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Selection in dairy cattle for a higher milk yield has coincided with declined fertility. One of the factors is reduced expression
of estrous behavior. Changes in systems that regulate the estrous behavior could be manifested by altered gene expression.
This literature review describes the current knowledge on mechanisms and genes involved in the regulation of estrous behavior.
The endocrinological regulation of the estrous cycle in dairy cows is well described. Estradiol (E2) is assumed to be the key
regulator that synchronizes endocrine and behavioral events. Other pivotal hormones are, for example, progesterone,
gonadotropin releasing hormone and insulin-like growth factor-1. Interactions between the latter and E2 may play a role in
the unfavorable effects of milk yield-related metabolic stress on fertility in high milk-producing dairy cows. However, a clear
understanding of how endocrine mechanisms are tied to estrous behavior in cows is only starting to emerge. Recent studies
on gene expression and signaling pathways in rodents and other animals contribute to our understanding of genes and
mechanisms involved in estrous behavior. Studies in rodents, for example, show that estrogen-induced gene expression in
specific brain areas such as the hypothalamus play an important role. Through these estrogen-induced gene expressions, E2
alters the functioning of neuronal networks that underlie estrous behavior, by affecting dendritic connections between cells,
receptor populations and neurotransmitter releases. To improve the understanding of complex biological networks, like estrus
regulation, and to deal with the increasing amount of genomic information that becomes available, mathematical models can
be helpful. Systems biology combines physiological and genomic data with mathematical modeling. Possible applications of
systems biology approaches in the field of female fertility and estrous behavior are discussed.
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Implications

In dairy cows, optimal time of artificial insemination is
signaled by estrous behavior. Selection for milk yield has
coincided with a decline in duration and intensity of estrus,
decreasing success of insemination. Hormonal regulation of
the estrous cycle in cows is well-described, but a clear
understanding of how this is tied to estrous behavior is only
starting to emerge. This study reviews mechanisms and
genes involved in the regulation of estrous behavior in farm
animals and rodents.

Introduction

Dairy cattle selection for higher milk yield has coincided
with a decline in fertility (for reviews see Royal et al., 2000;
Veerkamp et al., 2003; Pryce et al., 2004). Subfertility in

modern dairy cows is a multifactorial problem. It involves
factors like genetic improvement for milk yield, nutritional
issues, disease, season, climate, housing, management and
herd environment (Lucy, 2001; Roche, 2006). The mechan-
isms by which selection for higher milk yield can result in
poorer fertility are not totally elucidated, but one cause is
likely to be metabolic stress (Veerkamp et al., 2003). As the
reproductive and somatotropic axes interact at several
levels in the hypothalamus (Chagas et al., 2007), it is not
surprising to find relationships between energy balance and
fertility parameters. Subfertility has negative implications
for dairy farm profitability, sustainability of animal produc-
tion and animal welfare, as it takes more time and effort to
get cows to be pregnant.

Low estrus detection rate has been identified as an
important factor affecting the reproductive efficiency (Lopez
et al., 2004). The optimal timing of artificial insemination
is signaled by estrous behavior. However, the detection of- E-mail: Marike.Boer@wur.nl
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estrus in modern high milk-yield dairy cows is hampered,
because the duration and intensity of estrous behavior in
these cows is considerably lower than that in dairy cows of
a few decades ago (reviewed by Lopez et al., 2004). Little is
known about heritability and genetic variance of estrous
behavior. A recent study reported heritability estimates
for estrus duration and intensity to be low (2% to 8%;
Lovendahl and Chagunda, 2009). Heritability estimates of
fertility traits based on artificial insemination service dates
are generally below 5%, while heritability estimates of days
from calving to first estrous based on progesterone (P4)
profiles or behavior observation are higher (16% to 28%;
reviewed by Pryce and Veerkamp, 2001). However, genetic
control of estrous behavior as such remains elusive. Changes
in the underlying mechanisms that regulate estrous behavior
could be manifested by altered gene expression patterns. The
study of these gene expression changes could be a means to
gain insight into the genomic regulation of estrous behavior
in cows. Gene expression studies are useful for discovering
the biological principles that underlie polygenic traits (Bertani
et al., 2004) like estrus. There is limited information on genes
that regulate the reproductive behavior in dairy cows, but
considerable knowledge is available from other species,
especially the rodents. The genes found to be important in
rodents and other mammals may also be relevant for repro-
ductive behavior in cows, because of shared neurophysiologic
mechanisms.

The aim of this review is to describe the current state of
knowledge regarding genomic regulation of estrous beha-
vior in the brain. The first part of this study briefly sum-
marizes the physiological mechanisms involved in estrous
behavior of dairy cows, which provides the framework for
the main topic: an overview of the current knowledge on
relevant genes and their functions in endocrine mechanisms
that regulate estrous behavior.

Physiological regulation of the estrous cycle and
estrous behavior

General principles of estrus regulation
During pro-estrus, when the corpus luteum (CL) is regressed
and the concentration of (P4) is decreased, the dominant
follicle, deviated from a cohort of antral follicles, matures
under the influence of luteinizing hormone (LH) and follicle
stimulating hormone (FSH; Allrich, 1994). FSH plays an
important role at the beginning of follicular development,
whereas LH is important for follicular growth up to ovula-
tion (Ginther et al., 1996). The dominant follicle secretes an
increasing amounts of estradiol (E2) during the develop-
ment to preovulatory size (Allrich, 1994). E2 is involved in
important neuroendocrine mechanisms regulating estrus. E2
inhibits gonadotropin releasing hormone (GnRH) secretion
from the hypothalamus and LH secretion from the pituitary
throughout most of the cycle. However, during pro-estrus,
elevated E2 levels increase the secretion of GnRH, which
together with direct effects of E2 on the pituitary, triggers
the LH surge (Glidewell-Kenney et al., 2007), which induces

ovulation. Once an oocyte is successfully ovulated, the
remains of the follicle form a new P4-producing CL.
Progesterone maintains the readiness of the endometrium
for receiving the embryo. If conception has failed, the CL
regresses, P4 levels decrease and the cycle restarts.

Estrous behavior
The estrous cycle of cows lasts for approximately 21 days. The
interval between onset of mounting behavior and ovulation in
cows is approximately 27 h (Lopez et al., 2002; Roelofs et al.,
2005b). In modern Holstein cows the duration of estrus,
defined as the time between first and last recorded standing
event, has been reported to be 7 h (Dransfield et al., 1998;
Lopez et al., 2004). In contrast, Esslemont and Bryant (1976)
reported an average duration of estrus of 14.9 h in Friesian
cattle in 1976. Table 1 summarizes different behavioral signs
of estrus in cows. At the start of estrus, a cow typically sniffs
the vulva of other cows and rests her chin on the back of
others. Such behavior is followed by mounting of other cows
and ultimately the cow displays standing heat (Roelofs et al.,
2005b). Van Eerdenburg et al. (1996) defined a protocol
based on these behavioral signs in order to detect whether a
cow is in heat. As shown in Table 1, not all cows express all
behavior traits. Lyimo et al. (2000) and Roelofs et al. (2004)
showed that the highest behavioral score of cows in estrus,
based on the estrous behavior signs given in Table 1, corre-
lates positively with maximum plasma E2 concentrations, but
no correlation was found between E2 levels and specific
estrous behaviors (Cook et al., 1986; Coe and Allrich, 1989).
Because the percentage of cows displaying standing heat has
declined over the last decades (reviewed by Dobson et al.,
2008), it is more difficult to detect estrus based on standing
heat. Therefore, other methods to detect and quantify estrus
have been proposed by Roelofs et al. (2005a; pedometers)
and Lovendahl and Chagunda (2009; electronic activity tags).
Little is known about the underlying mechanisms and the
level of genetic control of specific estrous behaviors, but
collection of quantifiable data could be helpful in the research
of genetic mechanisms (Schutz and Pajor, 2001).

A ‘normal’ endocrinological cycle is prerequisite for estrus
and estrous behavior. However, ovulation is not necessarily

Table 1 Behavioral signs of estrus in cows*

Estrous signs
Percentage of estruses in which the

behavior is displayed

Flehmen 44
Sniffing vulva of another cow 100
Mounted but not standing 56
Resting with chin on back of

another cow
100

(Attempt to) mount another
cow

90

(Attempt to) mount head side
of another cow

22

Standing heat 56

*Adapted from Van Eerdenburg et al. (2002) and Roelofs et al. (2005b).
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accompanied by estrous behavior (‘silent estrus’ (Allrich,
1994), indicating that physiological events and behavior are
in part based on different mechanisms. In dairy cows, the
first postpartum ovulation occurs often without clear signs
of estrous behavior (Kyle et al., 1992). This ‘silent estrus’ is
thought to be a result of high E2 concentrations from fetal
origin at the end of gestation, which induces ‘refractoriness’
in the hypothalamus to E2 at the first postpartum ovulation.
The CL produced after the first ovulation provides the P4
that removes this refractory state and facilitates the beha-
vioral expression of the subsequent estrus (Allrich, 1994).

Endocrine regulation of estrous behavior: the central role of E2
E2 plays a key role in the regulation of endocrine and
behavioral events associated with the estrous cycle. In
many experiments that are performed to study the female
reproduction, estrus is artificially induced by administering
E2 (e.g. Fabre-Nys et al., 1993). E2 plays a central role in
triggering the gonadotropin surge and ovulation as well as
in facilitating the estrous behavior, and thus E2 indirectly
synchronizes mating and ovulation. The patterns of GnRH
synthesis and pulsatile release from the hypothalamus
are mainly regulated by E2 (Smith and Jennes, 2001) and
P4 (Richter et al., 2005; Zalányi, 2001). E2 stimulates LH
synthesis, but at levels below a certain threshold value it
inhibits the release of LH. Above this threshold, the inhi-
bitory effect on LH release switches to a stimulatory effect
(reviewed by Reinecke and Deuflhard, 2007), which results
in the LH surge. The shift from inhibition to stimulation may
be dependent on the site of action of E2, that is, a switch
from membrane signaling to genomic signaling (Arreguin-
Arevalo and Nett, 2006). The LH surge is driven by an
increased pituitary responsiveness to GnRH, which is
determined by the amount of GnRH receptors (GnRH-Rs)
expressed on gonadotropes. Pulsatile GnRH release, facili-
tated by high E2 concentrations during the preovulatory
period, elevates GnRH-R gene expression, whereas high P4
concentrations in the luteal phase inhibits the GnRH-R gene
expression (reviewed by Weiss et al., 2006).

E2 plays a pivotal role in the induction of estrous
behavior (Pfaff, 2005). It has a self-amplifying effect as it
stimulates the expression of estrogen receptors (ERs) in the
brain, which is thoroughly investigated in rodents (Pfaff
et al., 2008). The duration of estrous behavior in sheep was
found to depend mostly on the duration of E2 presence
rather than on its maximum concentration (Fabre-Nys et al.,
1993). The effects of E2 are highly similar in different
species, although threshold concentrations for the induction
of estrous behavior may vary between animal species,
for example, 0.4 mg/kg in sheep and 10 mg/kg in rats
(Fabre-Nys and Gelez, 2007). In sheep, Saı̈d et al. (2007)
demonstrated that estrous behavior required lower E2
concentrations than required for the LH surge and that
estrous behavior can be induced independently of the LH
surge. Estrous behavior and the LH surge cannot only be
separated by experimental reduction of E2 levels, but also
by stress (Dobson et al., 2008). Lameness, an example of a

stress inducing condition, was found to reduce behavior
score (based on signs given in Table 1) of cows in estrus
(Walker et al., 2008) and to inhibit LH surge and ovulation
(Dobson et al., 2008) whereas incidence of estrus was not
reduced (Walker et al., 2008), which could result in lower
pregnancy rates. These observations suggest that stress,
caused by lameness, reduces P4 exposure before estrus
(Walker et al., 2008) and/or E2 production by the dominant
follicle and thereby reduces expression of estrous behavior
(Dobson et al., 2008).

In cows and other domestic ruminants, the behavioral
expression of estrus is preceded by a luteal phase of 12 to
15 days during which P4 concentrations are high (Fabre-Nys
and Gelez, 2007). High P4 concentrations during the luteal
phase inhibit the E2-induced gonadotropin surge by redu-
cing pituitary responsiveness to GnRH (Attardi et al., 2007;
Richter et al., 2005). The duration of P4 presence and the
P4 amplitude in the luteal phase influence the time interval
between rise in E2 levels and the induction of estrous
behavior and the LH surge, probably by affecting the neural
mechanisms that are involved in GnRH release (Skinner
et al., 2000). The exact functions of P4 in the priming as well
as the inhibition of estrous behavior are debated (Zalányi,
2001; Weiss et al., 2006; Attardi et al., 2007) and seem to
differ between species (Fabre-Nys and Gelez, 2007).

Metabolic disturbances
High milk production affects the energy metabolism, which
can disturb the endocrine signaling (Roche, 2006). Altered
energy metabolism in high milk yielding cows can cause
decreased levels of E2 and inhibit estrous behavior (Lopez
et al., 2004). Cows selected for high milk yield are
genetically induced to a more negative energy balance
(Veerkamp et al., 2003) as they spend a relatively large
proportion of the available nutrients on milk production,
which can cause fertility problems during a period of
negative energy balance (Chagas et al., 2007). One possible
route by which metabolic stress can inhibit estrous behavior
is via insulin-like growth factor-1 (IGF-1). IGF-1 production
is inhibited during negative energy balance. IGF-1 receptor
signaling in the brain (Velazquez et al., 2008) is needed for
the positive effect of E2 on the release of LH and for normal
E2 priming of estrous behavior (Etgen et al., 2006; Mendez
et al., 2006). Furthermore, concentrations of other meta-
bolic factors that are known to affect dairy cow fertility, for
example, insulin, leptin and growth hormone, interact with
IGF-1 levels (Diskin et al., 2003; Chagas et al., 2007).

Changes in reproductive physiology that are associated
with high milk production may in part be explained by
elevated P4 and E2 clearance rates, as described in the
physiological model of Wiltbank et al. (2006). In this model,
clearance rates of hormones by the liver of a lactating cow
are increased as a result of elevated feed intake, leading to
an increased liver blood flow and metabolic activity. With a
similar level of hormone production, circulating hormone
levels would thus be lower. The model also provides an
explanation for decreased duration of estrus: elevated E2
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metabolism means a more rapid decrease in circulating E2
after the LH surge. Combining the facts that E2 is an
important regulator of estrous behavior in cows (Lyimo
et al., 2000) and that increased level of milk production is
associated with decreased E2 concentrations (Lopez et al.,
2004), smaller follicular size (Diskin et al., 2003) and
shorter duration of estrus (Wiltbank et al., 2006), it seems
reasonable to conclude that lower E2 levels are (partly)
responsible for the poor behavioral expression of estrus in
modern dairy cows (Chagas et al., 2007).

Genomic regulation of estrous behavior: central
mechanisms in the brain

General endocrinological mechanisms of the estrous cycle
have been amply studied, but the understanding of the
regulation of estrous behavior is only starting to emerge.
Genomic approaches are often used to study physiological
mechanisms. Differential expression of genes between
different time points in the reproductive cycle or between
animals with differences in fertility traits could indicate
which genes and pathways are relevant for the regulation
of estrus. This section reviews recent insights from several
research areas regarding genomic regulation of estrous
behavior in rodents and other mammalian species. It
highlights main mechanisms, rather than dealing with all
that are known to play a role, and illustrates the complex

interactions between genes, hormones and their receptors
that together form the signaling pathways that coordinate
the synchronization of mating and ovulation.

Estrogen signaling in the brain
Brain areas that are known to be involved in the regulation
of female sexual behavior include the arcuate nucleus (ARC),
ventromedial nucleus (VMN) and preoptic area (POA) of the
hypothalamus (reviewed by Molenda-Figueira et al., 2006).
In addition to these areas of the hypothalamus, the hippo-
campus and amygdala are known to regulate the behavioral
aspects of estrus. The amygdala (Zhou et al., 2005) and
hippocampus (Frye and Rhodes, 2008) are involved in the
reduction of anxiety and aggression, and in this way can
facilitate sexual behaviors that result from generalized
arousal of the brain. E2 and other hormones cause up- or
downregulation in these brain areas of a number of genes
that are believed to be involved in estrous behavior (Table 2).
E2 increases the sensitivity of neurons for itself by inducing
ER gene expression (Walf and Frye, 2006 and 2008). The E2-
receptor complex acts as transcription factor that regulates
the expression of a large number of genes (Molenda-Figueira
et al., 2006). Apart from genomic (classical ER) signaling,
the estrogenic control of estrous behavior also involves
membrane signaling mechanisms via secondary messengers
like phosphoinositide 3 kinase, cAMP response element
binding proteins and extracellular signal regulated kinases

Table 2 Overview of above-mentioned genes involved in the regulation of estrus

Tissue Gene
Expression
induced by Effect Reference

Hypothalamus ERa, ERb E2 Induces expression of other genes,
facilitating estrous behavior

Pfaff et al. (2008)

rRNA and growth ERa Facilitates estrous behavior Pfaff et al. (2008)
nNitric oxide synthase ERa Mediates neuro-transmission Pfaff et al. (2008), Mani et al. (1994),

Sica et al. (2009)
Adrenergic and muscarinic

receptors
ERa Promotes neuronal excitability by

modulating potassium channels
Lee and Pfaff (2008), Pfaff et al.
(2008)

Enkephalin and opioid receptors ERa Analgesia Pfaff (2005), Pfaff et al. (2008)
Oxytocin and its receptor ERa, ERb Anxiety reduction Pfaff (2005), Pfaff et al. (2008)
Progesterone receptor ERa, ERb Stimulatory effect on lordosis Pfaff et al. (2008)
GnRH, GnRH-R ERa Synchronizes estrous behavior

with LH peak
Pfaff et al. (2008), Pfaff (2005)

Prostaglandin-D synthase Downregulated
by ERa

Anxiety reduction Pfaff et al. (2008), Mong et al. (2003d)

Glutamine synthetase E2 Neuro-transmission Blutstein et al. (2006)
Genes involved in PI3K pathway E2, IGF-1 Involved in E2 signaling Etgen and Acosta-Martinez (2003),

Malyala et al. (2004)
IGF-1 receptor E2, IGF-1 Growth of dendrites and synapses Etgen et al. (2006), Mendez et al.

(2006)
Amygdala Oxytocin and its receptor ERa, ERb Social recognition Pfaff (2005)
Hippocampus Glutamine synthetase E2 Neurotransmission Blutstein et al. (2006)
Pituitary GnRH-R E2, GnRH Pituitary sensitivity to GnRH Hapgood et al. (2005), Weiss et al.

(2006)
Progesterone receptor E2 LH release Attardi et al. (2007)

ERa 5 estrogen receptor-a; ERb 5 estrogen receptor-b; E2 5 estradiol; P4 5 progesterone; GnRH 5 gonadotropin releasing hormone; GnRH-R 5 gonadotropin
releasing hormone receptor; PI3K 5 phosphoinositide 3 kinase; IGF-1 5 insulin-like growth factor-1; LH 5 luteinizing hormone.
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(Mendez et al., 2006; Kelly and Rønnekleiv, 2009; Micevych
and Dominguez, 2009).

Arousal and lordosis behavior in rodents
Rodents are often used as a model to study the regulation
of fertility in mammals, for example, using genomic
approaches (e.g. Laissue et al., 2009). The gene expression
studies of Pfaff and coworkers revealed several mechanisms
that are involved in arousal (Frohlich et al., 1999) and, more
specific, lordosis in rodents (Kow and Pfaff, 1998). Arousal,
a general activation of brain and behavior, precedes the
lordosis response and results from signaling by neuro-
transmitters like norepinephrine (Lee and Pfaff, 2008). The
expression in the brain of estrogen receptor-a (ERa) and its
downstream effects are essential for arousal, as knockout
of ERa reduced arousal responses in mice (Garey et al.,
2003; Mong et al., 2003a). E2-induced down-regulation of
prostaglandin-D synthase in the POA increases arousal
response (Mong et al., 2003b) and prostaglandin-D syn-
thase downregulation is associated also with lordosis (Pfaff
et al., 2008). The initial step in the induction of lordosis is
the E2 controlled alteration of neuronal activity in the VMN.
Estrogen priming alters gene expression in VMN neurons,
resulting in the activation of a variety of neurotransmitters
and neuropeptides. For example, E2 induces expression of
adrenergic receptor genes in the VMN (Lee et al., 2008) and
increases the proportion of neurons that respond to sti-
mulation of adrenergic receptors, which is the first step of a
signal transduction pathway resulting in lordosis behavior
(reviewed by Lee and Pfaff, 2008). Another example is the
E2-induced expression of glial specific genes, including
glutamine synthetase, in the ARC and VMN nuclei, and in
the amygdala and hippocampus, thus facilitating the glu-
tamatergic neurotransmission important for estrous beha-
vior (Blutstein et al., 2006). At least nine genes, expressed
in the rodent hypothalamus, are known to be turned on
following the binding of estrogen to its receptor. In the
VMN, binding of E2 to ERa activates the expression of
genes for rRNA and growth, nNitric oxide synthase, adre-
nergic and muscarinic receptors, enkephalin and opioid
receptors, P4 receptor, and oxytocin and oxytocin receptor
(Table 2). In addition, binding of E2 to ERb activates genes
for P4 receptor, and oxytocin and oxytocin receptor. In the
POA, E2 binding to ERa upregulates GnRH and GnRH-R
genes and downregulates prostaglandin-D synthase (sum-
marized by Pfaff et al., 2008). Together, the products of
these genes play a role in the induction of the behavioral
expression of estrus. A recent study of Sica et al. (2009) in
female mice showed changes in nNitric oxide synthase
expression in the hypothalamus during the estrous cycle.
Increased numbers of nNitric oxide synthase immunor-
eactive neurons were found in the ARC during proestrus
and in the POA during estrus. As these regions show large
numbers of ERa, this study supports the conclusion of Pfaff
and coworkers that E2 modulates expression of nNitric oxide
synthase, which stimulates estrous behavior via activation
of the nitric oxide signaling pathway (Sica et al., 2009).

The estrogen-induced regulation of lordosis and synchro-
nized ovulation in rodents can be described in five modules
(Pfaff, 2005). (i) Preceding estrus, E2 induces expression
of genes involved in growth of dendrites and synapses of
VMN neurons that are involved in facilitating sexual
behavior. (ii) P4 administration after estrogen priming
amplifies the effect of estrogen on reproductive behavior
via upregulation of several transcripts. (iii) The presence of
estrogens induces expression of several genes (examples
are mentioned above) involved in behaviors that prepare
the animal for mating. These genes establish analgesia,
social recognition and reduction of anxiety and aggression.
(iv) E2 induced upregulation of neurotransmitter receptors
in VMN neurons primes the neural circuit that triggers the
lordosis behavior. (v) E2 elevates GnRH, which stimulates
the ovulatory gonadotropin release and facilitates estrous
behavior. As E2, through its effects on GnRH and LH, also
regulates the LH surge and ovulation, E2 indirectly syn-
chronizes mating and ovulation. The lordosis reflex has
been used as a behavioral model to study the functioning of
serotonin (Uphouse, 2000; Uphouse et al., 2007) and E2
signaling (Micevych and Dominguez, 2009; Micevych et al.,
2009). Although these studies do not aim directly to unravel
the regulation of estrous behavior, they support the findings
of Pfaff and coworkers that E2 induces estrous behavior via
ER gene expression and membrane signaling.

Near to no research has been carried out on E2-induced
gene expression related to induction of estrous behavior in
cattle, but there are reasons to assume that the mechanisms
are similar. Estrous behavior in ruminants, like cows and sheep,
is controlled by E2 levels (Lyimo et al., 2000; Saı̈d et al., 2007).
In rodents, E2 reduces anxiety and therewith stimulates
locomotion and exploratory behavior (Mong and Pfaff, 2003c),
and a similar E2-induced increase in activity is seen in cows
(Roelofs et al., 2005a). Another parallel that can be drawn
between rodents and ruminants is that the brain areas shown
to be highly involved in regulation of estrous behavior in
rodents (ARC, VMN and POA) are also the regions with high
concentrations of ER during estrus in ewes (Lehman et al.,
1993; Stormshak and Bishop, 2008). Most gene expression
studies dealing with bovine fertility are focused on follicle
development and changes in ovarian tissue (Zielak et al.,
2007; Mihm et al., 2006). Beerda et al. (2008) compared gene
expression profiles in brain samples of Holstein Friesian heifers
in (pro-)estrus to those in heifers in luteal phase. Quantitative
scores for estrous behavior are linked to gene expressions in
the pituitary, hypothalamus, hippocampus, amygdala and
ventral tegmental area (VTA). The first analyses of the VTA
indicated that cyclical changes in the expression of genes
regulating cell morphology and adhesion were linked to the
appropriate expression of estrous behavior in dairy cows.

Understanding the complex regulation of
estrous behavior

A considerable part of the reported study in this review
revolves around control of ovarian E2 production and the LH
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surge rather than regulation of estrous behavior, because
relatively little research has been carried out on the control
of estrous behavior as such. Gene expression profiling
is a powerful tool for the identification of genes and
mechanisms underlying estrous behavior in dairy cows. The
sequencing of the genome of diverse animal species
provided a huge amount of data and the biological
interpretation of these data has just begun. Large datasets
are being generated by functional genomics approaches,
like measuring differential expression of genes related to
fertility. Various bioinformatics and other post-analysis
approaches are being used in order to integrate these data
in physiological concepts. Reproductive behavior is a result
of numerous gene products, cooperating in pathways that
finally induce or facilitate a behavioral response. The
number of factors involved in the regulation of estrus is
overwhelming and mirrors complex networks. To improve
the understanding of bovine reproductive behavior, it might
be supportive to integrate the involved physiological and
genomic components to describe the various mechanisms
that are involved in the interplay of relevant brain areas like
the hypothalamus, and the pituitary and ovaries.

To understand complex biological networks like the reg-
ulation of estrus, mathematical models and simulation studies
can be helpful (Potter and Tobin, 2007). Mathematical models
have been developed, for example, for follicle development
(Clément et al., 2001; Soboleva et al., 2004), gonadotropin
release (Blum et al., 2000; Heinze et al., 1998; Washington
et al., 2004), and estrogen signaling (Vasudevan and Pfaff,
2008; Frohlich et al., 2002). The coupling of physiological and
genomic data with the help of modeling (e.g. gene network
models or mechanistic mathematical models) aims to improve
insight in the biological system as a whole (Burbeck and
Jordan, 2006), and this approach is often referred to as sys-
tems biology. An interesting example of a systems biology
approach in the field of female reproduction is the model for
the human menstrual cycle developed by Reinecke and
Deuflhard (2007), which integrates the major tissues and
hormones involved, and is able to simulate the dynamics of
follicular development and the associated cyclic hormone
level changes. It is expected that a systems biology approach
improve the understanding of physiological consequences of
alterations in gene expression patterns, for example, the
possible implications for expression of estrous behavior.
Systems biology approaches, including the use of network
models and mechanistic mathematical models, are likely to
play a role in further increasing our understanding of the
complex interplay of factors involved in the reproductive cycle
and the regulation of estrous behavior.
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