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Abstract The role of multi-species benthic diatom Wlms
(BDF) in the settlement of late pediveliger larvae of the
bivalve Macoma balthica was investigated in still-water
bioassays and multiple choice Xume experiments. Axenic
diatom cultures that were isolated from a tidal mudXat
inhabited by M. balthica were selected to develop BDF
sediment treatments characterized by a diVerent community
structure, biomass, and amount of extracellular polymeric
substances (EPS). Control sediments had no added diatoms.

Although all larvae settled and initiated burrowing within
the Wrst minute after their addition in still water, regardless
of treatment, only 48–52% had completely penetrated the
high diatom biomass treatments after 5 min, while on aver-
age 80 and 69% of the larvae had settled and burrowed into
the control sediments and BDF with a low diatom biomass
(<3.5 �g Chl a g¡1 dry sediment), respectively. The per-
centage of larvae settling and burrowing into the sediment
was negatively correlated with the concentration of Chl a
and EPS of the BDF. This suggests higher physical resis-
tance to bivalve penetration by the BDF with higher diatom
biomass and more associated sugar and protein compounds.
The larval settlement rate in annular Xume experiments at
Xow velocities of 5 and 15 cm s¡1 was distinctly lower
compared to the still-water assays. Only 4.6–5.8% of the
larvae were recovered from BDF and control sediments
after 3 h. Nonetheless, a clear settlement preference was
observed for BDF in the Xume experiments; i.e., larvae set-
tled signiWcantly more in BDF compared to control sedi-
ments irrespective of Xow speed. Comparison with the
settlement of polystyrene mimics and freeze-killed larvae
led to the conclusion that active selection, active secondary
dispersal and, at low Xow velocities (5 cm s¡1), passive
adhesion to the sediment are important mechanisms deter-
mining the settlement of M. balthica larvae in estuarine
bioWlms.

Introduction

An important challenge in estuarine benthic ecology is to
understand the spatial and temporal variability in soft-sedi-
ment communities. Juvenile recruitment (i.e., the entry of
juveniles into the adult population) is the foundation on
which all subsequent interactions within the community
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take place (Woodin et al. 1995). Most marine benthic inver-
tebrates have a life cycle with a dispersive (i.e., pelagic)
larval phase during which they are distributed and eventu-
ally settle into new habitats where they metamorphose into
juveniles. Final recruitment success is determined by both
pre-settlement processes (e.g., transport and planktonic
mortality) and post-settlement processes (e.g., secondary
dispersal and survival) (Pineda et al. 2009). Settlement of
marine benthic invertebrate larvae or resuspended juveniles
is mediated by many factors, e.g., Xow characteristics
(Pawlik et al. 1991; Pawlik and Butman 1993; Jonsson
et al. 2004), organic content of the sediment (Grassle et al.
1992), sediment disturbance (Woodin et al. 1998; Marinelli
and Woodin 2002; 2004), sediment grain size (Snelgrove
et al. 1998), porewater and waterborne chemical cues (Pawlik
1992; Turner et al. 1994; Engstrom and Marinelli 2005),
presence of conspeciWc juveniles or adults (Olivier et al.
1996; Hills et al. 1998; Snelgrove et al. 1999, 2001),
metabolites of sympatric organisms (Woodin et al. 1993;
Esser et al. 2008) and the presence of bacteria (Dobretsov
and Qian 2006; Sebesvari et al. 2006). Furthermore, there is
growing evidence that marine bioWlms are instrumental in
the settlement of many benthic organisms. Both facilitative
and inhibitive eVects of marine bioWlms on larval settle-
ment have been reported, which are generally attributed to
waterborne bacterial extracellular polymeric substances
(EPS) depending on origin, surface chemistry, micro-
topography, and metabolic activity of the bioWlm (reviewed
by Qian et al. 2007).

The composition of marine bioWlms varies with time,
forming complex aggregates of diatoms, bacteria, protozoa,
and fungi (Decho 2000), all enmeshed in a matrix of EPS.
The proportion of benthic diatoms in bioWlms of estuarine
tidal mudXats can be very high (Sabbe and Vyverman
1991; MacIntyre et al. 1996). Lam et al. (2003) showed that
relative space occupation by diatoms can mediate larval
settlement of the polychaete Hydroides elegans. Hence, in
addition to the bacterial composition of a marine bioWlm,
the speciWc role of diatoms in the settlement of tidal Xat
invertebrate larvae is of interest. Moreover, recently settled
herbivorous benthic invertebrates (post-larvae) often feed
on diatoms. Consequently, recruitment success of these lar-
vae may also depend on diVerences in diatom community
composition because of their dietary requirements.

Marine bioWlms have intensively been investigated with
respect to their role in larval settlement of barnacles, ascidi-
ans, bryozoans, sea urchins, gastropods, and polychaetes
(e.g., Keough and Raimondi 1995; Olivier et al. 2000;
Harder et al. 2002; Lam et al. 2003, 2005; Dahms et al.
2004; Sebesvari et al. 2006; Chiu et al. 2007; Dworjanyn
and Pirozzi 2008), but far less is known about the role of
benthic diatom Wlms (BDF) in bivalve settlement, espe-

cially in soft sediments. The Baltic tellin Macoma balthica
is an infaunal surface deposit-feeding and facultative sus-
pension-feeding bivalve (Rossi et al. 2004) with a pelagic
larval stage (Caddy 1967). Recent genetic studies have
revealed the occurrence of two subspecies: a mainly North
PaciWc subspecies Macoma balthica balthica with Euro-
pean populations inhabiting the White Sea and the Black
Sea and the subspecies Macoma balthica rubra, which is
distributed along the North Sea and the northeast Atlantic
coasts (Väinola 2003; Nikula et al. 2007). In northwestern
European tidal Xats, M. balthica rubra is one of the most
common bivalves, reaching densities of tens to hundreds of
individuals m¡2 (Beukema 1976; Ysebaert et al. 2003;
Bocher et al. 2007; Van Colen et al. 2008, 2009). It is an
important food source for wading birds, and benthic and
epibenthic organisms (Hulscher 1982; Zwarts and Blomert
1992; Hiddink et al. 2002a, b, c). It inXuences the geochem-
istry of the sediment and thus the tidal Xat energy cycling in
general, due to its burrowing and feeding (e.g., Marinelli
and Williams 2003). Hence, successful recruitment of
M. balthica rubra, and bivalves in general, is important in
tidal Xat ecosystem function and is controlled by settlement
processes (Bos 2005).

The present study examined larval settlement responses
of the M. balthica rubra subspecies (further referred to as
Macoma balthica) to axenic, multi-species, benthic diatom
Wlms (BDF), using still-water assays and Xume experi-
ments. Multiple choice Xume experiments enable the deter-
mination of settlement preferences because bivalve larvae
can select a preferred settlement site in a hydrodynamic
environment (e.g., Grassle et al. 1992; Snelgrove et al.
1998; Engstrom and Marinelli 2005). In addition, still-
water assays provide valuable information on the speciWc
conditions that inXuence settlement within a given habitat
(Marinelli and Woodin 2004). To assess whether the larval
settlement of M. balthica is determined by BDF and
whether larval settlement of M. balthica in response to
BDF is an active or a passive, depositional process, the fol-
lowing null hypotheses were speciWcally tested:
H01 Settlement and burrowing response does not diVer

between diVerent ages of BDF in a still-water
environment (Experiment 1).

H02 Settlement choice is not inXuenced by BDF in a
hydrodynamic environment (Experiment 2).

H02a Settlement choice is not inXuenced by Xow
velocity.

H02b Settlement choice does not diVer from deposition
of dead larvae and polystyrene mimics, thus set-
tlement is a passive, depositional process.

H03 In a hydrodynamic environment, the settlement
response after primary settlement is not deter-
mined by BDF (Experiment 3).
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Materials and methods

Collection and maintenance of M. balthica

Adult M. balthica were repeatedly collected from Paulinas-
chor (The Netherlands, 51°21�24�N, 3°42�51�W) at low
tide in February–March 2008 and stored at 5°C in aerated
basins (40 £ 33 £ 14 cm), preWlled with sieved sediment
(1 mm) and 2-�m Wltered seawater with a salinity of 27
(further referred to as FSW). Each basin contained »150
individuals, which were fed three times week¡1 with a mix-
ture of concentrated non-viable algae (Isochrysis galbana
and Tetraselmis sp., Reed Mariculture).

Larval production

Individual M. balthica were induced to spawn following the
procedure of Honkoop et al. (1999) and Bos (2005). Adults
were exposed to the selective serotonin re-uptake inhibitor
(SSRI) Xuoxetine, preceded by a �10°C temperature shock.
SSRIs prevent the deterioration of neurotransmitters, so
nerves are stimulated longer and more intensely than usual
(Honkoop et al. 1999). On average, 35% of the adults could
be induced to spawn. Fertilization was carried out by pipet-
ting eggs of several females into a beaker and adding 1–3 ml
of sperm suspension derived from at least Wve males. The
resultant mixture was left undisturbed for 4 h at 15°C. Fertil-
ized eggs (diameter »100 �m) were then separated from all
other matter by rinsing them over stacked sieves of 125 and
32 �m. Subsequently, they were transferred into 2-l glass
bottles (further referred to as batches), containing 15°C UV-
irradiated 0.2-�m Wltered seawater with a salinity of 27 (fur-
ther referred to as UV FSW) and dosed with 1.5 £
10¡5 g l¡1 penicillin G potassium salt and 2.5 £ 10¡5 g l¡1

streptomycin sulfate. The bottles were placed on a roller-
table (3 rpm) to avoid sinking of larvae.

Cultivation and maintenance

At day 4, all larvae (4972 § 667 SE l¡1) had reached the
D-stage, and from this moment on live Isochrysis galbana
(105 cells ml¡1) was added to the UV FSW. The batches
were refreshed every other day by rinsing the UV FSW and
larvae over a 32-�m mesh sieve and transferring the larvae
into new glass bottles containing UV FSW dosed with
1.5 £ 10¡5 g l¡1 penicillin G potassium salt, 2.5 £
10¡5 g l¡1 streptomycin sulfate and live I. galbana (105

cells ml¡1). Subsamples were taken to measure larval mor-
tality. During the cultivation, we observed a mortality of
36% on average by day 20, i.e., a mortality rate of about
0.02 day¡1, which is comparable to Bos et al. (2006). At
21–24 days after fertilization, the larvae developed a foot
(i.e., pediveliger stage) and 25-day-old larvae (270 §

4 SE �m), actively moving their foot and velum, were used
in all experiments.

Settlement response in still water (Experiment 1)

Sediment processing

Sediment was collected from Paulinaschor at low tide. Col-
lection was conWned to the top 2 cm and sieved over a
1-mm mesh sieve in the laboratory to remove macrobenthic
organisms and larger debris. Subsequently the sieved sedi-
ment was heated at 180°C for 4 h. This sediment had a
median grain size of 89.6 § 1.07 SE �m and the mud con-
tent was 30.8 § 0.52 SE% (Malvern Mastersizer 2000 laser
diVraction) and is further referred to as the control sedi-
ment. This sediment was preferred above muZed sediment
as a control since the latter inhibited larval settlement, pre-
sumably due to dissolution of material from the muZed
sediment into the water.

For the assays, 2.5 g of control sediment was transferred
into each well of a sterile, 12-well microplate (3.8 cm² well
surface area, TPP, Switzerland) resulting in a 7-mm sedi-
ment layer. To develop a benthic diatom Wlm (BDF), the
control sediments were inoculated with 3 ml of axenic dia-
tom cultures and incubated at 18°C, on a 14 h light:10 h
dark photoperiod (145 �mol photons m¡2 s¡1). The diatoms
used in this experiment were Navicula phyllepta, N. gre-
garia, N. arenaria, and Cylindrotheca closterium. These
species were isolated from the tidal mudXat at Paulinaschor
and were dominant components of the microphytobenthos
at that site (Sabbe and Vyverman 1991; Forster et al. 2006).
Cells for inoculations were harvested from monoclonal,
exponentially growing axenic cultures at 19 § 1°C and illu-
minated at a rate of 90 �mol photons m¡2 s¡1 on a 14 h
light:10 h dark photoperiod. The experimental microcosms
were inoculated with a Wxed total biovolume of
1 £ 108 �m³ (biovolume of N. phyllepta, N. gregaria,
N. arenaria = 3 £ 107 �m³; biovolume of C. closterium =
1 £ 107 �m³). To obtain diVerent BDF, sediments were
incubated for 4, 11, and 21 days, and 1.2 ml of the F/2
medium (Guillard 1975) of all treatments was refreshed
every day in a Xow bench without disturbing the sediment.
Control sediments were maintained under the same incuba-
tion conditions, but without addition of diatoms. This
resulted in an averaged N. phyllepta—N. gregaria—N. are-
naria—C. closterium relative biovolume of 26–31–32–
14%, 17–26–34–22%, and 16–25–31–27%, for the 4-, 11-,
and 21-day treatment, respectively. Experimental sedi-
ments were further characterized by their Chl a and EPS
concentration. Chl a concentration was determined by
HPLC analysis of the supernatant, extracted from the
lyophilized sediment by adding 10 ml of a 90% acetone–
10% milli-Q water solution. The EPS concentration was
123
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measured spectrophotometrically using the phenol–sulfu-
ric acid assay (Dubois et al. 1956) on the colloidal carbohy-
drate fraction of the supernatant extracted after
lyophilization (De Brouwer and Stal 2001).

Experimental protocol

To observe the settlement and burrowing responses to
diVerent treatments (i.e., control, 4-, 11-, and 21-day BDF),
larvae were labeled with Xuorescent microparticles (Rad-
glo, Radiant Color, N·V., Houthalen, Belgium) to obtain a
contrast with the bioassay sediment. These microparticles
are non-toxic and have a spherical diameter of 2–10 �m.
Feeding larvae ingest these particles resulting in a gut Wlled
with Xuorescent pigment (Lindegarth and Jonsson 1991;
Jonsson et al. 1991), which becomes visible by illumination
of the larvae with UV-light (365 nm). Since the particles
are insoluble in water, one droplet of detergent was added
to facilitate suspension of these particles. Preliminary tests
showed that mortality rate was not aVected as a result of
Xuorescent labeling. To assure uptake by the larvae, Xuo-
rescent pigment particles were supplied to feeding larvae
(105 particles ml¡1) 24 h prior to the experiments. Experi-
ments were performed on two consecutive days using lar-
vae originating from a diVerent and independent batch on
each day. Prior to each bioassay (1) larvae were picked out
from the batch using a stereomicroscope and UV-light to
check their viability and dyeing, and (2) 2 ml F/2 medium
of each well was pipetted out and 2 ml of sterile UV FSW
was added to the wells without disturbing the sediment.
Subsequently, for each bioassay (n = 6 batch¡1), 15 larvae
were gently added to a well with a glass pipette and timing
started when the pipette was empty. All pipettes were
checked for remaining larvae, i.e., larvae that were not
added to the well. Over 5 min, the burrowing larvae were
counted and their complete disappearance into the sediment
was timed. After this time period, larvae that were still on
the sediment surface were not counted as having settled and
burrowed. All replicates for each treatment batch¡1 were
sequentially performed within 1 h.

To quantify bacterial contamination of the BDF due to
experimental handling procedures, bacteria were extracted
from the bioWlm, stained with Acridine Orange and bacte-
rial cell densities were enumerated on 0–2 �m black poly-
carbonate Wlters under blue-green light excitation (480–
495 nm). Recorded bacterial densities were marginal, on
average 235 § 136 SE cells mm¡2 and did not diVer sig-
niWcantly among treatments (t test; P > 0.05).

Statistical analysis (Experiment 1)

Burrowing time and percentage of larval burrowing (num-
ber of burrowing larvae/total number of larvae added) after

60, 120, 180, 240, and 300 s were used as response vari-
ables to identify settlement responses of larvae to the diVer-
ent BDF. Burrowing time data were root transformed and
percentage of larval burrowing data were arcsine-trans-
formed to gain normality (Shapiro-Wilks’ tests) and homo-
geneity of variances (Cochran and Bartlett tests). The eVect
on burrowing time was investigated using two-factor analy-
sis of variance with batch as random factor and treatment as
Wxed factor. Larval burrowing data were analyzed using a
repeated measures design with batch as random factor and
treatment and time as Wxed factors. Tukey’s multiple com-
parison tests were performed to investigate signiWcant
diVerences between treatments at diVerent times. Since the
sphericity assumption for repeated measurements was
violated by our data, adjusted F tests using the Greenhouse-
Geiser correction were calculated, resulting in more conser-
vative P levels (Quinn and Keough 2002). Further, simple
linear regression analysis was performed to investigate
relationships between the percentage of larval settlement,
averaged burrowing time and the BDF characteristics (Chl
a and EPS).

Annular Xume experiments (Experiments 2 and 3)

Annular Xume characteristics

Following the Plymouth Marine Laboratory annular Xume
design (Widdows et al. 1998), a Xume was constructed of
polystyrene, with a circular channel 10 cm wide (inner
diameter 44 cm, outer diameter 64 cm), 35 cm deep, and
with a maximum volume of 60 l. The channel Xow was
driven by contact on the water surface with four PVC pad-
dles (9 £ 14 cm), which were attached to a rigid support
system driven by a variable speed DC motor. On the bot-
tom of the tank, PVC pots (inner diameter 5 cm) can be
attached, Xush with the Xume bottom and O-rings sealed
the pots to prevent water loss. The annular Xume is a good
compromise in terms of portability and surface area
(0.17 m2) and allowed simultaneous testing of treatments in
a realistic, fully developed, benthic boundary layer where
sediment treatments could easily be removed and recovered
after each trial. The disadvantage of annular Xumes, in gen-
eral, is the eVect of secondary circulation. However, sec-
ondary Xows were kept to an acceptable minimum (»3% of
tangential Xow) with the 10-cm channel width of the Xume
in the current study (J. Widdows, personal communication).
To characterize the Xuid dynamic environment, velocity
proWles were measured at 8 cm above the bottom with a
SonTek Micro ADV (acoustic Doppler velocimeter),
mounted through the bottom of the Xume. A linear relation
between free stream velocity and revolutions min¡1 was
found (free stream velocity = 1.7785 rpm ¡ 0.5672
[r² = 0.998]).
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Sediment processing

The same control sediment as for the still-water bioassays
was used. To yield the BDFs, the PVC pots, preWlled with
control sediment, were inoculated with a mixture of axe-
nic diatom cultures (total biovolume = 4.68 £ 108 �m³;
relative biovolume = 30–30–30–10%, respectively, for
N. phyllepta, N. gregaria, N. arenaria and C. closterium).
Control and BDF sediments were incubated for 11 days at
18°C on a 14 h light:10 h dark photoperiod (145 �mol
photons m¡2 s¡1) and 10 ml of the F/2 medium was
refreshed every day in both control and BDF sediments.
Chl a and EPS concentrations of the upper 5 mm were
determined according to the abovementioned methods
(Experiment 1).

Settlement choice in a hydrodynamic environment (Experi-
ment 2): protocol

The proportional distribution of live larvae, freeze-
killed larvae (further referred to as dead larvae), and
spherical polystyrene (PS) mimics (average diameter
264.5 § 3.8 SD �m) between BDF and control sedi-
ments was tested in the Wrst set of experiments to exam-
ine the processes aVecting larval settlement (i.e., active
habitat selection vs. passive deposition). Two BDF and
two control sediments were screwed into the bottom of
the Xume (Xume bottom surface occupied = 4.6%; dis-
tance between pots = 37.4 cm) and the Xume was care-
fully Wlled with 50 l of FSW resulting in a water depth of
29.5 cm. For each experimental trial (n = 4), »5,000 PS
mimics and 500 live larvae were randomly added to the
Xume preceding initiation of the Xow, which was main-
tained for 3 h at 5 or 15 cm s¡1. For each replicate trial
per Xow velocity, larvae were selected from one out of
four independent batches. In addition, two trials at
5 cm s¡1 and two trials at 15 cm s¡1 were conducted
with 500 dead larvae. Sinking velocities of the three
types of ‘settlers’ in still FSW were 2.8 § 0.5,
2.6 § 0.2 SE mm s¡1, and 1.6 § 0.2 mm s¡1, respec-
tively, for live larvae, dead larvae, and PS mimics. Fur-
thermore, no resuspension or bedload transport of the
sediment was observed at 5 and 15 cm s¡1 during pilot
tests performed with neutral red-dyed sediment. Hence,
secondary dispersal after primary settlement is expected
to be due to active choice, rather than occurring
passively by sediment resuspension or movement. After
3 h, the experimental sediments were closed with plates,
the Xume was drained, and the top 2 cm of the sediments
was preserved in a 4% buVered formalin–tap water
solution, stained with Rose Bengal and the settled
larvae and mimics were enumerated under a stereomi-
croscope.

Settlement response after primary settlement (Experiment 
3): protocol

A total of 30 live larvae were added to the control and BDF
sediments and left to settle for 30 min. Subsequently, the
supernatant was removed from each PVC pot and checked
for unsettled larvae. For each experimental trial, two con-
trol and two BDF sediments with primary settled larvae
originating from the same batch were screwed into the
Xume, Xush with the Xume bottom. Then, the Xume was
Wlled with 50 l of FSW and the Xow was initiated at
5 cm s¡1. After 10 min, the Xow was stopped and the
experimental sediments were closed with plates. Subse-
quently, the Xume was drained and the top 2 cm of the sed-
iments was preserved in a 4% buVered formalin–tap water
solution, stained with Rose Bengal, and the remaining
M. balthica were enumerated under a stereomicroscope.

Statistical analyses (Experiments 2 and 3)

For Experiment 2, replicated G-tests for goodness of Wt (Sokal
and Rohlf 1995) were conducted to determine signiWcant devi-
ations from the 1/1 (i.e., even) distribution, the averaged distri-
bution of the PS mimics, dead larvae, and the averaged
distribution of live larvae, dead larvae, and PS mimics at
15 cm s¡1. The two BDF and the two control sediments per
experimental trial were pooled and only the juvenile percent-
age inside sampling pots was retained for statistical analysis.
All results were expressed as relative percentage recovered
from BDF and control sediments, and the percentages were
adjusted to give the composition, i.e., their cumulative abun-
dance equaling 100%. As such, the weight of all replicates in a
replicated statistical test is equal (Moens et al. 1999). Measure-
ment of the pooled G statistic (Gp) enabled interpretation of the
signiWcance of the overall deviation from the tested distribution
over all replicates. Gp was calculated at a critical probability of
�� = �/k, with k equal to the number of multiple pairwise tests
(i.e., Bonferroni approach). As such, G-tests for PS mimics
and live larvae were performed at � = 0.008 (i.e., 0.05/6).
Experiment 3 was analyzed using a mixed model analysis of
variance with batch and trial as random eVects and treatment
as Wxed eVect. The proportion of M. balthica remaining in the
sediments was arcsine-square root transformed to meet
assumptions of normality (Shapiro-Wilks’ tests) and homoge-
neity of variances (Cochran and Bartlett tests).

Results

Benthic diatom Wlm characteristics

Manipulation of the incubation time successfully resulted in
diVerent BDFs. Chlorophyll a and EPS concentration of
123
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these BDFs (Table 1) were signiWcantly diVerent among
treatments for each experiment (t test, P < 0.05). Slight ero-
sion of the bioWlm was observed during the Wrst minute after
initiation of the Xow, which caused a reduction of the Chl a
content of the BDF (¡14, ¡12 and ¡29%; respectively, for
10 min at 5 cm s¡1, 3 h at 5 cm s¡1, and 3 h at 15 cm s¡1).
However, diVerences between the control and BDF sedi-
ments remained large and signiWcant (t test, P < 0.05).

Settlement response in still water (Experiment 1)

All larvae started to penetrate the sediments in all treat-
ments and the control within the Wrst minute after their
addition to the wells. However, the percentage of larval set-
tling and burrowing (i.e., number of completely penetrated
larvae/number of larvae added, see “Materials and meth-
ods”) signiWcantly diVered among treatments and times.
Consequently, H01 was rejected, i.e., the settlement and
burrowing response diVered among diVerent ages of BDF
in a still-water environment. No signiWcant diVerences
between the two larval batches were found and the interac-
tion between the factors time and treatment, nested in
batch, was not signiWcant (Table 2). In general, the settle-
ment and burrowing response to control and 4-day BDF
sediments was higher than in 11- and 21-day BDF. The per-
centage of larval settlement and burrowing increased with

time for all treatments and, in Batch 1, signiWcant diVer-
ences remained between 11-day BDF and control sedi-
ments, even after 300 s (Tukey’s test, P < 0.05) (Fig. 1).
Consistently, the average burrowing time was signiWcantly
diVerent between treatments with highest burrowing times
in 11- and 21-day BDF for both batches (Table 3; Fig. 1).
The percentage of larval settlement and burrowing was sig-
niWcantly negatively correlated with the Chl a concentra-
tion and the colloidal EPS fraction of the diVerent BDFs
(r² = 0.68 and r² = 0.52; respectively). No signiWcant rela-
tionships were found between the average burrowing time
per treatment and BDF characteristics.

Settlement choice (Experiment 2)

Mean recovery rate of live and dead larvae was 98% in both
Xow velocities, indicating that loss of larvae due to stickiness
to the walls and paddles was marginal. On average,
5.8 § 1.5 SE% of the live larvae and 6.0 § 1.5 SE% of the
dead larvae were recovered in the control and BDF sediments
at 5 cm s¡1. At 15 cm s¡1, the total percentages of settlement
in control and BDF sediments were 4.6 § 1.5 and 4.4 §
1.4 SE%, respectively, for live larvae and dead larvae. SigniW-
cantly more live larvae settled in BDF than in control sedi-
ments at 5 cm s¡1 (Gp = 36.6, P < 0.001) and 15 cm s¡1

(Gp = 59.2, P < 0.001), and the distribution of live larvae did
not diVer between the two Xow velocities (Gp = 2.9, P = 0.087)
(Fig. 2). Consequently, H02 is rejected, while H02a cannot be
rejected, i.e., settlement was inXuenced by BDF, but the settle-
ment preference for BDF was independent of Xow velocity. 

The distribution of PS mimics did not diVer signiWcantly
from an even distribution at both Xow velocities (Gp = 6.8,
P = 0.009; Gp = 0.3, P = 0.56, respectively, for 5and
15 cm s¡1). Consistently, the distribution of live larvae sig-
niWcantly diVered from the passive deposition of PS mimics
at both Xow velocities (Gp = 71.3, P < 0.001; Gp = 72.0,
P < 0.001, respectively, for 5 and 15 cm s¡1) (Fig. 2).
Hence, H02b is rejected, i.e., habitat selection for BDF is not
a passive, depositional process. However, deposition of dead
larvae was signiWcantly higher in BDF at 5 cm s¡1 (66%;
Gp = 20.8, P < 0.001), whereas the distribution of dead

Table 2 Experiment 1. Mixed model ANOVA results for the eVect of treatment, batch, and time on percentage of larval settlement and burrowing

Values in bold are signiWcant (p < 0.05)

Adjusted P levels are calculated for time eVects based on Greenhouse-Geiser (GG) correction

SS df MS F P P (G–G)

Batch 0.13432 1 0.13432 0.2012 0.669487

Treatment (Batch) 4.02861 6 0.67144 96.7442 <0.001

Time 4.01163 4 1.00291 138.3899 <0.001 <0.001

Batch*time 0.02899 4 0.00725 1.0377 0.407856 0.99304

Treatment (Batch)*time 0.16657 24 0.00694 0.4967 0.977122 0.91774

Residual 2.51526 180 0.01397

Table 1 Chl a and EPS concentration (§SE) of the benthic diatom
Wlm (BDF) and control sediments in all experiments

Determination of BDF characteristics is based on the upper 7 mm
(experiment 1) and the upper 5 mm sediment layer (experiment 2 and 3)

Chl a 
(�g g¡1 dry 
sediment)

EPS (g glucose g¡1 dry 
sediment)

Control sediment 0.01 § 2.0 £ 10¡4 1.1 £ 10¡4 § 7.9 £ 10¡6

Experiment 1

4-day BDF 3.13 § 0.81 1.6 £ 10¡4 § 5.5 £ 10¡5

11-day BDF 8.46 § 0.59 1.8 £ 10¡4 § 5.9 £ 10¡5

21-day BDF 15.35 § 3.6 2.3 £ 10¡4 § 7.8 £ 10¡5

Experiment 2 and 3

11-day BDF 7.04 § 1.17 1.7 £ 10¡4 § 2.9 10¡7
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larvae did not diVer signiWcantly from an even distribution
at 15 cm s¡1 (Gp = 1.0, P = 0.32) (Fig. 2). Hence, based on
comparison between distribution of dead and live larvae,
H02b could only be rejected at a Xow velocity of 15 cm s¡1.

Settlement response after primary settlement 
(Experiment 3)

Analysis of the supernatant showed a larval addition
eYciency of 100% in both control and BDF sediments.

Retention rates of larvae were signiWcantly higher in BDF
(58%) as compared to controls (40%) (Fig. 3; Table 4).
Despite the lower larval retention rate in BDF in Trial B of

Fig. 1 Experiment 1. Settle-
ment and burrowing of Macoma 
balthica larvae in still water in 
response to diVerent benthic dia-
tom Wlm treatments (BDF, see 
Table 1), expressed as percent-
age of larval settlement and bur-
rowing (§SE) in relation to time 
after addition of larvae (upper 
panel) and larval burrowing time 
(§SE) (lower panel). Data plot-
ted are means of six replicates 
per batch (B1 = Batch 1, 
B2 = Batch 2)
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Table 3 Experiment 1. Two-factor ANOVA results for eVect of treat-
ment and batch on burrowing time

Values in bold are signiWcant (p < 0.05)

SS df MS F P

Batch 0.33 1 0.33 0.04 0.850811

Treatment 544.40 3 181.47 19.35 <0.001

Residual 3282.39 350 9.38

Fig. 2 Experiment 2. Settlement choice of Macoma balthica larvae in
a multiple choice Xume experiment, expressed as relative distribution
(§SE) of recruited live larvae, dead larvae, and PS mimics in control
sediments, and 11-day benthic diatom Wlm (BDF) sediments after 3 h
of Xow at 5 and 15 cm s¡1
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Batch 2, neither a batch nor a trial eVect was found indicat-
ing that, overall, the magnitude of response did not signiW-
cantly vary among replicates. Consequently, H03 was
rejected, i.e., secondary dispersal after primary settlement
was inXuenced by BDF.

Discussion and conclusions

In this study we investigated the role of multi-species ben-
thic diatom Wlms on the settlement of M. balthica larvae.
Successful settlement is a crucial element in the recruitment
of invertebrate larvae and thus in determining macrobenthic
community structure. Settlement of invertebrate larvae is
known to be mediated by marine bioWlms, and facilitative
and inhibitive eVects have been demonstrated (Pawlik
1992; Wieczorek et al. 1995; Qian et al. 2007). Our results
show that the settlement of M. balthica larvae was inXu-
enced by benthic diatoms and the outcomes of the diVerent
experiments suggest the underlying mechanisms.

In still water, the settlement and burrowing response was
higher and the average burrowing time was faster in con-
trols and younger BDF than in older BDF. All larvae settled
and initiated burrowing within a minute after their inocula-
tion, regardless of treatment; thus, no larval “rejection
behavior” to any particular treatment, which would have
indicated a diatom community-speciWc inhibitive settle-

ment cue, was observed. Moreover, no signiWcant diVer-
ences were found between controls and 4-day BDF, either
for percentage of settlement and burrowing, or for burrow-
ing time. Complete settlement in 11-day BDF sediments in
still water after 30 min, preceding addition to the Xume in
Experiment 3, and the negative relationship between the
percentage of larval settlement and the Chl a and colloidal
EPS concentration suggest that a physically mediated pro-
cess is responsible for the diVerences in the settlement and
burrowing response. We presume that a higher resistance
during penetration into an older BDF with a higher diatom
biomass and more associated sugar and protein compounds
resulted in a slower penetration through the BDF and thus
lower settlement and burrowing in the Wrst few minutes.
Hence, in the very short term, settling M. balthica larvae
may be considered more susceptible to epi-and hyper-ben-
thic predation (Hiddink et al. 2002a, 2002b, 2002c) in BDF
with a higher diatom biomass and productivity. However,
in the medium and longer term, a beneWcial eVect may be
expected in such BDF, due to the better growing conditions
as a result of a higher food supply and lower post-settle-
ment resuspension (de Boer 1981; Tolhurst et al. 1999;
Montserrat et al. 2008).

Settlement in a hydrodynamic environment is controlled
by physical (e.g., larval fall velocity, near-bottom Xow, and
turbulence) and behavioral (e.g., cue detection and swim-
ming capacities) processes (see Butman 1987 for review).
The percentage of larval settlement into both BDF and con-
trol sediments was consistently lower in the Xume experi-
ments (4.6–5.8% in 3 h) compared to the still-water assays
(100% within 1 min), which corroborates the observations
of several authors that the highest settlement rates in shal-
low environments occur in very low Xow conditions, e.g.,
around slack tides (Whitlatch et al. 2001; Tankersley et al.
2002), because (1) active selection processes may be lim-
ited and (2) fewer larvae are delivered to the bed at higher
Xow velocities (Butman 1987; Gross et al. 1992). Despite
the overall low settlement in the Xume experiments, a clear
settlement preference of M. balthica larvae for BDF was
still observed; i.e., signiWcantly more larvae settled in BDF
compared to control sediments. This distribution was not
signiWcantly diVerent between Xow velocities of 5 and
15 cm s¡1, but the underlying mechanism of habitat selec-
tion seemed to diVer between the two Xow velocities. At
15 cm s¡1, signiWcantly higher proportions of larvae settled
in BDF, whereas PS mimics and dead larvae both displayed
an even distribution (i.e., no preference). However, like the
live larvae, signiWcantly more dead larvae were recorded
from the BDF at 5 cm s¡1, suggesting passive deposition
and adhesion of larvae to the BDF as a settlement mecha-
nism at this Xow velocity. The diVerence between inert,
spherical PS mimics and non-spherical dead larvae sug-
gests that Xow-dependent adhesion to the bioWlm was an

Fig. 3 Experiment 3. Secondary dispersal of Macoma balthica post-
larvae, expressed as remaining percentage (§SE) of primary settled
larvae in 11-day benthic diatom Wlm (BDF) (black bars) and control
sediments (white bars) after 10 min of Xow at 5 cm s¡1
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Table 4 Experiment 3. Mixed model ANOVA results for eVect of
treatment and trial on percentage of remaining post-larvae remaining
in sediment treatments

Values in bold are signiWcant (p < 0.05)

SS df MS F P

Treatment 0.034331 1 0.034331 10.799 0.021805

Batch 0.002726 1 0.002726 2.066 0.224013

Trial (batch) 0.005279 4 0.001320 0.415 0.792597

Residual 0.015895 5 0.003179
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important settlement mechanism at the lower Xow velocity.
Adhesion to bioWlms is a complex process that remains
poorly understood, but biochemical (e.g., production of vis-
coelastic substances, wettability of the surface), behavioral,
or physical (e.g., surface energy of the substratum) mecha-
nisms may all be involved (Zardus et al. 2008). At higher
Xow velocities, substratum shear stress may be too high,
inhibiting passive adhesion of dead larvae to the bioWlm.
The enhanced settlement of M. balthica larvae in BDF at
15 cm s¡1 thus resulted from active selection. Furthermore,
the results obtained from Experiment 3 highlight the impor-
tance of active post-settlement dispersal of M. balthica in
Wnal habitat selection. Hence, in addition to passive adhe-
sion to the bioWlm, active post-settlement behavior (i.e.,
rejection of the initial settlement site) is an important mech-
anism at low Xow velocities. Whenever no suitable settle-
ment site is encountered, M. balthica post-larvae can
actively re-enter the water column after initial settlement by
migrating to the sediment surface and secreting a byssus
thread, which allows resuspension into the currents (i.e.,
byssus drifting, Beukema and Devlas 1989).

Higher recruitment success into BDF with a higher dia-
tom biomass has been observed in the Weld for M. balthica
(Van Colen et al. 2008) and for benthic invertebrates in
general (e.g., Keough and Raimondi 1995). Wherever
M. balthica occurs, primary settlement of larvae occurs pre-
dominantly on high, shallow, tidal Xats, and oVshore sec-
ondary dispersal occurs from late summer on toward the
lower, less shallow, tidal Xats (Reading 1979; Martini and
Morrison 1987; Beukema and Devlas 1989; Van der Meer
et al. 2003). Beukema and Devlas (1989) and Hiddink
(2003) attribute this preference for primary settlement on
high tidal Xats to the lower predation pressure by epifaunal
organisms and the lower disturbance by wave action at
these sites. Furthermore, as a result of lower sediment
resuspension, more stable, productive bioWlms tend to
develop on the more sheltered, upshore tidal Xats (de Jong
and de Jonge 1995). Taking our results into account,
enhanced primary settlement of M. balthica larvae on the
upper tidal Xats may, in addition to the above-mentioned
theories, also result from active habitat selection for bio-
Wlms, and the passive stickiness of the bioWlm. Yet, the
nature of the diatom-derived cues that inXuence active
M. balthica larval settlement for BDF remain unknown.
Such settlement cues have extensively been studied in rela-
tion to bacterial products in the bioWlm (e.g., Bao et al.
2007), whereas the speciWc cues from diatoms have been
investigated to a much lesser extent. Based on the manipu-
lation of the diVerent components of bioWlms, Lam et al.
(2003) reported that the settlement of the serpulid poly-
chaete H. elegans was induced by the presence of capsular
surface EPS, produced by speciWc diatoms. Such diatom-
derived sugar compounds have also been identiWed as

settlement and metamorphosis cues for barnacles, limpets,
and bryozoans (Dahms et al. 2004; Patil and Anil 2005;
Jouuchi et al. 2007). Further experiments, in which the
chemical products derived from the diVerent diatom com-
munities (e.g., EPS) are manipulated, are needed to eluci-
date the speciWc diatom-derived cues for settlement of
M. balthica larvae.
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