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Abstract. Many different algorithms can be used to optimize spatial network de-
signs. For spatial interpolation of environmental variables in routine and emergency
situations, computation time and interpolation accuracy are important criteria. The
objective of this work is to compare the performance of different optimization algo-
rithms for both criteria. Both adding to and deleting measurements from an existing
network are considered. We applied four algorithms to three datasets with known
variogram models, in all cases taking the mean universal kriging variance (MUKV)
as the interpolation accuracy measure. Preliminary results show that greedy algo-
rithms that minimize the entropy perform best, both in computing time and MUKV.

1 INTRODUCTION

Optimization of measurement locations is a key issue in spatial sampling design. When
network running costs limit the number of measurements, optimization methods allow
to choose the locations such that the interpolation error is minimized, either locally or
globally. In the case of emergency situations, computation time is an important constraint
that the optimization procedure must take into account. For instance, in the case of an
accidental radioactivity release by a nuclear power plant, the placement of mobile devices
to best assess the location of the plume needs a fast tool to compute the optimal locations
of additional measurement devices. Heuvelink et al. (2009) [8] used plume simulations to
optimize the locations of additional measurements such that the expected costs of wrong
decisions – areas of false positive and false negative detection of the plume – but the
solution method is time consuming because it uses loops of geostatistical simulation in an
iterative numerical optimization algorithm.

For estimation of global quantities in space, sampling design can be done using design-
based and model-based approaches [7]. However, model-based approaches are generally
preferred when the objective is to estimate local quantities. In such a case one defines
and applies a geostatistical model of spatial variation, which may include spatial trends.
The quality of the interpolation for a given design can then be diagnosed using the mean
universal kriging variance (MUKV) [3].

In this paper we focus on network design optimization in the context of automatic
mapping, where a network is already in use but additional measurements may be collected
or where the network must be thinned. We consider the situation in which a user needs to
map a natural resource or environmental variable under time, cost and quality constraints.
The objectives of this paper are to compare several optimization methods applied to the
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adding and deleting scenarios and to guide the user in choosing the most appropriate
method in a given situation. We base the comparison on two criteria: computation time
and interpolation accuracy (i.e., the MUKV). We test four optimization methods using
three well-known datasets from the geostatistical literature, all available in the “Gstat”
package library in R [12, 11]. We define a geostatistical model for each dataset and
assume these valid. In other words, we assume that the random functions are second-order
stationary – possibly after removal of a spatial trend – and do not consider uncertainty in
variogram structure and variogram parameters.

2 MATERIAL AND METHODS

2.1 Datasets

Three datasets are taken from the gstat library in R [1]. The ”Meuse” and ”Jura” datasets
[11, 6] contain point samples of soil minerals in two different European regions. The
Sic2004 dataset – named after the Spatial Inter Comparison exercise of 2004 [4] – con-
tains Gamma dose rate observations from Germany. The measurement locations of the
three datasets are given in Figure 1. The Meuse and Sic2004 datasets show a fairly ran-
dom distribution of the measurement locations (with a somewhat larger sampling density
near the western border for the Meuse dataset), whereas the Jura dataset uses a regular
grid with extra measurement clusters and relatively few points near the boundary of the
study area.

We defined case-specific geostatistical models and associated interpolation modes to
each of the three datasets: kriging with external drift for the Meuse dataset; ordinary krig-
ing for the Jura dataset and universal kriging for Sic2004. The model defined for Meuse
dataset is the log of Zinc ppm against the distance of measurements to the river; the model
for Jura dataset is an ordinary kriging model of Nitrate ppm; for Sic2004 dataset, Gamma
dose against a linear trend in the geographic coordinates. All three model residuals have
a known variogram structure composed with a spherical model and nonzero nugget com-
ponent.

2.2 Methods

Four optimization methods were used for the comparison exercise: a greedy algorithm
maximizing entropy reduction; a greedy algorithm minimizing the MUKV – so-called A-
optimal; a simulated annealing approach minimizing the MUKV; and a spatial coverage
approach. All algorithms were implemented in R [12]. It must be noted that the first two
methods use a grid as candidate locations to add new measurements, while the two other
methods use the entire space of the study areas as candidate locations.

2.2.1 Greedy algorithm based on Entropy(GE)

Maximum entropy sampling is based on Shannon’s information theory. For a continuous
random field with probability density f(z), its information is defined as E(log(f(z))),
and its entropy as H(f) = −

∫
f(z)log(f(z))dz, i.e. information is negative entropy. In



Figure 1: Initial measurement locations of the three datasets.

the spatial sampling context, the goal is to maximize the expected increase in information
when changing from the prior to the posterior density. This is equivalent to maximiz-
ing E {H(f(θ))−H(f(θ|z))}, where θ is the vector of model parameters (see Gebhardt
(2003) [5]).

We applied this criterion to the case of sampling from a grid of potential sites, which
is split into two disjoint subsets: the design points at which the random field will be ob-
served and the complementary set. Shewry and Wynn (1987) [14] proposed an exchange-
type algorithm to find the optimal design. Their iterative procedure converges, but does
not necessarily lead to an optimum. Ko et al. (1995) [9] and Lee and Williams (2000)
[10] developed branch-and-bound-methods, which, under certain conditions, lead to the
global optimum. The computational complexity of these methods make their practical
implementation computationally prohibitive when it comes to choosing several dozens of
design points from a grid of several thousands of potential sites.

We propose the implementation of greedy algorithms as suggested in Gebhardt (2003)
[5]. At each step, greedy algorithms select the design which leads to the minimum entropy
(when adding a new measurement) or to the minimum increase in entropy (when deleting
an existing measurement).

2.2.2 Greedy algorithm based on the Kriging Variance (GKV)

As a second optimization method, we propose to apply the greedy algorithms to the mean
(universal) kriging variance instead of the entropy. Whereas there is a well-developed
theory for optimum regression designs, there is no analogous catalogue of methods for
spatial regression prediction and interpolation design. The basic difficulty stems from the
fact that classical design functionals are no longer convex, due to correlated errors. When
we employ ordinary or (Bayesian) universal kriging for prediction, it is natural to use the
corresponding (Bayesian) kriging variance as a measure of prediction accuracy.



2.2.3 Simulated Annealing (SA)

Simulated Annealing (SA) was also applied to optimize the MUKV. Brus and Heuvelink
(2007) [3] applied SA to MUKV minimization and we refer to it for a detailed presen-
tation of the method. The basic idea of SA is to derive a new candidate design from the
current by perturbing the current design slightly, evaluating the criterion, accepting the
new design when the criterion has improved, and accepting it with some probability when
the criterion has deteriorated. Simulated annealing requires several parameters to be de-
fined. The initial probability to accept worsening designs, the ’cooling’ schedule and a
stopping criterion of the optimization procedure have to be chosen in order to avoid to be
trapped in local optima and to avoid a too long procedure. The selection of the best value
for these parameters is largely dependent on each specific application.

2.2.4 Spatial Coverage (SC)

The final optimization method targets at geometrical criteria. Geometrical criteria are
based only on the spatial configuration of the measurements and not on the measurement
values or underlying geostatistical model. SC algorithms are more often used in the con-
text of design-based sampling design to estimate global quantities such as the global mean
[7].

In this work two SC algorithms were applied. In the scenario where measurement
locations are added, we used the algorithm developed by Brus et al. [2]. Their method is
based on the mean squared distance criterion, which allows optimization with k-means.
In the case of deleting measurements from the initial dataset, we used the definition of
coverage as in Royle and Nychka (1998) [13]. The heuristic search is a point swapping
algorithm, similar to the one used in the greedy algorithms.

3 RESULTS AND DISCUSSION

Table 1: SIC 2004 dataset: adding and deleting measurements to the initial design –
GE:Greedy Entropy; GKV: Greedy Kriging Variance; SA: Simulated Annealing; SC:
Spatial Coverage.

Scenario Method Time(s) MUKV Scenario Method Time(s) MUKV
Add 1 GE 2.0 116.05 Delete 1 GE 0.6 116.26
Add 1 GKV 130.1 116.04 Delete 1 GKV 3.7 116.38
Add 1 SA 414.3 116.06 Delete 1 SA 261.5 116.26
Add 1 SC 9.5 116.07 Delete 1 SC 4.4 116.28
Add 10 GE 3.07 114.56 Delete 10 GE 4.3 116.26
Add 10 GKV 1211.3 114.76 Delete 10 GKV 33.5 116.75
Add 10 SA 1144.4 114.97 Delete 10 SA 438.48 116.51
Add 10 SC 10.0 115.08 Delete 10 SC 174.7 117.82
Add 50 GE 9.0 110.89 Delete 50 GE 14.7 118.15
Add 50 GKV 7196.5 111.27 Delete 50 GKV 133.2 120.03
Add 50 SA 2242.4 111.53 Delete 50 SA 566.6 118.51
Add 50 SC 11.2 112.14 Delete 50 SC 2649.3 129.35



The results for Sic2004 are presented in Table 1. On the left side, results of scenarios
with adding 1, 10 and 50 measurements are given (to the 200 existing locations of the
initial dataset). On the right side, results of scenarios with deleting 1, 10 and 50 mea-
surements are presented. The comparison for the Meuse and Jura datasets give similar
results.

In terms of minimizing the mean interpolation error variance, using the Entropy cri-
terion (GE algorithms) gives the best results. In the SA case, different configurations of
parameters were tested but none of these performed better than the GE algorithm.

Note that the computation times reported in Table1 may have been influenced by the
implementation and choice of the grid with candidate locations. Also, the greedy algo-
rithms used R interfaces with Fortran and C to run the optimization process, which may
speed up the algorithms. In the scenarios where measurements were deleted, the greedy
and spatial coverage algorithm use the same type of swapping procedure and hence should
lead to comparable computation times, which is not the case. It must also be noted that in
the greedy algorithms, the grid size of eligible new locations had to be reduced to about
a third of the original size to ensure that R could allocate the required memory. This also
lead to shorter computation times.

Theoretically, simulated annealing should reach the best MUKV performance because
it explores the entire domain of the study area and is not restricted to grid nodes. However,
time is a limiting factor for SA to obtain better results than greedy algorithms. Moreover,
Gebhardt [5] showed that in many cases the initial heuristic solutions from greedy algo-
rithms were already close to optimal.

4 CONCLUSION

From the preliminary results presented here, we conclude that greedy algorithms outper-
form the other algorithms, both for the case of adding and deleting measurements. Greedy
algorithms yield the best results, both for MUKV and computation time. However, for a
fair comparison in terms of computation time, all the computationally expensive parts of
the methods should be implemented in the same or similar lower level language, such as
Fortran or C.
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