSC. Sequence data from a fifth locus, β-tubulin, was excluded from the study due to the presence of highly divergent paralogs or xenologs. The multilocus haplotype nomenclature adopted in a previous study (K. O'Donnell, D. A. Sutton, A. Fothergill, D. McCarthy, M. G. Rinaldi, M. E. Brandt, N. Zhang, and D. M. Geiser, J. Clin. Microbiol. 46:2477-2490, 2008) was expanded to all of the species within the FIESC and FCSC to provide the first DNA sequence-based typing schemes for these fusaria, thereby facilitating future epidemiological investigations. Multilocus DNA typing identified sixty-two sequence types (STs) among 88 FIESC isolates and 20 STs among 26 FCSC isolates. This result corresponds to indices of discrimination of 0.985 and 0.966, respectively, for the FIESC and FCSC four-locus typing scheme using Simpson's index of discrimination. Lastly, four human and two veterinary isolates, received as members of the FIESC or FCSC, were resolved as five phylogenetically distinct species nested outside these species complexes. To our knowledge, these five species heretofore have not been reported to cause mycotic infections (i.e., F. armeniacum, F. brachygibbosum, F. flocciferum, and two unnamed Fusarium species within the F. tricinctum species complex).

Fusarium species are hyaline filamentous molds (*Hypocreales, Ascomycota*) that can cause superficial infections, such as onychomycoses and keratitis in immunocompetent individuals, or deeply invasive and hematogenously disseminated infections with high mortality in persistently and severely neutropenic patients (11). Despite a poor response, liposomal amphotericin B remains the antifungal of choice for the treatment of fusarioses (41). Unfortunately, most fusaria exhibit broad resistance to the spectrum of antifungals currently available, including amphotericin B, azoles, echinocandins, and terbinafine, which typically show high MICs in vitro (1, 2, 35, 41, 43).

Recent multilocus molecular phylogenetic studies have revealed that the most commonly reported fusaria causing infections in humans and other animals, such as *Fusarium solani*, *F. oxysporum*, and *F. moniliforme* (*F. verticillioides* pro parte), harbor multiple species, several of which are morphologically cryptic (30, 31, 36). To date, detailed molecular evolutionary studies have been published on clinically important members of the *F. solani* species complex (FSSC) (2, 30, 35, 51), *F.* oxysporum species complex (FOSC) (32, 36), Gibberella (Fusarium) fujikuroi species complex (GFSC) (31, 33), and F. dimerum species complex (FDSC) (44). Species within these four complexes account for approximately 85% of all fusarioses within the United States. Members of these complexes are estimated to cause infections at the following frequencies: FSSC 60%; FOSC, 10%; GFSC, 10%; and FDSC, 5%. Results of the present study indicate that the remaining approximately 15% of clinically relevant fusaria from the United States are mostly nested within two closely related lineages, the F. chlamydosporum species complex (FCSC) and F. incarnatum-F. equiseti species complex (FIESC). Although several members of the FIESC included in the Centers for Disease Control and Prevention (CDC) Fusarium keratitis investigation in 2005 to 2006 were analyzed phylogenetically (8), species limits within this complex and the FCSC have never been critically examined employing genealogical concordance phylogenetic species recognition (GCPSR) (49) using multilocus DNA sequence data.

Chang et al. (8) first introduced a multilocus haplotype nomenclature for members of the FSSC and FOSC involved in CDC's *Fusarium* keratitis investigation, which elucidated their epidemiology and population structure and facilitated accurate communication of their genetic diversity within the public health community. The multilocus species/haplotype nomenclature developed for these fusaria is important for accurately

^{*} Corresponding author. Mailing address: Microbial Genomics Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 North University Street, Peoria, IL 61604-3999. Phone: (309) 681-6383. Fax: (309) 681-6672. E-mail: kerry.odonnell@ars.usda .gov.

^v Published ahead of print on 14 October 2009.

reporting on pathogen identity and their genetic diversity, primarily because several molecular phylogenetic studies have revealed that most fusaria pathogenic to humans and other animals lack Latin binomials (5, 34, 35, 44, 51). In the present study, species limits and evolutionary relationships within the FCSC and FIESC were investigated via GCPSR for the first time using DNA sequence data from portions of four loci. In addition, we report on five *Fusarium* species that to our knowledge have not been reported previously to cause infections of humans or other animals.

MATERIALS AND METHODS

Fungal isolates. Eighty-eight of the 120 isolates included in this study (Tables 1 and 2) were cultured from human or veterinary sources. The remaining 32 isolates were chosen to represent the phylogenetic breadth of the FIESC and FCSC represented within the culture collections of the Centraalbureau voor Schimmelcultures (CBS) Biodiversity Center (Utrecht, The Netherlands) and the Fusarium Research Center (FRC, Pennsylvania State University, State College, PA). With the exception of six clinical or veterinary isolates and the outgroup sequences of Fusarium concolor NRRL 13459 (received as the ex-type strain of F. polyphialidicum, which is a later synonym of F. concolor), the remaining isolates were members of the FCSC or FIESC. The 26 FCSC and 88 FIESC isolates were identified as members of these two species complexes via morphological analysis at the respective culture collections (Tables 1 and 2) and subsequent molecular phylogenetic analyses of aligned partial sequences of the RNA polymerase second largest subunit (RPB2) (34). All isolates are stored cryogenically in liquid nitrogen vapor (-175°C) in the Agricultural Research Service (NRRL) Culture Collection, National Center for Agricultural Utilization Research, Peoria, IL, where they are available upon request.

DNA manipulations for multilocus DNA sequencing. Mycelium was grown in yeast extract-malt broth (20 g of dextrose, 5 g of peptone, 3 g of yeast extract, and 3 g of malt extract per liter; Difco, Detroit, MI) on a rotary shaker at 100 rpm for 2 to 3 days and freeze dried, and then total genomic DNA was extracted using a hexadecyltrimethyl-ammonium bromide (Sigma, St. Louis, MO) protocol as previously described (31). Portions of five nuclear gene fragments were selected for multilocus sequence typing (MLST) based on previous analyses (33-35): translation elongation factor (*EF-1* α), *RPB2*, the internal transcribed spacer (ITS) region, domains D1 and D2 of the nuclear large-subunit (LSU) rRNA, calmodulin (CAM), and β-tubulin. Data obtained from this last locus, however, was excluded from the study due to the presence of highly divergent paralogs (homologs evolved by gene duplication) or xenologs (homologs evolved by lateral gene transfer among different species) that complicated phylogenetic reconstruction. PCR and sequencing primers for the MLST scheme have been published previously (34, 35). All PCRs employed Platinum Taq DNA polymerase (Invitrogen Life Technologies, Carlsbad, CA) and identical cycling parameters in an Applied Biosystems 9700 Thermocycler (Emeryville, CA), as previously reported (31). Applied Biosystems BigDye, version 3.1, Terminator reaction mixture was used in all DNA sequencing reactions (31).

Chromatograms were edited and aligned with Sequencher, version 4.1.2 (Gene Codes, Ann Arbor, MI), prior to manual improvement of the alignments to establish positional homology.

Phylogenetic analysis. Maximum-parsimony (MP) analyses implemented in PAUP*, version 4.0b10 (47), and maximum likelihood (ML) employing GARLI (52) were conducted as previously described (35), except that nonparametric ML bootstrapping was conducted with a 2.6-Ghz MacBook Pro. The Akaike information criterion in MrModeltest, version 2.2 (29), was used to identify the best-fit model of nucleotide substitution for the ML analyses. Multilocus haplo-types or sequence types (STs) were identified using COLLAPSE, version 1.1 (http://inbio.byu.edu/Faculty/kac/crandall lab/Computer.html).

Nucleotide sequence accession numbers. The DNA sequences determined in this study have been deposited in the GenBank under accession numbers GQ505373 to GQ505852.

RESULTS

Phylogenetic diversity of FIESC clinical isolates. Evolutionary relationships and species limits of 52 human or veterinary isolates, together with 36 nonclinical isolates within the FIESC, were inferred using multilocus DNA sequence data from four loci. All of the clinically relevant isolates were from the United States except for one from an endocarditic patient from Brazil and the ex-type strain of F. lacertarum, which was isolated from lizard skin in India (45) (Table 1). Tree statistics and summary sequence for the individual and combined data sets are provided in Table 3. The combined data set comprised portions of the *EF-1* α gene (717 bp), the ITS plus LSU (ITS+LSU) 28S rRNA gene (1,135 bp), RPB2 (1,766 bp), and CAM (704 bp), totaling 4,322 bp of aligned nucleotide sequence data from each isolate. Analyses of the individual partitions revealed that the EF-1 α and ITS+LSU 28S rRNA genes were the most and least phylogenetically informative loci, respectively, based on parsimony-informative characters per bp and number of species resolved as monophyletic by MP bootstrapping of the four individual data sets (Table 3). Results of these analyses resolved the 21 FIESC species represented by two or more isolates as reciprocally monophyletic in the majority of the bootstrapped individual genealogies, thereby fulfilling a stringent interpretation of species recognition under GCPSR. The remaining seven putatively phylogenetically distinct FIESC species were each represented by a single highly divergent isolate, and therefore additional sampling is required to fully assess their species limits.

To determine whether DNA sequence data from the various gene partitions could be concatenated into a single data set, an MP bootstrap value of $\geq 70\%$ was used as a threshold for identifying topological incongruence. Results of these analyses indicated that the individual data sets could be combined and analyzed phylogenetically using MP in PAUP* (47) and ML in GARLI (52). DNA sequence data from a fifth locus, β-tubulin, was excluded from the study due to the widespread presence of highly divergent paralogs or xenologs. MP and ML phylogenetic analyses of the combined data set recovered trees that were highly concordant topologically (Fig. 1; only the MP tree is shown) and in which there was a deep basal split between two early diverging lineages, here informally designated the Equiseti and Incarnatum clades. The 12 most-parsimonious trees were 4,322 steps in length; the ML tree with the best negative log-likelihood score was -15,737.46164 based on 10 independent heuristic analyses, using the general time-reversible (GTR) model of nucleotide substitution with a proportion of invariant (I) sites and gamma-distributed (G) rate heterogeneity (i.e., GTR+I+G) in GARLI (52). Only relatively minor differences were observed between the MP and ML topologies. These differences were restricted to five internodes along the backbone of the phylogeny within the Incarnatum clade; however, the MP and ML bootstrap values differed by only 6 to 11% (Fig. 1). Analyses of the individual and combined partitions support the recognition of 14 phylogenetically distinct species within each clade. Of the 28 species within the FIESC, 9 species within the Equiseti clade and 11 within the Incarnatum clade were recovered from mycotic infections, and these spanned the phylogenetic breadth of each clade (Fig. 1). Latin binomials, however, can be applied with confidence to only three of the species within the Equiseti clade, namely, F. lacertarum (FIESC 4) (45), F. scirpi (FIESC 9) (7), and F. equiseti (FIESC 14), and none of the 14 species within the Incarnatum clade. F. scirpi is broadly circumscribed here to include two STs from Australia (FIESC 2-a and 2-b) and the highly divergent NRRL 26922 (FIESC 9-c) from France, which

TABLE 1.	FIESC	isolates	subjected	to	DNA	MLST
----------	-------	----------	-----------	----	-----	------

900 10-a FRC R-663, 7.12 MRC Unknown Unknown 537 8-a ATCC 28865 Focus hay Unknown 537 8-a ATCC 28865 Focus hay Unknown 1335 21-a IMI 112515 Wheat Germany 1337 21-a FRC R-518, BDA 62200 Opza soliw Iadia 1379 21-b FRC R-1938, BDA 62200 Opza soliw Iadia 1379 40-b Right 93, BDA 62200 Opza soliw Iadia 1379 24-b Right 94, BDA 93, BDA 635, BDA 635	NRRL no.	FIESC MLST (species) ^a	Equivalent no(s). ^b	Isolate source	Origin
1214 10-a FRC R-605, 71.3 MRC Unknown Unknown 6548 12-a MT 112503 Wheat Germany 13355 21-a FRC R-5138, BA 62200 Orga satin India 13379 23-b Sign(T) FRC R-5138, BA 62200 Orga satin Austaba 13359 23-b Sign(T) FRC R-5138, BA 62200 Orga satin Austaba 20153 4-a (F. Locentaram) HM 300797 Presolvic Austaba Austaba 201697 1-4-a (F. Locentaram) HM 190455 Chrysanthours pp. Kenya 21244 25-a H-K. Che F64 Rice Chia Caraa 21417 2-b-a H-K. Che F64 Rice Caraa Caraa 21417 2-b-a CBS 50193 France Caraa Caraa 21417 2-b-a CBS 50193 France Caraa Caraa 21417 2-b-a CBS 50193 France Caraa Caraa 21419 2-a CBS 50193	3020	10-a	FRC R-6053, 7.12 MRC	Unknown	Unknown
5378-aACCC 2806Feence hayHesternGermany133521-aIMI 12035WheatGermany133521-aFRC R-2138AlfalfaAustralia133721-bFRC R-5138BAA 6200Ora sativaIadia13499-b($f_{corr})^{\prime}$ FRC R-5136Pine solAustralia13499-b($f_{corr})^{\prime}$ FRC R-5136Pine solAustralia13499-b($f_{corr})^{\prime}$ FRC R-5136Chyanthenum sp.Chia2040714+b($f_{corr})^{\prime}$ IMI 300797Lizard skinIadia2041725-aIMI 500797Lizard skinChiaChia2041725-aCBS 543.03BLA 64255Dipprint crussfolium seedGermany2041825-aCBS 543.03Hauma reyCaliaChia2041925-aCBS 610.35Hauma reyCaliaCalia2052112-aCBS 610.35Hauma reyCaliforniaCalia205229-c f_{corr} CBS 610.35Hauma reyCalifornia205239-a(f_{corr} CBS 610.35Hauma reyCalifornia205249-a f_{corr} CBS 610.35Hauma reyCalifornia2052515-aCBS 610.35Hauma reyCalifornia2053614ACcir sp. branchCosta ReiaCosta Reia2051715-aMDA 710Hauma spatumTexas2163715-aMDA 710Hauma spatum <td>3214</td> <td>10-a</td> <td>FRC R-6054, 7.13 MRC</td> <td>Unknown</td> <td>Unknown</td>	3214	10-a	FRC R-6054, 7.13 MRC	Unknown	Unknown
654812-aIMI 112503WheatGermany1335521-aFKC R-2138AlfafaAustralia1337923-bFKC R-2138AlfafaAustralia134029-b ($F, concolor)^{-1}$ (m)FKC R-3198, BPA 62200Opaz axinaIndia134029-b ($F, concolor)^{-1}$ (m)CKS 691,87Plant debrisSouth Africa134029-b ($F, concolor)^{-1}$ (m)CKS 591,87Plant debrisSouth Africa134029-b ($F, concolor)^{-1}$ (m)CKS 2545.1BedOhig2072227-aILKILK (Achor F64RiceClinia2274425-aILK (Achor F64RiceCermany2241914-a ($F, captaci)$ CKS 301.94, BBA 66265Daplyma crassifolium seqCermany2411726-aCKS 301.94, BBA 68256 (ncotype)SoilGermanyCotok281294-b ($F, captaci)$ CKS 434.81Grave stoneRomania2814126-bATCC 74289Acacia sp. branchCota Rica281519-bATCC 74289Acacia sp. branchCota Rica2816115-cMDA F120Human spitum andTexas1116015-cMDA F120Human spitum andTexas1218115-cMDA F120Human bloodCota Rica1218215-bMDA F120Human and cocarditisBrazil1218415-cMDA F120Human and cocarditisBrazil1218415-cUTHK C 9-548Human and cocarditisBrazil	5537	8-a	ATCC 28805	Fescue hay	Missouri
133521-aFRC R-2138AlfalfaAustralia134029-b ($f, scipt)$ FRC R-363Pine soilAustralia13450($f, concolor)$ CBS 691.87Pine soilAustralia204234-a ($f, locatrann)$ DM 300797Laard shanIndia204242-aHM 19055Chysandhomm sp.Kerya2072227-aUNI 19055Chysandhomm sp.Kerya2071227-aCBS 544.96Laard shanGermany204212-aCBS 544.96Laf literCuba264172-aCBS 544.96SoilGermany2022112-aCBS 731.87WheatGermany202219-a ($f, scipt)$ CBS 610.95SoilGermany202219-a ($f, scipt)$ CBS 610.95SoilGermany203229-a ($f, scipt)$ CBS 610.95SoilHuman spcCalifornia203149-a ($f, scipt)$ CBS 610.95SoilAustralia20315110112-aBA 6079Thuis sp.Germany2031615-cMDA 10Human sputumTeas2031715-aMDA 10Human sputumTeas2131815-cMDA 10Human sputumTeas2131915-cMDA 72Human bloodCakhoma2131415-cMDA 72Human sputumTeas2131515-cMDA 72Human sputumTeas2131615-cFRC R-4480Human and stasseTeas <t< td=""><td>6548</td><td>12-a</td><td>IMI 112503</td><td>Wheat</td><td>Germany</td></t<>	6548	12-a	IMI 112503	Wheat	Germany
137023-bFRC R-5198, BBA 62200 $Opga satimIndia1340296 (f, concolor)^rFRC R-6363Plant debrisSouth Africa13459(f, concolor)^rCDS 601.87Plant debrisSouth Africa240214.4 (f, lacentum)IMI 300707Larard skinIndia2403714-b (f, contact)IMI 300707Larard skinIndia2404125-aIMI 1960a ff4BettChysintherman $p.Kenya257845-cCMS 30493, BBA 64265Deplyma crassifulum seedGermany2641726-aCBS 30794, BBA 68256 (neotype)SoilFrance264229-c (f, sipp)CBS 30794, BBA 68256 (neotype)SoilFrance264229-c (f, sipp)CBS 40835Human eyeCalifornia2642325-aCDS 4335Human eyeCalifornia2714421-bAccia sp. TranchCosta Rica282793-bCDS 440.81Grave stoneRomania2817125-aCDS 440.84Pisture soilAustralia2114115-cMDA 710Human sputumTecas2115115-aMDA 720Human sputumTecas2118115-cMDA 720Human sputumTecas2128213-bLyoola W-14182Human andod Tecas2138115-cMDA 720Human souldTecas2148115-cMDA 720Human souldTecas21555-aFRC R-3480Human endocarditisBra20$	13335	21-a	FRC R-2138	Alfalfa	Australia
134029-b ($f, sizph$)FRC R-685Pine soilAustralia13459($f, concolor$)CBS 60187Plant debrisSouth Africa204234-a ($f, lacetratum$)IMI 300797Lizard SkinIndia204712-aIMI 300797Lizard SkinIndia204722-aIMI 300797Lizard SkinChile204732-aIMI 300797Lizard SkinChile204712-aCHS 30493, BBA 6425Disphyme craviplum seedGermany204172-aCHS 50493, BBA 6425Disphyme craviplum seedGermany204172-aCHS 70394, BBA 6855 (neotype)SoilFrace209219-a ($f, sizph$)CHS 610.95SoilFrace209223-bCDC B-3135Human cycCalifornia207372-bCHS 610.95SoilAustralia208189-a ($f, cizph$)CHS 448.44Pesture sounchAustralia208101-5-cMDA 70Human sputumTexas2181015-cMDA 710Human sputumTexas2181115-cMDA 720Human fundedOklahoma2182215-bMDA 721Human bloodTexas2184115-cMDA 722Human funderic cellulitisIllinia2184215-cMDA 723Human allocidTexas2184315-cFRC R-4880Human allocidTexas2184415-cFRC R-4880Human allocidTexas2184515-cF	13379	23-b	FRC R-5198, BBA 62200	Oryza sativa	India
13459 $f. concolor)^*$ CISS 691.87Plant debrisSouth Africa204934. $f. f. laceranumIMI 300707Lizard skinIndia2089714-b (f. equisati)CIS 245.61BeetClub2172227-aIMI 300707Lizard skinIndia217441.K. Chen, BPA 64265Opysantherman sp.Korya2174125-aCIS 344.66Local liter2641725-aCIS 544.66Local liter2641914-a (f. equiscri)CIS 307.49, BPA 64255Soil2692112-aCIS 571.87SoilGermany269229-c (f. expir)CIS 610.95SoilFrance2877728-aCIS 640.81Grave stoneRomania2871426-bATCC 74289Acacis sp. ForachCosta Rica2181412-aBBA 6079Thale sp.Germany2181412-aBBA 6079Human spatumTexas2181415-cMDA F10Human spatumTexas2181815-cMDA F22Human bloodTexas2181815-cMDA F22Human spatumTexas2182612-bFRC R-2455Human and datekic cellulitisTakas2286912-cFRC R-2481Human and datekic cellulitisTexas2386621-bFRC R-2482Human and correginetTexas2387115-aMDA F22Human spatumTexas2388612-bUTISC 69-1564Human and ColoradoTexas$	13402	9-b (F. scirpi)	FRC R-6363	Pine soil	Australia
204234-a ($F.$ laceraturon)IMI 300797Lizard skinIndia205971-4-b ($F.$ equiacti)CRS 245.61BectChile2072227-aH. K. Chen F64RiccChile207355-cCRS 394.93, BDA 64265Daphyma crasifolium seedGermany207101-5-aCRS 374.9BLA 68256 (neotype)WheatGermany209211-5-aCRS 571.87WheatGermanyGermany209223-bCRS 610.95SoilFranceRicc209233-bCDC B-3335Human eyeCalifornia209243-bCDC GA3355Human eyeCalifornia209293-bCDC 74289Acacia sp. branchCosta Rica201101-5-aMDA 3Human patumTeasa3116015-cMDA 3Human patumTeasa3117118-aMDA 10Human sputumTeasa3118215-aMDA 10Human patumTeasa3128415-bLook W-1422Human bloodOklabona3128515-bLook W-1423Human bloodOklabona3286623-aFRC R-8480Human abcceraftiksBrazil3286625-cFRC R-8480Human abccesTeasa3286625-cFRC R-8480Human abccesTeasa3286625-cFRC R-8480Human abccesTeasa3286625-cFRC R-8481Human abccesTeasa3299115-cUTHSC 00-755Hu	13459	$(F. \ concolor)^c$	CBS 691.87	Plant debris	South Africa
200714b (f. equiseri)CBS 245.61BectChile2072227-aIMI 190455Chrystenklemum sp.Kenya2224425-aIL-K. Chen F64RiceChina2241726-aCBS 344.96Lad litterCuba2611726-aCBS 344.96Lad litterCuba2611914-a (f. equinci)CBS 307.94, BBA 68556 (neotype)SoilGermany2621212-aCBS 711.87WheatGermany2621325-bCDS 430.81Grave stoneCosta Rice2871426-bCDS 430.81Grave stoneCosta Rice2871426-bATCC 74289Acacia sp. branchCosta Rice291349-a (f. scippi)CBS 443.84Pasture soilAustralia2101015-cMDA 10Human sputumTexas2116715-aMDA 10Human sputumTexas2128115-cMDA 720Human bloodOklahoma2128215-bLoydo W-14182Human abcodTexas2128215-bRC R.7245Human cancer patientTexas2286521-bFRC R.7245Human cancer patientTexas2386417-aFRC R.7245Human cancer patientTexas2396915-cFKC R.9445Human cancer patientTexas2396915-cFKC R.9445Human cancer patientTexas2396915-cUTHSC 00-755Human ashussoTexas2399415-cUTHSC 00-494	20423	4-a (F. lacertarum)	IMI 300797	Lizard skin	India
2072227-aIMI 190455Chrysundhensum sp.Kenya2224425-aH.K. Chen F64RiceChina257955-cCBS 394.35, BBA (42055 Disphyna crasifolium seedGermany264112-a (CBS 341.36)CBS 443.06Leaf litterGermany2641212-aCBS 307.34, BBA (8556 (ncotype)SoilGermany2692112-aCBS 711.87WheatGermany269229-c (F , script)CBS 610.95SoilFrance289293-bCDC 13.315Human eyeCalifornia289293-bCDC 13.315Human eyeCalifornia2891142-aCBS 448.84Grave stoneRomania2911412-aCBS 448.84ProjectorCalifornia2011112-aMDA 10Human sputumTexas2116015-cMDA 10Human bloodCertas2118115-cMDA F20Human bloodTexas2128215-bMDA F22Human bloodTexas2128215-bMDA F22Human bloodTexas2286417-aFRC R-7255Human acoccr patientTexas2386521-bFRC R-8880Human acoccr patientTexas2386615-cFRC R-8880Human acoccr patientTexas2386915-cFRC R-9445Human acoccr patientTexas2386915-cUTHSC 99-1945Human acoccr patientTexas2399125-bUTHSC 99-1945Hu	20697	14-b (F. equiseti)	CBS 245.61	Beet	Chile
2224425-aH-K. Chen F64RiceChina257955-cCBS 544.96Lad litterCuba2641726-aCBS 544.96Lad litterCuba2621725-aCBS 544.96SoilGermany262129-c (f : scippi)CBS 610.55SoilFrance262129-c (f : scippi)CBS 610.55SoilFrance27142-aCBS 731.87WheatGermany287172-bACC 74289Acceic as pbranchCosta Rica291349-a (f : scippi)CBS 440.81Pasture soilAustralia291349-a (f : scippi)CBS 440.84Pasture soilAustralia291349-a (f : scippi)CBS 440.84Pasture soilAustralia291349-a (f : scippi)CBS 440.84Pasture soilAustralia2116715-aMDA 10Human longTexas2118115-cMDA 720Human bloodOklahoma2128215-bMDA 720Human bloodTexas228651-bFRC R-7245Human bloodTexas2386623-aFRC R-7245Human cancer patientTexas2386925-cFRC R-8480Human cancer patientTexas2396915-cFRC R-9445Human asusTexas2396915-cUTHSC 00-494Human asusTexas2396915-cUTHSC 00-494Human asusTexas2396915-cUTHSC 00-494Human sinusTexas </td <td>20722</td> <td>27-а</td> <td>IMI 190455</td> <td>Chrysanthemum sp.</td> <td>Kenya</td>	20722	27-а	IMI 190455	Chrysanthemum sp.	Kenya
257955-cCBS 394.39, BBA 64265 Disphyma crassifications seedGermany2641114-a (ℓ equisari)CBS 307.94, BBA 68556 (neotype)SoilGermany2641212-aCBS 307.94, BBA 68556 (neotype)SoilFrance269229-c (ℓ , exipri)CBS 610.95SoilFrance280293-bCDE B-3335Human eyeCalifornia2817128-aCBS 430.81Grove stoneRomania2817128-aCBS 440.81Grove stoneRomania2817128-aCBS 440.94Pasture soilAustralia281149-c (ℓ , scipri)CBS 440.94Pasture soilAustralia2811615-cMDA 10Human sputumTexas2811615-cMDA F10Human sputumTexas2118115-cMDA F20Human sputumTexas21818115-cMDA F20Human concer patientTexas2182515-bMDA F20Human cancer patientTexas2286621-bFRC R-8480Human cancer patientTexas2386723-aFRC R-8480Human cancer patientTexas2386825-cFRC R-8480Human sinusTexas2396915-cUTHSC 09-755Human aslexesTexas2396915-cUTHSC 09-755Human sinusTexas2400320-aUTHSC 95-124Human sinusTexas2400415-cUTHSC 99-134Human sinusTexas24005 <td>22244</td> <td>25-а</td> <td>HK. Chen F64</td> <td>Rice</td> <td>China</td>	22244	25-а	HK. Chen F64	Rice	China
2641726-aCBS 544.96Leaf litterCuba2641914-a ($f. equivari)$ CBS 371,87WheatGermany202112-aCBS 731,87WheatGermany20223-bCDC B-335Human eyeCalifornia287728-aCDC B-335Human eyeCalifornia287128-aCDC B-335Human eyeCalifornia287128-aCDC B-335Human fungCosta Rica287128-aACC 74289Acacia sp. branchCosta Rica28139-a ($f. scipri$)CBS 448,84Pasture soilAustralia3116112-aBBA 69079Thuja sp.Germany3116115-cMDA 3Human sputumTexas3116718-aMDA 10Human sputumTexas3281815-eMDA F20Human fungTexas3282218-bLopolo W-14182Human cancer patientTexas3286623-aFRC R-7486Human cancer patientTexas3286623-aFRC R-8480Human cancer patientTexas3286915-cFRC R-8480Human andrear patientTexas3286915-cFRC R-9445Human ancarer patientTexas3286915-cFRC R-9435Human solus wTexas3286915-cUTHSC 09-755Human ancarer patientTexas329975-aFRC R-9435Human fungTexas3299615-cUTHSC 99-1741Human solus wTe	25795	5-c	CBS 394.93, BBA 64265	Disphyma crassifolium seed	Germany
2641914-a (F. equisari)CBS 307.94, BBA 68556 (neotype)SoilGermany269229-c (F. scipr)CBS 610.95SoilFrance269273-hCDE 73.35Human eyeCalifornia287728-aCBS 430.81Grave stoneRomania2871426-bATCC 74259Acceta is, branchCosta Rica291349-a (F. scipri)CBS 448.84Pasture soilAustralia2011112-aBA 60070Thuig sp.Germany2116015-cMDA 10Human sputumTexas2117115-aMDA 10Human sputumTexas2121815-cMDA F20Human bloodOklahoma2121815-cMDA F20Human bloodCkias2212115-bMDA F22Human floodTexas2212215-bLoyola W-14182Human floodTexas2212315-bHOA F22Human floodTexas2214417-aFRC R-745HumanTexas2265623-aFRC R-8480Human cancer patientTexas286623-aFRC R-8480Human cancer patientTexas286625-cFRC R-9445Human cancer patientTexas287915-aFRC R-9454Human sinusTexas2899515-cUTHSC 99-1731Human sinusTexas2899615-cUTHSC 99-1741Human sinusTexas2899715-cUTHSC 99-1741Human sinusTexas <tr< td=""><td>26417</td><td>26-a</td><td>CBS 544.96</td><td>Leaf litter</td><td>Cuba</td></tr<>	26417	26-a	CBS 544.96	Leaf litter	Cuba
2692112-aCBS 731.87WheatGermany269223-bCDC B-3335Human eyeCalifornia280703-bCDC B-3335Human eyeCalifornia2877128-aCBS 430.81Grave soneRomania2871426-bATCC 74299Acacia sp. branchCosta Rica2871426-bATCC 74299Acacia sp. branchCosta Rica2871426-bATCC 74299Acacia sp. branchCosta Rica2871728-aMDA 3Human lungTexas3116015-cMDA 3Human sputumTexas3116718-aMDA 10Human sputumTexas3121515-sMDA F10Human sputumTexas3282415-sMDA F20Human bloodOkahoma3282521-bFRC R-7485Human codecarditisTexas3286623-aFRC R-8480Human cancer patientTexas3286723-aFRC R-8480Human cancer patientTexas3286825-cFRC R-8480Human ansult sizeTexas3286915-cUTHSC 00-755Human ansult sizeTexas3299315-cUTHSC 09-1741Human sinusTexas3299415-cUTHSC 09-1741Human sinusTexas3299515-cUTHSC 09-1741Human sinusTexas3400115-aUTHSC 09-1741Human sinusTexas3400320-aUTHSC 09-1741Human sinusColorado <trr< td=""><td>26419</td><td>14-a (F. equiseti)</td><td>CBS 307.94, BBA 68556 (neotype)</td><td>Soil</td><td>Germany</td></trr<>	26419	14-a (F. equiseti)	CBS 307.94, BBA 68556 (neotype)	Soil	Germany
26922 $9 \leftarrow (F, scippi)$ CBS 610.95SoilFrance281095-hCDE B-3335Human eyeCalifornia287728-aCBS 430.81Grave storeRomania287728-aCBS 448.84Pasture soilAustralia291349-a (F, scippi)CBS 448.84Pasture soilAustralia291349-a (F, scippi)CBS 448.84Pasture soilAustralia3116015-cMDA 3Human hungTexas3217515-aMDA 10Human spatumTexas3218115-cMDA F20Human bloodOklahoma3218215-bMDA F20Human bloodTexas3286417-aFRC R-7245Human adabetic celluilitisIllinois3286521-bFRC R-7245Human and adactric elluilitisTexas3286623-aFRC R-8480Human cancer patientTexas3286915-cFRC R-84817Human acancer patientTexas3286915-cFRC R-8461Human basel itsueTexas3286915-cUTHSC 00-755Human nesal itsueTexas3299115-cUTHSC 09-1945Human for woundTexas3299115-cUTHSC 09-1945Human for woundTexas3400112-eUTHSC 09-1945Human for woundTexas3400112-eUTHSC 09-1945Human for woundTexas3400112-eUTHSC 09-1945Human for woundTexas3400315-c <td>26921</td> <td>12-a</td> <td>CBS 731.87</td> <td>Wheat</td> <td>Germany</td>	26921	12-a	CBS 731.87	Wheat	Germany
280293-bCDC B-3335Human eyeCalifornia287728-aCBS 430.81Grave stoneRomania2871426-bATCC 74289Acacia sp. branchCosta Rica2871426-bATCC 74289Acacia sp. branchCosta Rica2871426-bABA 6079Thuja sp.Germany3116015-cMDA 3Human hungTexas3116718-aMDA 10Human sputumTexas3218115-cMDA F20Human bloodOklahoma3218215-bMDA F22Human diabetic cellulitisIllinois3286417-aFRC R-745HumanTexas3286521-bFRC R-8482Human cancer patientTexas3286623-aFRC R-8882Human and cancer patientTexas3286723-aFRC R-8880Human bloodTexas3286825-cFRC R-8880Human bloodTexas3286915-cUTHSC 00-755Human ascessTexas3299415-cUTHSC 00-755Human nasal fisueTexas3299515-cUTHSC 00-755Human nale woundTexas3299615-cUTHSC 00-755Human ascessTexas3299615-cUTHSC 00-755Human achtmoid sinusTexas329977-aUTHSC 09-1741Human forto woundTexas3400115-cUTHSC 09-1741Human forto woundTexas3400222-aUTHSC 92-1945Human sputum <t< td=""><td>26922</td><td>9-c (F. scirpi)</td><td>CBS 610.95</td><td>Soil</td><td>France</td></t<>	26922	9-c (F. scirpi)	CBS 610.95	Soil	France
285728-aCBS 430.81Grave stomeRomania29134 $9-a$ ($F, scippi$)CIS 448.84Pasture soilAustralia29134 $9-a$ ($F, scippi$)CIS 448.84Pasture soilAustralia3116015-cMDA 3Human lungTexas3116718-aMDA 10Human sputumTexas3217515-aMDA F20Human bloodOklahoma3218115-cMDA F20Human bloodOklahoma3218215-bMDA F20Human bloodTexas3238417-aFKC R-745Human diabetic cellulitisIllinois3286521-bFKC R-745Human and carditisBrazil3286623-aFKC R-8822Human cancer patientTexas3286623-aFKC R-8837Human cancer patientTexas3286723-aFKC R-8837Human cancer patientTexas3286825-cFKC R-9445Human cancer patientTexas328715-aFKC R-9451Human abscessTexas3299315-cUTHSC 00-755Human nasal tissusTexas3299415-cUTHSC 09-1741Human for woundTexas3299515-cUTHSC 09-184Human for woundTexas3299615-cUTHSC 09-184Human for woundTexas3400115-eUTHSC 09-184Human for woundTexas3400220-aUTHSC 09-184Human for woundTexas3400320-aUTHS	28029	3-b	CDC B-3335	Human eye	California
2871426-bATC 74289Acacia' sp. branchCosta Rica291349-a ($F. siph)$ CBS 448.84Pasture soilAustralia31110112-aBBA 69079Thuja' sp.Germany3116015-cMDA 3Human hungTexas3116718-aMDA 10Human sputumTexas3217515-aMDA F10Human sputumTexas3218115-cMDA F20Human bloodOklahoma3218215-bMDA F22Human diabetic cellulitisIllinois3286417-aFRC 8-745Human diabetic cellulitisBrazil3286521-bFRC 8-882Human cancer patientTexas3286623-aFRC 8-882Human acacer patientTexas3286723-aFRC 8-880Human bloodTexas3286825-cFRC 8-880Human abscessTexas3286915-cUTHSC 00-755Human nashi sueTexas3299415-cUTHSC 00-755Human nashi sueTexas3299515-cUTHSC 09-1741Human forto woundTexas3299615-cUTHSC 09-1741Human forto woundTexas3400115-aUTHSC 09-23Human patumTexas3400222-aUTHSC 09-1741Human forto woundTexas340030-aUTHSC 09-23Human sputumTexas3400416-aUTHSC 09-23Human sputumTexas3400515-dUTHSC 09-243Human sp	28577	28-a	CBS 430.81	Grave stone	Romania
29134 $9a(\ell, script)$ CBS 448.84Pasture soilAustralia3101112-aBA 69079 $Thuja$ sp.Germany3116015-cMDA 3Human lungTexas3217515-aMDA 10Human sputumTexas3218115-cMDA F20Human bloodOklahoma3218215-bMDA F20Human diabetic cellultisIllinois3286212-bHoyola W-14182Human diabetic cellultisIllinois3286417-aFRC R-7245Human endocarditisBrazil3286523-aFRC R-8480Human endocarditisBrazil3286623-aFRC R-8837Human cancer patientTexas3286825-cFRC R-8837Human cancer patientTexas3286915-cUTHSC 00-755Human ansult issueTexas3299315-cUTHSC 00-494Human sinusTexas3299415-cUTHSC 09-1741Human sinusTexas3299515-cUTHSC 99-1644Human sinusTexas3209615-cUTHSC 99-1741Human sinusTexas3400115-cUTHSC 99-1545Human sinusTexas3400320-aUTHSC 99-1545Human sinusTexas3400416-aUTHSC 99-233Human sinusTexas3400524-aUTHSC 99-233Human sinusTexas3400615-aUTHSC 99-1545Human sinusColorado3400715-aUTHSC 99-1549H	28714	26-b	ATCC 74289	Acacia sp. branch	Costa Rica
310112-aBBA 69079Thujo sp.Germany3116015-cMDA 3Human lungTexas3116718-aMDA 10Human sputumTexas3217515-aMDA F10Human sputumTexas3218115-cMDA F20Human bloodOklahoma3218215-bMDA F22Human bloodTexas3282415-bMDA F22Human cancer patientTexas3286521-bFRC R-745Human cancer patientTexas3286623-aFRC R-8480Human cancer patientTexas3286723-aFRC R-8837Human cancer patientTexas3286915-cFRC R-9561Human ansal tissueTexas3286915-cFRC R-9561Human ansal tissueTexas3293015-cUTHSC 00-755Human sinusTexas3294115-cUTHSC 99-1741Human sinusTexas3299515-cUTHSC 99-1742Human sinusTexas3299615-cUTHSC 99-1545Human sinusTexas3400115-eUTHSC 95-1545Human sinusTexas3400320-aUTHSC 95-28Human and Al.Texas3400416-aUTHSC 94-233Human sinusTexas3400524-aUTHSC 95-2851Human sinusTexas3400416-aUTHSC 94-2351Human sinusTexas3400524-aUTHSC 94-2471Human sinusTexas34006 <td< td=""><td>29134</td><td>9-a (F. scirpi)</td><td>CBS 448.84</td><td>Pasture soil</td><td>Australia</td></td<>	29134	9-a (F. scirpi)	CBS 448.84	Pasture soil	Australia
3116015-cMDA 3Human lungTexas3217515-aMDA 10Human sputumTexas3217815-cMDA F20Human bloodOklahoma3218115-bMDA F20Human diabetic cellultisIllinois3238215-bMDA F20Human diabetic cellultisIllinois3238417-aFRC R-7245Human endocarditisBrazil3286621-bFRC R-8480Human endocarditisBrazil3286622-aFRC R-8822Human endocarditisTexas3286625-cFRC R-8837Human bloodTexas3286723-aFRC R-8837Human bloodTexas3286815-cFRC R-961Human abscessTexas328715-aFRC R-9561Human abscessTexas3299325-bUTHSC 00-755Human ethnoid sinusTexas3299415-cUTHSC 00-754Human ethnoid sinusTexas3299515-cUTHSC 99-1944Human forto woundTexas3299615-cUTHSC 99-1945Human fort woundTexas3400115-aUTHSC 99-1945Human sputumTexas3400222-aUTHSC 99-1945Human sputumTexas3400320-aUTHSC 94-2381Human fort woundTexas3400415-aUTHSC 94-2471Human sputumTexas3400524-aUTHSC 94-258Human sputumTexas3400615-aUTHSC 94-2595Human spu	31011	12-a	BBA 69079	Thuja sp.	Germany
3116718-aMDA 10Human sputumTexas3217515-aMDA F10Human sputumTexas3218115-cMDA F20Human bloodOklahoma3218215-bMDA F22Human bloodTexas3252218-bLoyola W-14182Human dibetic cellulitisIllinois3266417-aFRC R-7245Human encer patientTexas3286521-bFRC R-8480Human encer patientTexas3286623-aFRC R-8822Human encer patientTexas3286723-aFRC R-8850Human encer patientTexas3286915-cFRC R-9445Human abscestsTexas328715-aFRC R-9461Human sinusTexas3293325-bUTHSC 00-755Human inssTexas3299415-cUTHSC 99-1964Human sinusTexas3299515-cUTHSC 99-1964Human sinusTexas3299615-cUTHSC 99-1945Human fold voundTexas3400115-cUTHSC 99-1945Human fold voundTexas3400320-aUTHSC 91-545Human sinusTexas3400415-aUTHSC 91-2692Human sinusTexas3400524-aUTHSC 91-2692Human sinusTexas3400615-aUTHSC 91-2692Human sinusTexas3400715-aUTHSC 91-2795Human sinusColorado3400815-dUTHSC 91-21955Human sinusColo	31160	15-c	MDA 3	Human lung	Texas
3217515-aMDA F10Human plutumTexas3218115-cMDA F20Human bloodOklahorma3218215-bMDA F20Human bloodTexas3252218-bLoyola W-14182Human diabetic cellulitisIllinois3286417-aFRC R-7245Human endocarditisBrazil3286521-bFRC R-8480Human endocarditisBrazil3286623-aFRC R-8887Human endocarditisBrazil3286625-cFRC R-8887Human cancer patientTexas3286825-cFRC R-84857Human cancer patientTexas3286915-cFRC R-9561Human abscessTexas3299325-bUTHSC 00-755Human nabat lisusTexas3299415-cUTHSC 09-1964Human nabinsTexas3299515-cUTHSC 99-1741Human foot woundTexas3299615-cUTHSC 99-1741Human foot woundTexas3400115-eUTHSC 95-1545Human foot woundTexas3400222-aUTHSC 95-1545Human aptumTexas3400320-aUTHSC 95-28Human aptumTexas3400416-aUTHSC 95-285Human aptumTexas3400515-aUTHSC 94-271Human aptumTexas3400615-aUTHSC 95-1695Human aptumTexas3400715-aUTHSC 95-1696Human sputumTexas3400815-dUTHSC 95-286 <td< td=""><td>31167</td><td>18-a</td><td>MDA 10</td><td>Human sputum</td><td>Texas</td></td<>	31167	18-a	MDA 10	Human sputum	Texas
3218115-cMDA F20Human bloodOklahoma3218215-bMDA F22Human bloodTexas3252218-bLoyola W-14182Human diabetic cellulitisIllinois3286417-aFRC R-7245Human cancer patientTexas3286521-bFRC R-8480Human cancer patientTexas3286623-aFRC R-8887Human cancer patientTexas3286723-aFRC R-8880Human bloodTexas3286825-cFRC R-8880Human bloodTexas328715-aFRC R-9445Human saltisueTexas3289325-bUTHSC 00-755Human bloodTexas3299415-cUTHSC 00-755Human sinusTexas3299515-cUTHSC 99-1741Human foot woundTexas3209615-cUTHSC 99-1741Human foot woundTexas3400115-eUTHSC 99-145Human foot woundTexas3400222-aUTHSC 95-1845Human foot woundTexas3400320-aUTHSC 92-28Human sputumTexas3400416-aUTHSC 92-28Human sputumTexas3400515-dUTHSC 92-28Human sputumTexas3400615-aUTHSC 92-303Human sputumTexas3400615-aUTHSC 92-303Human sputumTexas3400615-aUTHSC 92-280Human sputumTexas3400715-aUTHSC 92-2060Human sputum </td <td>32175</td> <td>15-a</td> <td>MDA F10</td> <td>Human sputum</td> <td>Texas</td>	32175	15-a	MDA F10	Human sputum	Texas
218215-bMDA F22Human bloodTexas2352218-bLoyola W-14182Human diabetic cellultisIllinois2386417-aFKC R-7245Human cancer putientTexas2386521-bFKC R-8480Human cancer patientTexas2286623-aFRC R-8827Human cancer patientTexas2286723-aFRC R-8830Human cancer patientTexas2286825-cFRC R-9455Human cancer patientTexas2399325-bUTHSC 00-755Human nasal tissueTexas2399415-cUTHSC 00-494Human ethnoid sinusTexas2399515-cUTHSC 99-1964Human forwain sinusTexas2399515-cUTHSC 99-423Human foot woundTexas2399615-cUTHSC 99-423Human foot woundTexas2400222-aUTHSC 99-1364Human foot woundTexas3400115-eUTHSC 99-423Human foot woundTexas3400220-aUTHSC 95-1545Human foot woundTexas3400320-aUTHSC 95-28Human sputumTexas3400416-aUTHSC 93-202Human furwireral fluidMinnesota3400524-aUTHSC 93-203Human sputumTexas3400615-aUTHSC 93-203Human sputumTexas3400715-aUTHSC 93-203Human sputumTexas3400815-dUTHSC 93-203Human sputumTexas3	32181	15-c	MDA F20	Human blood	Oklahoma
3252218-bLoyola W-14182Human diabetic cellulitisIllinois 32864 17-aFRC R-7245Human endocarditisBrazil 32865 21-bFRC R-8480Human endocarditisBrazil 32866 23-aFRC R-8837Human cancer patientTexas 32867 23-aFRC R-8830Human cancer patientTexas 32868 25-cFRC R-9455Human cancer patientTexas 32871 5-aFRC R-89561Human abscessTexas 32933 25-bUTHSC 00-755Human aski tissueTexas 32994 15-cUTHSC 09-1964Human situsuTexas 32995 15-cUTHSC 09-1944Human situsuTexas 32996 15-cUTHSC 09-1741Human foot woundTexas 32096 15-cUTHSC 09-1741Human foot woundTexas 34001 15-eUTHSC 09-1545Human foot woundTexas 34002 22-aUTHSC 09-1545Human foot woundTexas 34003 20-aUTHSC 09-288Human foot woundTexas 34004 16-aUTHSC 09-2692Human spatumTexas 34006 15-aUTHSC 09-3933Human nugTexas 34006 15-aUTHSC 09-3933Human spatumTexas 34008 15-dUTHSC 09-21055Human nugTexas 34004 16-aUTHSC 09-21057Human spatumTexas 34005 5-dUTHSC 09-2106Human spatumT	32182	15-b	MDA F22	Human blood	Texas
32864 $17-a$ FRC R-7245Human endocarditisBrazil 32866 $23-a$ FRC R-8480Human endocarditisBrazil 32866 $23-a$ FRC R-8822Human cancer patientTexas 32868 $25-c$ FRC R-8837Human bloodTexas 32869 $15-c$ FRC R-8837Human cancer patientTexas 32869 $15-c$ FRC R-9361Human abscessTexas 32993 $25-b$ UTHSC 00-755Human asinesTexas 32994 $15-c$ UTHSC 00-494Human sinusTexas 32995 $15-c$ UTHSC 99-1964Human tornoid sinusTexas 32995 $15-c$ UTHSC 99-1741Human fore woundTexas 32997 $7.a$ UTHSC 99-1745Human fore woundTexas 34001 $15-e$ UTHSC 99-1745Human fore woundTexas 34002 $22-a$ UTHSC 99-1745Human spitumTexas 34003 $20-a$ UTHSC 95-1845Human spitumTexas 34004 $16-a$ UTHSC 94-281Human spitumTexas 34005 $24-a$ UTHSC 93-2692Human spitumTexas 34006 $15-a$ UTHSC 93-2692Human spitumTexas 34007 $15-a$ UTHSC 93-2692Human spitumTexas 34008 $15-d$ UTHSC 93-2692Human spitumTexas 34001 $15-a$ UTHSC 93-2692Human spitumTexas 34002 $5-a$ UTHSC 94-281Human spitum	32522	18-b	Loyola W-14182	Human diabetic cellulitis	Illinois
3286521-bFRC R-8480Human endocarditisBrazil 32866 $23-a$ FRC R-8822Human endocarditisBrazil 32867 $23-a$ FRC R-8822Human cancer patientTexas 32868 $25-c$ FRC R-8880Human bloodTexas 32869 $15-c$ FRC R-8880Human cancer patientTexas 32871 $5-a$ FRC R-9561Human abscessTexas 32933 $25-b$ UTHSC 00-755Human atlissueTexas 32994 $15-c$ UTHSC 00-494Human ethmoid sinusTexas 32995 $15-c$ UTHSC 99-1964Human tennoid sinusTexas 32996 $15-c$ UTHSC 99-1943Human tennoidTexas 32097 $7-a$ UTHSC 95-1945Human ethmoid sinusTexas 34002 $22-a$ UTHSC 95-1945Human aptumTexas 34002 $22-a$ UTHSC 94-281Human blackTexas 34003 $20-a$ UTHSC 94-281Human sputumTexas 34004 $16-a$ UTHSC 93-2692Human sputumTexas 34005 $24-a$ UTHSC 93-2692Human anxillary sinusTexas 34007 $15-a$ UTHSC 92-1955Human abscessTexas 34007 $15-a$ UTHSC 92-1058Human abscessTexas 34010 $15-c$ UTHSC 92-1068Human abscessTexas 34032 $5-a$ UTHSC 94-2171Human abscessTexas 34034 $1-c$ UTHSC 96-1394 <td< td=""><td>32864</td><td>17-a</td><td>FRC R-7245</td><td>Human</td><td>Texas</td></td<>	32864	17-a	FRC R-7245	Human	Texas
32866 $23-a$ FRC R-8822Human cancer patientTexas 32867 $23-a$ FRC R-8837Human bloodTexas 32868 $25-c$ FRC R-9880Human cancer patientTexas 32871 $5-a$ FRC R-9561Human cancer patientTexas 32993 $25-b$ UTHSC 00-755Human nasal tissueTexas 32994 $15-c$ UTHSC 00-744Human sinusTexas 32995 $15-c$ UTHSC 99-1964Human toenailColorado 32995 $15-c$ UTHSC 99-423Human toenailColorado 34001 $15-c$ UTHSC 99-423Human potumTexas 34002 $22-a$ UTHSC 95-1545Human potumTexas 34003 $20-a$ UTHSC 92-28Human sputumTexas 34004 $16-a$ UTHSC 93-269Human intravitreal fluidMinnesota 34005 $24-a$ UTHSC 93-293Human sputumTexas 34006 $15-a$ UTHSC 93-293Human sputumTexas 34007 $15-a$ UTHSC 92-1955Human maxillary sinusTexas 34008 $15-d$ UTHSC 92-1955Human sputumTexas 34001 $15-c$ UTHSC 92-1955Human sputumTexas 34007 $15-a$ UTHSC 92-1955Human maxillary sinusTexas 34008 $15-d$ UTHSC 92-1955Human sputumTexas 34009 $15-d$ UTHSC 92-1955Human sputumTexas 34010 $15-c$ UTHSC 92-195	32865	21-b	FRC R-8480	Human endocarditis	Brazil
32867 $23-a$ FRC R-8837HumanTexas 32868 $25-c$ FRC R-9445Human bloodTexas 32871 $5-a$ FRC R-9445Human cancer patientTexas 32871 $5-a$ FRC R-9561Human abacessTexas 32871 $5-a$ FRC R-9561Human abacessTexas 32993 $15-c$ UTHSC 00-755Human ansal tissueTexas 32994 $15-c$ UTHSC 99-1964Human sinusTexas 32996 $15-c$ UTHSC 99-423Human toenailColorado 34001 $15-e$ UTHSC 99-423Human foot woundTexas 34002 $22-a$ UTHSC 95-1945Human soputumTexas 34002 $22-a$ UTHSC 95-28Human sputumTexas 34004 $16-a$ UTHSC 94-281Human sputumTexas 34005 $24-a$ UTHSC 94-2711Human intravirteal fluidMinnesota 34006 $15-a$ UTHSC 93-2692Human sputumTexas 34006 $15-a$ UTHSC 93-2692Human sputumTexas 34007 $15-a$ UTHSC 92-1955Human sputumTexas 34010 $15-c$ UTHSC 02-2060Human sputumTexas 34032 $5-a$ UTHSC 98-2172Human sinusColorado 34033 $5-d$ UTHSC 94-1167Human sinusColorado 34034 $1-c$ UTHSC 94-134Human sinusColorado 34035 $5-d$ UTHSC 96-1394Human bloodIllinoi	32866	23-а	FRC R-8822	Human cancer patient	Texas
32868 $25-c$ FRC R-8880Human bloodTexas 32869 $15-c$ FRC R-9445Human cancer patientTexas 32871 $5-a$ FRC R-9561Human abacessTexas 32932 $25-b$ UTHSC 00-755Human nasal tissueTexas 32994 $15-c$ UTHSC 09-1964Human ethnoid sinusTexas 32995 $15-c$ UTHSC 99-1741Human ethnoid sinusTexas 32996 $15-c$ UTHSC 99-1741Human toenailColorado 34001 $15-c$ UTHSC 95-1945Human toenailColorado 34002 $22-a$ UTHSC 95-1545Human foot woundTexas 34003 $20-a$ UTHSC 95-281Human BALTexas 34004 $16-a$ UTHSC 94-2871Human sputumTexas 34005 $24-a$ UTHSC 93-230Human sputumTexas 34006 $15-a$ UTHSC 93-33Human sputumTexas 34008 $15-d$ UTHSC 92-1955Human sputumTexas 34001 $15-c$ UTHSC 02-2060Human maxillary sinusTexas 34032 $5-a$ UTHSC 98-2172Human abcessTexas 34034 $1-c$ UTHSC 91-569Human abcessColorado 34035 $5-d$ UTHSC 91-569Human maxillary sinusTexas 34034 $1-c$ UTHSC 91-569Human abcossColorado 34035 $5-d$ UTHSC 91-569Human abcossColorado 34036 $1-b$ Loyola M5234 <t< td=""><td>32867</td><td>23-а</td><td>FRC R-8837</td><td>Human</td><td>Texas</td></t<>	32867	23-а	FRC R-8837	Human	Texas
3286915-cFRC R-9445Human cancer patientTexas 32973 25-bUTHSC 00-755Human nabscessTexas 32993 25-bUTHSC 00-755Human nabscessTexas 32994 15-cUTHSC 99-1964Human sinusTexas 32996 15-cUTHSC 99-1741Human leg woundTexas 32996 15-cUTHSC 99-1741Human foot woundTexas 32997 7-aUTHSC 99-1741Human foot woundTexas 34001 15-cUTHSC 95-1845Human foot woundTexas 34002 22-aUTHSC 95-1845Human foot woundTexas 34003 20-aUTHSC 94-2581Human sputumTexas 34004 16-aUTHSC 94-2581Human intravitreal fluidMinnesota 34005 24-aUTHSC 94-2581Human neyeTexas 34006 15-aUTHSC 92-1955Human nexiltary sinusTexas 34007 15-aUTHSC 92-1955Human maxillary sinusTexas 34011 15-cUTHSC 92-1698Human naxillary sinusTexas 34034 1-cUTHSC 94-2569Human nasultary sinusTexas 34035 5-dUTHSC 94-2172Human nascesTexas 34034 1-cUTHSC 94-2172Human sinusColorado 34035 5-dUTHSC 94-2174Human sinusColorado 34034 1-cUTHSC 94-2174Human sinusColorado 34035 5-dUTHSC 94-2174Huma	32868	25-с	FRC R-8880	Human blood	Texas
32871 $5 \cdot a$ FRC R-9561Human abscessTexas3299325-bUTHSC 00-755Human nasal tissueTexas3299415-cUTHSC 00-494Human ethnoid sinusTexas3299515-cUTHSC 99-1964Human sinusTexas3299615-cUTHSC 99-1741Human log woundTexas329977-aUTHSC 99-1741Human foot woundTexas3400115-eUTHSC 95-1945Human foot woundTexas3400222-aUTHSC 95-1545Human foot woundTexas3400320-aUTHSC 94-2581Human spitumTexas3400416-aUTHSC 94-2581Human intravitreal fluidMinnesota3400524-aUTHSC 94-2581Human spitumTexas3400615-aUTHSC 93-2692Human spitumTexas3400715-aUTHSC 93-2692Human naxillary sinusTexas3400815-dUTHSC 92-2060Human spitumTexas3401015-cUTHSC 92-2060Human spitumTexas340325-aUTHSC 98-2172Human sinusColorado340331-cUTHSC 98-2172Human sinusColorado340341-cUTHSC 94-167Human sinusColorado340355-dUTHSC 94-1394Human sinusColorado340361-bLoyola M54234Human sinusColorado340391-bUTHSC 94-2172Human sinusColorado340391-b <td>32869</td> <td>15-c</td> <td>FRC R-9445</td> <td>Human cancer patient</td> <td>Texas</td>	32869	15-c	FRC R-9445	Human cancer patient	Texas
32993 $25-b$ UTHSC 00-755Human nasal tissueTexas 32994 $15-c$ UTHSC 00-494Human ethmoid sinusTexas 32996 $15-c$ UTHSC 99-1964Human theonal constraintsColorado 32996 $15-c$ UTHSC 99-423Human toenalColorado 34001 $15-c$ UTHSC 95-1945Human toenalColorado 34002 $22-a$ UTHSC 95-1945Human ethmoid sinusTexas 34003 $20-a$ UTHSC 95-28Human intravitreal fluidMinnesota 34004 $16-a$ UTHSC 94-2471Human intravitreal fluidMinnesota 34006 $15-a$ UTHSC 93-2692Human sputumTexas 34006 $15-a$ UTHSC 93-2692Human sputumTexas 34007 $15-a$ UTHSC 92-1955Human sputumTexas 34011 $15-c$ UTHSC 02-1955Human sputumTexas 34011 $15-c$ UTHSC 02-2060Human sputumTexas 34034 $1-c$ UTHSC 94-2472Human abscessColorado 34035 $5-d$ UTHSC 02-2060Human sputumTexas 34034 $1-c$ UTHSC 04-2472Human sputumTexas 34035 $5-d$ UTHSC 94-234Human sputumTexas 34034 $1-c$ UTHSC 94-2472Human sputumTexas 34035 $5-d$ UTHSC 94-2472Human sputumTexas 34036 $1-c$ UTHSC 96-2172Human sputumTexas 34037 $5-b$ <td>32871</td> <td>5-a</td> <td>FRC R-9561</td> <td>Human abscess</td> <td>Texas</td>	32871	5-a	FRC R-9561	Human abscess	Texas
3299415-cUTHSC 09-1964Human tinuoti sinusTexas 32995 15-cUTHSC 99-1741Human sinusTexas 32997 7-aUTHSC 99-1741Human toenailColorado 34001 15-cUTHSC 95-1945Human toot woundTexas 34002 22-aUTHSC 95-1945Human ethmoid sinusTexas 34003 20-aUTHSC 95-28Human ethmoid sinusTexas 34004 16-aUTHSC 94-281Human baptumTexas 34005 24-aUTHSC 94-281Human sputumTexas 34006 15-aUTHSC 93-2802Human sputumTexas 34006 15-aUTHSC 93-293Human sputumTexas 34008 15-dUTHSC 02-1955Human maxillary sinusTexas 34010 15-cUTHSC 02-1956Human maxillary sinusTexas 34011 15-aUTHSC 02-2060Human sputumTexas 34032 5-aUTHSC 94-2172Human legArizona 34034 1-cUTHSC 94-167Human sinusColorado 34037 5-bUTHSC 96-1394Human sinusColorado 34039 1-bUTHSC 96-1394Human sinusColorado 34039 1-bUTHSC 96-1394Human sinusColorado 34031 1-cUTHSC 94-2172Human sinusColorado 34032 5-aUTHSC 94-1167Human sinusColorado 34033 1-cUTHSC 96-1394Human sinusColorado <td>32993</td> <td>25-b</td> <td>UTHSC 00-755</td> <td>Human nasal tissue</td> <td>Texas</td>	32993	25-b	UTHSC 00-755	Human nasal tissue	Texas
3299515-cUTHSC 99-1964Human isnusI exas 32996 15-cUTHSC 99-1741Human leg woundTexas 32997 7-aUTHSC 95-1945Human toenailColorado 34001 15-cUTHSC 95-1945Human toto woundTexas 34002 22-aUTHSC 95-1545Human ethnoid sinusTexas 34003 20-aUTHSC 95-28Human sputumTexas 34004 16-aUTHSC 94-2581Human intravitreal fluidMinnesota 34005 24-aUTHSC 93-2692Human sputumTexas 34006 15-aUTHSC 93-2692Human sputumTexas 34006 15-aUTHSC 92-1955Human sputumTexas 34008 15-dUTHSC 92-1055Human maxillary sinusTexas 34010 15-cUTHSC 92-1060Human sputumTexas 34032 5-aUTHSC 98-2172Human abscessTexas 34034 1-cUTHSC 94-1167Human legArizona 34035 5-dUTHSC 92-966Human sinusColorado 34036 1-bUTHSC 92-966Human sinusColorado 34037 5-bUTHSC 92-966Human abscessColorado 34038 1-cUTHSC 92-966Human sinusColorado 34039 1-bUTHSC 96-1394Human sinusColorado 34037 5-bUTHSC 96-1394Human sinusIlinois 34059 16-cLoyola 854234Human bloodIllinois <td>32994</td> <td>15-c</td> <td>UTHSC 00-494</td> <td>Human ethmoid sinus</td> <td>Texas</td>	32994	15-c	UTHSC 00-494	Human ethmoid sinus	Texas
3299615-cUTHSC 99-1/41Human leg woundTexas 32997 7aUTHSC 95-1945Human toenailColorado 34001 15-eUTHSC 95-1945Human toto woundTexas 34002 22-aUTHSC 95-1545Human ethmoid sinusTexas 34003 20-aUTHSC 95-28Human sputumTexas 34004 16-aUTHSC 94-2581Human intravitreal fluidMinnesota 34005 24-aUTHSC 94-2692Human eyeTexas 34006 15-aUTHSC 93-2692Human sputumTexas 34007 15-aUTHSC 93-2692Human sputumTexas 34008 15-dUTHSC 92-1955Human sputumTexas 340101 15-cUTHSC 02-1698Human sputumTexas 34011 15-aUTHSC 02-2060Human sputumTexas 34032 5-aUTHSC 98-2172Human becessTexas 34033 1-cUTHSC 91-569Human sinusColorado 34034 1-cUTHSC 91-569Human becessColorado 34035 5-dUTHSC 92-966Human becessColorado 34036 16-bLoyola M54234Human bloodIllinois 34056 16-bLoyola M54234Human bloodIllinois 34059 16-cLoyola M54234Human bloodIllinois 34050 16-cLoyola M54234Human bloodIllinois 34051 16-bGBS 107.07, INI 091982UnknownUnknown <td>32995</td> <td>15-c</td> <td>UTHSC 99-1964</td> <td>Human sinus</td> <td>Texas</td>	32995	15-c	UTHSC 99-1964	Human sinus	Texas
3297 $7a$ 0 UHSC 99-425Human toenallColorado 34001 15-eUTHSC 95-1945Human foot woundTexas 34002 22-aUTHSC 95-1545Human sputumTexas 34003 20-aUTHSC 95-28Human sputumTexas 34004 16-aUTHSC 94-281Human BALTexas 34005 24-aUTHSC 94-2471Human intravitreal fluidMinnesota 34006 15-aUTHSC 93-2692Human sputumTexas 34006 15-aUTHSC 93-933Human sputumTexas 34010 15-cUTHSC 02-1698Human maxillary sinusTexas 34010 15-cUTHSC 02-1098Human maxillary sinusTexas 34011 15-aUTHSC 02-2060Human sputumTexas 34034 1-cUTHSC 94-1167Human legArizona 34035 5-dUTHSC 94-1167Human sinusColorado 34035 5-dUTHSC 94-2966Human sinusColorado 34036 1-cLoyola 85158Human bocesColorado 34036 1-bUTHSC 96-1394Human bronchial washIllinois 34056 16-bLoyola 85158Human bloodIllinois 34070 17-cLoyola 85158Human bloodIllinois 34070 17-cLoyola 88177Pinus nigra seedlingCroatia 36269 12-bCBS 102.07, IMI 091982UnknownUnknown 36136 14-a (F. equiseti)CBS 185.31Unkn	32996	15-c	UTHSC 99-1741	Human leg wound	Texas
3400115-eUTHSC 95-1945Human foot woundTexas 34002 22-aUTHSC 95-1545Human ethmoid sinusTexas 34003 20-aUTHSC 94-2581Human sputumTexas 34004 16-aUTHSC 94-2581Human BALTexas 34005 24-aUTHSC 94-2471Human intravitreal fluidMinnesota 34006 15-aUTHSC 93-2692Human eyeTexas 34007 15-aUTHSC 92-1955Human lungTexas 34008 15-dUTHSC 02-1955Human naxillary sinusTexas 34010 15-cUTHSC 02-1068Human maxillary sinusTexas 34011 15-aUTHSC 02-2060Human sputumTexas 34032 5-aUTHSC 02-2060Human sinusColorado 34035 5-dUTHSC 94-1167Human legArizona 34035 5-dUTHSC 92-966Human sinusColorado 34037 5-bUTHSC 02-966Human bloodIllinois 34056 16-bLoyola M54234Human bloodIllinois 34059 16-cLoyola 8158Human bloodIllinois 34070 17-cLoyola 8158Human bloodUnknown 36136 14-a (F. equiseti)CBS 107.07, INI 091982UnknownUnknown 36131 14-a (F. equiseti)CBS 185.31UnknownUnknown 36318 3-aCBS 185.31UnknownNetherlands 36321 14-a (F. equiseti)CBS 185.34Soil<	32997	/-a	UTHSC 99-423	Human toenall	Colorado
34002 $22-a$ $01HSC$ $95-1343$ Human etimolo sinus 12838 34003 $20-a$ $UTHSC$ $95-28$ Human sputumTexas 34004 $16-a$ $UTHSC$ $94-2581$ Human intravitreal fluidMinnesota 34006 $15-a$ $UTHSC$ $94-2471$ Human intravitreal fluidMinnesota 34006 $15-a$ $UTHSC$ $93-2692$ Human eyeTexas 34007 $15-a$ $UTHSC$ $93-933$ Human sputumTexas 34008 $15-d$ $UTHSC$ $92-1955$ Human maxillary sinusTexas 34010 $15-c$ $UTHSC$ $02-1698$ Human maxillary sinusTexas 34011 $15-a$ $UTHSC$ $92-1955$ Human maxillary sinusTexas 34032 $5-a$ $UTHSC$ $92-1956$ Human sputumTexas 34033 $1-c$ $UTHSC$ $94-1167$ Human alscessTexas 34034 $1-c$ $UTHSC$ $94-1167$ Human sinusColorado 34035 $5-d$ $UTHSC$ $92-966$ Human alscessColorado 34036 $16-b$ Loyola M54234Human bloodIllinois 34070 $17-c$ Loyola M57591TortoiseIllinois 34070 $17-c$ Loyola W37591TortoiseIllinois 36123 $4-b$ CBS 102.977 Pinus nigra seedlingCroatia 36318 $3-a$ CBS 162.577 Pinus nigra seedlingCroatia 36321 $14-a$ (<i></i>	34001	15-e	UTHSC 95-1945	Human foot wound	Texas
34004 $16-a$ $UTHSC 95-28$ Human BALTexas 34004 $16-a$ $UTHSC 94+2581$ Human intravitreal fluidMinnesota 34005 $24-a$ $UTHSC 94+2581$ Human intravitreal fluidMinnesota 34006 $15-a$ $UTHSC 93-2692$ Human sputumTexas 34007 $15-a$ $UTHSC 92-1955$ Human lungTexas 34010 $15-d$ $UTHSC 92-1955$ Human maxillary sinusTexas 34011 $15-c$ $UTHSC 92-1955$ Human sputumTexas 34011 $15-a$ $UTHSC 92-2060$ Human sputumTexas 34032 $5-a$ $UTHSC 94-2172$ Human abscessTexas 34034 $1-c$ $UTHSC 94-2172$ Human sinusColorado 34035 $5-d$ $UTHSC 94-167$ Human sinusColorado 34037 $5-b$ $UTHSC 94-167$ Human sinusColorado 34038 $1-c$ $UTHSC 94-167$ Human sinusColorado 34037 $5-d$ $UTHSC 94-167$ Human sinusColorado 34038 $1-c$ $UTHSC 94-1344$ Human bronchial washIllinois 34037 $5-d$ $UTHSC 94-1344$ Human bronchial washIllinois 34037 $5-d$ $UTHSC 94-1344$ Human bronchial washIllinois 34039 $1-b$ $UTHSC 94-1344$ Human bronchial washIllinois 34039 $1-b$ $Loyola 85128$ Human bloodIllinois 34059 $16-c$ $Loyola 85158$ Human bronchial was	34002	22-a	UTHSC 95-1545	Human ethmold sinus	Texas
34005 $16-4$ $0143C 94-2351$ Human intravitreal fluidHexas 34005 $24-a$ $UTHSC 93-2692$ Human intravitreal fluidMinnesota 34007 $15-a$ $UTHSC 93-2692$ Human intravitreal fluidTexas 34008 $15-d$ $UTHSC 93-933$ Human sputumTexas 34008 $15-d$ $UTHSC 92-1955$ Human maxillary sinusTexas 34011 $15-c$ $UTHSC 02-1698$ Human sputumTexas 34011 $15-c$ $UTHSC 02-2060$ Human sputumTexas 34032 $5-a$ $UTHSC 98-2172$ Human sinusColorado 34035 $5-d$ $UTHSC 94-167$ Human sinusColorado 34035 $5-d$ $UTHSC 91-569$ Human sinusColorado 34037 $5-b$ $UTHSC 92-966$ Human brackessColorado 34039 $1-b$ $UTHSC 92-966$ Human bronchial washIllinois 34059 $16-c$ Loyola M54234Human bloodIllinois 34070 $17-c$ Loyola M54234Human bloodIllinois 34070 $17-c$ Loyola W37591TortoiseIllinois 36123 $4-b$ CBS 102300, BBA 70843UnknownUnknown 36269 $12-b$ CBS 162.57 <i>Pinus nigra</i> seedlingCroatia 36318 $3-a$ CBS 185.34SoilNetherlands 36323 $3-a$ CBS 185.34SoilNetherlands 36323 $3-a$ CBS 186.31Cotton yarnEngland 36	34003	20-a	UTHSC 95-28	Human Sputum	Texas
34005 $24-4$ 0 THSC 94-24/1Human intravireal fundMinitesota 34006 15-aUTHSC 93-2692Human eyeTexas 34007 15-aUTHSC 93-2692Human sputumTexas 34008 15-dUTHSC 92-1955Human naxillary sinusTexas 34010 15-cUTHSC 02-1060Human sputumTexas 34032 5-aUTHSC 98-2172Human abscessTexas 34034 1-cUTHSC 98-2172Human sinusColorado 34035 5-dUTHSC 91-569Human sinusColorado 34035 5-dUTHSC 96-1394HumanConnecticut 34036 1-bUTHSC 96-1394HumanConnecticut 34056 16-bLoyola M54234Human bloodIllinois 34059 16-cLoyola 8158Human bloodIllinois 34050 16-cLoyola 8158Human bloodIllinois 34050 12-bCBS 102300, BBA 70843UnknownUnknown 36136 14-a (<i>F. equiseti</i>)CBS 162.57 <i>Pinus nigra</i> seedlingCroatia 36321 14-a (<i>F. equiseti</i>)CBS 185.34SoilNetherlands 36323 3-aCBS 186.31Cotton yarnEngland 36321 14-a (<i>F. equiseti</i>)CBS 186.31Cotton yarnEngland 36322 2-aCBS 264.50CottonMozambique	34004	10-a 24 a	UTHSC 94-2381	Human BAL	Texas Minnagata
34007 $15-a$ $1143C$ $93-2092$ 11010 1262 12638 34007 $15-a$ $UTHSC$ $93-933$ Human sputum $Texas$ 34010 $15-c$ $UTHSC$ $02-1698$ Human maxillary sinus $Texas$ 34011 $15-a$ $UTHSC$ $02-1698$ Human sputum $Texas$ 34011 $15-a$ $UTHSC$ $02-2060$ Human sputum $Texas$ 34032 $5-a$ $UTHSC$ $98-2172$ Human abscess $Texas$ 34034 $1-c$ $UTHSC$ $91-569$ Human sinus $Colorado$ 34035 $5-d$ $UTHSC$ $91-569$ Human abscess $Colorado$ 34037 $5-b$ $UTHSC$ $96-1394$ Human bronchial washIllinois 34059 $1-b$ $UTHSC$ $96-1394$ Human bronchial washIllinois 34059 $16-c$ $Loyola$ 85158 Human bloodIllinois 34059 $16-c$ $Loyola$ 815791 TortoiseIllinois 34070 $17-c$ $Loyola$ 8158 Human bloodIllinois 36136 $14-a$ (<i>F. equiseti</i>) CBS 102.77 <i>Pinus nigra</i> seedling $Croatia$ 36321 $14-a$ (<i>F. equiseti</i>) CBS 185.31 UnknownUnknown 36323 $3-a$ CBS 186.31 Cotton yarnEngland 36323 $3-a$ CBS 25.79 AirNetherlands Antilles 36321 $12-c$ CBS 25.79 AirNeth	34003	24-a	UTHSC 94-2471	Human ava	Towas
34007 $15-a$ $0.1118C$ $95-353$ $11011a1$ 15011 $16xas$ 34008 $15-d$ UTHSC $92-1955$ Human lungTexas 34011 $15-c$ UTHSC $92-1698$ Human maxillary sinusTexas 34032 $5-a$ UTHSC $92-2060$ Human sputumTexas 34032 $5-a$ UTHSC $98-2172$ Human abscessTexas 34035 $5-d$ UTHSC $94-2172$ Human abscessColorado 34035 $5-d$ UTHSC $94-2167$ Human legArizona 34037 $5-b$ UTHSC $92-966$ Human bioxColorado 34039 $1-b$ UTHSC $96-1394$ Humanconnecticut 34056 $16-b$ LoyolaM54234Human bronchial washIllinois 34059 $16-c$ LoyolaM54234Human bloodIllinois 34070 $17-c$ LoyolaM37591TortoiseIllinois 34036 $14-a$ (<i>F. equiseti</i>)CBS107.07, IMI 091982UnknownUnknown 36136 $14-a$ (<i>F. equiseti</i>)CBS107.07, IMI 091982UnknownUnknown 36321 $14-a$ (<i>F. equiseti</i>)CBS185.31UnknownUnknown 36323 $3-a$ CBS185.34SoilNetherlands 36323 $3-a$ CBS186.31Cotton yarnEngland 36372 $11-a$ CBS235.79AirNetherlands Antilles 36392 $12-c$ CBS	34000	15-a 15-a	UTHSC 02 022	Human sputum	Texas
34000 $15-c$ $UTHSC 92-1935$ $110Han Imig1exas3401015-cUTHSC 02-1698Human maxillary sinusTexas340325-aUTHSC 02-2060Human sputumTexas340341-cUTHSC 98-2172Human abscessTexas340355-dUTHSC 94-1167Human sinusColorado340355-dUTHSC 91-569Human sinusColorado340375-bUTHSC 91-569Human biscessColorado340391-bUTHSC 92-966HumanColorado3403616-bUryola M54234Human bronchial washIllinois3405616-bLoyola M54234Human bloodIllinois3407017-cLoyola 88158Human bloodIllinois3407017-cLoyola W37591TortoiseIllinois361234-bCBS 102300, BBA 70843UnknownUnknown3626912-bCBS 162.57Pinus nigra seedlingCroatia363183-aCBS 185.31UnknownUnknown3632114-a (F. equiseti)CBS 185.34SoilNetherlands363233-aCBS 186.31Cotton yarnEngland3632111-aCBS 235.79AirNetherlands Antilles3632212-cCBS 259.54SeedlingGermany364012-aCBS 264.50CottonMozambique3400715-dUTHSC 02 1055Human lungTowns$	34007	15-d	UTHSC 02 1055	Human lung	Towns
3401115-c0 THSC 02-1093Human intaminary sinus1 Cas3401115-aUTHSC 02-2060Human sputumTexas340325-aUTHSC 98-2172Human abscessTexas340341-cUTHSC 94-1167Human legArizona340355-dUTHSC 91-569Human sinusColorado340375-bUTHSC 02-966Human bescessColorado340391-bUTHSC 96-1394Human bronchial washIllinois3405616-bLoyola M54234Human bronchial washIllinois3407017-cLoyola 88158Human bloodIllinois361234-bCBS 102300, BBA 70843UnknownUnknown3613614-a (F. equiseti)CBS 107.07, IMI 091982UnknownUnknown3632114-a (F. equiseti)CBS 185.31UnknownUnknown363233-aCBS 186.31Cotton yarnEngland3637211-aCBS 235.79AirNetherlands Antilles3639212-cCBS 259.54SeedlingGermany364012-aCBS 264.50CottonMozambique	34010	15-d	UTHSC 02 1608	Human maxillary sinus	Texas
340325-aUTHSC 92-2000Human lspittinTexas340325-aUTHSC 98-2172Human abscessTexas340341-cUTHSC 94-1167Human legArizona340355-dUTHSC 91-569Human sinusColorado340375-bUTHSC 02-966Human abscessColorado340391-bUTHSC 96-1394Human bronchial washIllinois3405616-bLoyola M54234Human bronchial washIllinois3405916-cLoyola 88158Human bloodIllinois3407017-cLoyola 87591TortoiseIllinois3613614-a (F. equiseti)CBS 107.07, IMI 091982UnknownUnknown3626912-bCBS 162.57Pinus nigra seedlingCroatia3632114-a (F. equiseti)CBS 185.31UnknownUnknown363233-aCBS 186.31Cotton yarnEngland3632411-aCBS 255.79AirNetherlands3639212-cCBS 255.79AirNetherlands Antilles3639212-cCBS 255.79AirNetherlands Antilles3639212-cCBS 255.79AirNetherlands Antilles3639212-cCBS 255.79AirNetherlands Antilles364012-aCBS 264.50CottonMozambique	34010	15-0	UTHSC 02 2060	Human sputum	Texas
340321-cUTHSC 90-2112Human abscessTexas340341-cUTHSC 94-1167Human legArizona340355-dUTHSC 91-569Human sinusColorado340375-bUTHSC 02-966Human abscessColorado340391-bUTHSC 96-1394HumanConnecticut3405616-bLoyola M54234Human bronchial washIllinois3405716-cLoyola S8158Human bloodIllinois3407017-cLoyola W37591TortoiseIllinois361234-bCBS 102.300, BBA 70843UnknownUnknown3613614-a (F. equiseti)CBS 107.07, IMI 091982UnknownUnknown3626912-bCBS 162.57Pinus nigra seedlingCroatia363183-aCBS 185.31UnknownUnknown3632114-a (F. equiseti)CBS 185.34SoilNetherlands363233-aCBS 186.31Cotton yarnEngland3632411-aCBS 235.79AirNetherlands Antilles3632512-cCBS 259.54SeedlingGermany364012-aCBS 264.50CottonMozambique	34032	5-2	UTHSC 98-2172	Human abscess	Texas
340355-dUTHSC 91-569Human kgColorado340375-bUTHSC 92-966Human sinusColorado340391-bUTHSC 96-1394HumanConnecticut3405616-bLoyola M54234Human bronchial washIllinois3405916-cLoyola S8158Human bloodIllinois3407017-cLoyola W37591TortoiseIllinois361234-bCBS 102300, BBA 70843UnknownUnknown3613614-a (F. equiseti)CBS 107.07, IMI 091982UnknownUnknown3626912-bCBS 162.57Pinus nigra seedlingCroatia363183-aCBS 185.31UnknownUnknown3632114-a (F. equiseti)CBS 186.31Cotton yarnEngland363233-aCBS 186.31Cotton yarnEngland3637211-aCBS 255.79AirNetherlands Antilles3639212-cCBS 255.54SeedlingGermany364012-aCBS 264.50CottonMozambique	34034	1-c	UTHSC 94-1167	Human leg	Arizona
340375-bUTHSC 92-966Human shidsColorado340391-bUTHSC 96-1394Human abscessColorado3405616-bLoyola M54234Human bronchial washIllinois3405916-cLoyola S8158Human bloodIllinois3407017-cLoyola W37591TortoiseIllinois361234-bCBS 102300, BBA 70843UnknownUnknown3613614-a (F. equiseti)CBS 107.07, IMI 091982UnknownUnknown3626912-bCBS 162.57Pinus nigra seedlingCroatia363183-aCBS 185.31UnknownUnknown3632114-a (F. equiseti)CBS 185.34SoilNetherlands363233-aCBS 186.31Cotton yarnEngland3637211-aCBS 255.79AirNetherlands Antilles3639212-cCBS 255.54SeedlingGermany364012-aCBS 264.50CottonMozambique	34035	5-d	UTHSC 91-569	Human sinus	Colorado
340391-bUTHSC 92-390Human docessConnection340391-bUTHSC 92-394HumanConnecticut3405616-bLoyola M54234Human bronchial washIllinois3405916-cLoyola S8158Human bloodIllinois3407017-cLoyola W37591TortoiseIllinois361234-bCBS 102300, BBA 70843UnknownUnknown3613614-a (F. equiseti)CBS 107.07, IMI 091982UnknownUnknown3626912-bCBS 162.57Pinus nigra seedlingCroatia363183-aCBS 185.31UnknownUnknown3632114-a (F. equiseti)CBS 185.34SoilNetherlands363233-aCBS 186.31Cotton yarnEngland3637211-aCBS 255.79AirNetherlands Antilles3639212-cCBS 255.54SeedlingGermany364012-aCBS 264.50CottonMozambique	34037	5-b	UTHSC 02-966	Human abscess	Colorado
3405616Control of 100 (0100)HumanControl of 100 (0100)3405616-bLoyola M54234Human bronchial washIllinois3407017-cLoyola W37591TortoiseIllinois361234-bCBS 102300, BBA 70843UnknownUnknown3613614-a (F. equiseti)CBS 107.07, IMI 091982UnknownUnknown3626912-bCBS 162.57Pinus nigra seedlingCroatia363183-aCBS 185.31UnknownUnknown3632114-a (F. equiseti)CBS 185.34SoilNetherlands363233-aCBS 186.31Cotton yarnEngland3637211-aCBS 255.79AirNetherlands Antilles3639212-cCBS 25.54SeedlingGermany364012-aCBS 264.50CottonMozambique	34039	1-b	UTHSC 96-1394	Human	Connecticut
3405916-cLoyola NB 15 NHuman bloodIllinois3407017-cLoyola W37591TortoiseIllinois361234-bCBS 102300, BBA 70843UnknownUnknown3613614-a (F. equiseti)CBS 107.07, IMI 091982UnknownUnknown3626912-bCBS 162.57Pinus nigra seedlingCroatia363183-aCBS 185.31UnknownUnknown3632114-a (F. equiseti)CBS 185.34SoilNetherlands363233-aCBS 186.31Cotton yarnEngland3637211-aCBS 255.79AirNetherlands Antilles3639212-cCBS 25.54SeedlingGermany364012-aCBS 264.50CottonMozambique	34056	16-b	Lovola M54234	Human bronchial wash	Illinois
3407017-cLoyola W37591TortoiseIllinois361234-bCBS 102300, BBA 70843UnknownUnknown3613614-a (F. equiseti)CBS 107.07, IMI 091982UnknownUnknown3626912-bCBS 162.57Pinus nigra seedlingCroatia363183-aCBS 185.31UnknownUnknown3632114-a (F. equiseti)CBS 185.34SoilNetherlands363233-aCBS 186.31Cotton yarnEngland3637211-aCBS 255.79AirNetherlands Antilles3639212-cCBS 259.54SeedlingGermany364012-aCBS 264.50CottonMozambique	34059	16-c	Lovola S8158	Human blood	Illinois
361234-bCBS 102300, BBA 70843UnknownUnknown3613614-a (F. equiseti)CBS 107.07, IMI 091982UnknownUnknown3626912-bCBS 162.57Pinus nigra seedlingCroatia363183-aCBS 185.31UnknownUnknown3632114-a (F. equiseti)CBS 185.34SoilNetherlands363233-aCBS 186.31Cotton yarnEngland3637211-aCBS 235.79AirNetherlands Antilles3639212-cCBS 259.54SeedlingGermany364012-aCBS 264.50CottonMozambique	34070	17-c	Lovola W37591	Tortoise	Illinois
3613614-a (F. equiseti)CBS 107.07, IMI 091982UnknownUnknown3626912-bCBS 162.57Pinus nigra seedlingCroatia363183-aCBS 185.31UnknownUnknown3632114-a (F. equiseti)CBS 185.34SoilNetherlands363233-aCBS 186.31Cotton yarnEngland3637211-aCBS 235.79AirNetherlands Antilles3639212-cCBS 259.54SeedlingGermany364012-aCBS 264.50CottonMozambique	36123	4-b	CBS 102300, BBA 70843	Unknown	Unknown
3626912-bCBS 162.57Pinus nigra seedlingCroatia363183-aCBS 185.31UnknownUnknown3632114-a (F. equiseti)CBS 185.34SoilNetherlands363233-aCBS 186.31Cotton yarnEngland3637211-aCBS 235.79AirNetherlands Antilles3639212-cCBS 259.54SeedlingGermany364012-aCBS 264.50CottonMozambique	36136	14-a (F. equiseti)	CBS 107.07. IMI 091982	Unknown	Unknown
363183-aCBS 185.31UnknownUnknown3632114-a (F. equiseti)CBS 185.34SoilNetherlands363233-aCBS 186.31Cotton yarnEngland3637211-aCBS 235.79AirNetherlands Antilles3639212-cCBS 259.54SeedlingGermany364012-aCBS 264.50CottonMozambique	36269	12-b	CBS 162.57	Pinus nigra seedling	Croatia
3632114-a (F. equiseti)CBS 185.34SoilNetherlands363233-aCBS 186.31Cotton yarnEngland3637211-aCBS 235.79AirNetherlands Antilles3639212-cCBS 259.54SeedlingGermany364012-aCBS 264.50CottonMozambique	36318	3-a	CBS 185.31	Unknown	Unknown
363233-aCBS 186.31Cotton yarnEngland3637211-aCBS 235.79AirNetherlands Antilles3639212-cCBS 259.54SeedlingGermany364012-aCBS 264.50CottonMozambique	36321	14-a (F. equiseti)	CBS 185.34	Soil	Netherlands
3637211-aCBS 235.79AirNetherlands Antilles3639212-cCBS 259.54SeedlingGermany364012-aCBS 264.50CottonMozambique	36323	3-a	CBS 186.31	Cotton varn	England
3639212-cCBS 259.54SeedlingGermany364012-aCBS 264.50CottonMozambique	36372	11-a	CBS 235.79	Air	Netherlands Antilles
36401 2-a CBS 264.50 Cotton Mozambique	36392	12-c	CBS 259.54	Seedling	Germany
	36401	2-a	CBS 264.50	Cotton	Mozambique

Continued on following page

Downloaded from jcm.asm.org at Wageningen UR Library on March 1, 2010

NRRL no.	FIESC MLST (species) ^a	Equivalent no(s). ^b	Isolate source	Origin
36448	2-b	CBS 384.92	Phaseolus vulgaris seed	Sudan
36466	14-a (F. equiseti)	CBS 414.86	Potato peel	Denmark
36478	9-a (F. scirpi)	CBS 447.84	Pasture soil	Australia
36548	17-b	CBS 190.60	Banana	Congo
36575	20-b	CBS 976.97	Juniperus chinensis leaf	Hawaii
43297	24-b	W. Elmer 22	Spartina rhizomes	Connecticut
43498	8-b	CDC 2006743466	Human eye	Pennsylvania
43619	15-a	UTHSC 05-2847	Human finger	Texas
43622	15-c	UTHSC 03-2501	Human lung	Texas
43623	5-e	UTHSC 03-59	Human maxillary sinus	Colorado
43635	13-a	UTHSC 06-638	Horse	Nebraska
43636	14-c (F. equiseti)	UTHSC 06-170	Dog	Texas
43637	1-a	UTHSC 05-1729	Dog	Pennsylvania
43638	6-a	UTHSC R-3500	Manatee	Florida
43639	19-a	UTHSC 04-135	Manatee	Florida
43640	1-a	UTHSC 04-123	Dog nose	Texas
43694	6-a	CDC 2006743607	Human eye	Texas
43730	16-c	CDC 2006743605	Contact lens	Mississippi
45995	5-b	UTHSC 02-966	Human abscess	Colorado
45996	1-a	UTHSC 03-3101	Human sinus	New York
45997	5-f	UTHSC 04-1902	Human sinus	Colorado
45998	6-b	UTHSC 06-2315	Human toe	Texas

TABLE 1-Continued

^a Arabic numerals identify species, and lowercase roman letters identify unique haplotypes within each species.

^b Sequences of *F. concolor* NRRL 13459 were used to root the phylogeny (Fig. 1).

^c ATCC, American Type Culture Collection, Manassas, VA; BBÁ, Biologische Bundesanstalt für Land-und Forstwirtschaft, Institute für Mikrobiologie, Berlin, Germany; CBS, CBS-KNAW Fungal Biodiversity Center, Utrecht, The Netherlands; CDC, Centers for Disease Control and Prevention, Atlanta, GA; Loyola, Loyola University, Maywood, IL; IMI, CABI Biosciences, Egham, Surrey, England; MDA, M. D. Anderson Cancer Center, Houston, TX; WE, Wade Elmer, Connecticut Agricultural Experiment Station, New Haven, CT.

suggests that additional sampling may reveal that FIESC 9-c represents a phylogenetically distinct species.

In the absence of our ability to confidently apply Latin binomials to 25 of the 28 species within the FIESC, the species and haplotype nomenclature previously adopted within the medically important clade 3 of the FSSC (35, 51) has been extended herein to all of the species within the species-rich FIESC. Results of the typing scheme revealed that, with the exception of FIESC 10 whose two isolates shared the same ST, the 20 other species represented by two or more isolates possessed between two and six STs with unique combinations of alleles. FIESC 15-a (n = 5) and FIESC 15-c (n = 8), which were restricted to Texas and Oklahoma, represented the most commonly sampled clinically relevant STs in the present study. Although six species exhibited intercontinental distributions (i.e., FIESC 3, 4, 9, 14, 23, and 25), FIESC 1-a represented the only ST out of the 62 unique haplotypes typed in the present study isolated on separate continents. In addition, FIESC 1-a and FIESC 6-a were the only two STs within this complex recovered from humans and other animals (Table 1). Employing Simpson's index of diversity, the four-locus FIESC typing scheme achieved a 0.985 index of discrimination (18).

Phylogenetic diversity of FCSC clinical isolates. Twenty of the 26 isolates analyzed phylogenetically within the FCSC were isolated within the United States from mycotic infections, and they included 19 from humans and a single isolate from a horse eye. Summary sequence and tree statistics of the four loci sampled are presented in Table 4. Based on parsimony informative characters (PIC) per bp (Table 4), *CAM* and the ITS+LSU 28S rRNA genes were the most and least phylogenetically informative loci, respectively, with 0.26 and 0.06 PIC/

bp, respectively. An ambiguously aligned 37-bp indel-containing region within CAM was excluded from all phylogenetic analyses. The same conditional combination approach employed above for the FIESC indicated that trees inferred from the four FCSC loci sampled represented the same underlying phylogeny, and therefore the data were analyzed as a combined data set using MP and ML. As noted above, the homoplastic distribution of highly divergent β-tubulin paralogs or xenologs precluded the use of this locus for phylogeny reconstruction. The 12 most-parsimonious trees were 4,299 steps in length; the ML tree with the best negative log-likelihood score, using the GTR+I+G model of nucleotide substitution, was -14,131.69216 based on 10 independent analyses in GARLI (52). MP and ML phylogenies resolved F. nelsonii as the earliest diverging lineage within the FCSC, forming a basal sister to the remaining members of this complex (Fig. 2; only the MP tree is shown). Analyses of the individual and combined data sets support the recognition of four genealogically exclusive, phylogenetically distinct species within this complex (Fig. 2). Three of the four FCSC species were associated with mycotic infections. However, because it is unclear which of these species, if any, represents F. chlamydosporum, herein these three species are designated FCSC 1, 2, and 3. High allelic diversity was observed, with 12 STs among 13 isolates within FCSC 1 and four STs among 9 isolates within FCSC 2. The latter species contained the most common ST sampled, FCSC 2-a, with human isolates from Texas and Pennsylvania and a soil isolate from Australia (Table 2). Lastly, the DNA typing results revealed that three of the four FCSC species exhibited transoceanic distributions (FCSC 1, 2, and 4 [equivalent, F. nelsonii]). Overall the FCSC four-locus typing scheme

NRRL no.	MLST and/or species ^a	Equivalent no. ^c	Isolate source	Origin
13338	FCSC 4-a (F. nelsonii)	FRC R-2181	Soil	Australia
13444	FCSC 2-a	FRC T-550	Corn soil	Australia
13459	F. $concolor^b$	CBS 691.87	Plant debris	South Africa
28505	FCSC 4-b (F. nelsonii)	FRC R-8670	Soil debris	South Africa
28578	FCSC 1-a	CBS 615.87	Colocasia esculenta leaf	Cuba
32521	FCSC 1-e	FRC T-0852	Human cancer patient	Texas
34012	FCSC 1-g	UTHSC 01-451	Human toe	Texas
34013	FCSC 2-a	UTHSC 01-2416	Human toenail	Pennsylvania
34014	FCSC 1-l	UTHSC 01-2668	Human maxillary sinus	Illinois
34015	FCSC 2-b	UTHSC 02-1276	Horse eye	Alabama
34016	FCSC 2-a	UTHSC 98-2537	Human leg	Texas
34017	FCSC 1-h	UTHSC 97-59	Human maxillary sinus	Texas
34018	FCSC 1-m	UTHSC 97-17	Human arm	Florida
34019	FCSC 1-c	UTHSC 96-2036	Human eye	Texas
34021	FCSC 2-a	UTHSC 95-1488	Human upper lobe wash	Texas
34022	FCSC 1-j	UTHSC 93-2120	Human paranasal sinus	Georgia
34023	FCSC 2-c	UTHSC 93-1353	Human finger	Texas
34033	F. brachygibbosum	UTHSC 97-99	Human foot cellulites	Texas
34036	Fusarium sp. strain 1, FTSC	UTHSC 01-1965	Human ethmoid sinus	Colorado
36147	Fusarium sp. strain 2, FTSC	CBS 109232	Human bronchial secretion	Unknown
36495	FCSC 2-b	CBS 491.77	Soil	Kuwait
36539	FCSC 1-k	CBS 677.77	Cultivated soil	Solomon Islands
43627	FCSC 2-d	UTHSC 05-3559	Human bronchial lavage	Texas
43628	FCSC 1-i	UTHSC 05-3396	Human finger	Florida
43629	FCSC 1-b	UTHSC 05-3200	Human blood	Utah
43630	FCSC 2-a	UTHSC 05-2743	Human sputum	Texas
43631	FCSC 3-a	UTHSC 05-2441	Human leg	Texas
43632	FCSC 1-d	UTHSC 05-1260	Human eye	Florida
43633	FCSC 1-f	UTHSC 03-3472	Human maxillary sinus	Tennessee
43641	F. armeniacum	UTHSC 06-1377	Horse eye	Missouri
45992	FCSC 1-j	UTHSC 06-3823	Human leg	South Carolina
45994	Fusarium sp. strain 2, FTSC	UTHSC 06-2616	Cloaca	Texas
45999	F. flocciferum	UTHSC 06-3449	Human scalp	California
			-	

TABLE 2. FCSC and novel pathogenic isolates subjected to DNA MLST

^a MLST within FCSC. Arabic numerals designate species, and lowercase roman letters identify unique haplotypes within each species.

^b Sequences of F. concolor NRRL 13459 were used to root the phylogeny (Fig. 2).

^c CBS, CBS-KNAW Fungal Biodiversity Center, Utrecht, The Netherlands; CDC, Centers for Disease Control and Prevention, Atlanta, GA.

achieved an index of discrimination of 0.966 employing Simpson's index of diversity (18).

Five novel Fusarium species causing mycotic infections. Six isolates tentatively identified morphologically as members of the FIESC or FCSC were resolved as five phylogenetically distinct species nested outside these complexes, based on comparisons of partial $EF-1\alpha$ sequences with the FUSARIUM-ID database (12) and partial RPB2 gene sequences from a more

Locus	Size (bp)	No. of PICs	No. of PICs/bp	AUT ^a	MPT length (no. of steps) ^{b}	CI ^c	RI^d	No. of haplotypes ^e	No. of FIESC species supported as monophyletic ^f	
<i>EF-1-</i> α	717	162	0.23	95	517	0.61	0.92	51	20	
LSU+ITS rRNA genes	1,135	11	0.01	35	58	0.57	0.92	21	1	
RPB2	1,766	220	0.12	184	629	0.58	0.92	46	19	
CAM	704	133	0.19	109	385	0.64	0.94	45	14	
<i>EF-1-</i> α plus rRNA genes	1,852	173	0.09	130	602	0.57	0.91	59	_	
<i>EF-1-α</i> plus <i>RPB2</i>	2,483	382	0.15	279	1,181	0.57	0.91	57	_	
$EF-1-\alpha$ plus CAM	1,421	295	0.21	204	934	0.59	0.92	54	_	
rRNA genes plus RPB2	2,901	231	0.08	219	714	0.55	0.91	54	_	
rRNA genes plus CAM	1,839	144	0.08	144	469	0.58	0.93	56	_	
RPB2 plus CÂM	2,470	353	0.14	293	1,062	0.69	0.92	53	_	
Combined	4,322	526	0.12	423	1,695	0.67	0.91	62	21	

1,695

TABLE 3. FIESC tree statistics for the individual and combined partitions

^a AUT, autapomorphy or a derived character.

 b MPT, most parsimonious tree.

^c CI, consistency index.

^d RI, retention index.

^e Number of multilocus haplotypes or STs determined using COLLAPSE, version 1.1.

^f Based on maximum parsimony bootstrap support. ---, comparison not made.

Locus	Size (bp)	No. of PICs	No. of PICs/bp	AUT ^a	MPT length (no. of steps) ^{b}	CI ^c	RI^d	No. of haplotypes ^e	No. of FCSC species supported as monophyletic ^f
<i>EF-1-</i> α	710	159	0.22	74	379	0.81	0.89	17 (7)	3
LSU+ITS rRNA genes	1,153	69	0.06	45	156	0.85	0.9	14 (6)	2
RPB2	1,766	335	0.19	111	697	0.71	0.88	17 (7)	3
CAM	670	177	0.26	59	364	0.82	0.88	12 (5)	2
$EF-1-\alpha$ plus rRNA genes	1,863	228	0.12	119	551	0.73	0.87	24 (7)	_
$EF-1-\alpha$ plus $RPB2$	2,476	494	0.2	185	1,084	0.72	0.88	23 (7)	_
$EF-1-\alpha$ plus CAM	1,380	336	0.24	133	745	0.77	0.88	21 (7)	_
rRNA genes plus RPB2	2,919	404	0.14	156	872	0.71	0.87	21 (7)	_
rRNA genes plus CAM	1,823	246	0.13	104	540	0.8	0.86	20 (6)	_
RPB2 plus CAM	2,436	512	0.21	170	1,065	0.78	0.88	21 (7)	
Combined	4,299	740	0.17	289	1,627	0.78	0.87	27 (7)	3

TABLE 4. FCSC tree statistics for the individual and combined partitions

^a AUT, autapomorphy or a derived character.

^b MPT, most parsimonious tree.

^c CI, consistency index.

^d RI, retention index.

^e Number of multilocus haplotypes or STs determined using COLLAPSE, version 1.1. Note that the number in parentheses refers to the number of STs for the non-FCSC isolates within the ingroup.

^fBased on maximum parsimony bootstrap support. —, comparison not made.

inclusive data set (K. O'Donnell, unpublished data). Results of these analyses identified three isolates as described species: NRRL 34033 (from human foot cellulites; Texas) was identified as F. brachygibbosum by comparison with the ex-type strain NRRL 20954 (= BBA 64691); NRRL 43641 (from horse eye; Missouri) as F. armeniacum by comparison with the ex-type strain NRRL 26908 (CBS 485.94 and FRC R-9372); and NRRL 45999 (from human scalp; California) formed a genealogically exclusive group with F. flocciferum isolates NRRL 25471 (CBS 792.70 and BBA 11141) and NRRL 25473 (BBA 64346). The first two species are members of the trichothecene toxin-producing clade of fusaria (21). NRRL 45999 F. flocciferum, together with the remaining two clinical species, represented by NRRL 34036 Fusarium sp. strain 1 (from human ethmoid sinus; Colorado) and NRRL 36147 Fusarium sp. strain 2 (from human bronchial secretion; geographic origin unknown), and NRRL 45994 Fusarium sp. strain 2 (from cloaca; Texas), are members of a clade designated herein as the F. tricinctum species complex (FTSC) (21). NRRL 34036 Fusarium sp. strain 1 (from human ethmoid sinus; Colorado) and Fusarium sp. strain 2, represented by NRRL 36147 strain 1 (from human bronchial secretion; geographic origin unknown) and NRRL 45994 strain 2 (from cloaca; Texas), appear to represent two undescribed phylogenetically distinct species. To our knowledge, the current study represents the first report implicating these five species in causing mycotic infections of humans and other animals.

DISCUSSION

Species limits and evolutionary relationships within two closely related fusaria lineages, the FIESC and FCSC, together with five clinically novel Fusarium species that are important in medical and veterinary contexts, were investigated for the first time employing multilocus GCPSR (49). The major finding of the present study is that the FCSC and FIESC appear to comprise, respectively, 4 and 28 phylogenetically distinct species; that over 70% of the species within these two complexes are represented by isolates recovered from infections of humans or other animals; and that they comprise approximately 15% of all fusarial infections within the United States. The 3 species within the FCSC and all 21 species within the FIESC represented by two or more isolates fulfilled the highly conservative requirements of GCPSR as applied here in that they were resolved as genealogically exclusive in the majority of the four bootstrapped single-locus genealogies (37, 40). In addition, bootstrapping revealed that none of the individual genealogies contradicted the monophyly of these species (i.e., genealogical nondiscordance sensu Dettman et al.) (10). Additional sampling of more isolates is needed to assess the monophyly of one putative species within the FCSC and seven within the FIESC, given that they were each represented by a single genetically divergent isolate in the present study.

Phylogenetic diversity of FIESC clinical isolates. This study describes the first MLST typing scheme for species and hap-

FIG. 1. One of 12 most-parsimonious trees inferred from MP analysis of the combined four-locus data set for 88 isolates within the FIESC. The phylogram is rooted by the outgroup method using sequences of *F. concolor* NRRL 13459. Arabic numbers and lowercase Roman letters identify species and their multilocus STs, respectively. Human and veterinary isolates are distinguished from nonclinical isolates by shading. Veterinary isolates are distinguished from those from humans by a solid dot to the right of the NRRL number/ST. In addition, a star to the right of ST 6-a indicates that one isolate was from a veterinary source and the other from a human. Note that Latin binomials can be applied confidently to only 3 of 14 species within the Equiseti clade and to none of the species within the Incarnatum clade. MP bootstrap values based on 1,000 pseudoreplicates of the data are indicated above internodes. ML bootstrap values are indicated below internodes only when they differed by $\geq 5\%$ of the MP value.

FIG. 2. One of 12 most-parsimonious MP phylograms inferred from the combined data from four loci for the FCSC and related clinically relevant fusaria rooted with sequences of *F. concolor* NRRL 13459. Arabic numbers and lowercase Roman letters are used to identify four species and their multilocus STs within the FCSC. Dark shading identifies isolates from human clinical and veterinary sources, the latter of which are further distinguished by a solid dot to the right of the NRRL number/ST. A star to the right of *Fusarium* sp. strain 2 indicates that it was represented by one human and one veterinary isolate. It is unclear which of the three unnamed species within the FCSC represents *F. chlamydosporum*, if any. Numbers above nodes represent the frequency (percent) with which they were recovered from 1,000 MP bootstrap pseudoreplicates of the data. ML bootstrap values are indicated only below those internodes that differed by $\geq 5\%$ of the MP value. The present study represents the first report of the five species basal to the FCSC causing mycotic infections in humans and other animals. *Fusarium brachygibbosum* and *F. armeniacum* are members of the trichothecene toxin-producing clade, whereas the other non-FCSC ingroup species are members of the FTSC.

lotypes based on nucleotide polymorphism within portions of four nuclear genes among members of the FIESC that are important in both clinical and veterinary contexts. Previous molecular phylogenetic studies of the FIESC have not focused on identifying GCPSR-based species limits among clinically relevant or mycotoxigenic isolates, given that their genetic diversity was assessed only via partial DNA sequence data from single nuclear genes such as EF-1 α (21, 42), RPB2 (34), β -tubulin (3), 28S rDNA (15), or restriction fragment polymorphisms from the nuclear ribosomal intergenic spacer region (rDNA) (20). Based on the results of the present study, $EF-1\alpha$ was the most phylogenetically informative gene and the ITS+LSU 28S rDNA was the least informative. Even though the latter locus possessed relatively little phylogenetic signal, the typing schemes benefited from its inclusion by an increase of six STs within the FIESC and three STs within the FCSC.

One of the most surprising results to emerge from the present study is that the species-rich FIESC comprises at least 20 mycoses-associated species among the 28 reciprocally monophyletic lineages resolved by the multilocus molecular

phylogenetics. What makes this finding all the more remarkable is that only one of the 52 clinical isolates was recovered from outside the United States, revealing that phylogenetically diverse human-opportunistic members of this complex are well represented in North America. Moreover, phenotypically based taxonomic treatments of the genus have underestimated species diversity within the FIESC by close to 1 order of magnitude (13, 22, 28). Similar GCPSR-based studies within other clinically important clades within *Fusarium*, such as the FSSC (30, 35, 51), GFSC (31, 33), FDSC (44), and FOSC (36) have revealed similar levels of cryptic speciation.

The result is that Latin binomials can be applied with confidence to only 3 of the 28 species within the FIESC (Fig. 1). This is due primarily to the discovery of the large number of phylogenetically distinct but morphologically cryptic species reported herein and also to unresolved taxonomic and nomenclatural problems associated with applying validly published names such as *F. incarnatum* and *F. pallidoroseum* and their varieties (19, 46), which might represent phylogenetically distinct species, to members of the FIESC. Although the name *F.* *semitectum* has been used in the literature more than any other species within the Incarnatum clade, study of the type collection surprisingly revealed that this binomial has been misapplied because it is a later synonym of *Colletotrichum musae* (6). These systematic problems are exacerbated by the dearth of and homoplasious morphological characters within the FIESC and because type specimens, where known, are too old for DNA typing using the present four-locus MLST scheme.

In the absence of binomials for most of the species within the FIESC, one of the primary objectives of the present study was to extend the standardized multilocus species/haplotype nomenclature, first proposed in the CDC's keratitis outbreak investigation (8), to each member of the FIESC to facilitate communication of epidemiologically relevant data within the public health, phytopathological, and mycotoxin research communities. In this connection, it is worth mentioning that 59% of the FIESC isolates typed represented unique STs, with FIESC 15's 16 isolates and five STs from Texas or Oklahoma being the most common species sampled. This finding, however, undoubtedly represents a sampling bias given that close to two-thirds of the clinically relevant isolates we typed were obtained from the University of Texas Health Science Center's (UTHSC) Fungus Testing Laboratory in San Antonio, TX. Clearly, future studies are needed to elucidate how clinically relevant STs are distributed throughout North America and on other continents with the aim of identifying their environmental reservoirs. Surveys of the FIESC in nature indicate that they are common on phylogenetically diverse plants and plant debris and in soil in both hemispheres (13). Moreover, members of the Incarnatum clade are especially prevalent in the tropics and subtropics (13). Because members of the FIESC have been reported to produce type A and B trichothecene mycotoxins (14, 17, 25), which can alter immune function (39) and inhibit eukaryotic protein synthesis (50), as well as cytotoxic enniatins (16, 24) and estrogenic mycotoxins (14, 17, 20, 25), studies are needed to evaluate whether any of these toxins function as virulence factors in animal pathogenesis. In addition, ongoing studies are directed at investigating their mycotoxin potential in vitro using the phylogenetic framework developed in the present study.

Phylogenetic diversity of FCSC clinical isolates. Herein, we report on the first MLST scheme for members of the FCSC. This scheme was used to type 20 relevant isolates from clinical or veterinary sources from the United States, employing portions of the same four loci used for the FIESC. The discovery of highly divergent β -tubulin paralogs or xenologs, as in the FIESC and FSSC (30), precluded the use of this locus for phylogeny reconstruction in the present study. Even so, Azor et al. (3) recently reported that phylogenetic analysis of a 378-bp portion of the β-tubulin gene from eight isolates identified as F. chlamydosporum formed a weakly supported clade (61% bootstrap), which suggests that orthologous alleles were sampled. The only other published phylogenetic analysis of the FCSC, which strongly supported its monophyly (100% bootstrap), was conducted using a 1.8-kb portion of RPB2 (34), but only four isolates were studied. Results of the present study represent the first GCPSR-based assessment of species limits within the FCSC. Species were recognized only if they were reciprocally monophyletic in at least half of the individual partitions and no genealogical discordance was observed (37, 40). Using these ranking criteria, three phylogenetically distinct, clinically relevant species were resolved within the morphotaxon *F. chlamydosporum*.

Given that the type specimen of this species was isolated from banana in Honduras (13) and that isolates from this host and/or geographic location were unavailable for study, it is unclear which of the three FCSC species, if any, corresponds to F. chlamydosporum. Because the type specimen of this species was collected in 1925 and an ex-type strain does not exist, study of isolates collected from banana at the type locality may help resolve this taxonomic problem. The species/haplotype nomenclature originally developed by Chang et al. (8) for the fusaria keratitis outbreak adopted in the present study, using Arabic numbers for species and lowercase roman letters for each unique ST, obviates these taxonomic issues and promotes precise communication of the MLST data within the scientific community. Results of the present study, which show that the two most common STs, FCSC 2-a and 2-b, exhibited intercontinental distributions and were represented by soil isolates, is consistent with reports that the broadly defined morphospecies F. chlamydosporum is common in soils and the rhizosphere of numerous vascular plants worldwide (13). Isolates of the fourth species within the FCSC, F. nelsonii, have not been reported to cause mycotic infections, possibly because they have been recovered only from remote or sparsely populated regions in South Africa (26) and Australia (this study) or possibly because they may have been misidentified as F. chlamydosporum or F. incarnatum. Given that the FCSC isolates from humans and other animals included in the present study were all from the United States, future studies are needed to elucidate the global distribution of clinically important species/STs, which should help identify their environmental reservoirs and identify widespread clones or clonal lineages (36). Further, because members of the FCSC are able to elaborate several mycotoxins, including trichothecenes and moniliformin (25), the phylogenetic framework developed in the present study will be used to evaluate species/ST mycotoxin potential to better understand the risk these strains pose to food safety and human health (38).

Five novel Fusarium species causing mycotic infections. The extremely homoplasious morphological characters within the FIESC and FCSC contributed significantly to the initial phenotypic misidentifications of the five novel fusaria causing infections of humans and other animals as F. equiseti, F. incarnatum, or F. chlamydosporum. Fortunately, accurate molecular identifications were easily obtained by simply comparing partial *EF-1* α sequences with those in the FUSARIUM-ID database (12) and/or molecular phylogenetic analysis of a comprehensive data set of partial RPB2 sequences for human pathogenic and phytopathogenic fusaria (O'Donnell, unpublished). Significant advantages of the molecular approach, based on results of the present study, include that it can provide accurate identifications of rare and novel mycotic agents that are named (i.e., F. brachygibbosum, F. flocciferum, and F. armeniacum) as well as those that apparently lack Latin binomials (i.e., Fusarium sp. strain 1 and Fusarium sp. strain 2). It is worth mentioning that a third isolate of *Fusarium* sp. strain 2, NRRL 28032, was received from the CDC as B-4271 in 1998, isolated from a toenail infection from a patient in Colorado.

Conclusions and future directions. It is important that the MLST schemes developed for the FIESC and FCSC in the present study, in contrast to those available via the Internet for some of the most important human pathogenic species (4, 23), focused primarily on identifying species limits within these closely related species complexes. Nevertheless, the four-locus typing schemes for the FIESC and FCSC achieved indices of discrimination of 0.985 and 0.966, respectively, using Simpson's index of diversity (18). Should the necessity arise, identification of additional phylogenetically informative loci for the MLST schemes will be greatly facilitated by four phylogenetically diverse fusarial genomes that are available online, one representing the FSSC from the Joint Genome Institute (http://www.jgi.doe.gov) and three from the Broad Institute of Massachusetts Institute of Technology and Harvard representing the FOSC, GFSC, and the trichothecene toxin-producing fusaria (9; http://www.broad .mit.edu/annotation/fungi/fgi/). With the development of GCPSR-based MLST schemes for the six most important human-pathogenic species complexes within Fusarium (i.e., FSSC, FOSC, GFSC, FDSC, FIESC, and FCSC) (see Fig. 1 in reference 34), which collectively comprise close to 100% of all medically important isolates, a uniform finding that has emerged from these studies is the dramatic discrepancy between species identifications using morphology alone versus molecular phylogenetics. Results of the present study and those published previously (34, 35, 51) have revealed that only 30% of clinically relevant fusaria (i.e., 20 of 65) have Latin binomials that can be applied with confidence. This is largely due to high levels of cryptic speciation and the concomitant extreme morphological homoplasy, especially within the FIESC and FSSC (30, 35, 51), as reflected by the fact that only 3 of the 21 FIESC and 3 of the 20 FSSC mycoses-associated species have known scientific names. In the absence for morphological apomorphies, the MLST schemes provide the only means by which isolates can be identified to species/haplotype with confidence and be accurately reported on in the scientific literature. Because species limits were delimited within the FIESC and FCSC for the first time in the present study, it is possible for us to recommend using a partial $EF-1\alpha$ gene sequence for identifying species within these two complexes. With the present set of isolates, sequence data from this locus was used to identify all 28 species within the FIESC and all 4 species within the FCSC. However, as putatively novel species are detected, GCPSR-based studies will be required to fully assess their genealogical exclusivity. It is worth mentioning that matrix-assisted laser desorption ionization-time of flight analysis appears to provide a potential avenue for rapidly identifying clinical fusaria to the level of species complex (27) or in some cases to species level, assuming their boundaries have been defined previously by GCPSR. In this preliminary study, 35 of the 62 isolates analyzed were identified to one of three species complexes, with only isolates of F. verticillioides and F. proliferatum being identified to species. Even though these results are encouraging, it remains to be determined whether matrix-assisted laser desorption ionization-time of flight analysis can be used to identify most or all of the approximately 65 clinically relevant fusaria to the species level.

To further promote identification of pathogenic fusaria, Internet-accessible standardized MLST databases of clinically relevant fusaria will be made available at the CBS and the FUSARIUM-ID website (http://fcgp.fusariumdb.org/) at Pennsylvania State University. These databases will be updated regularly as new species/STs are discovered, contingent on the deposit of associated chromatograms, which are essential to ensure that sequences are error free, and of cultures in an international, publically accessible culture collection to promote further study by the scientific community. The MLST databases should be viewed as a work in progress (48), providing a novel baseline for understanding *Fusarium* population biology and potential changes in the spectrum of clinically relevant fusaria within a robust phylogenetic framework.

ACKNOWLEDGMENTS

Special thanks are due Allison Strom, Stacy Sink, and Jean Juba for excellent technical assistance; Nathane Orwig for running all of the DNA sequences in the National Center for Agricultural Utilization Research DNA core facility; Don Fraser for preparation of the tree figures; and the culture collections and individuals who supplied isolates used in this study.

The mention of trade products or firm names does not imply that they are recommended by the U.S. Department of Agriculture over similar products or other firms not mentioned.

REFERENCES

- Alastruey-Izquierdo, A., M. Cuenca-Estrella, A. Monzón, E. Mellado, and J. L. Rodríguez-Tudela. 2008. Antifungal susceptibility profile of clinical *Fusarium* spp. isolates identified by molecular methods. J. Antimicrob. Chemother. 61:805–809.
- Azor, M., J. Gené, J. Cano, and J. Guarro. 2007. Universal in vitro antifungal resistance of genetic clades of the *Fusarium solani* species complex. Antimicrob. Agents Chemother. 51:1500–1503.
- Azor, M., J. Gené, J. Cano, P. Manikandan, N. Venkatapathy, and J. Guarro. 2009. Less-frequent *Fusarium* species of clinical interest: Correlation between morphological and molecular identification and antifungal susceptibility. J. Clin. Microbiol. 47:1463–1468.
- Bain, J. M., A. Tavanti, A. D. Davidson, M. D. Jacobsen, D. Shaw, N. A. R. Gow, and F. C. Odds. 2007. Multilocus sequence typing of the pathogenic fungus *Aspergillus fumigatus*. J. Clin. Microbiol. 45:1469–1477.
- 5. Balajee, S. A., A. M. Borman, M. E. Brandt, J. Cano, M. Cuenca-Estrella, E. Dannaoui, J. Guarro, G. Haase, C. C Kibbler, W. Meyer, K. O'Donnell, C. A. Petti, J. L. Rodriguez-Tudela, D. Sutton, A. Velegraki, and B. L. Wickes. 2009. Sequence-based identification of *Aspergillus, Fusarium*, and *Mucorales* species in the clinical mycology laboratory: where are we and where should we go from here? J. Clin. Microbiol. 47:877–884.
- Booth, C., and B. C. Sutton. 1984. Fusarium pallidoroseum, the correct name for F. semitectum Auct. Trans. Br. Mycol. Soc. 83:702–704.
- Burgess, L. W., P. E. Nelson, T. A. Toussoun, and W. F. O. Marasas. 1985. Fusarium scirpi: emended description and notes on geographic distribution. Mycologia 77:212–218.
- Chang, D. C., G. B. Grant, K. O'Donnell, K. A. Wannemuehler, J. Noble-Wang, C. Y. Rao, L. M. Jacobson, C. S. Crowell, R. S. Sneed, F. M. T. Lewis, J. K. Schaffzin, M. A. Kainer, C. A. Genese, E. C. Alfonso, D. B. Jones, A. Srinivasan, S. K. Fridkin, and B. J. Park. 2006. A multistate outbreak of *Fusarium* keratitis associated with use of a contact lens solution. JAMA 296:953–963.
- Cuomo, C. A., U. Güldener, J.-R. Xu, F. Trail, B. G. Turgeon, A. Di Pietro, J. D. Walton, L.-J. Ma, S. E. Baker, M. Rep., G. Adam, J. Antoniw, T. Baldwin, S. Calvo, Y.-L. Chang, D. DeCaprio, L. R. Gale, S. Gnerre, R. S. Goswami, K. Hammond-Kosack, L. J. Harris, K. Hilburn, J. C. Kennell, S. Kroken, J. K. Magnuson, G. Mannhaupt, E. Mauceli, H.-W. Mewes, R. Mitterbauer, G. Muehlbauer, M. Münsterkőtter, D. Nelson, K. O'Donnell, T. Ouellet, W. Qi, H. Quesneville, M. I. G. Roncero, K.-Y. Seong, I. V. Tetko, M. Urban, C. Waalwijk, T. J. Ward, J. Yao, B. W. Birren, and H. C. Kistler. 2007. The *Fusarium graminearum* genome reveals localized polymorphism and pathogen specialization. Science 317:1400–1402.
- Dettman, J. R., D. J. Jacobson, and J. W. Taylor. 2003. A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote *Neurospora*. Evol. 57:2703–2720.
- Dignani, M. C., and E. J. Anaissie. 2004. Human fusariosis. Clin. Microbiol. Infect. 10(Suppl. 1):67–75.
- Geiser, D. M., M. del M. Jiménez-Gasco, S. Kang, I. Makalowska, N. Veeraraghavan, T. J. Ward, N. Zhang, G. A. Kuldau, and K. O'Donnell. 2004. FUSARIUM-ID v. 1.0: a DNA sequence database for identifying *Fusarium*. Eur. J. Plant Pathol. 110:473–479.
- Gerlach, W., and H. Nirenberg. 1982. The genus *Fusarium*--a pictorial atlas. Mitt. Biol. Bundesanst. Land-Forstwirtsch. 209:1–406.

- Goswami, R. S., Y. Dong, and Z. K. Punja. 2008. Host range and mycotoxin production by *Fusarium equiseti* isolates originating from ginseng fields. Can. J. Plant Pathol. 30:155–160.
- Hennequin, C., E. Abachin, F. Symoens, V. Lavarde, G. Reboux, N. Nolard, and P. Berche. 1999. Identification of *Fusarium* species involved in human infections by 28S rRNA gene sequencing. J. Clin. Microbiol. 37:3586–3589.
- Herrmann, M., R. Zocher, and A. Haese. 1996. Enniatin production by *Fusarium* strains and its effect on potato tuber tissue. Appl. Environ. Microbiol. 62:393–398.
- Hestbjerg, H., K. F. Nielsen, U. Thrane, and S. Elmholt. 2002. Production of trichothecenes and other secondary metabolites by *Fusarium culmorum* and *Fusarium equiseti* on common laboratory media and a soil organic matter agar: an ecological interpretation. J. Agric. Food Chem. 50:7593–7599.
- Hunter, P. R., and M. A. Gaston. 1988. Numerical index of the discriminatory ability of tying systems: an application of Simpson's index of diversity. J. Clin. Microbiol. 26:2465–2466.
- Khoa, L. V., K. Hatai, and T. Aoki. 2004. Fusarium incarnatum isolated from black tiger shrimp, Penaeus monodon Fabricius, with black gill disease cultured in Vietnam. J. Fish Dis. 27:507–515.
- Kosiak, E. B., A. Holst-Jensen, T. Rundberget, M. T. Gonzalez-Jaen, and M. Torp. 2005. Morphological, chemical and molecular differentiation of *Fusarium equiseti* isolated from Norwegian cereals. Int. J. Food Microbiol. 99:195– 206.
- Kristensen, R., M. Torp, B. Kosiak, and A. Holst-Jensen. 2005. Phylogeny and toxigenic potential is correlated in *Fusarium* species as revealed by partial translation elongation factor 1 alpha gene sequences. Mycol. Res. 109:173–186.
- 22. Leslie, J. F., and B. A. Summerell. 2006. The *Fusarium* laboratory manual. Blackwell Publishing, Ames, Iowa.
- Litvintseva, A. P., R. Thakur, R. Vilgalys, and T. G. Mitchell. 2006. Multilocus sequence typing reveals three genetic subpopulations of *Cryptococcus* neoformans var. grubii (serotype A), including a unique population in Botswana. Genetics 172:2223–2238.
- Logrieco, A., A. Moretti, G. Castella, M. Kostecki, P. Golinski, A. Ritieni, and J. Chelkowski. 1998. Beauvericin production by *Fusarium* species. Appl. Environ. Microbiol. 64:3084–3088.
- Marasas, W. F. O., P. E. Nelson, and T. A. Tousson. 1984. Toxigenic *Fusar*ium species: Identity and mycotoxicology. Pennsylvania State University Press, University Park, PA.
- Marasas, W. F. O., J. P. Rheeder, A. Logrieco, P. S. Van Wyk, and J. H. Juba. 1998. Fusarium nelsonii and F. musarum: two new species in section Arthrosporiella related to F. camptoceras. Mycologia 90:505–513.
- Marinach-Patrice, C., A. Lethuillier, A. Marly, J.-Y. Brossas, J. Gene, F. Symoens, A. Datry, J. Guarro, D. Mazier, and C. Hennequin. 2009. Use of mass spectrometry to identify clinical *Fusarium* isolates. Clin. Microbiol. Infect. 15:634–642.
- Nelson, P. E., T. A. Toussoun, and W. F. O. Marasas. 1983. Fusarium species: An illustrated manual for identification. Pennsylvania State University Press, University Park, PA.
- Nylander, J. A. A. 2004. MrModeltest version 2.2. Evolutionary Biology Centre, Uppsala, Sweden.
- O'Donnell, K. 2000. Molecular phylogeny of the Nectria haematococca-Fusarium solani species complex. Mycologia 92:919–938.
- O'Donnell, K., E. Cigelnik, and H. Nirenberg. 1998. Molecular systematics and phylogeography of the *Gibberella fujikuroi* species complex. Mycologia 90:465–493.
- 32. O'Donnell, K., C. Gueidan, S. Sink, P. R. Johnston, P. W. Crous, A. Glenn, R. Riley, N. C. Zitomer, P. Colyer, C. Waalwijk, T. van der Lee, A. Moretti, S. Kang, H.-S. Kim, D. M. Geiser, J. H. Juba, R. P. Baayen, M. G. Cromey, S. Bithell, D. A. Sutton, K. Skovgaard, R. Ploetz, H. C. Kistler, M. Elliott, M. Davis, and B. A. J. Sarver. 26 August 2009, posting date. A two-locus DNA sequence database for typing plant and human pathogens within the *Fusarium oxysporum* species complex. Fungal Genet. Biol. doi:10.1016/j.fgb. 2009.08.006.
- 33. O'Donnell, K., H. I. Nirenberg, T. Aoki, and E. Cigelnik. 2000. A multigene phylogeny of the *Gibberella fujikuroi* species complex: Detection of additional phylogenetically distinct species. Mycoscience 41:61–78.

- 34. O'Donnell, K., B. A. J. Sarver, M. Brandt, D. C. Chang, J. Noble-Wang, B. J. Park, D. A. Sutton, L. Benjamin, M. Lindsley, A. Padhye, D. M. Geiser, and T. J. Ward. 2007. Phylogenetic diversity and microsphere array-based genotyping of human pathogenic fusaria, including isolates from the multistate contact lens-associated U.S. keratitis outbreaks of 2005 and 2006. J. Clin. Microbiol. 45:2235–2248.
- 35. O'Donnell, K., D. A. Sutton, A. Fothergill, D. McCarthy, M. G. Rinaldi, M. E. Brandt, N. Zhang, and D. M. Geiser. 2008. Molecular phylogenetic diversity, multilocus haplotype nomenclature, and in vitro antifungal resistance within the *Fusarium solani* species complex. J. Clin. Microbiol. 46: 2477–2490.
- 36. O'Donnell, K., D. A. Sutton, M. G. Rinaldi, K. C. Magnon, P. A. Cox, S. G. Revankar, S. Sanche, D. M. Geiser, J. H. Juba, J.-A. H. van Burik, A. Padhye, E. J. Anaissie, A. Francesconi, T. J. Walsh, and J. S. Robinson. 2004. Genetic diversity of human pathogenic members of the *Fusarium oxysporum* complex inferred from multilocus DNA sequence data and amplified fragment length polymorphism analyses: evidence for the recent dispersion of a geographically widespread clonal lineage and nosocomial origin. J. Clin. Microbiol. 42:5109–5120.
- 37. O'Donnell, K., T. J. Ward, D. M. Geiser, H. C. Kistler, and T. Aoki. 2004. Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the *Fusarium graminearum* species complex. Fungal Genet. Biol. 41:600–623.
- Peraica, M., B. Radic, A. Lucic, and M. Pavolovic. 1999. Toxic effects of mycotoxins in humans. Bull. W. H. O. 77:754–766.
- Peska, M., and A. T. Smolinski. 2005. Deoxynivalenol: toxicology and potential effects on human health. J. Toxicol. Environ. Health B 8:39–69.
- Pringle, A., D. M. Baker, J. L. Platt, J. P. Wares, J. P. Latgé, and J. W. Taylor. 2005. Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus *Aspergillus fumigatus*. Evol. 59:1886–1899.
- Pujol, I., J. Guarro, J. Gené, and J. Sala. 1997. In-vitro antifungal susceptibility of clinical and environmental *Fusarium* spp. strains. J. Antimicrob. Chemother. 39:163–167.
- Punja, Z. K., A. Wan, M. Rahman, R. S. Goswami, T. Barasubiye, K. A. Seifert, and C. A. Lévesque. 2008. Growth, population dynamics, and diversity of *Fusarium equiseti* in ginseng fields. Eur. J. Plant Pathol. 121:173–184.
- 43. Reuben, A., E. Anaissie, P. E. Nelson, R. Hashem, C. Legrand, D. H. Ho, and G. P. Bodey. 1989. Antifungal susceptibility of 44 clinical isolates of *Fusarium* species determined by using a broth microdilution method. Antimicrob. Agents Chemother. 33:1647–1649.
- 44. Schroers, H.-J., K. O'Donnell, S. C. Lamprecht, P. L. Kammeyer, S. Johnson, D. A. Sutton, M. G. Rinaldi, D. M. Geiser, and R. C. Summerbell. 2009. Taxonomy and phylogeny of the *Fusarium dimerum* species group. Mycologia 101:44–70.
- 45. Subrahmanyam, A. 1983. Fusarium laceratum. Mykosen 26:478–480.
- Summerbell, R. C. 2003. Aspergillus, Fusarium, Sporothrix, Piedraia, and their relatives, p. 237–498. In D. H. Howard (ed.), Pathogenic fungi in humans and animals. Marcel Dekker, Inc., New York, NY.
- Swofford, D. L. 2002. PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer Associates, Sunderland, MA.
- Taylor, J. W., and M. C. Fisher. 2003. Fungal multilocus sequence typing it's not just for bacteria. Curr. Opinion Microbiol. 6:351–356.
- Taylor, J. W., D. J. Jacobson, S. Kroken, T. Kasuga, D. M. Geiser, D. S. Hibbett, and M. C. Fisher. 2000. Phylogenetic species recognition and species concepts in fungi. Fungal Genet. Biol. 31:21–32.
- Ueno, Y., M. Nakajima, K. Sakai, K. Ishii, N. Sato, and N. Shimada. 1973. Comparative toxicology of trichothecene mycotoxins: inhibition of protein synthesis in animal cells. J. Biochem. (Tokyo) 74:285–296.
- Zhang, N., K. O'Donnell, D. A. Sutton, F. A Nalim, R. C. Summerbell, A. A. Padhye, and D. M. Geiser. 2006. Members of the *Fusarium solani* species complex that cause infections in both humans and plants are common in the environment. J. Clin. Microbiol. 44:2186–2190.
- 52. **Zwickl, D. J.** 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation. The University of Texas, Austin.