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The EU ban on in-feed antibiotics has stimulated research on weaning diets as a way of reducing post-weaning gut disorders
and growth check in pigs. Many bioactive components have been investigated but only few have shown to be effective.
Amongst these, organic acids (OA) have been shown to exert a bactericidal action mediated by non-dissociated OA, by
lowering gastric pH, increasing gut and pancreas enzyme secretion and improving gut wall morphology. It has been postulated
that they may also enhance non-specific immune responses and improve disease resistance. In contrast, relatively little
attention has been paid to the impact of OA on the stomach but recent data show they can differently affect gastric histology,
acid secretion and gastric emptying. Butyrate and precursors of butyric acid have received special attention and although
promising results have been obtained, their effects are dependent upon the dose, treatment duration, initial age of piglets,
gastrointestinal site and other factors. The amino acids (AA) like glutamine, tryptophan and arginine are supportive in
improving digestion, absorption and retention of nutrients by affecting tissue anabolism, stress and (or) immunity. Glutamine,
cysteine and threonine are important for maintaining mucin and permeability of intestinal barrier function. Spray-dried plasma
(SDP) positively affects gut morphology, inflammation and reduces acquired specific immune responses via specific and
a-specific influences of immunoglobulins and other bioactive components. Effects are more pronounced in early-weaned piglets
and under poorer health conditions. Little interaction between plasma protein and antibiotics has been found, suggesting
distinct modes of action and additive effects. Bovine colostrum may act more or less similarly to SDP. The composition of
essential oils is highly variable, depending on environmental and climatic conditions and distillation methods. These oils differ
widely in their antimicrobial activity in vitro and some components of weaning diets may decrease their activity. Results in
young pigs are highly variable depending upon the product and doses used. These studies suggest that relatively high
concentrations of essential oils are needed for beneficial effects to be observed and it has been assumed that these plant
extracts mimic most of the effects of antibiotics active on gut physiology, microbiology and immunology. Often, bioactive
substances protective to the gut also stimulate feed intake and growth performance. New insights on the effects of selected
OA and AA, protein sources (especially SDP, bovine colostrum) and plant extracts with anti-bacterial activities on the gut are
reported in this review.
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Introduction

Weaning is a critical period in a piglet’s life and is accom-
panied by nutritional, social and environmental stress. At
weaning, the diet is changed from a highly digestible and

liquid diet (the milk) to a solid, more complex and less-
digestible diet, and post-weaning gut disorders cause
important economic losses in the pig industry. A transient
anorexia as usually observed after weaning leads to gut
dysfunction, increased sensitivity to enteric infections and
diarrhoea. The most consistent patho-physiological changes
effect the anatomy and function of the small intestine (Pluske
et al., 1997), and these include a 20–30% reduction in muco-
sal weight associated with villous atrophy (Lallès et al., 2004).

* This work was presented at a Workshop organised within the EU project ‘Feed
for Pig Health’ at the occasion of the 58th Annual Meeting of the European
Association for Animal Production held in Dublin, Ireland in August 26–29, 2007.
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Further recent studies have shown that intestinal barrier
function is compromised, resulting in increased secretion of
electrolytes and water and increased permeability to poten-
tially toxic substances (reviews by Vente-Spreeuwenberg and
Beynen, 2003; Lallès et al., 2004). In addition to alterations in
gut physiology, weaning causes disturbances in the home-
ostasis of the gut microbiota and delays the anatomical and
functional development of the mucosal immune system
(review by Lallès et al., 2007).

In-feed antibiotic growth promoters (AGP) have been
long considered as acting essentially on the gut microbiota
by decreasing the potentially harmful effects of pathogenic
bacteria (review by Dibner and Richards, 2005). Such
AGP were more effective in promoting growth in young
animals such as in piglets after weaning, and when hygiene
conditions are poor (review by Anderson et al., 1999).
Complementary mechanisms of action centred on the gut
microbiota have been described together with the con-
sequences of supplemental AGP on improvements of gut
homoeostasis, feed component digestibility, feed efficiency
and growth performance. However, AGP may also act
directly on the host and one recent hypothesis would
suggest that AGP would display non-antibiotic anti-
inflammatory properties (Niewold, 2007). This in turn would
explain a lower protein catabolism related to a reduced
level of inflammatory cytokines and, therefore, a better
growth performance.

The use of in-feed AGP has been banned in the EU since
1 January 2006 and many attempts at alternative approa-
ches have been applied to replace them. However, the
success rate is low due to the complexity of the aetiology
and pathogenesis of gastrointestinal tract (GIT) disorders on
the one hand, and to the frequent lack of knowledge on
the mechanisms of action and effective doses of alternative
substances on the other hand. This has led to intensive
research over Europe to increase our understanding on the
mechanisms of action of known substances, used alone or
in combination, and for exploring the possibilities offered
by new substances. Such potential bioactive feed additives
include nutrients (e.g. particular amino acids (AA)), mineral
and organic acids (OA), minerals, growth factors, prebiotics
and probiotics, and finally phytogenic compounds. All these
substances have in common their potential for protecting
the gut, albeit through very different ways, including
mucosal growth, intestinal barrier function strengthening,
anti-oxidant and anti-inflammatory capacities, and finally
anti-bacterial properties.

The aim of this review is to gather recent findings on a
limited number of categories of AGP alternatives, including
OA (and sodium butyrate (SB)), specific AA (Gln, Trp, Arg,
Cys, Thr), animal proteins (e.g. spray-dried plasma (SDP)
and bovine colostrum) and plant extracts with known anti-
bacterial activities in vitro. These substances have been
studied more extensively within the frame of two EU pro-
jects (Healthypigut, 2000; Feed for Pig Health, 2003) and
some of these substances offer a real alternative to AGP for
protecting the gut and maintaining animal performance,

whilst others display interesting protective properties in vitro
or ex vivo but there are limited data in vivo and/or evidence
of their protective efficacy.

Organic acids

The effects and modes of action of OA have been reviewed
recently (Partanen, 2001; Roselli et al., 2005; Bannink et al.,
2006; Mroz et al., 2006). Some highlights from these reviews
involve the in vivo trials with acidified diets in weaned piglets.
From formic, fumaric and citric acids and potassium diformate,
sufficient data could be gathered for meta-analysis (Partanen,
2001). From this analysis it was concluded that formic acid
and potassium diformate were most potent in increasing feed
consumption and average daily gain (ADG). Increased feed
intake is thought to reflect improved health after weaning
and is crucial for high growth. Another highlight from these
reviews includes the bactericidal potency of OA. In a porcine
intestinal organ culture model, it was established that
coliform bacteria were most effectively killed by benzoic .

fumaric . lactic . butyric . formic . propionic acid. With
respect to Salmonella typhimurium the order was benzoic .

sorbic . lactic . propionic . formic . acetic acid. Overall,
benzoic acid is most effective, lactic acid is intermediate and
both formic and propionic acids are least effective at killing
both coliforms and S. typhimurium.

The stomach contents play an important role in limiting the
entry of bacteria into the intestine. The inclusion of a com-
bination of 1% lactic acid and 1% formic acid in the diet
reduced gastric pH and concentration of lactic acid bacteria
and enterobacteria (Hansen et al., 2007). Lactic acid bacteria
were also reduced by 0.5% benzoic acid (Guggenbuhl et al.,
2007) and by the addition of 200 mEq/kg of a 1 : 1 formic :
fumaric acid mixture, but not by a 1 : 1 formic : lactic acid
mixture (Franco et al., 2005). Benzoic acid at 0.5% or 1.0%
reduced the number of total aerobic, total anaerobic, lactic
acid forming and Gram-negative bacteria in the stomach
(Kluge et al., 2006). In another study benzoic acid at 0.5%
improved growth and feed efficiency, but had no effect on
reducing the number of culturable Lactobacilli, Enterococci,
Escherichia coli and Clostridium perfringens from the ileum
and caecum as measured with traditional culture methods
(Torrallardona et al., 2007a). However, these authors did
observe a marked increase in the biodiversity of the ileal
microbiota, which suggests a more stable microbial ecosys-
tem (Zoetendal et al., 2004). Potassium diformate has also
been shown to reduce Salmonella shedding in Salmonella-
challenged piglets (Papenbrock et al., 2005). Finally, inclusion
of an OA mixture with a lipid matrix was found to increase
the concentration of OA in the distal GIT and reduced the
number of coliforms in the caudal jejunum and in the caecum
(Piva et al., 2007).

Very little attention has been paid to the impact of OA
on the stomach. Gastric mucosa absorbs and transports
volatile fatty acids (VFA) at substantial rates and OA are
rapidly recovered from the blood after a single feed (Hanzlik
et al., 2005). Concentrations of OA decline rapidly between
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the stomach and the duodenum (e.g. formic acid; Canibe
et al., 2005), suggesting that pig proximal GIT is an
important site of OA absorption. VFA are transported by the
monocarboxylate transporters (MCT). The transporter MCT1
is most widely distributed in the GIT and has a specific role
in lactate and butyrate transport. The presence of MCT1 has
been detected by immuno-staining on the surface of adult
mouse gastric surface epithelium (Nakai et al., 2006). The
distribution of MCT1 was studied in the small intestine and
colon of pigs (Ritzhaupt et al., 1998a and 1998b; Sepponen
et al., 2007), and its presence was enhanced by the luminal
production of butyrate after bacteria fermentation. The
addition of different OA to the diet can differently affect
the morphology and function of the stomach of weaned
pigs. In the fundic mucosa, Ca-formate reduced the number
of HCl-secreting parietal cells and H1/K1 ATPase gene
expression (Bosi et al., 2006). Conversely, it increased
numbers of cells secreting somatostatin, which is suppres-
sive to HCl secretion. Fat-protected formic acid was also
tested in piglet feeding, to explore the effect of a delayed
release of this OA on gut barrier function. Interestingly, this
product did not cause the gastric changes observed with
free OA, confirming its direct impact on oxyntic mucosa
(Bosi et al., 2006).

The effect of OA supplementation on gastric emptying
and on the rate of digesta passage has not been studied in
pigs. In humans, oral intake of propionate reduced the
gastric emptying rate (Darwiche et al., 2001), and this could
explain the increased weight of gastric content and dry
matter (DM) percentage after supplementation with formic
acid to early-weaned pigs (Manzanilla et al., 2004). An
increased stasis of feed in the stomach can permit a deeper
action of acid secretion and this can be seen particularly
favourable in a dirty environment. Conversely, it can also
reduce feed intake. Addition of OA can have negative effect
(Eisemann and van Heugten, 2007), no effect (Partanen,
2001; Ettle et al., 2004) or favourable effect (Partanen,
2001) on feed intake in piglets. This could be related to the
type or dose of OA used, the differences in taste and smell,
or from differences in local sensing of OAs. More research
attention should be placed on the role of stomach in the
action of OA in the GIT of young pigs.

The dietary effect of OA has also been studied in
weaning pigs orally infected with pathogenic Escherichia
coli K88 (Table 1). Dietary supplementation with free Ca-
formate, but not with fat-protected formate, improved
post-challenge growth, feed intake, gain to feed ratio and
reduced the faecal score, days of diarrhoea and faecal
excretion of total (but not K88-specific) E. coli, and
increased villous height in the small intestine (Bosi et al.,
2007). The effects were seen independent of the individual
piglet phenotypes for intestinal adhesion of E. coli K88.
After a challenge with E. coli K99, Ca-formate improved
neither growth performance nor total E. coli count in ileum,
but jejunal villous height was reduced (Torrallardona et al.,
2007b). Earlier work with pathogenic challenges indicated
that 2% fumaric acid tended to improve average daily gain

(ADG) over the first 2 weeks post-weaning and to reduce
scours, faecal shedding of E. coli K88 and mortality (Owusu-
Asiedu et al., 2003b). In a study with Lawsonia intracellu-
laris challenge 2.4% lactic acid, but not 1.8% fumaric acid
was able to reduce intestinal lesions induced by this
pathogen (Boesen et al., 2004).

The case of sodium butyrate

As a result of their well-known beneficial effects on colonic
mucosa, butyrate and butyrate precursors have been the
focus of special attention (review by Hamer et al., 2008).
However, little is known of the effect of oral butyrate on the
small intestine.

SB is more frequently used in pig feeding due to its less-
strong odour than the acid. It is presumed that the effect
inside the gut is not different, because SB dissociates. In
experiments conducted by Manzanilla et al. (2006) and
Castillo et al. (2006), SB was included in the starter diet at
3 g/kg and fed for 14 days to piglets weaned at 18–22 days
of age. SB supplementation improved feed gain ratio in
week 2 post-weaning and over the 14-day post-weaning
period. SB was detected only in the stomach, suggesting
quick gastric and (or) duodenal absorption or catabolism
(Gálfi and Bakori, 1990; Manzanilla et al., 2006). SB
increased gastric DM percentage (Manzanilla et al., 2006).
SB supplementation also induced large changes in both the
biodiversity of the microbial ecosystem and species com-
position of the bacterial community in the jejunum (Castillo
et al., 2006). Total microbial activity in digesta was lower in
the caecum and distal colon when SB was present in the
diet. Manzanilla et al. (2006) suggested that SB supple-
mentation may have contributed to stabilise the gastro-
intestinal ecosystem while depressing amilolytic bacteria,
thus improving the health status of the pigs and the effi-
ciency of the use of nutrients for growth.

A range of doses of SB (0, 1, 2 and 4 g/kg) was tested for
6 weeks in another study of piglets weaned at 28 days (Biagi
et al., 2007). SB had effects on neither growth performance
(despite a numerical improvement with the highest dose) nor
intestinal mucosa morphology. The only reported changes
were increased caecal pH and isobutyric acid concentration
with a tendency for increased ammonia concentration. This
suggested that oral SB stimulated protein catabolism in the
caecum of pigs. However, the underlying mechanisms are
unresolved thus far. The authors considered the bacterial
hypothesis as unlikely because the counts of clostridia,
enterobacteria and lactic acid bacteria along the intestines
were unaffected by SB (Biagi et al., 2007).

The period of oral SB administration has also recently
been investigated by another group (Le Gall et al., 2007).
SB (0.3 g/kg of milk or feed intake) was provided to piglets
either during the suckling period (day 4 to day 28) or after
weaning (day 28 to day 39–40) or both before and after
weaning (day 4 to day 39–40). SB stimulated growth rate
before weaning and over the entire period of observation,
whilst feed intake after weaning was enhanced when SB
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Table 1 Average daily feed intake (ADFI), weight gain (average daily gain (ADG)) and feed conversion ratio (FCR) obtained in different studies on weaning piglets experimentally challenged with
different Escherichia coli strains when spray-dried plasma (SDP) or other substances were fed to the animals

Supplement, its amount ADFI (kg) ADG (kg) FCR E. coli strain, dose, daya
Weaned

(days of age)
Mean BW at
weaning (kg)

Duration of
study (days) Reference

Control 0.225xy 0.150x 1.56 K99, 5 3 107 colony
forming unit (CFU), day 0

21 6.2 14 Torrallardona et al. (2007b)

Antibioticb 0.236xy 0.173xy 1.37
Ca formate, 18 g/kg 0.202x 0.141x 1.47
SDAPc, 60 g/kg 0.301y 0.223y 1.35
Control 0.192 0.112 1.78 K99, 5 3 107 CFU, day 5 21 7.4 10 Torrallardona et al. (2007b)
Antibioticb 0.196 0.128 1.52
Ca formate, 18 g/kg 0.172 0.106 1.65
SDAPc, 60 g/kg 0.230 0.142 2.01
Control 0.263 0.182x 1.47x K99, 1 3 107 CFU, day 5 21 7.3 14 Conde (2005)
Antibioticb 0.312 0.252y 1.26y

SDAPc, 60 g/kg 0.312 0.245y 1.28y

SDAPd, 60 g/kg 0.275 0.199xy 1.37xy

Control 0.175 0.128 1.81 K88, 1 3 1010 CFU, day 4 21 4.9 15 Bosi et al. (2004)
Antibiotice 0.186f 0.148 1.48
SDP, 60 g/kg 0.197g 0.164g 1.30
SDP, 60 g/kg 1 Antibiotice 0.214fg 0.186g 1.30
Control 0.114 0.085x 1.35 K88, 6 3 1010 CFU, day 7 10 3.5 14 Owusu-Asiedu et al. (2003a)
IgYh, 5 g/kg 0.157 0.123xy 1.27
SDPPi, 50 g/kg 0.173 0.132y 1.31
SDPPi, 100 g/kg 0.167 0.127xy 1.31
SDPPi, 100 g/kg 1 IgYh, 5 g/kg 0.174 0.130xy 1.34
Control 0.141 0.101 1.40 K88, 6 3 1010 CFU, day 7 10 3.8 14 Owusu-Asiedu et al. (2003b)
Antibioticj 0.222 0.153 1.46
IgYh, 5 g/kg 0.208 0.151 1.38
Zn oxide, 2880 mg/kg 0.215 0.159 1.35
Fumaric acid, 20 mg/kg 0.212 0.155 1.36
SDPPi, 100 g/kg 0.213 0.157 1.36
Control 0.227 0.101 2.33 K99, 5 3 107 CFU, day 0 24 7.1 14 Torrallardona et al. (2003)
Antibioticb 0.298f 0.214f 1.41f

SDAPc, 70 g/kg 0.268 0.193g 1.39g

SDAPc, 70 g/kg 1 Antibioticb 0.286f 0.230fg 1.23fg

Control 0.226 0.101 2.25 K88, 1 3 1010 CFU, day 4 19 4.9 15 Bosi et al. (2001)
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was fed during the suckling period. Supplementing SB
before and (or) after weaning increased the number of
HCl-secreting parietal cells per gland observed at 7-day
post-weaning (Mazzoni et al., 2008). This effect was seen
notwithstanding the parallel increase of somatostatin-
secreting cells. The weights of the whole tissue and mucosa
of the small intestine were reduced with SB feeding, with
minor changes in villous-crypt architecture and digestive
enzyme-specific activities (Le Gall et al., 2007). These
changes were very similar to previous findings in a study
with plasma protein (Jiang et al., 2000b) that showed
suppression of both the inflammatory response and AA
catabolism in the intestine. Whether SB alters intestinal
inflammation and AA metabolism is presently unknown.

The protective effects of butyrate are well documented
(review by Hamer et al., 2008) and an alternative approach
to delivering butyrate to the gut has been by providing the
animal with butyric acid precursors, including tributyrin and
lactitol (Piva et al., 2002) or gluconic acid (Tsukahara et al.,
2002; Biagi et al., 2006a and 2006b). Supplementing the
piglets with tributyrin or lactitol reduced mortality and
this protective effect was enhanced when both were fed
together (Piva et al., 2002). The combined supplementation
increased growth performance and jejunal villous height
while reducing histamine levels in jejunal and caecal tissues
and caecal crypt depth. Tributyrin alone had adverse effects
on growth performance. It did not influence jejunal villus
height but it reduced drastically caecal crypt depth. Lactitol
alone stimulated jejunal villous height and the level of lactic
acid in the caecum while reducing caecal crypt depth.
Gluconic acid tended to improve growth rate without
changes in intestinal morphology (Biagi et al., 2006a) and
to support longer ileal crypts and shorter caecal crypts
(Biagi et al., 2006b).

Collectively, the results obtained with an oral supple-
mentation of SB or with butyrogenic precursors indicate
that the outcome may depend on various factors including
dose, supplementation duration, site of observation, age of
pigs at initiation of butyrate supplementation and probably
other uncontrolled factors. As an example, an interaction
between butyrate infused in the caecum of pigs and dietary
inulin was recently demonstrated (Kien et al., 2007).
Butyrate alone stimulated epithelial cell proliferation along
the intestines but dietary inulin tended to block this effect.
The precise modes of action of butyrate in the small
intestine are not yet fully understood.

Specific amino acids

Apart from their role as building blocks for peptides and
proteins, several essential and non-essential AA are thought
to have therapeutic effects on the GIT and on the whole
organism (review by Kim et al., 2007). Specific AA can
promote health by improving (gut) tissue anabolism, by
reducing the impact of stress and by modulating local
immunology (Table 2). This could be beneficial when
growth is inhibited by infection, inflammation and stressTa
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(Gruys et al., 1998). Biologically active AA can be added to
the diet in case of a deficiency during disease and experi-
mental results suggest that the profile of AA required for
the immune system differs substantially from that for
growth (Reeds et al., 1994). In addition, surplus adminis-
tration of certain dietary AA has been shown to be
necessary for inducing significant bioactivity for therapeutic
purposes (Massey et al., 1998). From the literature, five AA,
namely glutamine, tryptophan, arginine, cysteine and
threonine, showed consistent bioactivity with respect to
physiology, immunology, endocrinology and metabolism.

Glutamine (Wu et al., 1995) and glutamate (Reeds et al.,
2000) are important fuels for intestinal epithelial cells. Not-
withstanding the stresses of weaning, these AA were able to
maintain the high turnover of the gut mucosa, as indicated by
longer villi in pigs supplemented with glutamine (Ayonrinde
et al., 1995; Liu et al., 2002; Lee et al., 2003; Domeneghini
et al., 2004 and 2006) or glutamate (Liu et al., 2002). For
glutamine, this was determined by a decrease in the apoptotic
to mitotic mucosal cell ratio (Domeneghini et al., 2004 and
2006). The positive influence of glutamine on intestinal
architecture and growth performance in healthy swine per-
sists in swine at risk of colibacillosis, as shown in E. coli K88-
challenged piglets (Yi et al., 2005). Interestingly, the small
intestine utilises glutamine to synthesise citrulline and after
rotavirus infection, blood plasma citrulline values were
reduced, while glutamine increased (Rhoads et al., 2007).
Thus utilisation of glutamine in the intestine was reduced for
the compromised number of villous cells. Systemic glutamine
may also influence the gut since its parenteral administration
decreased intestinal permeability and endotoxin levels in
burns patients (Zhou et al., 2004).

Glutamine is rapidly utilised by cells of the immune system
in culture and is required to support optimal lymphocyte
proliferation and production of cytokines by lymphocytes and
macrophages. Glutamine may stimulate the immune system
in mucosal tissue (Calder and Yaqoob, 1999). For example, in
infected, early-weaned pigs, supplemental dietary glutamine
(140 g/kg diet) restored lymphocyte function and intramus-
cular glutamine concentrations (Yoo et al., 1997). Locally,
supplemental dietary glutamine (15 g/kg diet) increased ileal

mucosa densities of macrophages and intra-epithelial lym-
phocytes (Domeneghini et al., 2004). Enteral glutamine sup-
plementation (145 g/kg diet) of rats with gut-derived sepsis
enhanced peritoneal macrophage phagocytic activity (Yeh
et al., 2004), preserved CD41 T cells and maintained the pool
of circulating T lymphocytes. In piglets, glutamine supple-
mentation (140 g/kg diet) of piglets stimulated cell pro-
liferation to mitogens and Th-1-type cytokine response of T
lymphocytes present in mesenteric lymph node cells (Johnson
et al., 2006). Whilst it could be argued that such responses
can be beneficial in the face of mucosal infection, it is not
clear whether the immuno-stimulation by glutamine is direct,
or indirect via the extra energy provided to the immune
system (Bannink et al., 2006). Finally, glutamine supple-
mentation reduced blood cortisol on the first day post
weaning in pigs (Zhou et al., 2006).

Tryptophan is the most potent AA for stimulating chole-
cystokinin secretion and subsequent pancreatic enzyme pro-
duction (Massey et al., 1998). Of the total body serotonin,
80% is located within the gut and dietary tryptophan may
locally boost the serotoninergic system in the GIT and as such
enhance peristaltic activity by smooth muscle and stimulate
intestinal secretion by enterocytes (Spiller, 2001). The trypto-
phan-driven effect on gut serotonin may be (partly) respon-
sible for the observed increases in digestion and/or absorption.
In addition, supplemental dietary tryptophan (15 g/kg diet)
may increase gut functionality indirectly through its inhibitory
effect on the peripheral sympathetic nervous system (Koop-
mans et al., 2005). Supplemental dietary tryptophan (15 g/kg
diet) has been shown to reduce villous atrophy in weaning
piglets (Koopmans et al., 2006), to control the inflammatory
response and to preserve growth in weaned pigs submitted to
immune stress. Adequate dietary tryptophan (20% tryptophan
to lysine ratio) reduced plasma haptoglobin concentrations,
while its catabolism increased under indoleamine-2,3-dioxy-
genase activity during chronic lung inflammation in pigs (Le
Floc’h et al., 2004; Melchior et al., 2004 and 2005). This
highlights that during inflammatory stress in the gut, the
tryptophan requirement to maintain growth could be greater
than during ‘health’. Indeed, supplementing a standard
weaning diet with 100 mg/kg L-tryptophan improved daily gain

Table 2 Summary of the effector molecules and bioactivities of five bioactive amino acids (adapted from D’Mello, 2003)

Amino acid as precursor Effector molecule Bioactivity and pig response

Arginine Nitric oxide Vasorelaxation, neurotransmission, gut motility
Polyamines Regulation of RNA synthesis, maintenance of membrane stability

Cysteine Cysteine Important for activity of proteins
Glutathione Immune response (T-cell activity and antibody response)

Glutamine Purine and pyrimidine Energic source in some tissues (mucosa)
Threonine Threonine Immune response (IgG antibodies)

Glycoproteins Mucin production
Tryptophan Tryptophan Immune response (acute phase proteins)

Serotonin Neurotransmission, appetite, coping with stress
Kynurenine Immune response including T-cell activity and free radical scavenger production
Nicotinamide B-complex vitamin

Lallès, Bosi, Janczyk, Koopmans and Torrallardona

1630



and also stimulated feed intake in piglets susceptible to
intestinal adhesion of E. coli K88 during the first 4 days post
challenge with this pathogen strain (Trevisi et al., 2008).
Tryptophan, via its conversion to serotonin, has been shown to
reduce cortisol and noradrenaline concentrations in blood. In
addition, surplus dietary tryptophan (15 g/kg diet) enhanced
the recovery from the ‘social stress’ of mixing piglets at
weanling (Koopmans et al., 2005 and 2006). The protective
effect of tryptophan against stress may spare arginine and
glutamine catabolism in enterocytes of post-weaning pigs
since cortisol stimulates the degradation of arginine and glu-
tamine (Flynn and Wu, 1997). Inhibition of the adreno-cortical
and sympatho-adrenal axis activity by tryptophan and arginine
during periods of stress (e.g. post weaning) may contribute to
improved gut integrity, digestion and tissue anabolism.

Arginine has been used as a therapeutic agent for the
treatment of necrotic enterocolitis, an inflammation of the gut
induced by enterotoxins. Arginine-mediated production of
nitric oxide (NO) causes smooth muscle relaxation, protects
the gut from blood-borne toxins and tissue-destructive med-
iators (Di Lorenzo et al., 1995; Di Lorenzo and Krantis, 2002),
and enhances wound healing (Shi et al., 2000). Supple-
mentation of diets with ornithine, a metabolite of arginine,
increased villous height and crypt depth in the jejunum and
ileum of starved rats (Cynober, 1994). Supplemental dietary
arginine (or glutamine) has also been reported to reduce
bacterial translocation and to decrease atrophy of intestinal
villi in rats with obstructive jaundice (Zulfikaroglu et al.,
2003). In weaned pigs challenged with lipopolysaccharide
(LPS), arginine supplementation (at 5 and 10 g/kg feed) in
weaned pigs partly protected from changes in villous–crypt
architecture, in crypt cell proliferation and villous cell apop-
tosis induced by LPS (Liu et al., 2008). Arginine supple-
mentation to septic pigs restored the intestinal motility
pattern and improved microcirculation and protein anabolism
(Luiking et al., 2005). Arginine (264 mg of N/kg rat per day)
improves histone and acute-phase protein synthesis during
Gram-negative sepsis (Léon et al., 1991), stimulates the
bactericidal actions of macrophages (Massey et al., 1998) and
restores depressed immunity (Cynober, 1994). Enteral arginine
supplementation enhanced macrophage phagocytic activity
and reduced total bacterial counts in the peritoneum of septic
rats (Wang et al., 2003; Yeh et al., 2004).

Mucus is a semi-solid gel, which creates an important
barrier for microorganisms and their toxins in the lumen of
the gut. Cysteine and threonine are important building
blocks for mucin; consequently, disease-induced stimulation
in mucus secretion leads to extra requirement for cysteine
and threonine (Lobley and Lapierre, 2003; Bannink et al.,
2006). Similarly, diets that stimulate mucin production
decrease pig threonine retention (Myrie et al., 2003), indi-
cating that in this case the AA requirement should be
adjusted. However, an excess of threonine has a negative
effect on intestinal protein synthesis (Wang et al., 2007),
and this may be explained by its possible competitive
inhibition on the absorption of other indispensable AA.
Conversely, a threonine-deficient diet (6.5 v. 9.3 g/kg feed)

increased intestinal para-cellular permeability and reduced
villous height, villous height to crypt depth ratio and amino-
peptidase N activity in the ileum of young piglets (Hamard
et al., 2007a and 2007b). Whilst these data highlight
the functional role of threonine at the intestinal level, no
studies have specifically assessed threonine requirements
in piglets stressed with enterobacteria or reared in dirty
environment. Therefore, in practice, the recommended
values should be over the NRC (1998) requirement, but not
increased up to 150% of this value (Wang et al., 2007).
Finally, cysteine provided at 25% above the NRC for pigs
decreased jejunal mass, possibly due to its mucolytic
properties (Harte et al., 2003).

Spray-dried animal plasma

SDP is an abattoir by-product obtained from animal blood
after exclusion of cells, concentration and spray drying. Three
types of SDP products, from porcine (SDPP), bovine (SDBP)
and unknown or mixed animal origin (SDAP) are available
commercially. Following the temporary ban in Europe as a
consequence of the bovine spongiform encephalopathy crisis,
feeding SDPP is now allowed for pigs. Hygienic collection and
processing of the blood are essential, and irradiation or
formaldehyde treatment of SDP improved growth only in
poor-quality SDP containing a high number of bacteria
(DeRouchey et al., 2004). The possibility that plasma may
provide a source for the transmission of infectious diseases
has also been considered (van Dijk et al., 2001), and spray
drying process has been shown to be effective in inactivating
pseudorabies and porcine respiratory and reproductive
syndrome viruses (Polo et al., 2005).

It is now well established that both porcine and bovine
SDP incorporated into weaning diets stimulate growth per-
formance and feed intake (Coffey and Cromwell, 2001; van
Dijk et al., 2001), and that SDPP was more effective than
SDBP (Pierce et al., 2005). This observation could suggest
some degree of specificity in the effect of IgG in SDPP against
porcine pathogens. Pierce et al. (2005) showed that it was
the immunoglobulin-rich fraction that was responsible for the
beneficial effects of SDP. These effects are greater in piglets
weaned at 22 days as compared to 32 days (Torrallardona
et al., 2002) and higher under poorer health conditions. This
supports the view that the protective effect of SDP may be
via the immune system or directly against pathogens (Coffey
and Cromwell, 1995; Bergstrom et al., 1997). Indeed, SDP
lowered the incidence of diarrhoea in pigs challenged with
pathogens (Owusu-Asiedu et al., 2003a and 2003b; Conde,
2005) and improved body condition (Van Dijk et al., 2002)
and performance (Table 1).

It is widely accepted that the beneficial effects of plasma
are mediated by its immunoglobulin fraction and their
inhibitory activities against pathogens and enterotoxins.
Therefore, differences in IgG contents (both quantitative
and qualitative) may influence the efficacy of different SDP
sources. SDP with guaranteed high levels of immunoglo-
bulins were shown to be superior to conventional plasma
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(Bosi et al., 2001; Conde, 2005). Furthermore, Bosi et al.
(2001 and 2004) observed that challenge of piglets with
E. coli K88 resulted in a lower concentration of specific IgA
anti-K88 in plasma and saliva if they were fed a plasma
source rich in IgG, suggesting a protective effect against the
adhesion of E. coli K88 to the enterocytes.

A lower basal activation of the immune system was
observed in piglets fed SDP than in piglets without SDP
(Touchette et al., 2002). This is in line with the reduced
production of pro-inflammatory cytokines (tumour necrosis
factor-a, interleukin-8 and interferon-g) in the jejunum of
SDP-fed piglets challenged with enterotoxigenic E. coli (ETEC)
K88 (Bosi et al., 2004). Porcine plasma was found to have
levels of specific ETEC antibodies higher than SDAP of mixed
origin (Owusu-Asiedu et al., 2002), and when tested in E. coli
F18-challenged piglets, the source with more E. coli F18
antibodies (SDPP) showed numerically higher growth and
feed intake. In contrast, other studies with piglets fed a
plasma source without specific immunoglobulins for E. coli
F18 have shown that SDP impedes E. coli F18 binding to the
enterocytes by receptor competition by a non-specific pro-
tection mechanism (Nollet et al., 1999). Finally, hyper-immune
SDPP obtained from pigs vaccinated against specific patho-
gens resulted in little production advantages over conven-
tional SDPP in piglets challenged with the same pathogen
(Conde, 2005; Niewold et al., 2007). This could suggest that
non-specific mechanisms may play a role or that pre-existing
antibodies may already be present in conventional SDPP as a
consequence of ‘natural’ challenge.

Studies evaluating SDP in the presence or absence of
antimicrobial medication have shown no (Coffey and
Cromwell, 1995; Torrallardona et al., 2002; Bosi et al., 2004)
or little (Torrallardona et al., 2003; Bikker et al., 2004) inter-
actions between SDP and antimicrobials. These observations
would suggest that SDP and antimicrobials might have
essentially different modes of action and additive effects. This
may be due to differences in antimicrobial efficacy against
different pathogens. For example, SDP may not contain IgG
against a particular pathogen that is sensitive to the antibiotic
tested whereas SDP may be effective against pathogens
that are resistant to the antibiotics. In addition, it must be
considered that besides IgG, SDP contains growth factors,
cytokines and other biologically active compounds that may
also contribute to its positive effects on performance. Finally,
SDP may reduce both the influx of LPS from the gut and LPS
plasma levels, as shown with bovine colostrum in patients
with Gram-negative bacterial infections (Struff and Sprotte,
2008).

In most studies in which SDP was compared directly to
antibiotics, OA or other sources of immunoglobulins, SDP
resulted in superior or equivalent performance (Coffey and
Cromwell, 1995; Owusu-Asiedu et al., 2002; Torrallardona
et al., 2002, 2003 and 2007b; Owusu-Asiedu et al., 2003a
and 2003b; Bikker et al., 2004; Bosi et al., 2004; Conde,
2005; Pierce et al., 2005; Nofrarias et al., 2006).

Early studies argued that the effect of SDP is mediated by
an increase in feed intake due to the improved palatability

of the diets. This was supported by a double choice feed
preference study in which piglets preferred a diet containing
SDP to a diet containing dried skimmed milk (Ermer et al.,
1994). However, the higher feed intake can also be related
to the improved health and body weight of the piglets.
Piglets pair-fed a feed with or without plasma protein have
shown that its effects are independent of intake, suggesting
a specific biological effect (Jiang et al., 2000b). Protein
utilisation was improved by SDP in piglets and this could be
explained by a lower protein catabolism by the microbiota
(Jiang et al., 2000a and 2000b). SDP reduced intestinal
mass and the cellularity of the lamina propia, suggestive of
an antimicrobial activity, but data directly addressing the
effects of SDPP on gut bacteria are scarce. In one study, it
was shown to increase the number of lactobacilli in the ileal
and caecal contents of piglets (Torrallardona et al., 2003),
but this could not be confirmed in others (Conde, 2005;
Torrallardona et al., 2007b). Finally, SDP may (Owusu-
Asiedu et al., 2003a and 2003b) or may not (Jiang et al.,
2000b; Owusu-Asiedu et al., 2002; Torrallardona et al.,
2003; Nofrarias et al., 2006; Torrallardona et al., 2007b)
increase villous height in the jejunum of pigs.

It can be concluded that SDP is a protein source of high
interest for pre-starter piglet diets. Besides its clear positive
effects on growth, feed intake and feed efficiency, there is
enough evidence to support that SDP (mainly its IgG frac-
tion) prevents the binding of pathogens to the gut wall and
reduces the incidence of post-weaning diarrhoea. Therefore,
SDP can be put forward as an alternative to in-feed anti-
microbials for weanling piglets.

Bovine colostrum

Bovine colostrum is a by-product of milk production, and
earlier studies on its inclusion in weaner diets led to
increased growth performance and reduced days to
slaughter (Pluske et al., 1999). Such an effect on growth
was associated with a drastic enhancement of feed intake
post-weaning when bovine colostrum was provided at
40 g/kg starter feed to pigs (Le Huërou-Luron et al., 2004;
Boudry et al., 2008). Interestingly, the positive effect of
colostrum lasted for 5 weeks after the end of the supple-
mentation (Le Huërou-Luron et al., 2004). In another study,
when the pigs were pair-fed the colostrum-supplemented
and the control diets, the only significant effects of colos-
trum supplementation were a decreased gastric pH at 1 and
2 weeks post-weaning and an increased duodenal lacto-
bacilli to coliform ratio caused by numerically lower coliform
counts (Huguet et al., 2006). This would suggest that
colostrum supplementation might predominantly act by
stimulating appetite post weaning. Intestinal explants
incubated in media with or without colostrum revealed that
it may stimulate the expression of genes involved in epi-
thelial cell migration along the crypt–villous axis and genes
bearing anti-apoptotic properties (Huguet et al., 2007). In
contrast with these results, Boudry et al. (2007a and
2007b), studying the effect of the dose of bovine colostrum
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fed to pigs (0, 1 or 5 g/pig per day) for 21 days after
weaning, did not observe any effect on feed intake and
growth rate. The effects of bovine colostrum on immunity
were unclear in these latter studies.

Plant extracts with anti-bacterial activities

Herbs have been in use in human nutrition for thousands of
years due to renowned antiseptic qualities (Cowan, 1999).
Numerous plants, their extracts or other natural substances
possess anti-bacterial activity. Research has focused on
natural components with antimicrobial activity as this was
thought to be one of the modes of actions of AGP. Here we
focus on essential oils from oregano, thyme, clove and
cinnamon as increasing interest in feed science is given to
these components.

Essential oils – occurrence and composition
Volatile or essential oils, distilled from non-woody parts of
herbs, contain principally terpenoids and minor constituents
including various aliphatic hydrocarbons, acids, alcohols,
aldehydes and other compounds (Dorman, 1999; Bozin
et al., 2006). The composition of the oils is highly variable
within plants due to different environmental and climatic
conditions (Table 3). The distillation method also influences
the final composition of essential oils (Yang et al., 2007).
Oregano oil (Origanum vulgare) and thyme oil (Thymus

vulgaris) contain mainly carvacrol and thymol (Table 3)
(Peñalver et al., 2005; Bozin et al., 2006). Eugenol dom-
inates in oils from clove (Syzygium aromaticum) and cin-
namon (Cinnamomum zeylanicum) (Dušan et al., 2006).
Cinnamaldehyde is the main component of C. verum or C.
cassia (Ooi et al., 2006). Essential oils themselves make
1.5% to 4.5% of the plant (Bozin et al., 2006; Hazzit et al.,
2006; Yang et al., 2007).

In vitro activity of essential oils
The minimal inhibitory concentration (MIC) of carvacrol and
essential oils from O. dubium against different bacterial
strains (Table 4) was determined to be the same for pure
component and the extract (Karioti et al., 2006). The MIC of
essential oils from O. vulgare and T. zygis against several
Enterobacteriaceae strains isolated from poultry and pigs
with clinical disease outcome or carrier state were shown
to vary widely, the highest MIC being observed for E. coli
strains (Peñalver et al., 2005). Hammer et al. (1999)
obtained MIC for O. vulgare essential oil against several
Gram-positive and Gram-negative bacteria and Candida
albicans. Pseudomonas aeruginosa was the least sensitive
bacterium, having the highest MIC. The authors recorded
similar values for essential oils from S. aromaticum and
T. vulgaris. The MIC for clove and thyme essential oils against
S. aureus and E. coli were half the minimal bactericidal
concentration (Hammer et al., 1999).

Table 3 Main components of selected essential oils (%)

Carvacrol Thymol Eugenol Cinnamaldehyde Reference

Oregano oil
From Origanum vulgare 61 14 Bozin et al. (2006)

76 nd Peñalver et al. (2005)
55 nd Dušan et al. (2006)
80 2.5 Sivropoulou et al. (1996)

From O. floribunduma 30 8 Hazzit et al. (2006)
From O. floribundumb 2 28 Hazzit et al. (2006)
From O. glandulosumc 1 24 Hazzit et al. (2006)
From O. glandulosumd 8 36 Hazzit et al. (2006)
From O. Dubium 70–71 0.1–0.3 Karioti et al. (2006)

Thyme oil
From Thymus vulgaris 6 48 Bozin et al. (2006)

nd 24 Dušan et al. (2006)
From T. zygis 2 50 Peñalver et al. (2005)
From T. munbyanus 8 38 Hazzit et al. (2006)
From T. guyonii 4 11 Hazzit et al. (2006)
From T. pallescens 42 0.1 Hazzit et al. (2006)
From T. numidicus 7 15 Hazzit et al. (2006)

Clove oil
From Syzygium aromaticum 85 Dušan et al. (2006)

Cinnamon oil
From Cinnamomum zeylanicum 77 Dušan et al. (2006)
From C. verum and C. cassia 85 Ooi et al. (2006)

nd: no data in reference.
aCollected in Chrea National Park.
bCollected in Hammam Melouane.
cCollected in Souhane.
dCollected in Ighzer mokrane.
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Essential oils extracted from O. vulgare and T. vulgaris
(Table 3) showed activity against Gram-positive and Gram-
negative bacteria (Table 5) and their strains multi-resistant
to antibiotics (Bozin et al., 2006). Generally, Gram-positive
bacteria seem to be more sensitive to essential oils than
Gram-negative bacteria. Dorman and Deans (2000) deter-
mined equal anti-bacterial activity of volatile oils distilled
from O. vulgare ssp. hirtum and S. aromaticum (clove)
against several Gram-positive and Gram-negative bacteria,
whereas essential oils from thyme showed stronger activity
against Gram-positive organisms. The widest spectrum of
activity was found for T. vulgaris, followed by oregano and
clove essential oils. The pure components showed reduced
activity against a wide spectrum of bacteria: thymol .

carvacrol . eugenol. Hazzit et al. (2006) observed little
inhibition of Listeria monocytogenes growth caused by
essential oils from different oregano and thyme species. By
contrast, oregano and thyme extracts were found to be
inhibitory against several Bacillus sp. (Özcan et al., 2006).
Cinnamon and clove oils have shown highly variable MIC
across bacteria (Prabuseenivasan et al., 2006, Table 4).
Clove oil was less active than cinnamon oil.

Oregano oil containing 74% carvacrol showed high anti-
bacterial and antifungal activity and considerable reduction
in bacterial growth even at very low concentrations (Siv-
ropoulou et al., 1996; Adam et al., 1998). Essential oils
from C. verum and C. cassia and pure cinnamaldehyde
were inhibitory for bacteria (Table 5), yeasts (C. albicans,
C. glabrata, C. tropicalis and C. krusei), for moulds and
dermatophytes (Ooi et al., 2006). Also Matan et al. (2006)
found that the antifungal activity of cinnamon and clove
oils volatile against spoilage fungi, yeasts and bacteria. Park
et al. (2007) found eugenol to be the active component
of clove oil against several dermatophytes.

Extrapolation of in vitro results to in vivo
Simulation of gastric environment (artificial substrate
containing several different sugars, casein, soybean oil,
vitamins, minerals, etc., in a buffer solution of pH 3) to test
anaerobic bacteria inhibition by essential oils revealed
relatively high minimal effect concentration (MEC) for car-
vacrol, thymol, eugenol and trans-cinnamaldehyde (Michiels
et al., 2007). Trans-cinnamaldehyde displayed a strong
inhibitory activity in the small intestinal environment (con-
taining the same substrate as for the gastric environment
with bile salts in a buffer of pH 6.5 inoculated with fresh
small intestine supernatant of a weaned piglet). A syner-
gistic action of carvacrol and thymol against total anaerobic
bacteria was observed at ratios .1, strongly suggesting a
different, dose-dependent mode of action of the essential
oil components against E. coli and other coliform bacteria.
Si et al. (2006b) noticed strong anti-bacterial activity
of carvacrol, thymol, cinnamon oil and eugenol in vitro
(Table 4). When added to pig caecal digesta, all the tested
oils reduced the growth of the indigenous E. coli, exogen-
ous E. coli O157:H7 when added and coliforms present in
the digesta, with no effect on lactobacilli (Si et al., 2006b).Ta
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Table 5 Bacterial species inhibited in in vitro studies when plant essential oils or pure oil components were added to growth medium

Bacterial species Essential oil source or pure component Reference

Acinetobacter baumanii Oregano vulgare, Syzygium aromaticum, Thymus vulgaris Hammer et al. (1999)
Acinetobacter calcoacetica O. vulgare, S. aromaticum, T. vulgaris, carvacrol, eugenol Dorman and Deans (2000)
Aeromonas hydrophila O. vulgare, S. aromaticum, T. vulgaris, carvacrol, eugenol Dorman and Deans (2000)
Aeromonas sobria O. vulgare, S. aromaticum, T. vulgaris Hammer et al. (1999)
Agrobacterium tumefaciens Carvacrol Karioti et al. (2006)
Alcaligenes faecalis O. vulgare, S. aromaticum, T. vulgaris, carvacrol, eugenol Dorman and Deans (2000)
Bacillus amyloliquefaciens O. vulgare, Thymbra sintensi (thyme) Özcan et al. (2006)
B. brevis O. vulgare, T. sintensi Özcan et al. (2006)
B. cereus O. vulgare, T. sintensi, carvacrol Karioti et al. (2006)

Özcan et al. (2006)
B. megaterium O. vulgare, T. sintensi Özcan et al. (2006)
B. subtilis Cinnamonum zeylanicum, Eugenia caryophyllus (clove), O. vulgare,

T. sintensi, T. vulgare, S. aromaticum, carvacrol, eugenol, thymol
Sivropoulou et al. (1996)

Dorman and Deans (2000)
Bozin et al. (2006)
Özcan et al. (2006)
Prabuseenivasan et al. (2006)

B. subtilis var. niger O. vulgare, T. sintensi Özcan et al. (2006)
Beneckea natriegens O. vulgare, S. aromaticum, T. vulgaris, carvacrol, eugenol Dorman and Deans (2000)
Bifidobacterium longum Thymol Si et al. (2006a)
B. breve Thymol Si et al. (2006a)
Brevibacterium linens O. vulgare, S. aromaticum, T. vulgaris, carvacrol, eugenol Dorman and Deans (2000)
Brocothris thermosphacta O. vulgare, S. aromaticum, T. vulgaris, carvacrol, eugenol Dorman and Deans (2000)
Citrobacter freundii O. vulgare, S. aromaticum, T. vulgaris, carvacrol, eugenol Dorman and Deans (2000)
Clostridium sporogenes O. vulgare, S. aromaticum, T. vulgaris, carvacrol, eugenol Dorman and Deans (2000)
Enterococcus faecalis O. vulgare, S. aromaticum, T. vulgaris, carvacrol, eugenol Hammer et al. (1999)

Dorman and Deans (2000)
Enterobacter aerogenes O. vulgare, S. aromaticum, T. vulgaris, carvacrol, eugenol Dorman and Deans (2000)
Erwinia carotovora O. vulgare, S. aromaticum, T. vulgaris, carvacrol, eugenol Dorman and Deans (2000)
Escherichia coli (several strains,
including K88, O157:H7, ETEC)

C. zeylanicum, E. caryophyllus, O. vulgare, S. aromaticum, Thymus
mastichina, T. vulgaris, Thymus zygis, carvacrol, cinnamon oil, clove
oil, eugenol, thymol

Sivropoulou et al. (1996)

Hammer et al. (1999)
Dorman and Deans (2000)
Burt and Reinders (2003)
Peñalver et al. (2005)
Si et al. (2006b)
Bozin et al. (2006)
Dušan et al. (2006)
Karioti et al. (2006)
Prabuseenivasan et al. (2006)

Flavobacterium suaveolens O. vulgare, S. aromaticum, T. vulgaris, carvacrol, eugenol Dorman and Deans (2000)
Klebsiella pneumoniae C. zeylanicum, E. caryophyllus, O. vulgare, S. aromaticum,

T. vulgaris, carvacrol, eugenol
Hammer et al. (1999)

Dorman and Deans (2000)
Prabuseenivasan et al. (2006)

Lactobacillus acidophilus Carvacrol, cinnamon oil, thymol Si et al. (2006a)
L. plantarum O. vulgare, S. aromaticum, T. vulgaris, carvacrol, eugenol, thymol Dorman and Deans (2000)

Si et al. (2006a)
Leuconostoc cremonis O. vulgare, S. aromaticum, T. vulgaris Dorman and Deans (2000)
Listeria monocytogenes O. floribundum, O. glandulosum, Thymus guyonii, T. munbyanus,

T. numidicus, T. pallescens
Hazzit et al. (2006)

Micrococcus flavus O. vulgare, T. vulgaris Bozin et al. (2006)
Micrococcus luteus O. vulgare, S. aromaticum, T. vulgaris, carvacrol, eugenol Dorman and Deans (2000)

Karioti et al. (2006)
Moraxella sp. O. vulgare, S. aromaticum, T. vulgaris, carvacrol, eugenol Dorman and Deans (2000)
Proteus mirabilis Carvacrol Karioti et al. (2006)
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This study clearly showed no detrimental effect of pig
digesta on the anti-bacterial essential oil activity in vitro.

It is difficult to relate the minimum effective dose in vitro to
the dietary dose required in animals. In an in vitro study of the
inhibition of S. enterica serovar Typhimurium, it was shown
that the dose required for thymol was 700-fold greater than
that required with the antibiotic gentamycin (Merialdi, perso-
nal communication), which was also able to inhibit Salmonella
translocation to pig mesenteric lymph nodes (Modesto et al.,
2007). Based on the concentration of gentamycin required to
protect weaning pigs, the amount of thymol required to be
added to the diet has been estimated to be 4%.

The antimicrobial activity of essential oils in vitro is not
always reflected in tests in vivo. For example, Si et al.
(2006a and 2006b) showed that Salmonella shedding in
challenged pigs was not reduced as the inhibitory effect of
essential oils disappeared when they were mixed with the

diet. This was probably because of binding of the phenolic
and other components to fats and other hydrophobic
materials of the diet. Emulsifiers like fenugreek or xanthan
gum have no effect on essential oil activity and they are
required for stabilising oils during storage (Si et al., 2006a).
However, whether emulsified components keep their
activity when added to feed is not known. A possible way
to overcome these problems could be micro-encapsulation
of the oils before adding to the diet (Meunier et al., 2007)
and first studies considering this route have already been
performed (Janczyk et al., unpublished).

Feeding studies on weaning piglets
The published results of in vivo studies, whilst highly vari-
able, suggest that relatively high concentrations of essential
oils are required for displaying beneficial effects in young
pigs (Table 6).

Table 5 Continued

Bacterial species Essential oil source or pure component Reference

Proteus vulgaris C. zeylanicum, E. caryophyllus, O. vulgare, S. aromaticum,
T. vulgaris, carvacrol, eugenol

Dorman and Deans (2000)

Prabuseenivasan et al. (2006)
Pseudomonas aeruginosa C. zeylanicum, E. caryophyllus, O. vulgare, S. aromaticum,

T. vulgaris, carvacrol, eugenol, thymol
Sivropoulou et al. (1996)

Hammer et al. (1999)
Dorman and Deans (2000)
Bozin et al. (2006)
Karioti et al. (2006)
Prabuseenivasan et al. (2006)

P. talassi Carvacrol Karioti et al. (2006)
Rhizobium leguminosarum O. vulgare, carvacrol, thymol Sivropoulou et al. (1996)
Salmonella choleraesuis O. vulgare, T. Mastichina, T. zygis Peñalver et al. (2005)
S. enteritidis O. vulgare, T. mastichina, T. vulgaris, T. zygis, carvacrol Peñalver et al. (2005)

Bozin et al. (2006)
Karioti et al. (2006)

S. essen O. vulgare, T. mastichina, T. zygis Peñalver et al. (2005)
S. pullorum O. vulgare, S. aromaticum, T. vulgaris, carvacrol, eugenol Dorman and Deans (2000)
S. typhi O. vulgare, T. vulgaris Bozin et al. (2006)
S. typhimurium O. vulgare, S. aromaticum, T. mastichina, T. vulgaris, T. zygis, carvacrol

cinnamaldehyde, cinnamon oil, clove oil, eugenol, thymol
Sivropoulou et al. (1996)

Hammer et al. (1999)
Peñalver et al. (2005)
Si et al. (2006a and 2006b)

Sarcina lutea O. vulgare, T. vulgaris, carvacrol Bozin et al. (2006)
Karioti et al. (2006)

Serratia marcescens O. vulgare, S. aromaticum, T. vulgaris, carvacrol, eugenol Hammer et al. (1999)
Dorman and Deans (2000)

Shigella sonei O. vulgare, T. vulgaris Bozin et al. (2006)
Staphylococcus aureus C. zeylanicum, E. caryophyllus, O. vulgare, S. aromaticum,

T. vulgaris, carvacrol, eugenol, thymol
Sivropoulou et al. (1996)

Dorman and Deans (2000)
Hammer et al. (1999)
Bozin et al. (2006)
Karioti et al. (2006)
Prabuseenivasan et al. (2006)

S. epidermidis O. vulgare, T. vulgaris Bozin et al. (2006)
Yersinia enterocolitica O. vulgare, S. aromaticum, T. vulgaris, carvacrol, eugenol Dorman and Deans (2000)

Lallès, Bosi, Janczyk, Koopmans and Torrallardona

1636



Table 6 Average daily feed intake (ADFI), weight gain (average daily gain (ADG)) and feed conversion ratio (FCR) obtained in different studies on weaning piglets when herbs or herbal extracts were
fed to the animals

Supplement, its amount ADFI (kg) ADG (kg) FCR
Weaned

(days of age)
Mean BW at
weaning (kg)

Duration of
study (days) Reference

Control 2.258x 0.187x 1.38 23 7.9 14 Kommera et al. (2006)
Antibiotica 0.345y 0.255y 1.35 23 7.9 14
PEP 1000-1b, 1 g/kg 0.279x 0.199x 1.40 23 7.9 14
Control 0.225 0.158 1.42 19 6.3 14 Kommera et al. (2006)
Antibiotica 0.226 0.165 1.37 19 6.3 14
PEP 1000-1b, 4 g/kg 0.221 0.153 1.44 19 6.3 14
Biotronicc, 2 g/kg
Control 0.263x 0.169x 1.56 21 5.4 14 Oetting et al. (2006)
Antibioticd 0.316y 0.218y 1.45 21 5.4 14
Herbal extracte, 0.7 g/kg 0.261x 0.151x 1.73 21 5.4 14
Herbal extracte, 1.4 g/kg 0.239x 0.151x 1.87 21 5.4 14
Herbal extracte, 2.1 g/kg 0.282x 0.185x 1.52 21 5.4 14
Control 0.597x 0.347x 1.72 21 5.4 35 Oetting et al. (2006)
Antibioticd 0.674y 0.402y 1.71 21 5.4 35
Herbal extracte, 0.7 g/kg 0.590x 0.335x 1.76 21 5.4 35
Herbal extracte, 1.4 g/kg 0.538x 0.309x 1.74 21 5.4 35
Herbal extracte, 2.1 g/kg 0.607x 0.349x 1.74 21 5.4 35
Control 0.413x 0.272x (last 7 days) 1.52 21 6.7 35 Sads and Bilkei (2003)
Oregpigf, 1 g/kg 0.491y 0.372y (last 7 days) 1.32 21 5.9 35
Oregpig, 1 g/kg 0.470y 0.359y (last 7 days) 1.31 21 5.6 35
Control 0.693 0.452 1.53 20–21 Manzanilla et al. (2004)
Herbal extractg, 0.15 g/kg 0.645 0.403 1.60 20–21 6.0 (8.1 at start) 21 (start 12 days pw)
Herbal extractg, 0.3 g/kg 0.645 0.423 1.52 20–21
Control 0.453x 0.237x 1.91x 28 8.0 21 Molnar and Bilkei (2005)
Oregpig, 1 g/kg 0.453x 0.242x 1.87y 28 8.1 21
Oregpig, 2 g/kg 0.482y 0.258y 1.87y 28 8.2 21
Oregpig, 3 g/kg 0.475y 0.258y 1.84z 28 8.1 21
Control 0.063 – week 1 0.040 1.58 16–19 4.9 28 Namkung et al. (2004)

0.181x – week 2 0.121 1.50
0.469x – week 3 0.338x 1.39
0.765 – week 4 0.556 1.38

Antibiotich 0.068 – week 1 0.036 1.89 16–19 4.9 28
0.204y – week 2 0.165x 1.24
0.460x – week 3 0.334x 1.38
0.716 – week 4 0.509 1.41
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Kommera et al. (2006) observed no effect on feed intake,
growth performance or feed efficiency when a mix of
essential oils was added to the diet (1 to 4 g/kg) of weaning
pigs, without or with a combination of OA. Supplementa-
tion of piglet diet with 2.1 g/kg of herbal extract resulted in
an improved growth performance similar to an antibiotic
control group, with intermediate feed intake and feed
efficiency (Oetting et al., 2006). The only variables influ-
enced by the highest dose tested were the apparent
digestibility of DM and the weight of the small intestine,
which were higher with herbal extract supplementation.
Improved growth performance and feed efficiency were
recorded in weaned piglets fed a product containing ore-
gano extract at a dose of 1 g/kg (Sads and Bilkei, 2003). By
contrast, no effect could be observed when 0.15 or 0.3 g/kg
of herbal mix was fed to early-weaned piglets (Manzanilla
et al., 2004), except for a decreased gastric emptying rate
(Manzanilla et al., 2004) and a reduction in the lactobacilli
to enterobacteria ratio in caecum at a dose of 0.3 g/kg
(Castillo et al., 2006).

Molnar and Bilkei (2005) conducted a study in a pig herd in
Hungary where post-weaning colibacillosis had been present
for years. Interestingly, the mortality rate decreased from
3.7% in the control to 2% in the group supplemented with
1 g/kg of a product containing oregano extract and to 1% in
the groups supplemented with 2 and 3 g/kg (P , 0.05). An
increase in growth performance was observed with high
doses (2 or 3 g/kg, P , 0.05). A reduction in feed conversion
was observed already at the level of 1 g/kg of this product
(P , 0.05). Contrasting results were obtained by Namkung
et al. (2004) who recorded a reduction in growth performance
and feed intake in the piglets supplemented with 7.5 g/kg of
herbal extract (P , 0.05) without effects on gut anatomy or
immunity. However, coliform counts were reduced in the
ileum and faeces (P , 0.05), but not in the colon.

Based on the published literature it is clear that the
effective concentration of essential oils in feed still needs to
be established. A recent study performed was therefore
aimed towards this issue. The effect of thymol addition to a
starter diet (10 g/kg), determined from in vitro test and
toxicology information, was tested in pigs with or without
S. typhimurium challenge (Trevisi et al., 2007). The final
body weight after 29 days of trial was not affected by
thymol but feed intake was reduced. Thymol protected
against a rise in body temperature 1-day post challenge, but
it did not reduce faecal shedding of Salmonella. Thymol
increased the density of acid-secreting cells in gastric
oxintic glands. Bacterial diversity in the jejunum was also
affected. Actinobacillus minor was present in almost all the
pigs fed thymol, Citrobacter freundii being absent (Janczyk
et al., 2008).

In terms of palatability, Jugl-Chizzola et al. (2006)
observed that piglets had a preference for diets with low
inclusion rates of herbs in diets but they could not show
differences between thyme and oregano.

Finally, the bioavailability and pharmacokinetics of
essential oils have received little attention in pigs. Studies inTa
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humans suggest a rapid absorption of these molecules (e.g.
thymol, Kohlert et al., 2002). This could reduce the action
of essential oils on commensal and exogenous microflora
in vivo. On the other hand, different essential oils may be
sensitive to oxidation and thus they may undergo degra-
dation (Pérez-Alonso et al., 2008). Protection of essential
oils, e.g. by micro-encapsulation, may be a valuable strat-
egy in animal feeding (Meunier et al., 2006 and 2007), and
more studies are clearly required in this area.

Conclusions and perspectives

Relating to the recent ban on in-feed antibiotics, many
efforts have been made in the past years for optimising
further diet composition in terms of protein, AA and energy.
Additional substances including OA and compounds of
plant origin with known antimicrobial properties have also
been evaluated. It has become clear that diet supple-
mentation with plasma protein is probably the best way for
preventing post-weaning gut disorders, provided it is of
high hygienic quality. Such a success lies mostly in its
richness in immunoglobulins that act at two complementary
levels: protecting the intestinal mucosa from luminal
aggression and stimulating the immune system for defence
against pathogens. Interestingly, the mode of action of
plasma protein appears to be different from, and additive
to, that of in-feed antibiotics. Positive results have been
obtained with particular AA (Gln, Trp, Arg, Cys, Thr) prob-
ably because their requirements are increased during peri-
ods of general and immune stress, especially in younger
animals and under poor hygienic conditions. Many OA have
also proven successful, acting on gut ecology and pre-
venting the outgrowth of pathogenic bacteria. Variable
results have been obtained with SB administered orally.
However, when it displays positive effects in vivo, its
mechanisms of action are still unclear, thus calling for
additional work. Investigations in vitro clearly show anti-
microbial properties of essential oils. They are supported by
one or two major molecules or by more subtle synergistic
interactions within the extract mixture. However, major
discrepancies do exist between in vitro and in vivo results,
the latter being variable and rather inconsistent. It appears
that the diet itself may neutralise the antimicrobial activity
of essential oils in vivo. Finally, the bioavailability and
pharmacokinetics of these essential oils in pigs are mostly
unknown. This will undoubtedly constitute an area for
future investigation.

In terms of cost effectiveness, this review in some way
confirms the practices that are now more sprayed among
the experts of piglet feed formulation: to include con-
sistently more than one OA and to raise some AA when the
gut environment is more challenged.
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Le Gall M, Sève B, Sahar A, Leborgne M, Lallès JP and Guilloteau P 2007. Effect
of sodium butyrate on growth, appetite and gastrointestinal tract development
in piglet. In Proceedings of the 10th European Nutrition Conference, Paris,
France. Nutrition and Metabolism 51 (suppl. 1), 113.

Le Huërou-Luron I, Huguet A, Callarec J, Leroux T and Le Dividich J 2004.
Supplementation of a weaning diet with bovine colostrum increases feed
intake and growth of weaned piglets. Journées Recherche Porcine 36, 33–38.

Lee DN, Cheng YH, Wu FY, Sato H, Shinzato I, Cheng SP and Yen HT 2003.
Effect of dietary glutamine supplement on performance and intestinal
morphology of weaned pigs. Asian-Australasian Journal of Animal Science
16, 1770–1776.
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