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ABSTRACT 

The variability in bicycle demand depends strongly on weather. This paper describes a ‘weather’ 

model that makes demand forecasting possible. The model is based on flow time-series of many 

years, collected at 16 cycle paths in the Dutch cities of Gouda and Ede. The model is bi-level. 

The lower level describes how cyclists value the weather. The upper level is the relation between 

demand and this weather value. The observations show that most cyclists value the weather in a 

similar way, but recreational demand is much more sensitive to weather than utilitarian demand. 

Most fluctuations are described by the model, but a significant fraction is still not covered. From 

a correlation analysis of the residuals, we conclude that about 70% of the remaining variation is 

locally constrained, and can therefore not be described by a generic model. However, about 30% 

of this variation is not driven by local effects. The cause of this variation is not yet known.  

Besides uncovering trends in cycling, the model can also be employed to evaluate the effect of 

cycling policy interventions, and to correct flow measurements as input in traffic models.  
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1. INTRODUCTION 
Cycling is an important mode of transport in the Netherlands. It is healthy, sustainable, cheap 

and it plays a part in reducing congestion. It is therefore not surprising that cycling is supported 

by the government, and that several measures are taken to increase its demand. It is the task of 

traffic managers to monitor whether introduced measures have a positive effect.  

Several authors used aggregated models to describe trends in bicycle demand using 

census data. This was done in the US, e.g. (1), (2), in the UK, e.g. (3), (4), and in the 

Netherlands, e.g. (5). These studies included physical and social factors. (4) showed that 

hilliness, temperature and rain have a significant influence on demand, and (5) found several 

factors that cause differences in bicycle demand between Dutch municipalities.    

Relatively little is known about the relation between weather and bicycle demand. 

Several studies have however shown that weather has a strong influence on demand, e.g. (6),  

(7), (8), (9). The influence of weather on bicycle demand is a complicating factor. It will for 

example make little sense to compare demands at different locations when they have been 

measured during different weather conditions. 

Besides census data, demand can be determined by measuring the flows on cycle paths, 

e.g. (10). If the relation between weather and demand is known, weather corrections could be 

made to ‘standardize’ these flows. In that case, flows from very specific locations, but also from 

different years, can be compared. This information can be used in studies that evaluate policy 

measures for the improvement of cycling circumstances.  

In this paper we introduce a model that relates bicycle demand to all weather parameters 

provided by the Dutch Meteorological Institute. It is an extension of previous work (10) and 

(11). In section 2 we describe the data that are used. Section 3 describes the model. In section 4 

we show the results, and in section 5 the results are validated. Section 6 ends with conclusions. 

 

2. DATA 
In the last few decades, the Wageningen University gathered 24 hour cycle flows on cycle paths 

throughout the Netherlands. These flows were measured by pneumatic tubes. From this large 

data set we selected data from 16 cycle paths, located in the countryside near the cities of Gouda 

(in the west of The Netherlands) and Ede (in the center of The Netherlands). The following types 

of cycle paths were distinguished: utilitarian, mixed and recreational. The allocation was based 

on knowledge of the local situation and appears to be correct.  In Table 1 we give an overview of 

the data set. In Figure 1 the measuring points are presented geographically. The utilitarian paths 

are connecting municipalities, whereas recreational paths open up the country side for citizens. 

Mixed paths combine these functions. 

In Figure 2 we show the flow time-series for the recreational path with ID 0725 (left 

panel) and for the utilitarian path with ID 5501 (right panel). This is done for the whole 

measurement period (upper panel), and as an example for the year 1993 (bottom panel).  Both 

cycle paths are representative for the sets. 
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TABLE 1 The data: location, type of path, and period of data gathering 

 
ID Location Type Period 

0740 Ede Utilitarian 1990 – 1994 

0727 Ede Mixed 1993 – 2003 

0738 Ede Mixed 1993 – 2003 

0725 Ede Recreational 1993 – 2003 

0729 Ede Recreational 1993 – 2003 

0731 Ede Recreational 1993 – 2003 

0732 Ede Recreational 1993 – 2003 

0736 Ede Recreational 1993 – 2003 

5504 Gouda Utilitarian 1987 – 1993 

5501 Gouda Utilitarian 1987 – 1993 

5502 Gouda Utilitarian 1987 – 1993 

5503 Gouda Utilitarian 1987 – 1993 

5508 Gouda Mixed 1990 – 1993 

5507 Gouda Mixed 1990 – 1993 

5505 Gouda Recreational 1987 – 1993 

5506 Gouda Recreational 1987 – 1993 

 

 

 

FIGURE 1 Location of measuring points around the cities of Ede (left panel) and Gouda 

(right panel). Blue stands for a utilitarian, yellow/green for a recreational and red for a 

mixed function. OSM; Open Street Map  

 

 

Both time-series in Figure 2 show an increase in demand during spring, and a decrease 

after the maximal demand in (the beginning of) summer. There are however also clear 

differences between the recreational  and utilitarian time-series. The utilitarian path shows a 

repetition of dips which coincide with the weekends. The recreational path shows strong peaks. 

Some of these coincide with the Dutch bank holidays. Because of their unique character, bank 
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holidays are left out of the sample. The school holidays show a high demand for the recreational 

path, and a low demand for the utilitarian path. The school holidays contain the weeks 52-1, 7-

10, 18-19, 28-36 and 42-43 in the particular regions. 

In order to reject possible false measurements, we used the following method. For each 

week number (1 – 53), day of the week (Monday till Sunday), and cycle path, we estimated the 

median 24 hour flow over the years. We assumed that if a measurement lies below 10% of the 

median, this measurement would probably be false. The most common cause of such a false 

measurement is a temporally malfunctioning of the road tube. We excluded all such 

measurements, where the median flow was larger than 10 counts per day (because for small 

volumes, relatively large variations may occur naturally). By adopting this selection criterion, we 

excluded less than 1% of all measurements. 

The weather ‘observables’ (e.g. temperature and precipitation) are provided by the Dutch 

National Meteorological Institute (KNMI), and can be downloaded free of charge from their 

website (12).  There are several weather stations, but we used data only from station De Bilt, 

because it is in the proximity of both Ede and Gouda. Therefore, the weather data do not 

necessarily present the local weather conditions. Moreover, only 24 hour aggregates are 

provided, which lead to more uncertainties (e.g. a wet night will have a negative contribution in 

the demand estimate, even if it is sunny during day-time). 

 

 
FIGURE 2 Flow time-series for cycle paths 0725 (left, recreational) and 5501 (right, 

utilitarian) for the whole measurement period (top panel) and for 1993 (bottom panel).  
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3. THE BI-LEVEL WEATHER MODEL 

We developed a bi-level ‘weather’ model, described by the two following equations: 

 

WPbqcqest *lnlnln 0 ++=          (1) 

 

),...,( 1 mWWfWP =           (2) 

 

Equation 1 is the upper level of the bi-level model. In this equation, qest is the estimated or 

modelled daily flow, c is a seasonal factor, q0 is the flow for a day with ‘average’ weather (when 

WP = 0) and WP is a weather parameter that ‘describes’ the weather. The upper level is thus a 

linear relation between the ln (natural logarithm) of the daily flow and the weather parameter. 

The rate, in which demand depends on weather, is given by slope b. The upper level is discussed 

in section 3.1. 

Equation 2 is the lower level in which the weather parameter WP is estimated. WP is a 

function of weather observables (W1, …, Wm), which are temperature, visibility, humidity, rate of 

precipitation, the rate of cloud cover and wind force. The lower level is discussed in section 3.2. 

In the following sections we will compare qest with the observed flows qobs. We adopt the 

root-mean-square (rms) of the residuals as a measure for the quality of the model. The residuals 

are estimated for each day and each cycle path, and they are defined as the differences: ∆ln q =  

ln qobs – ln qest. A low rms indicates that the model fits the observations quite well. 

 

3.1. Upper level 

In the upper level, the demand is related to the weather. We use the logarithm in equation 1, 

because we assume that an absolute improvement in weather will uniformly lead to a relative 

increase in demand. The rate of relative increase can however be different for utilitarian and 

recreational paths. This rate, described by parameter b in equation 1, is expected to be high for 

recreational paths, because the choice to make a trip for pleasure depends strongly on weather. 

The influence of weather will be less severe for utilitarian paths. In the extreme case, parameter b 

might be close to 0, if the path is mainly used by captives (e.g. school children). 

As explained in the introduction, policy makers can use the weather model to compare 

‘standardized’ flows q0 from different locations and during different years. Our sample of 

locations is too limited for an extensive spatial analysis. However, in section 4.3. we look for 

temporal trends in demand, by comparing qobs with qest over several years. 

The seasonal factor c in equation 1 corrects, among other things, for the fact that there is 

extra demand (for recreational paths) or less demand (for utilitarian paths) during the school 

holidays. It will however also complicate the calibration of the model. In ‘calibrating’ our 

weather model, we therefore excluded the school holidays and we assumed that c = 1 for all 

other weeks. In section 4.2 we study the remaining seasonal demand fluctuations.    

Thus, for each day of the week and each cycle path we need to estimate q0 and b (given 

that c = 1) from a set of observed daily flows and corresponding values of WP. This was done by 

adopting a least square fit. The results are given in section 4.1.  
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3.2. Lower  level 

The weather parameter WP describes how cyclists value the weather. A high value corresponds 

with weather conditions that favor cycling. According to the upper level, the relative demand 

increases proportional with WP. By keeping the upper level simple, we shifted the possibly 

complicated relation between weather and demand to the lower level.  

We studied this relation in the following way. First, we selected weather observables that 

are (most) strongly correlated with ln qobs. These observables are temperature, the amount of 

sunshine, precipitation and wind force. We have examined other parameters, like humidity and 

visibility , but none of them will lead to improvements in the model. We thus decided to select 

the following four observables: the mean temperature over 24 hours TG (in degrees Celsius), the 

duration of sunshine SQ (in hours), the duration of precipitation DR (in hours) and the mean 

wind force over 24 hours FG (in m/s). The symbols used were taken from the KNMI 

abbreviations. We used the mean (rather than maximum) temperature, because many cyclists 

make their trips in the morning, during which the temperature lies closer to the mean. Similarly, 

we used the duration instead of the amount of precipitation. Cyclists are put off by a long period 

of moderate rainfall, but one short heavy thunderstorm will only have a temporary effect.  

The second step is to determine the relation between the selected weather observables 

and WP. A straightforward relation would be a linear relation: 

 

FGaDRaSQaTGaaWP FGDRSQTGzp ++++=       (3) 

 

The coefficients aTG, aSQ, aDR and aFG determine how much the individual observables contribute 

to WP. The value of azp is chosen such that the ‘average’ weather is at WP = 0. If we combine 

equations 1 and 3 (upper and lower level), ln qest is just a linear combination of four observables. 

If b is a free (but positive) parameter, then we may fix one of the weather coefficients. We chose 

aTG = 1. Note that aTG must be positive, if we require that b is positive (because temperature and 

demand are positively correlated). We then applied a multiple linear regression fit for each cycle 

path and day of the week, and obtained the following average values:  aSQ  = 0.7, aDR  = -0.7 and 

aFG  = -1.0. As expected, high temperatures and sunshine have a positive effect on demand, 

whereas precipitation and wind have a negative effect.  

However, a linear model is not the best model to describe demand fluctuations. We 

conclude this from an inspection of the (mean) residuals. For each of the four observables, we 

defined (small) ranges in which we aggregated observations. For each aggregate we determined 

the average value of the residuals, i.e. the mean of ∆ln q. The results for the linear model are 

shown in the upper panel of Figure 3.  From left to right, we show the mean residuals for TG, 

SQ, DR and FG respectively. We discriminated between utilitarian (open boxes), mixed (crosses) 

and recreational (asterices) cycle paths. The center and bottom panel will be discussed later.   

From the Figure we conclude that the residuals show systematic deviations from 0. The 

flows are lower than expected (negative residuals) for TG > 18 degrees Celsius. This can be 

explained by the fact that it is less attractive to cycle when temperatures become very high. For 

SQ, the residuals are too high for low, and too low for high values. The opposite trend is visible 

for DR, which also has an opposite effect on bicycle demand. For both SQ and DR, the 
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contribution to WP is therefore too low for short, and too high for long periods of sunshine or 

precipitation. This non-linearity is rather logical. The difference between zero and one hour of 

sunshine or precipitation has a larger effect on how people value the weather than a difference 

between for example 10 and 11 hours.  For the wind force, the opposite is the case. Like DR, it 

has got a negative effect on demand. However, for large FG, the residuals are too low. The 

demand is thus lower than expected, which suggests that the (negative) contribution to WP is 

under estimated. The explanation is that a small breeze can be felt as quite pleasant, but strong 

winds have a disproportional negative effect on demand. 

 

 
Figure 3: Mean residuals for utilitarian, mixed and recreational cycle paths as function of 

weather observables (temperature TG, sunshine SQ, precipitation DR and wind force (FG). 

For the linear (upper panel) and non-linear models (lower panels).  
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We therefore adapted our model by defining the following parameters: 

 

TGWTemp =    for TG ≤ 18 degrees  Celsius     (4a) 

)18(3.0 −−= TGTGWTemp  for TG > 18 degrees  Celsius     (4b) 

 
2/12/1 7.0 DRSQWFair −=          (5) 

 
2/3

FGWWind =            (6) 

 

These parameters include the non-linear effects, described above. In equation 5, SQ and 

DR are combined, because sunshine and precipitation are obviously  negatively correlated. Fair 

stands for good (lots of sunshine) or bad (lots of rain) weather. The parameters WTemp, WFair and 

WWind are uncorrelated or only weakly correlated (correlation coefficient ~ 0.2 in case of 

correlation between WTemp and WFair). 

The ranges of the three parameters are quite different, which makes it difficult to 

illustrate their contribution to WP. We solved this problem by normalizing each parameter. This 

was done as follows. We gathered all weather data from 1985 to 2005, and for each parameter 

we estimated the average and standard deviation over that period. From each measurement we 

then subtracted the average and divided the result by the standard deviation. Each normalized 

parameter thus has an average equal to 0 and a standard deviation equal to 1. The average WP is 

also 0 and the different parameters that contribute to WP all have the same (dynamical) range. 

For our adapted model, equation 3 now becomes: 

 

WindWindFairFairTempTemp WaWaWaWP ++=       (7) 

  

We applied a multiple linear regression fit for each cycle path and day of the week, and 

when we required that aTemp
2
 + aFair

2
  + aWind

2
 = 1 (variance in WP ≈ 1), we obtained the 

following average values: aTemp = 0.8,  aFair  = 0.5 and aWind  = -0.3. Temperature is thus the 

parameter that contributes the most to WP. It is possible that the effects of rain are slightly under 

estimated, because we used 24h instead of day-time figures. The wind force contributes the least, 

but it still has a significant, negative, effect on WP.  

The mean residuals for this model are shown in the center panel of Figure 3. From this 

panel we conclude that most significant deviations, shown in the upper panel, have disappeared. 

Only for very low temperatures and high wind forces there still are some significant deviations, 

but these deviations are different for utilitarian and recreational paths. We conclude that we can 

adopt this model as the best fit we have so far.  

If we do not use average values, but adopt aTemp,  aFair  and aWind for each cycle path and 

day of the week, we get mean residuals that are shown in the lower panel of Figure 3. Note that 

the differences between the center and lower panel are marginal.  
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4. RESULTS 

In this section we show the results of our weather model. In section 4.1 we discuss the results 

from the multiple linear regression fit, described in the previous section. In section 4.2 we 

estimate the seasonal coefficient c (equation 1). This estimate is included in the final estimate of 

qest. In section 4.3 we determine the annual average of qobs and qest. By comparing these two, we 

are able to analyze trends over the years.  

 

4.1. The model coefficients  

We estimated the weather coefficients aTemp,  aFair  and aWind  for each cycle path and each day of 

the week, as described in section 3.2. The main conclusion is that the coefficients are quite 

similar for the different cycle paths and days. There are however some small, but statistically 

significant differences, which can be summarized as follows. The coefficient aTemp is slightly 

higher (0.8 versus 0.7) for utilitarian traffic than for recreational traffic. This difference is 

compensated by the fact that aFair is somewhat higher for recreational traffic. From this we 

conclude that recreational traffic is more sensitive to WFair, which is mainly season independent. 

Because recreational trips are non regular trips, it is expected that the current weather situation 

will have a relatively strong influence on the trip choice. We also observed that the negative 

influence of wind force appears to be more important for cycling paths in Gouda than in Ede 

(aWind about -0.30 in Ede versus about -0.35 in Gouda). The difference may be explained by the 

fact that Ede lies in the Dutch national forest (Veluwe), in which the wind is subsided. 

The coefficients q0 and b (equation 1) are much more variable. In Figure 4 we illustrate 

the results for a recreational path (ID 0725) in Ede (upper panel) and an utilitarian path (ID 

5501) in Gouda (lower panel) for Thursdays (left) and Sundays (right).  The Figure shows 

significant differences in the slope b. The slope is very shallow for the utilitarian path on a 

Thursday (bottom left). The slope becomes steeper for recreational paths and for Sundays. The 

results in Figure 4 are illustrative for all cycle paths. For all utilitarian paths, the slopes b all lie 

between 0.16 and 0.26 for working days, and are on average 0.4 for Saturdays, and almost 0.6 

for Sundays. For recreational paths in Gouda, b is about 0.5 for working days, 0.6 for Saturdays, 

and 0.7 for Sundays. The steepest slopes are found for recreational paths in Ede: between 0.8 and 

1.2 for all days.  The slopes of mixed paths lie in between. Note that we found very similar 

slopes for different working days, i.e. observed differences were not significant. 

We interpret these results as follows. Less obligatory trips (recreational trips) are much 

more influenced by weather than utilitarian trips. In this respect, there is also quite a large 

difference between the recreational cycle paths in Ede and Gouda. On the recreational paths in 

Ede, cyclists appear to be the most sensitive to weather. An explanation may be that the 

recreational paths in Ede mainly attract tourists. These people, contrary to for example people 

who use the bicycle for a sports or shopping motive, probably make the least obligatory trips of 

all. Their trips have no other purpose, but to enjoy the environment and the good weather. 
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Figure 4 Relation between weather and cycle demand for an utilitarian path (upper panel) 

and an recreational path (bottom panel) on Thursdays (left) and Sundays (right) 

 

  

  The standardized demand q0  depends on the strength of local OD flows, and is less 

relevant for this study. However, for policy makers it may be important to know how demand 

changes during the week. We therefore estimated the ratio’s between the daily demands and the 

weekly averages. Again, we find marginal differences between working days. These working 

days show about 20% more traffic than average for utilitarian paths. The flows are much smaller 

on Saturdays and Sundays: on Saturdays 60%, and on Sundays only 45% of the average. The 

opposite is true for recreational paths. Flows are smaller during working days, about 70% of the 

average. On Saturdays flows are 20% larger than average, and on Sundays the flow is more than 

2 times the average flow.    

These results are obvious. Utilitarian paths mainly serve commuting trips, school trips 

and shopping trips, which are dominant on working days, while recreational trips are dominant in 

the weekends.  

4.2. Seasonal effects 

The coefficient c in equation 1 describes the seasonal variations. We estimated ln c from the 

weekly residuals.  Per week (from week 1 to week 53), we determined the average weekly 

residual for working days, Saturdays and Sundays. In Figure 5 we show the residuals for 

working days as an example. This was done for utilitarian cycle paths (upper panel), mixed paths 

(center panel) and recreational paths (lower panel). The results are shown for paths in Ede 

(crosses; asterices during the school holidays)) and Gouda (open boxes; filled boxes during the 

school holidays). 
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Figure 5 Weekly variations in Ede and Gouda for utilitarian paths (upper panel), mixed 

paths (center panel) and recreational paths (lower panel). 
 

 

Figure 5 shows that the variations are rather similar for utilitarian paths in Gouda and Ede 

(upper panel). Moreover, outside the school holiday period, seasonal variations are very small (ln 

c ~ 0), while the demand drops significantly during the school holidays. For recreational paths 

(bottom panel), seasonal variations are quite variable and also different for paths in Gouda and 

Ede. For both locations, though, a weak trend is detectable. Volumes are higher than expected 

during the spring, and lower than expected during the autumn. During the school holidays, 

demand is significantly higher than normal. The mixed paths (center panel) show different 

results for Gouda and Ede. In Gouda demand is relatively lower during the school holidays, 

which would suggest that these paths mainly serve utilitarian traffic. In Ede the opposite is the 
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case, which suggests that these paths mainly serve recreational traffic. Because these paths 

combine the properties of recreational and utilitarian paths, but not always in the same 

proportion, we decided to exclude them from further analysis. We also excluded the school 

holidays, because the demand is quite different from the non-holiday demand, and also not the 

same for different locations.   

We estimated c for Saturdays and Sundays as well. Both days show rather similar trends, 

in which demand is larger than expected in the spring, but lower than expected during (the end 

of) autumn. We used the estimates of c to improve the model flows qest. 

 

4.3. Annual variations 

One of the objectives of policy makers is to monitor cycle flows. It is however difficult to 

disentangle long term trends from ‘accidental’, weather related, fluctuations. With our weather 

model we have estimated expected flows. We can compare their annual averages with those of 

the observed flows in order to recover long term trends. In Figure 6 we show the ratio between 

the annual average for each year (qyear) and the observed annual average of 1993 (q1993). The 

latter is used to normalize all ratio’s to the same base. We show the ratio’s for the observed 

(symbols) and estimated averages (dotted lines). This was done for  the aggregates of utilitarian 

(upper panel) and recreational (bottom panel) paths in Gouda (crosses) and Ede (open boxes).   

 

 
Figure 6 Ratio between annual averages and the observed annual average of 1993 for  

utilitarian (upper panel) and recreational (bottom panel) paths in Ede and Gouda. 
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Figure 6 shows that the model follows the ‘accidental’ fluctuations in the observations 

quite well. Trends are revealed from the deviations between observed and estimated annual flow 

ratio’s. The long year trends are not unambiguous. For the paths in Gouda, no trend appears to be 

present. If any, the trend seems to be upwards, although this trend is too weak and the period too 

small to draw any conclusions. For the paths in Ede, there appears to be a stronger trend. Both 

for the utilitarian and recreational paths, the trend is downwards. If we would only consider the 

observed flows, this trend is less clear, as this downward trend is offset by better weather 

conditions during the last few years (from 2000 onwards). 

We illustrate that it is possible to detect long term trends in cycling patterns. However, 

studies of long term trends are only useful when a large number of cycle paths in different areas 

are analyzed. In that case, meaningful comparisons can be made. 

 

5. RELIABILITY OF THE MODEL 

In the previous section, we showed that the weather model is suitable for estimating cycle flows 

in the Netherlands. However, the remaining variation is large. About 30 – 50% of the total 

demand variation is left in the residuals. At first sight, it is not clear what causes this variation. 

There are no significant systematic errors in the weather model. We concluded that the inclusion 

of other weather parameters will not lead to better demand estimates, and seasonal variations are 

included and only have a marginal effect on the model results. The variation due to the random 

arrival process of cyclists (described by a Poisson distribution) is also much smaller, and 

therefore negligible.     

Some of the variation may be caused by inaccuracies in the weather measurements. As 

mentioned before, we used 24 hours aggregates, which are also not very local. Although these 

figures are not most accurate, we suggest that it only explains a part of the remaining variation. 

Another possibility is that the variation in the residuals is caused by local fluctuations in demand, 

which are not weather related. In that case, the fluctuations of  two different locations should be 

uncorrelated. In other words, the residuals from different cycle paths should be uncorrelated.  

We performed three correlation analyses: between paths of the same type and located in 

the same town, between paths of the same type, but located in different towns, and between 

utilitarian and recreational paths, located in the same town. For some of these correlations, there 

was an overlap of many years in the time-series. For other comparisons, relatively few data were 

available. Fortunately, we always have residuals for the year 1993. 

We find a significant positive correlation between the residuals when they are from paths 

of the same type, irrespective of their location. The correlation coefficients are 0.5 and 0.3 

respectively for utilitarian and recreational paths during working days, and they are 0.6 and 0.5 

respectively during weekends. There is not only a spatial correlation between residuals, but also 

a temporal correlation. Despite the fact that we have corrected for seasonal variations, we find a 

significant correlation between the residuals of successive days. The correlation coefficients are 

0.4 for utilitarian and 0.3 for recreational paths.  

These correlations suggest that a non-local component with time-scales longer than a day 

is missing in the model. However, although these correlations may be significant, they are not 
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very strong. If we could somehow include this non-local component in the model, we would 

decrease the variation in the residuals with 30% and 20% respectively for utilitarian and 

recreational paths during working days, and with 40% and 30% respectively during weekends.  

Thus, on average 70% of the variation in the residuals is locally constrained. Moreover, we find 

no correlation between the residuals from recreational and utilitarian paths. If there is some non-

local component missing in the model, this component is different for utilitarian and recreational 

traffic. 

We conclude that most of the variation in the residuals is caused by local fluctuations in 

demand, which may not be predicted by a generic model. The remaining variation is not locally 

constrained. Non-local demand fluctuations may be included in a generic model, but more 

research is needed to find the causes for these fluctuations.  

 

6. CONCLUSIONS 

For 16 cycle paths in the Dutch cities of Ede and Gouda, we analyzed time-series of 24 hours 

cycle flows in the period 1987-2003. About 50 to 70% of the variations in these flow time-series 

can be explained by the ‘weather model’ that was described in this paper. 

The weather model is a bi-level model. The upper level is a linear relation between 

demand and the weather parameter. In the lower level, the weather parameter is estimated. The 

weather parameter describes how cyclists value the weather. The weather parameter depends on 

the following observable parameters (in order of importance): average 24h temperature, the 

amount of sunshine, the duration of precipitation, and the average wind force. Different user 

groups (utilitarian and recreational) appear to value the weather in more or less the same way. 

The influence of weather (the weather parameter) on demand is however very different for 

different user groups. Recreational cyclists are much more sensitive to weather than utilitarian 

traffic.     

With the weather model it becomes possible to disentangle long term trends from 

accidental, weather related, variations. We found no evidence for a long term trend for the paths 

in Gouda, but for cycle paths in Ede, there is some evidence that the observed demand lagged the 

expectations in the second half of the time-series. This apparent decrease in demand was off-set 

by better average weather conditions around the change of the millennium.  However, studies of 

long term trends only become useful when more locations are included.  

Residuals were examined to upgrade the weather model. From this we concluded that the 

best model is not linear. However, many of the fluctuations can still not be described by the non-

linear model. There are some seasonal variations, but these are relatively small for recreational 

paths, and negligible for utilitarian paths.  

From a correlation analysis between residuals of different cycle paths, we concluded that 

most (about 70%) of the remaining fluctuations in the residuals is probably locally constrained, 

and cannot be described by a generic model. However, we used 24h weather measurements in 

this study, which may have led to inaccuracies in our model. Local variations in weather that 

take place within the morning rush hour, for example, may have a large effect on bicycle demand 

fluctuations during the rest of the day.  

About 30% of the remaining variation is not locally driven. We suggest that this variation 

may partly be explained by weather variations within 24h that are similar for different locations 
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in the Netherlands, but that some of this variation is not weather-related. More detailed weather 

measurements and a study of other ‘attributes’ are needed to find the causes for this variation. 

Such a study could consist of a survey in which cyclists are asked about their trip making 

behavior. More knowledge of this behaviour would allow for better predictions of any given path 

for which the mix of users is known.    

 This paper focuses on developing a weather model. The model and the results are not yet 

applicable to practioners and policy makers. However, one of our first findings is already 

relevant for policy makers: so far, there is no evidence for a positive long term trend in volumes 

of bicycle traffic, despite considerable policy interventions to promote cycling. 

 In a next phase of the research we will expand on additional hypotheses, enabling to 

‘standardize’ flows from different locations and also from different years with the help of 

‘weather corrections’. The standardization of flows is very relevant to practitioners and policy 

makers in the context of evaluating cycle policy interventions on a local and regional scale.  

 After the application on bicycle networks we want to investigate the hypothesis that the 

model is useful to describe fluctuations in day-to-day traffic of motorized flows to national parks 

and specific destinations for outdoor recreation. An ecologically and economically sustainable 

management of such areas requires insight in the number of visitors. In that context a distinction 

between systematic and random variation of visitor flows is important (13). 
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