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Abstract 
Path planning for field operations becomes more and more important. More work is done by 
workers not knowing the field from experience. A second reason is that in the future more and 
more operations will done by autonomous vehicles and they require a path. Path planning for 
rectangular fields is rather simple but for more complex shaped fields tools are needed to 
support the planning process. GPS developments also enable that more difficult solutions can 
be realised in practice. 
With Matlab a tool is developed that reads the boundary coordinates of a field, determines the 
real vertices, divides the field into convex subfields if necessary, and calculates the costs for 
different operating directions to find the direction with the lowest costs incurred. Working 
time is converted to costs to enable the choice to not operate a part of the field for some 
reason, for example too small in relation to the effort.  
The tool is tested on some real fields. The results for simple fields are expected. The most 
optimal direction is the direction parallel to the longest side of the field. For more complex 
fields that are divided in two or more subfields the solutions are optimal for the individual 
subfields but the solution for the whole set of subfields is not necessarily optimal because for 
this interactions between subfields have to be taken into account too. Also, situations where 
tramlines are not perpendicular to headlands, resulting in small parts of the field either 
operated twice or not operated at all, have to be taken into account. 
The developed tool is a good first start but has to be elaborated more to be able to handle 
more complex field situations and to deliver for these fields also realistic optimal solutions. 
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Introduction 
Many farmers in the Netherlands rent each year new fields to grow potatoes or flower bulbs. 
With these fields they have no experience from the past and have to do a path planning before 
starting the work. Most fields are not rectangular but have non-parallel sides, are L-shaped, or 
have obstacles within the field and it is not always easy to make plan. Contractors face the 
same problem when they arrive at the field of the customer and have to do path planning 
immediately. 
In the future we have to deal with the same problem with autonomous vehicles for field 
operations. They need to have a plan; there is no driver to guide the vehicle over the field. So 
there is a need for a tool for path planning of agricultural operations. 
Many factors play a role in path planning for agricultural operations. Stoll (2003) considered 
operation strategy, neighbouring area, field geometry, field specific data, machine specific 
data, and terrain relief. He tested all neighbours to decide whether it could be used for turning; 
the operation direction was set parallel to the longest side of the field and the headland 
turnings were set accordingly this direction and the neighbour test. He did not take terrain 
relief into account in his study because of its complexity. Major factors in the work of Taïx et 
al. (2006) were the slope, the working direction, and the size of objects in the field. The slope 
is important for sliding and traction (Taïx et al., 2006) but is also important in relation to 
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erosion (Stoll, 2003). The working direction was also chosen by Taïx et al. (2006) to be 
parallel to the longest side of the field. The size of objects was related to the width of the tool. 
For large objects a turning area around them was created and for small objects an avoidance 
trajectory was created. 
Oksanen and Visala (2007) developed for path planning both a top down and a bottom up 
strategy. In the top down strategy complex fields are split into smaller less complex fields 
with a trapezoidal shape and merged again when specific requirements are met. The last step 
is determining the best driving direction; for this step heuristics are used. In the bottom up 
strategy the problem is solved recursively by following the shapes of the field edges and not 
considering them to be straight until the whole field is covered. All possible routes along the 
side of the field are tested and the most efficient one is selected. 
Taïx et al. (2006) defined different areas (working, turning, input and output) and a steering 
edge. The latter determines the direction and the path planning is based on that all of the 
working and turning area have to be covered, starting in the input area and ending in the 
output area. Both a search for the best Hamilton path and geometrical reasoning were used to 
find the optimal path, using in both cases a minimum cost criterion. 
Jin and Tang (2006) developed an algorithm that searches for the optimal decomposition and 
coverage direction. Both the field and the obstacles are described by polygons. The algorithm 
decomposes the field in multiple regions and each region has to be covered by a 
boustrophedon path. By recursively applying the algorithm the most optimal coverage method 
is searched for. Finally the sub-regions are coupled in an optimal way in a way similar to the 
Travelling Salesman Problem, with the entrance and the exit of the field as restrictions. 
Sørensen (2004) optimized the driving pattern based on a priori information about the field, 
vehicle, and implements. Optimal routes were determined for the headlands, the main field, 
and the sequence of the operational tasks. The a priori information is transformed to graphical 
information which is mapped to a set of paths in terms of a graph work. The search problem is 
limited to this network of possible solutions. Optimisation techniques are used to find the 
most optimal path. 
Turning on the headlands can take a considerable amount of time. Stoll (2003) calculated the 
turning time with the help of the effective working width, the minimal turning radius, the 
driving speed and the acceleration of the vehicle in the turning. An additional stop time is 
added when there is a change of driving direction during the turn. Bochtis and Vougiakas 
(2008) distinguished three different types of turn (loop turn or Ω-turn, the double round 
corner or  ∩-turn, and the switch back turn or T-turn) and they minimised the non working 
distance in the field by applying different types or turning. 
Path planning is not only used in the agricultural framework. Other path planning methods 
can be found in problems as floor cleaning, lawn mowing, painting, or robotic demining. 
However, many of these solution assume that the robot can move freely and that a spot can be 
visited more than once. For agricultural purposes this is irrelevant or even impossible. 
The objective of the work described in the paper is the development of a tool for path 
planning of field operations. This tool has to consider the shape of the field, the available 
machinery, the presence of obstacles and the required operations. 
The focus of the work in this paper is on spraying of potatoes. Potatoes require several crop 
protection actions and the tramlines can be used up to 20 times during the growing season. An 
optimal path for this operation is expected to be the most profitable. This also means that 
other operations as planting have to be derived from the spraying operation. 

Materials and methods 
The tool is developed with Matlab. It reads the coordinates of the border of the field. These 
coordinates are processed and only the coordinates of real corners (vertices) are kept. Vertices 



with an angle between 160 and 200 degrees between both sides are considered to be not a 
vertex. For each vertex it also determined whether the vertex is concave or convex. 
The tool considers the crop that is grown, the working width of the machine and the 
corresponding turning radius, growing or not-growing on headlands, the choice for overlap or 
non-overlap, and whether there is a crop free area or not. Velocity is used to calculate the time 
required for fulfilling the task, which is used to calculate the corresponding costs. The basis of 
the optimisation is costs; this also allows to leave small areas uncropped and take into account 
the corresponding (financial) yield losses. 
The tool allows to make also a complete round inside the field along the border, which is 
common practice in spraying a potato crop. The width can be adjusted. In this case the field is 
imploded at all sides by the specified distance. 
Fields are split in smaller fields if there is a need for it. Two reasons to split a field are: (1) the 
field has one or more concave vertices and (2) the presence of obstacles. The developed tool 
is based on that only convex fields are farmed. Although in general fields that have a 
trapezoidal shape are the most efficient to farm, it is not required that the subfields have a 
trapezoidal shape. 
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Figure 1 - Typical field and resulting split lines. 
 
Concave shaped fields are recursively split until only convex fields are left (Figure 1). At the 
first convex corner (2) split lines are projected parallel to each side of the field, resulting in a 
certain number of subfields as shown in Figure 1. The projected split lines are ordered, 
starting with ‘// 1-2’ and ending with ‘// 1-6’. The first subfield is the field with the corners 2, 
3, 4, and A. This subfield is enlarged by merging it with the subfield 2-A-B; this merge 
process is continued until the resulting subfield will be convex again. This is the case after 
merging with the subfield 2-D-E; this means that this subfield is not merged and the resulting 
subfield will be 2-3-4-5-D. The procedure will be repeated for the remaining part of the field 



2-D-6-1 (which is already convex). The procedure can be repeated in reverse order, finally 
resulting in the two convex fields 1-A-5-6 and 2-3-4-A. Different types of obstacles can be 
distinguished. Obstacles can be small or big, low or high, ‘no go area’ or ‘rather no go area’, 
and can be in the tramline or besides the tramline. A decision to split the field depends also on 
the type of the obstacle. A small high obstacle not located in the tramline does not need a split 
of the field since the boom of the sprayer can be folded to pass the obstacle. In addition to the 
splitting of the fields based on obstacles there should be an optimisation process to reduce the 
number of split subfields by positioning the tramlines on the field. 
Figure 2 shows a field with an obstacle that requires to split the field into subfields. For this 
field 14 subfields that can be merged in different ways to create larger convex subfields, for 
example 1-2-3, 4-5-6-7, 9-10-13-14, 8-11 and 12. Each of the resulting combinations has to 
be tested for optimality.  

 
Figure 2 - Field with obstacle and possible subfields. 
 
Different times are assigned to the different turning methods. For potato spraying it is 
assumed that the headland is large enough to realise a normal turn. The travel distance to turn 
is approximated by one and a half times the working width of the implement; dividing the 
distance by the working speed yields the time. The total number of turns is equal to the total 
number of tramlines minus one. The total length of the tramlines and the turns yield the total 
operation length. 
Tramline directions are in many situations not perpendicular to the headlands. This results in 
that parts of the field in case of spraying, are sprayed twice or not sprayed at all, depending on 
the choice made whether to overlap or not. 
 
The optimal solution is the solution with the lowest total costs. Operations for each subfield 
are at this moment only planned parallel to each side of the subfield itself; random directions 
or directions derived from neighbouring subfields are not considered. Each of the subfields is 
operated in the for that field optimal way. For each direction the costs for the operation are 
calculated. The costs are based on working speed, total length of the tramlines and the turns, 
and fixed hourly costs for the operation; the costs are set to € 65 per hour. Working speed and 
width can be set and depend on the operation; working width determines the distance between 



the tramlines and hence also the number of tramlines and turns. The costs base makes it 
possible to add costs for overlap or no overlap of operations, additional travel time, or the 
decision to not farm small inconvenient subfields or small strips when the remaining width 
after the operations is small compared to the width of the machine. Finally, all subfields have 
to be visited.  
The developed tool is tested for several real fields. Results for three fields (A, B and C) are 
presented in the next section. 

Results 
Figure 3 and Figure 4 show a field for which the optimal pattern is calculated for working 
widths of 18 m and 24 m. For each field the headland option is chosen which means that one 
round inside the field is made, followed by tramlines parallel to the sides of the field until the 
whole field is covered. The tramline made around inside the field is not shown in the figures. 
The resulting costs for the different options are presented in Table 1. The data show that for 
both working widths the costs and the time for the working direction parallel to the sides ‘1-2’ 
and ‘3-4’ are almost the same but the values for parallel to side ‘1-2’ is just smaller. 
 

 
Figure 3 - Field A operated in an optimal way 
a with a working width of 18 meters. Thick 
lines represent the tramlines. 

 
Figure 4 - Field A operated in an optimal way 
with a working width of 24meters. Thick line 
represents the tramlines. 

 
Table 1 – Operation costs for all directions of Field A for working widths of 18 m and 24 m. 
Bold figures are the ‘optimal’ solution. 
 18 metres 24 metres 
Parallel to side 1-2 2-3 3-4 4-1 1-2 2-3 3-4 4-1 
Costs (€) 15.33 26.16 15.33 26.18 12.77 21.78 12.77 21.76 
Time (hour) 0.24 0.40 0.24 0.40 0.20 0.34 0.20 0.33 
 
Figure 5 and Figure 6 show the tramlines for Field B for working widths of 18 m and 39 m; 
the resulting tramlines for a working width of 24 m are almost the same as for 18 m and are 
not shown. The corresponding costs and times are shown in Table 2, Table 3, and Table 4. An 
estimation of the costs for the situation of one big field is given in the column ‘One’.  
Figure 6 shows that there is a change in optimal working direction when the working width 
increases. The sides refer to the numbers inside the field; the actual field with the tramlines is 
the subfield that is left when one round around the whole is realised. 
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Figure 5 – Field B split in two subfields and 
operated in an optimal way with a working 
width of 18 m. Thick lines represent the 
tramlines. 

 
Figure 6 – Field B split in two subfields and 
operated in an optimal way with a working 
width of 39 m. Thick lines represent the 
tramlines. 

 
Table 2 - Operation costs for all directions of Field B for the left and the right subfield with a 
working width of 18 m. Bold figures are the ‘optimal’ solution. 
 Left subfield Right subfield One 
Parallel to side 2-5 5-4 4-3 3-2 1-2 2-3 3-4 4-1 3-1/1-2 
Costs (€) 30.08 13.15 28.30 15.03 30.12 33.65 30.10 33.68 45.15 
Time (hour) 0.46 0.20 0.44 0.23 0.46 0.52 0.46 0.52 0.69 
 
Table 3 – Operation costs for all directions of Field B for the left and the right subfield with a 
working width of 24 m. Bold figures are the ‘optimal’ solution. 
 Left subfield Right subfield One 
Parallel to side 2-5 5-4 4-3 3-2 1-2 2-3 3-4 4-1 3-2/1-2 
Costs (€) 20.29 9.64 20.22 9.62 22.96 22.91 21.04 22.90 32.58 
Time (hour) 0.31 0.15 0.31 0.15 0.35 0.35 0.32 0.35 0.50 
 
Table 4 – Operation costs for all directions of Field B for the left and the right subfield with a 
working width of 39 m. Bold figures are the ‘optimal’ solution. 
 Left subfield Right subfield One 
Parallel to side 2-5 5-4 4-3 3-2 1-2 2-3 3-4 4-1 3-2/1-2 
Costs (€) 10.28 3.01 10.16 3.00 27.62 25.97 27.60 25.86 30.62 
Time (hour) 0.16 0.05 0.16 0.05 0.42 0.40 0.42 0.40 0.47 
 
Figure 7 shows the results for Field C. The corresponding data are in Table 5. The most 
interesting is the right subfield. The most logical direction at first sight would have been 
parallel to side 7-6 but the most optimal direction is parallel to side 5-2. 
 
Table 5 – Operation costs for all directions of Field C for the left and the right subfield with a 
working width of 12 m. Bold figures are the ‘optimal’ solution. 
 Left subfield Right subfield One 
Parallel to side 1-2 2-3 3-4 4-1 2-1 1-7 7-6 6-5 5-2 1-2/5-2 
Costs (€) 6.13 11.57 11.57 4. 34 38.10 34.53 32.68 32.72 29.08 35.21 
Time (hour) 0.09 0.18 0.18 0.07 0.59 0.53 0.50 0.50 0.48 0.57 
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Figure 7 - Field C split in two subfields and operated in an optimal way with a working width 
of 12 m. Thick lines represent the tramlines. 

Discussion 
The results presented before show that for regular convex shaped field the optimal solution is 
the expected solution, usually with the first tramline parallel to the longest side. 
For more complex situations, as for example concave fields that are split in two or more 
convex fields, the solutions appear to be not logical. The main reason for this is that the 
subfields are managed individually and not in connection with each other. In for example 
Figure 5 a more logical solution would have been for the both the left and the right subfield a 
direction parallel to side 3-2 of the left subfield or 1-2 of the right subfield. The total costs 
then would have been 45.15 euro (compared to 43.25 euro). This is due to that at this moment 
the tool does not include a penalty for outcomes as shown in for example Figure 5 which 
result in a lot of turning in the middle of the field. 
For Field C the optimal solution (parallel to side 2-5) has 3.60 euro less costs than the more 
logical solution (parallel to 6-7). The more logical solution has less of situations where the 
field is either not operated or operated twice. This can be due to that there is at this moment 
no penalty for not or twice operating an area. When this penalty is included, it can be still true 
that parallel to side 2-5 is the most optimal solution. If that is the case, it will be clear that the 
most logical solution is not always the most optimal solution. Such a tool is therefore also 
helpful to reconsider the way operations are executed and new technologies such as RTK-
GPS may enable more optimal solutions that are in practice more difficult to realise without 
these new technologies.  
The costs for one big field are 4 to 6% higher, compared with the ‘optimal’ solution. The 
costs for one big field are based on that the direction is parallel to the split line of the field. In 
some specific situations one tramline can be saved but then there will also be some additional 
costs for the area not covered or covered twice at the transition between the two subfields. 
At this moment the starting point is that the tramline direction is parallel to one of the sides of 
the field. In the case of two neighbouring subfields there will always be an operation where 
the directions of the tramlines for both subfields are the same (i.e. parallel to the dividing line 
between both subfields). In case of three or more neighbouring subfields the direction of the 
second nearest neighbour should be considered because this can yield at the end the most 
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optimal solution. Required for this is that penalties are introduced for non optimal solutions 
(i.e. solutions with overlap, not operated areas, or turning inside the field). 
Not implemented yet is the start point for the operation in each subfield. Choosing appropriate 
start points can result in less driving over the field to operate all subfields. 

Conclusion 
We have developed a tool for determining the optimal path for field operation. However, the 
tool is not complete yet. It gives optimal solutions for single convex fields. When fields 
consist of more than one subfield the current optimal solutions are not necessarily the optimal 
solutions. For this it is necessary to include also a penalty for operating parts of the field twice 
or not at all (when tramlines are not perpendicular to the headland), and for solutions that 
require turning inside the field around the dividing line of two neighbouring subfield that are 
both part of the total field. 
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