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Abstract

AFLP is a widely used DNA fingerprinting technique, resulting in band absence -
presence profiles, like a bar code. Bands represent DNA fragments, sampled from
the genome of an individual plant or other organism. The DNA fragments travel
through a lane of an electrophoretic gel or microcapillary system, and are sepa-
rated by length, with shorter fragments traveling further. Multiple individuals are
simultaneously fingerprinted on a gel. One of the applications of AFLP is the esti-
mation of genetic similarity between individuals, e.g. in diversity and phylogenetic
studies. In that case, profiles of two individuals are compared, and the fraction of
shared (comigrating) bands is calculated, e.g. using the Dice similarity coefficient.
Two comigrating bands may share the same fragment, but band sharing could also
be due to chance, if two equally sized, but different fragments are amplified. This
is called homoplasy. Homoplasy biases similarity coefficients. Homoplasy could
also occur within a lane, if two different fragments of equal length are amplified,
resulting in a single band. We call this collision. The main objective in this thesis
is the study of collision and homoplasy in AFLP. The length distribution of AFLP
fragments plays an important role. This distribution is highly skewed with more
abundant short fragments. By simulation the expected similarity for unrelated
genotypes is calculated. As much as 40% of the bands may be shared by chance
in case of profiles with 120 bands. The collision problem is analogous to the birth-
day problem, which has a surprising solution. The collision problem is even more
extreme, making it even more surprising. Profiles with only 19 bands contain
collision(s) with probability > 1/2. These findings have consequences for practice.
In some cases it is better to prevent the occurrence of collisions by decreasing the
number of bands, in other cases a correction for homoplasy and collision is pre-
ferred. Modified similarity coefficients are proposed, that estimate the fraction of
homologous fragments, correcting for homoplasy and collision. Partially related to
homoplasy and collision, we study the codominant scoring of AFLP in association
panels. Examples of AFLP in lettuce and tomato serve as illustrations.
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Chapter 1
General Introduction

1.1 Introduction

AFLP® is a DNA fingerprinting technique, developed and patented by Keygene
N.V. 1. The seminal paper on AFLP is Vos et al. (1995), which has been cited as
of date over 5000 times 2. Although not explicitly stated in this paper, the name
is interpreted as an acronym of Amplified Fragment Length Polymorphism, giving
an indication of the working of AFLP: it aims to find differences (polymorphisms)
in lengths of DNA fragments, which were copied (amplified) many times.
AFLP is used in many fields of the life sciences. We studied AFLP in cooperation
with plant scientists working in Taxonomy, Genetic Resources, and Breeding. In
the taxonomic study the aim was to infer species relationships in lettuce; in the
Genetic Resources study AFLP was used as a tool for assessment of diversity and
for genebank management; the Breeding study was an association study in tomato,
relating phenotypic to genotypic data. And indeed, the majority of applications
of AFLP are found in the plant sciences (e.g. Koopman, Zevenbergen, & Van
den Berg, 2001), but AFLP is also regularly used in the animal sciences (e.g.
Dasmahapatra, Hoffman, & Amos, 2009), in microbiology (e.g. Duim et al., 2001),
and to a lesser extent in human genetics (e.g. Prochazka, Walder, & Xia, 2001).
AFLP has become a popular tool for genetic relationship, diversity and population
genetic studies in many settings (e.g. nature conservation and gene banks), but is
used in many other studies as well, ranging from variety identification and marker-
assisted breeding, to genetic map construction and QTL-studies, and criminal and
paternity tests. A variant of AFLP is cDNA-AFLP (e.g. Breyne et al., 2003),
rendering insight into gene expression.
Originating from the early nineties of the 20th century, in the dynamic era of
genetics and bioinformatics, AFLP, at the age of 16 since its year of patent, may
be considered quite old. The title of the review paper by Meudt and Clarke
(2007) “Almost Forgotten or Latest Practice?” suggests the same. A simple way
to check the present scope of AFLP is to count the number of publications, making

1We will omit the ® sign from here
2Source: Web of Science, 15-09-2009
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2 CHAPTER 1. INTRODUCTION

mention of it. Figure 1.1 shows the yearly number of scientific papers referring to
the AFLP procedure. The figure demonstrates that the application of AFLP, after
a quick rise around the change of the century, currently remains at a constant, high
level. Notice that in recent years researchers tend to mention AFLP in the title of
their publications less than before, although the total number of papers remains
constant.

1991 1993 1995 1997 1999 2001 2003 2005 2007

Year of publication

Y
ea

rly
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ou
nt

0
10

0
20

0
30

0
40

0
50

0
60
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'AFLP' in title
'AFLP' in keyword or abstract

Figure 1.1: Yearly counts of scientific publications in Web of Science in period 1991-
2008, containing the phrase ’AFLP’ or ’Amplified Fragment Length Polymorphism’ in
title, keyword or abstract.

Having sketched the place and scope of AFLP in the field of the life sciences,
we introduce the topic of this thesis. The result of AFLP is a pattern of bands,
like bar codes, in different lanes of an electrophoretic gel or microcapillary system
(for details see section 1.2). A band is supposed to represent a DNA fragment.
Corresponding bands in different lanes are supposed to be homologous, that is,
the DNA fragments are identical and originate from the same genomic locus. But
the problem is, that what you see, may not be what you get. Within a lane you
see one band, but you may get more than one fragment. Comparing two lanes,
you see two identical bands, but you may get two different fragments. The main
topic of this thesis is the study of these two problems from a probabilistic and
statistical point of view. In sections 1.3 and 1.4 the problems are introduced in
greater detail.

1.2 AFLP: technique and data

To understand the ideas in this thesis, some insight into the AFLP technique at
a biomolecular level is useful. The AFLP technique consists of four steps: 1)
restriction of DNA, 2) ligation of adaptors, 3) amplification of fragments, and 4)
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visualization of amplified fragments. Below we explain these steps, and give them,
where relevant, a statistical interpretation.

1. For each individual the total DNA is cut into fragments using two molecu-
lar “scissors” (restriction enzymes). The restriction enzymes recognize specific
nucleotide sequences within the DNA strands, and cleave them at these sites.
Usually a short-cutter, with short restriction site (most commonly MseI with
restriction site TTAA), and a long-cutter (most commonly EcoRI with restric-
tion site GAATTC) are used. The result is a huge collection of DNA fragments
of different lengths, typically between 50 and 600 nucleotides. We notice that,
from a statistical point of view, for each genome a population of fragments is
created, which we call the population of candidate fragments. The frequency dis-
tribution of the lengths of all fragments in this population is called the fragment
length distribution (fld).

2. Before a selection of fragments can be taken, some preparatory work is done:
two double-stranded DNA sequences (adaptors), that recognize the restriction
sites, are glued (ligated) to the ends of the fragments. These adaptors will be
used as docking stations for the primers in the next step.

3. A selection of fragments is taken. Only the fragments in this selection will be
copied many times (amplified) by the Polymerase Chain Reaction (PCR), so
that they will be visible in the next step. Both selection and amplification are
caused by primers, which are single-stranded DNA sequences, specific for the
two adaptors. The primers bind to the sequence of adaptors, restriction sites
and small number of nucleotides adjacent to the restriction sites. Because the
primers have selective nucleotides, only fragments with nucleotides complemen-
tary to these selective nucleotides are selected for amplification by PCR. Each
extra selective nucleotide will cause a reduction in number of fragments of ap-
proximately factor 4. The set of two primers is called a primer combination
(pc). Only the primer corresponding to the long-cutter restriction enzyme is
labeled with a fluorescent dye or by radioactivity. Hence only fragments with at
least one EcoRI restriction site are eligible for visualization. From a statistical
point of view, a sample of fragments is drawn from the population of candidate
fragments. The sample size is determined by the number of selective nucleotides
of the primers, but also by the genome size itself. A larger genome will in gen-
eral result in a larger sample. Researchers generally strive for a sample size of
50-100 bands per lane (see next step).

4. Separation of the amplified fragments on a gel or microcapillary system. Here
we describe only the fragment separation on a gel. On a typical gel, amplified
fragments from up to 48 genotypes are separated simultaneously in different
columns, or lanes. The fragments are separated by electrophoresis. The main
driving force for separation is the length of a fragment, with smaller fragments
traveling further within a lane. The labeled fragments become visible as bands.
Inclusion of a ladder of DNA fragments with known lengths in one of the lanes
enables determination of the length of the fragments. Typically only fragments
with lengths between 50 and 600 base pairs (bp) are scored. This is called
the scoring range. Statistically speaking, the fragment length distribution is
truncated: only lengths within the scoring range are observed, smaller and
larger fragments are discarded.
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The result of these 4 steps is a gel showing bands in different positions within
lanes, where the lanes correspond to the different genomes. The pattern of bands
within a lane is called a profile. An example of such an AFLP gel is given in figure
1.2, which shows profiles of 47 tomato cultivars. Sometimes the word “AFLP” is
used as an alternative for the word “profile”. A band from a profile is also called
an AFLP marker, or just an AFLP. The word AFLP can therefore have different
interpretations: it could mean the technique itself, or a profile from the gel, or a
band from the profile. In general the meaning should be clear from the context,
and we will not try to be overly precise here.
Next, the band information on the gel is scored. Band information is usually scored
binary, that is, bands at a specific position are either absent or present, without
interpreting the intensity of the bands. In this way, AFLP markers are dominant,
anonymous markers. Dominant scoring of AFLPs means that each fragment is
scored as either present or absent, so that a heterozygous genotype cannot be dis-
criminated from a homozygous genotype. Scoring as anonymous markers means
that the fragments are recognized only by their length, while their nucleotide se-
quence remains largely unknown. Statistically speaking, the scoring after step
4 leads to binary information on bands: bands corresponding to fragments with
lengths between, say 50 and 600, are either absent or present.
For more detailed information about the AFLP technique we refer to Mueller
and LaReesa Wolfenbarger (1999), and Blears, De Grandis, Lee, and Trevors
(1998). More recent papers on the AFLP technique are the protocol descrip-
tion by Vuylsteke (2007), and the review by Meudt and Clarke (2007).

1.3 Pros and problems in AFLP

AFLP is said to have a number of advantageous characteristics compared to other
DNA fingerprinting techniques:
1. AFLP is highly sensitive and reproducible;
2. No prior sequence information is needed for amplification, making the technique

very useful in the study of taxa with little knowledge about the genomic makeup;
3. AFLP has the capability to detect various polymorphisms in different genomic

regions simultaneously: up to 100 bands or more per lane may be scored.
Because of these properties, AFLP has become an established DNA fingerprinting
technique. This, obviously, does not mean that AFLPs are without flaws. During
the process from DNA extraction to interpretation of AFLP profiles, many things
may go wrong. Here follows a compilation of possible problems, without trying to
be complete:
1. During the preparation of the DNA for AFLP fingerprinting contamination

with strange DNA may occur; in that case not all bands on the gel represent
the genome under study;

2. During the generation of AFLP profiles, technical problems may occur; for ex-
ample, variation in fragment mobility may result in bands which do not comi-
grate correctly, variation in fragment amplification may cause bands to be too
vague to be scored properly;
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Figure 1.2: Example of an AFLP gel, showing lanes corresponding to 47 tomato cul-
tivars, genotyped within the Center of Biosystems Genomics; restriction enzymes EcoRI
and MseI were used, and primers with 3 selective nucleotides; the first lane contains
a ladder of DNA fragments of known length; fragments at the bottom of the gel have
lengths close to 50 bp, at the top 500 bp.
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3. During the generation of the binary (0,1) matrix from raw AFLP profiles, sub-
jectivity and human error may play a role, if scoring is not done automatically.
And even if scoring is automated, uncertainty remains. Which intensity thresh-
old should be used for bands to be scored as present? Which bin-width should
be used for bands to be considered homologous? What is the minimum fragment
size to be scored?

4. The interpretation of the binary (0,1) matrix of bands as homologous DNA frag-
ments is troublesome. Equally sized fragments from different genomic loci may
have comigrated in two lanes, and the resulting bands may erroneously be inter-
preted as homologous fragments. This problem is called band size homoplasy,
or simply homoplasy. Comigration of equally sized, but different fragments may
also occur within a single lane. We call this problem collision, because two or
more fragments “collide” in a single band. The problems of homoplasy and
collision form the core of the present study.

1.4 Collision and homoplasy

The interpretation of the binary band information as absent / present information
of single DNA fragments is problematic. Within a lane comigration of different
fragments of equal size may have occurred, leading to multiple fragments within a
single AFLP band (collision), which nevertheless is usually interpreted as a single
fragment. Comigration of different fragments of equal size in two or more lanes may
have occurred, leading to the problem of homoplasy: the erroneous interpretation
of bands as homologous.
In the AFLP literature, the problem of homoplasy is well recognized. We cite a
few authors here: “Homoplasy is a major issue in the analysis and interpretation
of AFLP data.” (Meudt & Clarke, 2007), and “Two types of error prevail in AFLP
genotyping: allele homoplasy and scoring errors.” (Bonin, Ehrich, & Manel, 2007).
Meudt and Clarke (2007) also mention: “The quantification of homoplasy in many
AFLP datasets both experimentally and via simulation, as well as identification of
potential effects that homoplasy might have on results, are key research directions
that require further study.”.
The problem of collision is less well recognized in the literature. It is, if at all,
treated under the heading of homoplasy, and called size homoplasy (Vekemans,
Beauwens, Lemaire, & Roldán-Ruiz, 2002) or described as masking (Meudt &
Clarke, 2007).
In the literature various ways of assessing homoplasy or collisions are described:
1. In-silico AFLP and Monte Carlo simulation. In-silico AFLP can be performed

for species with sequenced genomes, mimicking the AFLP procedure on the
computer. In Monte Carlo simulation studies, AFLP is simulated by sampling
from a given fragment length distribution. No physical AFLP profiles are cre-
ated. Studies of this type include
a) Vekemans et al. (2002)
b) Althoff, Gitzendanner, and Segrave (2007).

2. Single nucleotide primer extension. The starting point is an AFLP profile re-
sulting from a given primer combination. Next, four extra profiles are made,
using the same primer combination, but with one primer extended with a single
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nucleotide A, C, T, or G. The four resulting profiles are compared with the
original profile. Bands found in more than one of the four extra profiles suggest
collision or homoplasy. Realize that fragments with an equal extra nucleotide,
not necessarily are identical: there may still be differences in the second next
nucleotide or further. Therefore, this method must give a lower bound of prob-
lematic bands. Studies of this type include
a) Hansen, Kraft, Christiansson, and Nilsson (1999)
b) O’Hanlon and Peakall (2000a)

3. Sequencing of fragments. In studies of this type, AFLP bands are cut out of
the gel, re-amplified and cloned into bacteria, which form colonies. A number
of colonies are selected, and the bacterial plasmid DNA is sequenced, resulting
in the nucleotide sequence of the captured AFLP fragments. The numbers of
clones per band differ between studies. Sometimes only a few clones (as low as
two) are taken, making it doubtful whether all fragments are sequenced in case
of collision. Usually the studies report the extent of sequence identity between
fragments, expressed as percentages. Studies of this type include
a) Rouppe van der Voort et al. (1997)
b) Meksem, Ruben, Hyten, Triwitayakorn, and Lightfoot (2001)
c) El-Rabey, Badr, Schafer-Pregl, Martin, and Salamini (2002)
d) Mechanda, Baum, Johnson, and Arnason (2004)
e) Mendelson and Shaw (2005)
f) Ipek, Ipek, and Simon (2006)

To get an idea of the extent of the problems of homoplasy and collision, we sum-
marize some results of the studies mentioned above.

1. Monte Carlo and in-silico AFLP studies
a) Vekemans et al. (2002) describe the AFLP fingerprinting of lima bean (Phase-

olus lunatus) and perennial ryegrass (Lolium perenne). Using Monte Carlo
simulation, they conclude that 250 fragments are needed to get 167.0 bands,
close to the observed ±169.3 bands (average total number per primer pair)
over all 50 individuals of the first species, and 220 fragments to get 160.0
bands(close to the observed ±154 − 163 bands over all 30 − 31 individuals
of the second species. This means that 33% and 27% of the fragments are
masked. Per individual, on average 150 fragments are needed to get close to
the average ±115.3 bands per primer pair in P. Lunatus (23% masked), and
80 fragments to get close to the average ±70.2 bands in L. perenne (12%
masked).

b) Althoff et al. (2007) use in-silico AFLP on sequenced genomes from 8 wildly
diverse organisms (from Bacillus anthracis to Homo sapiens). For small
genomes (with up to 34 bands per profile) the average percentage of bands
without collisions is 89%, decreasing to 50% for large genomes (with up to
an unrealistic 182 bands per profile). Homology of bands for closely related
organisms is very high ( 100%), but for less related organisms it can have
any value between 0% and 100%.

2. Single nucleotide primer extension
a) Hansen et al. (1999) evaluates AFLP in beet (Beta). Part of the study

involves AFLPs with extra selective nucleotides for 8 pc’s in 2 genotypes.
Of the 456 investigated bands, 60 (13.2%) contain at least two fragments
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(collision).
b) O’Hanlon and Peakall (2000a) evaluates the method of extra selective nu-

cleotides in Carduinae thistles. Out of 94 bands 3 bands are amplified by
more than one extra primer (collision). However, it is not clear from how
many profiles the 94 bands originate. Of 91 fragments shared between sam-
ples, 53% has a different nucleotide at the analyzed position. For closely
related individuals the average size homoplasy was only 2.5%, whereas for
more distantly related individuals it was as high as 100%.

3. Sequencing of fragments
a) Rouppe van der Voort et al. (1997) study comigrating AFLP markers for

map alignment in potato (Solanum tuberosum). In total 733 segregating
bands from 12 pc’s in 5 parental lines are selected, and 131 comigrating
AFLP markers are identified, from which 117 map to the same genomic
region. In this group 20 are selected for sequencing, resulting in 5 markers
with identical sequences, 13 having up to 10 different nucleotides (of which
2 pairs are allelic, differing 1 bp in size), 1 with a variable stretch of 46
nucleotides, and 1 reported as not homologous. In passing, it is mentioned
that occasionally collision was observed. We conclude that even for selected
comigrating markers, mapping to the same position, homoplasy is found.

b) Meksem et al. (2001) aim at the conversion of AFLP bands into high-
throughput DNA markers in soybean (Glycine max ). Six AFLP bands are
selected, and 4-30 clones per band sequenced. An astonishing 6 sequences
per band on average are found, with approximately the same size.

c) El-Rabey et al. (2002) perform a phylogenetic study in barley (Hordeum)
with 63 accessions of 9 species. Five pc’s are used, resulting in 906 polymor-
phic bands. In two groups of comigrating bands across species the sequence
identity is determined: group 1 (perfectly aligned bands with same inten-
sity) shows 100% identity within species, and 82.1-100% between species,
and group 2 (closely aligned band with different intensities) shows often
< 40% identity between species. No mention of collision is made. We con-
clude that sequence identity depends on phylogenetic distance, but also on
physical characteristics of the bands.

d) Mechanda et al. (2004) perform a sequencing study of (only) 2 AFLP bands
at 4 taxonomic levels (genus, species, variety, population) of Echinacea: 1
monomorphic band (273 bp, 79 individuals) and 1 polymorphic band (159
bp, 48 individuals). For the monomorphic band the sequence identity within
population is > 90%, within variety 83−95%, within species 76−99%, within
genus 59%. For the polymorphic band the sequence identity is considerably
less. Even two clones from the same band may be different in size and
sequence (collision). Identity within sample is 52 − 100%, within variety
33−100%, within species 24−45%, and within genus 1.25%. The conclusion
from the authors is that in general comigrating bands cannot be considered
homologous.

e) Mendelson and Shaw (2005), as part of a review paper about AFLP in
arthropods, describe a pilot study about the homology of 8 sets of same-
sized bands in crickets (Laupala). Seven out of 8 bands are confirmed to be
homologous.
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f) Ipek et al. (2006) study sequence homology of 7 polymorphic AFLP mark-
ers in 37 garlic varieties (Allium sativum L.), using two pc’s. In total 87
bands are sequenced from 4-27 varieties. Per band 2-4 bacterial colonies for
sequencing are taken, resulting in 191 amplicons, to yield 124 different frag-
ments. For all 7 markers in at least one of the varieties collisions are found,
ranging from only 1 variety out of 12, to 7 out of 17. Up to 4 fragments
are found within a single band. For 4 out of 7 markers all varieties share a
single fragment. For the remaining 3 markers different levels of homoplasy
are found. Up to 17 different fragments (collisions included) are traced. Not
all different sequences from one band have exactly equal lengths.

The general conclusions we draw from these studies are: 1) collision occurs reg-
ularly, although not always reported; this may be partly due to insufficient se-
quencing efforts; 2) homoplasy occurs regularly with larger rates for more distantly
related individuals; 3) homologous fragments not necessarily have 100% sequence
identity.
All the described studies are case studies on specific organisms, or sets of organ-
isms, and lack generality. Some of them study collision, others focus on homoplasy,
still others touch upon both. Our work adds to the already extensive literature
by modeling AFLP from a statistical point of view. Using a modeling approach,
we are able to estimate the level of collision or homoplasy. Generalization brings
as benefits the allowance of prediction of collision and homoplasy in AFLP in any
other case, and formulation of corrected version of derived quantities, like corrected
similarity coefficients.

1.5 Objectives

1. The main objective is the study of collision and homoplasy in AFLP, focusing
on quantification of the problem, consequences for practice, and correction for
derived quantities. To this end we formulate a number of partial objectives:
a) Estimate fragment length distributions;
b) Derive critical values of numbers of shared bands and similarity coefficients

in case of unrelated genotypes for hypothesis testing;
c) Derive the probability of at least one collision in a lane in three situations:

given the fragment count, the band count, and the band positions;
d) Estimate the collision count for a lane in three situations: given the fragment

count, the band count, and the band positions;
e) Derive the collision probability for an individual band in three situations:

given the fragment count, the band count, and the band positions;
f) Derive modified similarity coefficients, corrected for homoplasy and collision,

and their properties;
2. A second objective is the study of codominant scoring in association panels.
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1.6 Outline of the thesis

In this thesis we present a number of papers which we have written over the past
few years on the problems of collision and homoplasy, and on codominant scoring
in AFLP. Each chapter can be read as an independent item. Therefore, some over-
lap exists between the chapters, e.g. each chapter starts with a short description
of AFLP.

Chapter 2: Significance Tests and Weighted Values for AFLP Similarities, Based
on Arabidopsis in Silico AFLP Fragment Length Distributions
This paper, published in Genetics, arose as result of joint work with Wim Koop-
man, who as a PhD student was using AFLP fingerprints to study the taxonomy
of Lactuca species. He wanted to know which values of similarity coefficients like
Dice or Jaccard, calculated from binary AFLP data, would indicate phylogenetic
relationship between genotypes. Thinking about this question, we came across the
problems of homoplasy and collision in AFLP. We discovered the connection with
probability theory, more specifically the birthday paradox, and the need to have
an estimate of the fragment length distribution. We estimated this distribution
using an in-silico AFLP approach on the genome sequences of Arabidopsis thaliana
and Oryza sativa, which became available in that time. By simulation we were
able to calculate the distribution of similarity coefficients for completely unrelated
genotypes. We also wrote a small software program AFLSIM for simulation of
AFLP data and calculation of threshold values of similarities. (We erroneously
described the Nei-dissimilarity coefficient, as 1-Dice.)

Chapter 3: Fragment length distributions and collision probabilities for AFLP
markers
In this paper, published in Biometrics, we took a more formal statistical approach
to AFLP. We discussed in more detail how fragment length distributions could
be estimated, using a theoretical approach, an in-silico approach, and an empiri-
cal data approach. With this last approach the fld is estimated directly from the
AFLP profile itself, using a monotonic smoothing spline. For a number of fld’s and
scoring ranges, we studied the probability distribution of the number of collisions
given the number of fragments, or the number of bands in a lane.

Chapter 4: Collision probabilities for AFLP bands, with an application to sim-
ple measures of genetic similarity
In the next paper, which was published in the Journal of Agricultural, Biological,
and Environmental Statistics, we studied how the collision probability of an indi-
vidual band depends on the position of the band within the lane (or, equivalently,
fragment length), given either the total number of fragments, the total number of
bands, or the band positions of all bands in the lane. This is important, because it
allows the researcher to assess how trustworthy individual bands are with respect
to collision. We estimated the expected number of collisions given the band posi-
tions, and described how our findings can be used to arrive at improved similarity
coefficients for binary AFLP data.
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Chapter 5: Homoplasy corrected estimation of genetic similarity from AFLP bands,
and the effect of the number of bands on the precision of the estimate
In this paper, published in Theoretical and Applied Genetics, we proposed new
estimators of genetic similarity using binary AFLP data. The new estimators are
not hindered by the bias caused by homoplasy, that ordinary similarity coefficients
like Dice and Jaccard suffer from. We also studied the precision of the estimators.
As an application, we studied how the numbers of bands in the lanes affect the
precision of the estimators. This has relevance for the design of AFLP experi-
ments: how many bands per lane should we strive for?

Chapter 6: Codominant scoring of AFLP
This chapter describes the codominant scoring of AFLP in the case of diploid
organisms, i.e. the genotype calling of bands into homozygous present (AA), het-
erozygous (Aa), or homozygous absent (aa), given their intensity. The methodol-
ogy, already described by (R. C. Jansen, Geerlings, van Oeveren, & van Schaik,
2001) and (Piepho & Koch, 2000), is based on normal mixture models. We de-
scribe an application of the methodology in an association panel of tomato, using
in-house developed software in R. The software contains some features that may
enhance the unmixing of the distributions. We touch upon the relationship be-
tween codominant scoring and the problem of collision and homoplasy.

Chapter 7: Discussion
In the final chapter we summarize the results from the preceding chapters, and
compare our quantitative results with the findings from literature, which we com-
piled in section 1.4. We discuss the relevance of our results for AFLP practice.
We also sketch future work, showing some initial promising results.
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Chapter 2
Significance Tests and Weighted Values for AFLP

Similarities, Based on Arabidopsis in Silico AFLP

Fragment Length Distributions 1

by Wim J.M. Koopman and Gerrit Gort

2.1 Summary

Many AFLP studies include relatively unrelated genotypes that contribute noise
to data sets instead of signal. We developed: 1) estimates of expected AFLP sim-
ilarities between unrelated genotypes, 2) significance tests for AFLP similarities,
enabling the detection of unrelated genotypes, and 3) weighted similarity coeffi-
cients, including band position information. Detection of unrelated genotypes and
use of weighted similarity coefficients will make the analysis of AFLP data sets
more informative and more reliable. Test statistics and weighted coefficients were
developed for total numbers of shared bands, and for Dice, Jaccard, Nei and Li,
and simple matching (dis)similarity coefficients. Theoretical and in silico AFLP
fragment length distributions (FLDs) were examined as a basis for the tests. The
in silico AFLP FLD based on the Arabidopsis thaliana genome sequence was the
most appropriate for angiosperms. The G+C content of the selective nucleotides
in the in silico AFLP procedure significantly influenced the FLD. Therefore, sep-
arate test statistics were calculated for AFLP procedures with high, average, and
low G + C contents in the selective nucleotides. The test statistics are generally
applicable for angiosperms with a G + C content of approximately 35-40%, but
represent conservative estimates for genotypes with higher G + C contents. For
the latter, test statistics based on a rice genome sequence are more appropriate.

1Published as: W.J.M. Koopman and G. Gort (2004). Significance Tests and Weighted Values
for AFLP Similarities, Bases on Arabidopsis in Silico AFLP Fragment Length Distributions.
Genetics, 167:1915-1928

13
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2.2 Introduction

AFLP is a DNA fingerprinting technique developed by Keygene N.V. (Vos et al.,
1995). The technique consists of four steps: (1) digestion of DNA with two re-
striction enzymes, (2) ligation of double-stranded oligonucleotide adaptors to the
restriction fragments, (3) selective PCR amplification of the ligated fragments with
specific PCR primers that have selective nucleotides at their 3’ end, and (4) sep-
aration of the amplified fragments on a denaturing polyacrylamide gel. On this
gel, the fragments are separated by their length. Inclusion of a base-pair ladder
enables determination of the exact length of each fragment.
In recent years, AFLPs have become a popular tool for relationship studies (Mueller
& LaReesa Wolfenbarger, 1999). In the studies, the AFLPs are scored as domi-
nant anonymous markers. Dominant scoring of AFLPs means that each fragment
is scored as either present or absent and that the fragments are assumed to oc-
cur independently of each other. Scoring as anonymous markers means that the
fragments are recognized only by their length, while their sequence is unknown.
Fragments of the same length, which are comigrating on a gel, are assumed to be
identical. The fraction of fragments comigrating across genotypes, expressed in
some way by a similiarity or dissimilarity coefficient, is used as a measure for ge-
netic or phenetic relationship. Various coefficients have been developed to quantify
(dis)similiarity, mainly differing in the weighting of comigrating relative no non-
comigrating fragments (see, e.g. Nei & Li, 1979; Rohlf, 1993).
The assumption that all comigrating fragments are identical is an oversimplifica-
tion of the actual situation (Vekemans et al., 2002). In reality, a certain fraction of
fragments will be comigrating by chance only, while having distinct sequences. Be-
cause these fragments will be scored as identical, their presence leads to an overesti-
mation of the similarity among genotypes. The presence of nonidentical fragments
comigrating across genotypes was demonstrated in actual data sets of Solanum
tuberosum (Rouppe van der Voort et al., 1997), Carduineae thistles (O’Hanlon &
Peakall, 2000a), and Hordeum species (El-Rabey et al., 2002). The presence of
nonidentical fragments comigrating within genotypes was demonstrated in Beta
(Hansen et al., 1999) and Glycyine max (Meksem et al., 2001). The proportion
of comigrating nonidentical fragments ranged from at least 10% within genotypes
or among closely related (Rouppe van der Voort et al., 1997; Hansen et al., 1999;
Meksem et al., 2001) to 100% for pairs of genotypes from more distantly related
taxa (O’Hanlon & Peakall, 2000a). Given the proportions of comigrating noniden-
tical bands, a serious overestimation of pairwise similarities among genotypes can
be expected. Indeed, Karp, Seberg, and Buiatti (1996) noted that the occurrence
of nonidentical comigrating AFLP fragments may pose serious problems for the
application of AFLPs in relationship studies, but the issue was largely ignored in
literature thereafter.
In this study, we quantify the occurrence of nonidentical comigrating AFLP frag-
ment for AFLP procedures with restriction enzymes EcoRI/MseI. The estimates
are used to (1) determine the expected numbers of comigrating nonidentical bands
and (2) develop significance tests for AFLP similarities. As a basis for the signif-
icance tests we determine and evaluate theoretical AFLP fragment length distri-
butions based on Innan, Terauchi, Kahl, and Tajima (1999) and in silico AFLP
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fragment length distributions (FLDs) based on the complete Arabidopsis thaliana
(L.) Heynh. genome sequence (Arabidopsis Genome Initiative, 2000). Using the
A. thaliana (hereafter, Arabidopsis) FLD, we estimate the probability distribution
of the number of nonidentical AFLP bands comigrating across genotypes. From
this distribution, we determine expectations and 95 and 99% critical values for
band numbers and (dis)similarity coefficients Dice, Jaccard, Nei and Li, and sim-
ple matching (Nei & Li, 1979; Rohlf, 1993). The critical values can be used to
test the significance of a given pairwise similarity among angiosperm genotypes. If
desired, genotypes that do not contribute significant relationship information can
be removed from a data set. Determination of the expected numbers of comigrat-
ing nonidentical bands also yielded information on the underlying band length
distribution probabilities. However, the usual similarities calculated using the
Dice, Jaccard, Nei and Li, and simple matching coefficients ignore this informa-
tion, assuming identical probabilities for all bands. As an alternative, we propose
similarity coefficients that weight the AFLP bands according to their band length
distribution probabilities. It is expected that the use of the significance tests and
weighted similarities will make the analysis of AFLP data sets more informative
and more reliable.

2.3 Methods and Results

General strategy: The number of nonidentical AFLP bands comigrating across
genotypes depends on the number of bands scored for each genotype, the number
of possible band lengths for the genotypes (i.e., the number of of discrete band
positions possible within a selected scoring range), and the length distribution of
the AFLP fragments. Note that one AFLP band may contain multiple fragments
(discussed later). In empirical data sets, the number of possible band positions and
the number of bands of each genotype are known; only the FLD remains to be de-
termined. The distribution can be obtained in several ways, e.g., (1) derived from
AFLP band data in empirical data sets, (2) calculated using theoretical FLDs,
and (3) determined in silico, if representative genome sequence data (preferably
entire genomes) are available.
The use of empirical data involves the risk of introducing methodological error
into the calculations resulting from the AFLP procedure itself. Such errors may
include, e.g., biases in fragment amplification or in scoring of bands. Theoretically
derived or in silico-generated FLDs do not have this drawback.
Theoretical distributions may be preferred over in silico distributions, because
they are exactly formulated, using explicit assumptions and parameter settings.
In this article, we examine the length distribution for AFLP fragments proposed
by Innan et al. (1999) as a theoretical basis on which to estimate the proportion
of nonidentical bands comigrating across genotypes. To our knowledge, no alter-
native AFLP FLD has been proposed yet.
Use of in silico AFLP FLDs has the drawback that the distribution itself has to
be estimated from the available genome data. Therefore, it is inherently subject
to uncertainty because of estimation error and limited by the availability and rep-
resentativeness of the genome data. However, in silico AFLP data also have two
major advantages. First, the AFLP fragments represent an actual genome. Thus,
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their distribution is not subject to assumptions that underlie theoretical models.
Second, when the procedure is performed properly, no fragments will be lost due to
methodological errors, and all possible fragments will be represented in the AFLP
data set. Here, we examine an in silico FLD based on the genome sequence of the
model plant Arabidopsis as an alternative to the theoretical distribution of Innan
et al. (1999). All statistical procedures were performed in SAS Release 8.00 (SAS
Institute, Cary, NC).
Theoretical AFLP fragment length distributions: Innan et al. (1999) de-
scribe AFLP FLDs for EcoRI and MseI restriction enzymes under the assumptions
of (1) a random nucleotide sequence under the Jukes and Cantor model [equal base
frequencies C = A = T = G = 0.25, and all substitutions equally likely (Jukes
& Cantor, 1969)]; (2) nucleotide changes as sole cause of changes in DNA se-
quence; and (3) a haploid genome. They showed that both EcoRI/EcoRI and
EcoRI/MseI fragments follow the same truncated geometric distribution G(L) =
((1 − A)AL−Lmin/(1 − ALmax−Lmin+1), in which L is the length of the AFLP
fragments, Lmin and Lmax are the minimum and maximum possible lengths of
the fragments considered, and A = (1−probability of formation of new EcoRI
site)(1−probability of formation of new MseI site). The probability of formation
of a restriction site equals the multiplied relative frequencies of the individual nu-
cleotides required for such a site (GAATTC for EcoRI, TTAA for MseI). Under
the assumption of equal frequencies of occurrence for all four nucleotides as made
by Innan et al. (1999), A = (1− 0.256)(1− 0.254).
To examine the influence of nucleotide frequencies on the AFLP FLD,we calculated
distributions for various ratios of A+T vs. G+C. A literature survey revealed that
the G+C contents of the majority of plants ranged between 35 and 50% (see, e.g.
Marie & Brown, 1993; Barow & Meister, 2002). However, various plant groups
showed different G + C contents. The average G+C content was 37% for gym-
nosperms, 40% for dicotyledons, 41% for ferns, 44% for monocotyledons, and 45%
for algae. Viscum album possible occupies a special position with only 30% G+C
(Nagl & Stein, 1989), although Marie and Brown (1993) reported 39% G + C.
We covered the G + C range by calculating separate AFLP FLDs for 35, 40, 45
and 50% G + C. The nucleotide frequencies of A in the formula of Innan et al.
(1999) were adjusted accordingly, with equal splitting of percentages over A + T
and G+C nucleotides. For easy comparison with empirical data sets, all fragment
and band lengths that are reported in this article include adaptor sequences.
Figure 2.1 depicts the AFLP FLD for 35-50% G + C. The distributions show
that the probability that a fragment will occur decreases with increasing fragment
lengths for all G + C contents. The shape of the distribution is also influenced
by the base composition: low G + C contents yield relatively high frequencies of
smaller fragments, while high G + C contents yield relatively high frequencies of
longer fragments. The uniform distribution (all fragment lengths equally likely) is
given as a reference.

Arabidopsis in silico AFLP fragment length distribution: Sequence
data of the entire Arabidopsis genome sequence were obtained from The Institute
for Genomic Research through the web site at http://www.tigr.org. The Ara-
bidopsis in silico AFLP was performed using the restriction enzyme sequences of
EcoRI/MseI without any selective nucleotides. the probability distribution of the
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Figure 2.1: Theoretical AFLP FLDs based on Innan et al. (1999) for a genome with
35% G+C (A), 40% G+C (B), 45% G+C (C), and 50% G+C (D), respectively. The
uniform distribution (E; equal probability for all fragments) is given as a reference.

fragment lengths was estimated by fitting a cubic smoothing spline and rescaling
properly, using SAS PROC IML. The smoothing parameter of the spline (200.000)
was chosen by eye. The more objective approach of cross-validation (SAS PROC
INSIGHT) resulted in an unsatisfactory smoothing level and a spline oscillating
around the one chosen by eye. The smoothing spline and the relative frequency
distribution of the in silico AFLP fragments are depicted in Figure 2.2. Fragment
lengths range from 32 to 1024 bp.
To compare the in silico AFLP FLD with the theoretical distribution of Innan et
al. (1999), we calculated a theoretical distribution using the nucleotide frequencies
from the Arabidopsis genome sequence (G = C = 0.18 and A = T = 0.32 for
all five chromosomes). Figure 2.2 shows a clear difference between the theoreti-
cal and the in silico FLD. Compared to the theoretical distribution, the in silico
distribution shows a lack of smaller bands (< 179 bp) and an excess of larger
bands (> 179 bp). The difference may originate in the nucleotide sequence model
employed by Innan et al. (1999), which was probably too simple to adequately
describe the Arabidopsis in silico FLD (see Discussion). Given the limitations of
the theoretical model and the fact that, in contrast, the Arabidopsis in silico FLD
reflects an actual genome sequence, we consider the Arabidopsis distribution to be
the more accurate basis for our significance tests for AFLP similarities.

The in silico AFLP FLD was generated without selective nucleotides to obtain
the highest possible number of AFLP fragments. In practice, however, selective
nucleotides are always employed in AFLP procedures on plants. To test the influ-
ence of selective nucleotides on the AFLP FLD, we performed additional in silico
AFLP runs with three +1/+ 1 selective nucleotide combinations: A/C (the most
commonly used single-nucleotide combination), T/A (the nucleotides with highest
frequency in the Arabidopsis genome), and C/G (the nucleotides with the lowest
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Figure 2.2: Relative frequency distribution of fragments resulting from in silico AFLP
on the Arabidopsis genome sequence without selective nucleotides (frequencies for each
length class are denoted by dots). (A) Smoothed FLD resulting from in silico AFLP
on the Arabidopsis genome sequence without selective nucleotides (note that this distri-
bution is not significantly different from a distribution with A/C selective nucleotides).
(B) Smoothed FLD resulting from in silico AFLP on the Arabidopsis genome sequence
with T/A selective nucleotides. (C) Smoothed FLD resulting from in silico AFLP on
the Arabidopsis genome sequence with C/G selective nucleotides. (D) Theoretical AFLP
FLD based on Innan et al.(1999) for a genome with 36% G+C. Fragment lengths range
from 32 to 1024 bp.

frequency in the Arabidopsis genome). A two-sample Kolmogorov-Smirnov test
(SAS PROC NPAR1WAY) showed a significant influence of T/A (P = 0.002) and
C/G (P = 0.001) selective nucleotides on the FLD. The distribution for selective
nucleotides A/C did not differ significantly from that without selective nucleotides
(P = 0.62). Figure 2.2 illustrates the influence of selective nucleotides on the in
silico AFLP FLD. The use of T/A selective nucleotides results in an overrepre-
sentation of shorter fragments (< 107 bp) and an underrepresentation of longer
fragment (> 107 bp). The use of G/C selective nucleotides results in an overrep-
resentation of longer fragments (> 107 bp) and an underrepresentation of shorter
fragments (< 107 bp). The difference indicates that selection of AFLP fragments
using selective nucleotides is not a random process (see Discussion).
Each fragment in an AFLP profile contains a discrete number of nucleotides. If
properly measured, the length of a fragment equals this number of nucleotides.
Given the discrete nature of the AFLP fragment lengths, the AFLP FLDs are
discrete distributions. In Figures 2.2 and 2.4, however, the AFLP FLDs appear
as continuous distributions, because the large number of possible lengths makes it
impossible to visualize the actual discreteness. For the in silico AFLPs without
selective nucleotides, Figures 2.2 and 2.4 show both the smoothed discrete FLDs
(line A in Figure 2.2; lines A and B in Figure 2.4) and the nonsmoothed discrete
FLDs (probability in each length class depicted as a dot). All statistical procedures
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in this study are based on the discrete smoothed distributions. As a consequence,
band lengths used as input for the statistical tests developed in our study should
be discrete (i.e., integer) values.
AFLP fragments and AFLP bands: Similarities in AFLP patterns result from
fragments that are comigrating across genotypes, and two types of such fragments
can be distinguished: first, fragments that share the same sequence and originate
from the same loci (comigrating identical fragments; these fragments reflect the
genetic similarity among genotypes); and second, fragments having different se-
quences, originating from different loci (comigrating nonidentical fragments; these
fragments comigrate by chance only, and do not reflect genetic similarity). Geno-
types that are too distantly related for the AFLP technique to detect any rela-
tionship information (called “unrelated” hereafter), share only the second type
of fragments. Therefore, an estimate of the number of nonidentical fragments
comigrating across genotypes is an estimate of the lower boundary for fragment
similarity to indicate relationship. We use this number to derive test statistics for
significance tests on pairwise AFLP similarities between genotypes.
In an ideal situation, each AFLP band consists of only one AFLP fragment, en-
abling a one-to-one translation of AFLP fragments into AFLP bands. In that case,
test statistics for significance tests can be based directly on the numbers of non-
identical fragments comigrating across genotypes. In practice however, an AFLP
band often contains multiple fragments that are comigrating within the same geno-
type. As a result, identical bands comigrating across genotypes may contain both
identical and nonidentical fragments, while nonidentical bands comigrating across
genotypes each may contain multiple nonidentical fragments. The phenomenon of
nonidentical comigrating fragments (both within and across genotypes) is known
as size homoplasy (Vekemans et al., 2002). In most relationship studies this size
homoplasy is ignored, and only the presence or absence of AFLP bands is recorded.
As a result, the similarities calculated in these studies are based on AFLP band
similarities rather than on AFLP fragment similarities. For significance tests to
be readily applicable in such relationship studies, the test statistics should be de-
rived from the numbers and positions of nonidentical bands comigrating across
genotypes. To account for the size homoplasy, however, information on the num-
bers and positions of nonidentical fragments comigrating across genotypes should
be included as well. We constructed a series of significance tests that meet both
demands. To our knowledge, there is no straightforward analytical procedure to
calculate the relationship between the numbers of AFLP fragments and numbers
of AFLP bands. Therefore, we estimated this relationship using Monte Carlo sim-
ulations.
Significance tests for pairwise AFLP band similarities: The significance
tests for pairwise AFLP band similarities were developed in three steps. In the first
step, probability distributions, P , of the numbers of nonidentical bands comigrat-
ing across genotypes were determined. In the second step, from P the expectation,
standard deviation, and approximate critical values (95 and 99%) of numbers of
nonidentical bands comigrating across genotypes were determined. In the third
step, the same quantities were determined for four widely employed (dis)similarity
coefficients.

1. For each pairwise comparison, two independent AFLP band patterns were gen-
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erated with the appropriate numbers of bands (e.g., 50 and 60). The band
patterns were generated by randomly drawing fragments from the smoothed
Arabidopsis AFLP FLD. Note that the fragments are drawn only from the part
of the Arabidopsis AFLP FLD corresponding to the scoring range of interest
(e.g., 50-500 bp). The numbers of fragments needed for each band pattern were
often higher than the numbers of bands in the patterns, because some of the
fragments ended up in the same bands. The difference between the numbers of
fragments and the numbers of bands indicates the amount of size homoplasy in
the band patterns (see also Nonidentical AFLP fragments comigrating within
genotypes).
To determine the number of fragments to be drawn from the AFLP FLD in an
unbiased way, we repeatedly drew a fragment count from a uniform distribu-
tion. Next, a number of fragments equal to the fragment count was drawn from
the smoothed Arabidopsis FLD, and the resulting number of AFLP bands was
determined. The procedure was repeated until the appropriate number of bands
(e.g., 50 and 60) were reached in both AFLP patterns. For these numbers of
bands, the number of bands comigrating across both AFLP patterns was deter-
mined and recorded. The entire procedure was repeated 1,000,000 times, and
the probability distribution P was estimated from the scores of all 1,000,000
replications.

2. In the second step, expected numbers of nonidentical bands comigrating across
genotypes (i.e. expected numbers of bands comigrating by chance), standard
deviation, and approximate critical values (95 and 99%) were determined from
the probability distribution P . Because the variables under study are discrete,
exact 95 and 99% critical values could not be calculated. Instead, approximate
values were determined by interpolation.

3. In most relationship studies, similarity among genotypes is reported using
(dis)similarity coefficients rather than numbers of comigrating bands. These
coefficients somehow express the proportion of comigrating relative to noncomi-
grating bands. A literature survey showed that the majority of studies employed
Dice similarity (Dice, 1945) or Nei and Li distance (Nei & Li, 1979), while Jac-
card (Jaccard, 1908) and simple matching similarity (Sokal & Sneath, 1963) are
also widely employed. For a given pair of genotypes, let xi = 0 when no AFLP
band is present at position i in genotype 1, and xi = 1 when an AFLP band is
present at position i in genotype 1. Likewise, yi = 0 or 1 for genotype 2. For
a scoring range 1 − N , let si = 1 when a certain band position is scored in a
data set and si = 0 when a band position is not scored. Let a =

∑N
i=1 xiyisi,

b =
∑N
i=1 xi(1 − yi)si, c =

∑N
i=1(1 − xi)yisi, and d =

∑N
i=1(1 − xi)(1 − yi)si.

Then Dice = 2a/(2a + b + c), Jaccard = a/(a + b + c), and simple matching
= (a+d)/(a+b+c+d). Nei and Li = 1−Dice. To make our tests readily applica-
ble in relationship studies employing the above coefficients, we used the numbers
of nonidentical bands comigrating across genotypes to get (dis)similarity val-
ues. The recalculations involved two steps. First, probability distributions for
all four coefficients were calculated, on the basis of the probability distribution
of the number of comigrating bands, P . Next, expected values and approxi-
mate critical values (95 and 99%) were determined from these distributions as
described previously.
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The entire procedure has been incorporated in the computer program AFLSIM,
which can be downloaded from http://www.dpw.wur.nl/biosys/AFLSIM UK.html.
The program can be used to test the significance of AFLP similarities in empirical
data sets with scoring ranges between 34 and 1024 bp (related to the limits of the
Arabidopsis AFLP FLD). The minimum number of AFLP bands per genotype
should be 1, and the maximum equals half the number of band positions available
within the employed scoring range. Band lengths should be input as discrete (i.e.,
integer) values. As an example, Figure 2.3 and Table 2.1 show results for the
widely employed scoring range 50 − 500 bp and an AFLP procedure with A − C
selective nucleotides. Figure 2.3 shows the relationship between the number of
bands scored in each of two genotypes and the expected number of bands shared.
Table 2.1 gives an overview of the test statistics. The expected (dis)similarities
in the table indicate the level of (dis)similarity expected in unrelated genotypes.
Pairwise (dis)similarities exceeding the critical values indicate significant phenetic
or genetic similarity. For the calculations in Table 2.1, we assumed that all band
positions available in the scoring range were present in the data set. As a result, a
relatively large proportion of the band positions showed 0/0 matches (i.e., no band

Figure 2.3: Relationship between number of bands scored in each of two genotypes
and the expected number of bands shared. The lines depict whole numbers of expected
shared bands; the actual numbers are inserted in the lines at the bottom and the right
side of the plot. The plot corresponds to a scoring range of 50-500 bp and an AFLP
procedure with A/C selective nucleotides.
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present in either of the genotypes compared). Because 0/0 matches are counted
as similarity in the simple matching coefficient, this causes a relatively high mini-
mum simple matching value (Table 2.1, bottom, column 10). The number of 0/0
matches does not influence the Dice, Nei and Li, and Jaccard similarity. Conse-
quently, the theoretical minimum value of these coefficients is always 0, regardless
of the number of 0/0 matches in the data set.
The maximum possible (dis)similarity values (given the observed band numbers;
see Table 2.1) illustrates an often overlooked peculiarity of Dice, Jaccard, Nei and
Li, and simple matching pairwise (dis)similarities: they can be unity (or 0 in the
case of Nei and Li distance) only when AFLP band numbers in both genotypes are
identical. Table 2.1 shows that the maximum possible similarity rapidly decreases
with increasing difference in band number between genotypes. Comparison with
the critical values corresponding to the unequal band numbers shows that such
(dis)similarities, although low, may still be significant.

Table 2.1: Test statistics for scoring range 50-500 bp and an AFLP procedure
with A/C selective nucleotides

n1 n2 Exp.bands 95% 99% Exp.Dice 95% 99% Max Exp.Nei-Li 95% 99% Min

10 10 0.39±0.60 1.06 1.89 0.039±0.060 0.106 0.189 1.000 0.961±0.060 0.894 0.811 0.000
10 20 0.78±0.83 1.89 2.81 0.052±0.056 0.126 0.187 0.667 0.948±0.056 0.874 0.813 0.333
10 30 1.16±1.00 2.61 3.56 0.058±0.050 0.131 0.178 0.500 0.942±0.050 0.869 0.822 0.500
10 40 1.54±1.12 3.02 3.99 0.062±0.045 0.121 0.160 0.400 0.938±0.045 0.879 0.840 0.600
10 50 1.91±1.22 3.67 4.72 0.064±0.041 0.122 0.157 0.333 0.936±0.041 0.878 0.843 0.667
10 60 2.27±1.30 4.03 5.09 0.065±0.037 0.115 0.145 0.286 0.935±0.037 0.885 0.855 0.714
10 70 2.63±1.37 4.61 5.70 0.066±0.034 0.115 0.142 0.250 0.934±0.034 0.885 0.858 0.750
10 80 2.98±1.43 4.93 5.97 0.066±0.032 0.110 0.133 0.222 0.934±0.032 0.890 0.867 0.778
10 90 3.32±1.47 5.41 6.53 0.066±0.029 0.108 0.131 0.200 0.934±0.029 0.892 0.869 0.800
10 100 3.66±1.50 5.77 6.84 0.067±0.027 0.105 0.124 0.182 0.933±0.027 0.895 0.876 0.818
10 110 3.98±1.52 6.02 7.10 0.066±0.025 0.100 0.118 0.167 0.934±0.025 0.900 0.882 0.833
10 120 4.31±1.55 6.47 7.55 0.066±0.024 0.100 0.116 0.154 0.934±0.024 0.900 0.884 0.846
20 20 1.55±1.15 3.16 4.21 0.078±0.058 0.158 0.211 1.000 0.922±0.058 0.842 0.789 0.000
20 30 2.31±1.38 4.32 5.55 0.092±0.055 0.173 0.222 0.800 0.908±0.055 0.827 0.778 0.200
20 40 3.06±1.55 5.34 6.65 0.102±0.052 0.178 0.222 0.667 0.898±0.052 0.822 0.778 0.333
20 50 3.80±1.69 6.28 7.67 0.108±0.048 0.179 0.219 0.571 0.892±0.048 0.821 0.781 0.429
20 60 4.52±1.81 7.13 8.62 0.113±0.045 0.178 0.215 0.500 0.887±0.045 0.822 0.785 0.500
20 70 5.23±1.90 7.96 9.49 0.116±0.042 0.177 0.211 0.444 0.884±0.042 0.823 0.789 0.556
20 80 5.93±1.98 8.81 10.30 0.119±0.040 0.176 0.206 0.400 0.881±0.040 0.824 0.794 0.600
20 90 6.61±2.04 9.61 10.99 0.120±0.037 0.175 0.200 0.364 0.880±0.037 0.825 0.800 0.636
20 100 7.28±2.09 10.32 11.81 0.121±0.035 0.172 0.197 0.333 0.879±0.035 0.828 0.803 0.667
20 110 7.93±2.12 10.96 12.53 0.122±0.033 0.169 0.193 0.308 0.878±0.033 0.831 0.807 0.692
20 120 8.56±2.15 11.69 13.11 0.122±0.031 0.167 0.187 0.286 0.878±0.031 0.833 0.813 0.714
30 30 3.45±1.65 5.86 7.20 0.115±0.055 0.195 0.240 1.000 0.885±0.055 0.805 0.760 0.000
30 40 4.56±1.86 7.32 8.80 0.130±0.053 0.209 0.251 0.857 0.870±0.053 0.791 0.749 0.143
30 50 5.66±2.03 8.69 10.22 0.141±0.051 0.217 0.256 0.750 0.859±0.051 0.783 0.744 0.250
30 60 6.73±2.17 9.92 11.62 0.150±0.048 0.220 0.258 0.667 0.850±0.048 0.780 0.742 0.333
30 70 7.79±2.28 11.16 12.86 0.156±0.046 0.223 0.257 0.600 0.844±0.046 0.777 0.743 0.400
30 80 8.83±2.37 12.36 14.04 0.161±0.043 0.225 0.255 0.545 0.839±0.043 0.775 0.745 0.455
30 90 9.85±2.45 13.51 15.25 0.164±0.041 0.225 0.254 0.500 0.836±0.041 0.775 0.746 0.500
30 100 10.84±2.51 14.58 16.36 0.167±0.039 0.224 0.252 0.462 0.833±0.039 0.776 0.748 0.538
30 110 11.82±2.55 15.62 17.41 0.169±0.036 0.223 0.249 0.429 0.831±0.036 0.777 0.751 0.571
30 120 12.77±2.59 16.61 18.41 0.170±0.034 0.221 0.245 0.400 0.830±0.034 0.779 0.755 0.600
40 40 6.04±2.10 9.14 10.79 0.151±0.052 0.228 0.270 1.000 0.849±0.052 0.772 0.730 0.000
40 50 7.49±2.29 10.89 12.68 0.166±0.051 0.242 0.282 0.889 0.834±0.051 0.758 0.718 0.111
40 60 8.91±2.45 12.61 14.43 0.178±0.049 0.252 0.289 0.800 0.822±0.049 0.748 0.711 0.200

(continued)
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Table 2.1 (Continued)

n1 n2 Exp.bands 95% 99% Exp.Dice 95% 99% Max Exp.Nei-Li 95% 99% Min

40 70 10.32±2.58 14.17 16.00 0.188±0.047 0.258 0.291 0.727 0.812±0.047 0.742 0.709 0.273
40 80 11.70±2.69 15.74 17.70 0.195±0.045 0.262 0.295 0.667 0.805±0.045 0.738 0.705 0.333
40 90 13.05±2.77 17.20 19.16 0.201±0.043 0.265 0.295 0.615 0.799±0.043 0.735 0.705 0.385
40 100 14.37±2.84 18.65 20.67 0.205±0.041 0.266 0.295 0.571 0.795±0.041 0.734 0.705 0.429
40 110 15.66±2.90 19.96 21.96 0.209±0.039 0.266 0.293 0.533 0.791±0.039 0.734 0.707 0.467
40 120 16.92±2.93 21.32 23.34 0.211±0.037 0.266 0.292 0.500 0.789±0.037 0.734 0.708 0.500
50 50 9.29±2.50 13.00 14.88 0.186±0.050 0.260 0.298 1.000 0.814±0.050 0.740 0.702 0.000
50 60 11.06±2.67 15.05 17.00 0.201±0.049 0.274 0.309 0.909 0.799±0.049 0.726 0.691 0.091
50 70 12.81±2.82 17.01 19.03 0.214±0.047 0.284 0.317 0.833 0.786±0.047 0.716 0.683 0.167
50 80 14.52±2.94 18.93 21.02 0.223±0.045 0.291 0.323 0.769 0.777±0.045 0.709 0.677 0.231
50 90 16.19±3.04 20.78 22.92 0.231±0.043 0.297 0.327 0.714 0.769±0.043 0.703 0.673 0.286
50 100 17.84±3.12 22.56 24.75 0.238±0.042 0.301 0.330 0.667 0.762±0.042 0.699 0.670 0.333
50 110 19.44±3.18 24.25 26.48 0.243±0.040 0.303 0.331 0.625 0.757±0.040 0.697 0.669 0.375
50 120 21.02±3.23 25.87 28.06 0.247±0.038 0.304 0.330 0.588 0.753±0.038 0.696 0.670 0.412
60 60 13.18±2.87 17.54 19.63 0.220±0.048 0.292 0.327 1.000 0.780±0.048 0.708 0.673 0.000
60 70 15.26±3.02 19.83 21.97 0.235±0.046 0.305 0.338 0.923 0.765±0.046 0.695 0.662 0.077
60 80 17.29±3.15 22.04 24.33 0.247±0.045 0.315 0.348 0.857 0.753±0.045 0.685 0.652 0.143
60 90 19.30±3.26 24.25 26.58 0.257±0.044 0.323 0.354 0.800 0.743±0.044 0.677 0.646 0.200
60 100 21.26±3.35 26.34 28.70 0.266±0.042 0.329 0.359 0.750 0.734±0.042 0.671 0.641 0.250
60 110 23.18±3.41 28.36 30.75 0.273±0.040 0.334 0.362 0.706 0.727±0.040 0.666 0.638 0.294
60 120 25.05±3.47 30.31 32.71 0.278±0.039 0.337 0.363 0.667 0.722±0.039 0.663 0.637 0.333
70 70 17.66±3.19 22.52 24.79 0.252±0.046 0.322 0.354 1.000 0.748±0.046 0.678 0.646 0.000
70 80 20.03±3.33 25.06 27.48 0.267±0.044 0.334 0.366 0.933 0.733±0.044 0.666 0.634 0.067
70 90 22.35±3.44 27.61 29.96 0.279±0.043 0.345 0.375 0.875 0.721±0.043 0.655 0.625 0.125
70 100 24.63±3.54 29.98 32.53 0.290±0.042 0.353 0.383 0.824 0.710±0.042 0.647 0.617 0.176
70 110 26.86±3.62 32.37 34.86 0.298±0.040 0.360 0.387 0.778 0.702±0.040 0.640 0.613 0.222
70 120 29.04±3.67 34.65 37.15 0.306±0.039 0.365 0.391 0.737 0.694±0.039 0.635 0.609 0.263
80 80 22.71±3.47 27.97 30.48 0.284±0.043 0.350 0.381 1.000 0.716±0.043 0.650 0.619 0.000
80 90 25.35±3.60 30.83 33.37 0.298±0.042 0.363 0.393 0.941 0.702±0.042 0.637 0.607 0.059
80 100 27.94±3.71 33.61 36.18 0.310±0.041 0.373 0.402 0.889 0.690±0.041 0.627 0.598 0.111
80 110 30.47±3.79 36.26 38.86 0.321±0.040 0.382 0.409 0.842 0.679±0.040 0.618 0.591 0.158
80 120 32.95±3.86 38.83 41.53 0.330±0.039 0.388 0.415 0.800 0.670±0.039 0.612 0.585 0.200
90 90 28.30±3.73 33.97 36.63 0.314±0.041 0.377 0.407 1.000 0.686±0.041 0.623 0.593 0.000
90 100 31.20±3.84 37.04 39.74 0.328±0.040 0.390 0.418 0.947 0.672±0.040 0.610 0.582 0.053
90 110 34.03±3.94 40.01 42.77 0.340±0.039 0.400 0.428 0.900 0.660±0.039 0.600 0.572 0.100
90 120 36.81±4.01 42.92 45.71 0.351±0.038 0.409 0.435 0.857 0.649±0.038 0.591 0.565 0.143

100 100 34.39±3.96 40.47 43.17 0.344±0.040 0.405 0.432 1.000 0.656±0.040 0.595 0.568 0.000
100 110 37.52±4.05 43.74 46.53 0.357±0.039 0.417 0.443 0.952 0.643±0.039 0.583 0.557 0.048
100 120 40.59±4.13 46.91 49.77 0.369±0.038 0.426 0.452 0.909 0.631±0.038 0.574 0.548 0.091
110 110 40.95±4.16 47.33 50.17 0.372±0.038 0.430 0.456 1.000 0.628±0.038 0.570 0.544 0.000
110 120 44.31±4.24 50.81 53.72 0.385±0.037 0.442 0.467 0.957 0.615±0.037 0.558 0.533 0.043
120 120 47.96±4.33 54.61 57.58 0.400±0.036 0.455 0.480 1.000 0.600±0.036 0.545 0.520 0.000

n1 n2 Exp.Jaccard 95% 99% Max Exp.SM 95% 99% Min Max

10 10 0.021±0.033 0.056 0.105 1.000 0.957±0.003 0.960 0.964 0.956 1.000
10 20 0.028±0.030 0.068 0.104 0.500 0.937±0.004 0.942 0.946 0.933 0.978
10 30 0.031±0.027 0.070 0.098 0.333 0.916±0.004 0.923 0.927 0.911 0.956
10 40 0.032±0.024 0.064 0.087 0.250 0.896±0.005 0.903 0.907 0.889 0.933
10 50 0.033±0.022 0.065 0.085 0.200 0.875±0.005 0.883 0.888 0.867 0.911
10 60 0.034±0.020 0.061 0.078 0.167 0.855±0.006 0.863 0.867 0.845 0.889
10 70 0.034±0.018 0.061 0.077 0.143 0.834±0.006 0.843 0.848 0.823 0.867
10 80 0.035±0.017 0.058 0.071 0.125 0.814±0.006 0.822 0.827 0.800 0.845
10 90 0.035±0.016 0.057 0.070 0.111 0.793±0.007 0.802 0.807 0.778 0.823
10 100 0.035±0.015 0.055 0.066 0.100 0.772±0.007 0.782 0.786 0.756 0.800
10 110 0.035±0.014 0.053 0.063 0.091 0.752±0.007 0.761 0.765 0.734 0.778
10 120 0.034±0.013 0.052 0.062 0.083 0.731±0.007 0.740 0.745 0.712 0.756
20 20 0.041±0.032 0.086 0.118 1.000 0.918±0.005 0.925 0.930 0.911 1.000
20 30 0.049±0.031 0.095 0.125 0.667 0.899±0.006 0.908 0.914 0.889 0.978
20 40 0.055±0.029 0.098 0.125 0.500 0.881±0.007 0.891 0.896 0.867 0.956
20 50 0.058±0.027 0.099 0.123 0.400 0.862±0.008 0.873 0.879 0.845 0.933
20 60 0.061±0.026 0.098 0.121 0.333 0.843±0.008 0.854 0.861 0.823 0.911
20 70 0.062±0.024 0.097 0.118 0.286 0.824±0.008 0.836 0.843 0.800 0.889
20 80 0.063±0.022 0.097 0.115 0.250 0.805±0.009 0.817 0.824 0.778 0.867
20 90 0.064±0.021 0.096 0.111 0.222 0.785±0.009 0.799 0.805 0.756 0.845
20 100 0.065±0.020 0.094 0.109 0.200 0.766±0.009 0.780 0.786 0.734 0.823

(continued)



24 CHAPTER 2. SIGNIFICANCE OF AFLP SIMILARITIES

Table 2.1 (Continued)

n1 n2 Exp.Jaccard 95% 99% Max Exp.SM 95% 99% Min Max

20 110 0.065±0.019 0.092 0.107 0.182 0.747±0.009 0.760 0.767 0.712 0.800
20 120 0.065±0.017 0.091 0.103 0.167 0.728±0.010 0.741 0.748 0.690 0.778
30 30 0.062±0.031 0.108 0.136 1.000 0.882±0.007 0.893 0.899 0.867 1.000
30 40 0.071±0.031 0.117 0.144 0.750 0.865±0.008 0.877 0.884 0.845 0.978
30 50 0.077±0.030 0.122 0.147 0.600 0.848±0.009 0.861 0.868 0.823 0.956
30 60 0.082±0.028 0.124 0.148 0.500 0.830±0.010 0.844 0.852 0.800 0.933
30 70 0.085±0.027 0.126 0.148 0.429 0.813±0.010 0.828 0.835 0.778 0.911
30 80 0.088±0.026 0.127 0.146 0.375 0.795±0.011 0.811 0.818 0.756 0.889
30 90 0.090±0.024 0.127 0.146 0.333 0.778±0.011 0.794 0.802 0.734 0.867
30 100 0.091±0.023 0.126 0.144 0.300 0.760±0.011 0.776 0.784 0.712 0.845
30 110 0.093±0.022 0.126 0.142 0.273 0.742±0.011 0.759 0.767 0.690 0.823
30 120 0.093±0.021 0.125 0.140 0.250 0.724±0.011 0.741 0.749 0.667 0.800
40 40 0.082±0.031 0.129 0.156 1.000 0.849±0.009 0.863 0.870 0.823 1.000
40 50 0.092±0.031 0.138 0.164 0.800 0.834±0.010 0.849 0.857 0.800 0.978
40 60 0.099±0.030 0.144 0.169 0.667 0.818±0.011 0.834 0.842 0.778 0.956
40 70 0.104±0.029 0.148 0.170 0.571 0.802±0.011 0.819 0.827 0.756 0.933
40 80 0.109±0.028 0.151 0.173 0.500 0.786±0.012 0.804 0.812 0.734 0.911
40 90 0.112±0.026 0.152 0.173 0.444 0.770±0.012 0.788 0.797 0.712 0.889
40 100 0.115±0.025 0.154 0.173 0.400 0.753±0.013 0.772 0.781 0.690 0.867
40 110 0.117±0.024 0.153 0.171 0.364 0.737±0.013 0.756 0.765 0.667 0.845
40 120 0.119±0.023 0.154 0.171 0.333 0.720±0.013 0.740 0.749 0.645 0.823
50 50 0.103±0.031 0.149 0.175 1.000 0.819±0.011 0.836 0.844 0.778 1.000
50 60 0.113±0.030 0.159 0.183 0.833 0.805±0.012 0.823 0.831 0.756 0.978
50 70 0.120±0.030 0.165 0.189 0.714 0.791±0.013 0.809 0.818 0.734 0.956
50 80 0.126±0.029 0.170 0.193 0.625 0.776±0.013 0.796 0.805 0.712 0.933
50 90 0.131±0.028 0.174 0.196 0.556 0.761±0.013 0.782 0.791 0.690 0.911
50 100 0.136±0.027 0.177 0.198 0.500 0.747±0.014 0.767 0.777 0.667 0.889
50 110 0.139±0.026 0.179 0.198 0.455 0.731±0.014 0.753 0.763 0.645 0.867
50 120 0.142±0.025 0.180 0.198 0.417 0.716±0.014 0.738 0.748 0.623 0.845
60 60 0.124±0.030 0.171 0.196 1.000 0.792±0.013 0.812 0.821 0.734 1.000
60 70 0.134±0.030 0.180 0.203 0.857 0.779±0.013 0.800 0.809 0.712 0.978
60 80 0.142±0.029 0.187 0.210 0.750 0.766±0.014 0.787 0.797 0.690 0.956
60 90 0.148±0.029 0.193 0.215 0.667 0.753±0.014 0.775 0.785 0.667 0.933
60 100 0.154±0.028 0.197 0.219 0.600 0.739±0.015 0.762 0.772 0.645 0.911
60 110 0.158±0.027 0.200 0.221 0.545 0.726±0.015 0.749 0.759 0.623 0.889
60 120 0.162±0.026 0.202 0.222 0.500 0.712±0.015 0.735 0.746 0.601 0.867
70 70 0.145±0.030 0.192 0.215 1.000 0.768±0.014 0.789 0.799 0.690 1.000
70 80 0.155±0.030 0.201 0.224 0.875 0.756±0.015 0.779 0.789 0.667 0.978
70 90 0.163±0.029 0.209 0.230 0.778 0.744±0.015 0.768 0.778 0.645 0.956
70 100 0.170±0.029 0.214 0.237 0.700 0.732±0.016 0.756 0.767 0.623 0.933
70 110 0.176±0.028 0.219 0.240 0.636 0.720±0.016 0.744 0.755 0.601 0.911
70 120 0.181±0.027 0.223 0.243 0.583 0.707±0.016 0.732 0.743 0.579 0.889
80 80 0.166±0.030 0.212 0.235 1.000 0.746±0.015 0.769 0.780 0.645 1.000
80 90 0.176±0.029 0.222 0.244 0.889 0.735±0.016 0.760 0.771 0.623 0.978
80 100 0.184±0.029 0.230 0.252 0.800 0.725±0.016 0.750 0.761 0.601 0.956
80 110 0.192±0.028 0.236 0.257 0.727 0.714±0.017 0.740 0.751 0.579 0.933
80 120 0.198±0.028 0.241 0.262 0.667 0.703±0.017 0.729 0.741 0.557 0.911
90 90 0.187±0.029 0.233 0.255 1.000 0.726±0.017 0.752 0.763 0.601 1.000
90 100 0.197±0.029 0.242 0.265 0.900 0.717±0.017 0.743 0.755 0.579 0.978
90 110 0.206±0.029 0.250 0.272 0.818 0.707±0.017 0.734 0.746 0.557 0.956
90 120 0.213±0.028 0.257 0.278 0.750 0.698±0.018 0.725 0.737 0.534 0.933

100 100 0.208±0.029 0.254 0.275 1.000 0.709±0.018 0.736 0.748 0.557 1.000
100 110 0.218±0.029 0.263 0.285 0.909 0.701±0.018 0.728 0.741 0.534 0.978
100 120 0.227±0.028 0.271 0.292 0.833 0.692±0.018 0.720 0.733 0.512 0.956
110 110 0.229±0.029 0.274 0.295 1.000 0.694±0.018 0.722 0.735 0.512 1.000
110 120 0.239±0.028 0.284 0.305 0.917 0.687±0.019 0.715 0.728 0.490 0.978
120 120 0.250±0.028 0.295 0.316 1.000 0.681±0.019 0.710 0.723 0.468 1.000

Table 2.1: Test statistics are based on the Arabidopsis in silico AFLP FLD, for AFLP data
scored between 50 and 500 bp with A/C selective nucleotides. (Top) Columns 1 and 2, band
numbers scored in genotypes to be compared (rounded to tens); column 3, expected number of
nonidentical bands comigrating across genotypes with standard deviation; columns 4 and 5, 95
and 99% critical values for expected number of nonidentical bands comigrating across genotypes;
column 6, expected Dice similarity with standard deviation; columns 7 and 8, 95 and 99% critical
values for expected Dice similarity; column 9, maximum possible Dice similarity; columns 10-
13, same as columns 6-9, for Nei and Li dissimilarity with column 9 the minimum possible
dissimilarity. (Bottom) Columns 3-6, same as columns 6-9, top, for Jaccard similarity; columns
7-11, same as columns 6-9, top, for simple matching similarity (with addition of minimum possible
similarity).
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Nonidentical AFLP fragments comigrating within genotypes: When sim-
ulating band patterns for the probability distribution P , we were surprised by the
high amount of size homoplasy. The number of bands containing multiple frag-
ments was much higher than we intuitively anticipated. However, the phenomenon
that a co-occurrence of events (in this case the appearance of two AFLP fragments
of equal length) is more likely than intuitively expected is well known in statistics
and commonly referred to as the birthday paradox. The paradox is often summa-
rized as follows: in a group of 23 persons, the probability of at least one coinciding
birthday, assuming uniformly distributed birthdays over all 365 days of the year,
is already > 0.5.
Translated to AFLP patterns for a scoring range of, e.g., 50 − 500 bp (451 posi-
tions), this means that only 26 fragments are needed to have a probability > 0.5
that at least one AFLP band contains multiple fragments. In reality, however,
the probability distribution of fragment lengths is highly skewed instead of uni-
form (Figure 2.2), rendering even higher probabilities of fragments with identical
lengths (Munford, 1977).
Analogous to the situation for nonidentical AFLP bands comigrating across geno-
types, the number of nonidentical AFLP fragments comigrating within a genotypes
(e.g., the amount of size homoplasy) depends on the number of bands scored, the
number of discrete band positions available within the scoring range, and the
AFLP FLD. Table 2.2 illustrates the size homoplasy for a wide series of scoring
ranges and band numbers. The table shows that the amount of size homoplasy
increases with increasing numbers of bands and with decreasing scoring range. In
empirical data sets, the occurrence of multiple fragments in AFLP band has al-
ready been demonstrated for Beta and Glycine max (Hansen et al., 1999; Meksem
et al., 2001).
Weighted similarity coefficients including band position information:
In the previous sections, a procedure was developed to test the significance of
AFLP-based similarities. The procedure can be used to test similarities that were
calculated according to various well-known similarity coefficients. The relation-
ship between band length and band presence is incorporated in the tests using
the Arabidopsis AFLP FLD. However, this relationship is not accounted for in
the similarity coefficients themselves, since all bands are equally weighted in the
existing coefficients.
To make the existing similarity coefficients more informative, we propose an ad-
justment of these coefficients by weighting the bands with the inverse probabilities
of their occurrence in an AFLP profile. The rationale behind this is that long
bands have a smaller probability of occurring than short bands do, and therefore
they have a larger probability of contributing reliable information to a data set.
Consequently, long bands should contribute more to the overall similarity values.
A proper weighting scheme can be derived from the Arabidopsis AFLP FLD. In
the section on Arabidopsis in silico AFLP FLDs, we demonstrated that the Ara-
bidopsis AFLP FLD is a reliable basis for describing the probabilities of occurrence
of AFLP fragments and hence of AFLP bands. Therefore, the inverse probabilities
from the Arabidopsis AFLP FLD are the logical basis for constructing weighted
similarity coefficients.
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The weighted coefficients are constructed in two steps, analogous to the construc-
tion of the unweighted coefficients. In the first step, weighted similarities are
calculated for numbers of bands shared between two genotypes (aw), for num-
bers unique to one of the genotypes (bw and cw), and for band positions that
are not occupied in either of the genotypes (dw). Again, for a given pair of
genotypes, let xi = 0 when no AFLP band is present at position i in geno-
type 1, and xi = 1 when an AFLP band is present at position i in genotype
1. Likewise, yi = 0 or 1 for genotype 2. For a scoring range 1 − N , let si =
1 when a certain band position is scored in a data set, and si = 0 when a
band position is not scored. Then, aw = N

∑N
i=1 waixiyisi/

∑N
i=1 wai, bw =

N
∑N
i=1 wbixi(1 − yi)si/

∑N
i=1 wbi, cw = N

∑N
i=1 wci(1 − xi)yisi/

∑N
i=1 wci, and

dw = N
∑N
i=1 wdi(1 − xi)(1 − yi)si/

∑N
i=1 wdi; with inverse weights w−1

ai = piqi,
w−1
bi = pi(1 − qi), w−1

ci = (1 − pi)qi, and w−1
di = (1 − pi)(1 − qi); with pi the

probability that genotype 1 has a band at position i; and qi the probability
that genotype 2 has a band at position i. The band probabilities are derived
from the fragment probabilities in the Arabidopsis in silico AFLP FLD accord-
ing to pi = 1 − [1 − p(fragment at i)]N1 , and qi = 1 − [1 − p(fragment at i)]N2 ,
where N1 and N2 are the total numbers of fragments in the scoring range in
genotypes 1 and 2, respectively. The number of fragments N for each genotype
depends on the scoring range, the total number of bands within the scoring range,
and the fragment length distribution and was determined by Monte Carlo sim-
ulation as described in Significance tests for pairwise AFLP band similarities.
In the second step, weighted similarity coefficients are calculated according to:
weighted Dice = 2aw/(2aw + bw + cw), weighted Jaccard = aw/(aw + bw + cw),
and weighted simple matching = (aw + dw)/(aw + bw + cw + dw). Weighted Nei
and Li = (1− weighted Dice).
The Arabidopsis sequence as a model system: The test statistics in this
study are based on in silico AFLP FLDs from the Arabidopsis genome sequence.
This sequence is generally considered to be representative of the genome of an-
giosperm species (e.g. Arabidopsis Genome Initiative, 2000; Barnes, 2002), and
therefore the test statistics based on the Arabidopsis genome sequence should be
valid for angiosperms in general.
A limitation of the Arabidopsis sequence is that a significant part is still missing.
According to the Arabidopsis Genome Initiative (2000), ∼ 8.5% of the genome has
not yet been aligned (∼10 of an estimated 125 Mb). This 8.5% mainly consists
of repeat sequences in centromeric and rDNA regions. Genetic mapping studies
in Arabidopsis (e.g. Alonso-Blanco et al., 1998) showed a clustering of AFLP
fragments around the centromeres, which could indicate that the actual percentage
of AFLP fragments missing from the Arabidopsis AFLP FLD is much higher than
the 8.5% of missing sequence. In a recent study, however, Peters et al. (2001) found
that Arabidopsis SacI/MseI in silico AFLP fragments do not cluster around the
centromeres, but are evenly dispersed over the genome. They argue that the
apparent overrepresentation of AFLP fragments in genetic mapping studies must
originate in a higher mutation frequency in the (peri)centromeric regions rather
than in an actual overrepresentation of AFLP fragments. Assuming that the
findings of Peters et al. (2001) are representative for AFLP fragments in general,
the missing 8.5% of repeat regions in the Arabidopsis genome sequence corresponds
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Table 2.2: Numbers of AFLP bands with average numbers of underlying AFLP frag-
ments

Scoring range > 50 Scoring range > 100

Bands 50-400 50-500 50-600 50-700 100-400 100-500 100-600 100-700

10 10.3 10.2 10.2 10.2 10.3 10.2 10.2 10.2
20 21.0 20.9 20.8 20.8 21.0 20.8 20.8 20.7
30 32.2 32.0 31.9 31.8 32.3 31.9 31.8 31.7
40 44.1 43.6 43.4 43.2 44.1 43.5 43.2 43.0
50 56.5 55.7 55.3 55.1 56.6 55.5 55.0 54.7
60 69.6 68.4 67.8 67.5 69.8 68.1 67.4 66.9
70 83.5 81.7 80.9 80.5 83.7 81.4 80.2 79.6
80 98.1 95.7 94.6 93.9 98.5 95.2 93.6 92.8
90 113.6 110.4 108.8 108.0 114.2 109.7 107.6 106.5

100 130.1 125.9 123.8 122.7 131.0 125.0 122.3 120.8
110 147.7 142.1 139.5 138.1 144.0 138.1 135.6 133.8
120 166.4 159.3 156.0 154.2 158.2 153.2 150.7 148.3

Numbers of AFLP bands with average numbers of underlying AFLP fragments, for 12
different numbers of bands, and 8 scoring ranges. Column 1: number of band present
in an AFLP profile. Columns 2-5: AFLP scoring ranges starting with 50 bp fragments.
Columns 6-9: AFLP scoring ranges starting with 100 bp fragments.

to 8.5% of missing AFLP fragments in the Arabidopsis AFLP FLD. These missing
regions contain mainly repeat sequences. Estimating the influence of the missing
repeats on the Arabidopsis AFLP FLD is highly speculative, but one could argue
that their influence on the significance tests may be only limited. Given the fact
that the average size of the individual repeat units is relatively small, the size of
AFLP fragments resulting from restriction sites in the repeat regions will also be
small. The possible underrepresentation of small fragments will mainly influence
the lower part of the Arabidopsis AFLP FLD. In most AFLP studies, these smaller
fragments are discarded. Consequently, they do not influence the results.
Specific features of the Arabidopsis genome that may limit its general applicability
as a model system for angiosperms are its small size (120 Mb) and its relatively
low G + C content (36%). We examined the representativity of the Arabidopsis
sequence using sequences of Oryza sativa L. Apart from sequences of Arabidopsis,
sequences of O. sativa L. subspecies indica (Yu et al., 2002) and japonica (Feng et
al., 2002; Goff et al., 2002; Sasaki et al., 2002) are the only complete angiosperm
sequences presently available. However, at the time of our study the O. sativa
sequences were still very fragmented. We used sequences from chromosomes 3
(43.3% G + C) and 10 (43.6% G + C) of O. sativa subsp. japonica (hereafter,
rice), covering nearly complete chromosomes contained in a limited number of
BAC assemblies. Sequence data were obtained from the web site of The Insti-
tute for Genomic Research at http://www.tigr.org. To generate the rice FLD, we
performed the in silico AFLP as described for Arabidopsis, without selective nu-
cleotides. Vector sequences and sequences of suspect origin were removed from the
BAC assemblies prior to in silico AFLP, using the National Center for Biotech-
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Figure 2.4: Relative frequency distribution of fragments resulting from in silico AFLP
without selective nucleotides on the rice genome sequence (frequencies for each length
class are denotes by dots). (A) Smoothed FLD resulting from in silico AFLP without
selective nucleotides on the rice genome sequence. (B) The smoothed FLD resulting from
in silico AFLP without selective nucleotides on the Arabidopsis genome sequence is given
as a reference. Fragments lengths range from 32 to 1024 bp.

nology Information VecScreen web tool. The probability distribution of the AFLP
fragment lengths was estimated by fitting a cubic smoothing spline as before. The
smoothing spline and the relative frequency distribution of the rice in silico AFLP
fragments are depicted in Figure 2.4. Fragment sizes range from 32 to 1024 bp.
The Arabidopsis FLD without selective nucleotides is included as a reference.
A two-sample Kolmogorov-Smirnov test showed that the rice FLD differs signifi-
cantly from the Arabidopsis FLDs with A/C, T/A, or without selective nucleotides
(P < 0.0001), but not from that with C/G selective nucleotides (P = 0.09). The
most obvious reason for the difference is the high G + C content of the rice se-
quences relative to those of Arabidopsis. As predicted by the theoretical model
of Innan et al. (1999), the higher G + C content in rice yields a more even FLD.
Additionally, there may be other genome differences between rice and Arabidopsis
that influence the AFLP FLD. Most notably, these could be differences related to
the evolutionary distinct position of Poaceae within the angiosperms (e.g. Mon-
tero, Salinas, Matassi, & Bernardi, 1990; Devos, Beales, Nagamura, & Sasaki,
1999; Freeling, 2001). However, the influence of these additional factors cannot
be studied separately from that of G+C content until more evolutionary distinct
genome sequences with similar nucleotide compositions become available.
Comparison of the test statistics for Arabidopsis and rice in the scoring range
50 − 500 bp (supplemental Table 3, available at http://www.dpw.wur.nl/biosys/
AFLSIM UK.html) showed that the expected number of nonidentical bands comi-
grating across genotypes is on average 10% lower for rice. Although the numbers
are in the same order of magnitude, the difference between Arabidopsis and rice



2.4. DISCUSSION 29

illustrates the need for more than one model species. Given the fact that Ara-
bidopsis and rice cover most of the G + C range for angiosperms, together they
probably suffice as model species for the angiosperms in general. Therefore, we
propose that the test statistics based on the Arabidopsis sequence be considered
generally applicable for angiosperms with G+ C contents between ∼ 35 and 40%
G + C, and tests based on the rice sequence be considered generally applicable
for angiosperms with G + C contents between ∼ 40 and 50%. For angiosperms
with unknown G + C content, the test statistcs for the Arabidopsis genome can
be applied as a conservative test. Test statistics based on a more complete rice
genome sequence will be developed at a later stage.

2.4 Discussion

Theoretical and in silico AFLP FLDs were examined as a basis for significance
tests for AFLP similarities. Comparison of the theoretical AFLP FLD of Innan
et al. (1999) with a FLD based on in silico AFLP of the complete Arabidopsis
genome sequence demonstrated that the theoretical distribution is not representa-
tive of that of an actual genome. This is not in accordance with Vekemans et al.
(2002), who concluded that the theoretical distribution of Innan et al. (1999) was
representative of empirical distributions of Phaseolus lunatus and Lolium perenne
in a scoring range between 75 and 450 bp. The difference in conclusions may be
explained by (1) errors in the empirical data sets, resulting from the AFLP proce-
dure (discussed previously), and (2) fragment numbers in the empirical data sets
(801 and 1599, respectively) being too low to yield a representative FLD. The vari-
ation in the FLD resulting from the low numbers of fragments probably obscured
systematic differences between the theoretical and empirical distributions. In this
study, the Arabidopsis in silico AFLP FLDs are based on much larger numbers of
fragments (23,556 between 75 and 450 bp), enabling a more detailed comparison.
This new comparison demonstrated a clear discrepancy between the theoretical
and the in silico distributions, indicating that theoretical distributions based on
Innan et al. (1999) do not adequately describe AFLP FLDs based on an actual
genome.
The discrepancy between the theoretical and the in silico distribution may be
explained by two assumptions made by Innan et al. (1999). The first is that
of a random nucleotide sequence under the Jukes and Cantor (1969) model. In
actual genomes the nucleotides are not randomly distributed, but organized in
distinct patterns of dinucleotides and oligonucleotides (Nussinov, 1981, 1991). At
a larger scale, the genome is organized in isochores, showing large blocks of G+C-
rich sequences alternated by large blocks of more A + T -rich sequences (Salinas,
Matassi, Montera, & Bernardi, 1988; Matassi, Montero, Salinas, & Bernardi, 1989;
Montero et al., 1990). Moreover, the Jukes and Cantor model assumes equal
base frequencies and equal chances on substitution among all nucleotides, while
in reality base frequencies are unequal and substitution rates vary. The second
assumption that may explain the deviation between the theoretical and the in
silico distribution is that of nucleotide changes as the sole cause of changes in
DNA sequence. Under this second assumption, processes such as insertions and
deletions are ignored. Obviously, this is a simplification of the dynamics in actual
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genomes, as was already noted by Innan et al. (1999). Both assumptions introduce
restrictions in the model of Innan et al. (1999) that may be too limiting to allow
for an adequate description of an AFLP FLD.
Our analysis of the Arabidopsiis in silico AFLP FLD demonstrated that the type
of selective nucleotides influences the shape of the distribution. Use of only G +
C nucleotides favors the selection of long fragments over short ones, yielding a
relatively even distribution of fragments over length classes. Use or only A + T
nucleotides favors the selection of short fragments over long ones, giving a more
asymmetrical distribution. The effect probably results from the isochore structure
of the genome in combination with the nucleotide composition of the restriction
enzymes. The enzymes employed in this study are a frequent cutter MseI and a
rare cutter EcoRI. Because MseI cuts are much more frequent than EcoRI cuts, the
average AFLP fragment size will be determined mainly by the frequency of MseI
cuts. The restriction site of MseI contains no G + C nucleotides, and therefore
this enzyme will preferably cut in A + T -rich isochores. Given the preference of
the frequent-cutting MseI enzyme to cut in A + T -rich isochores, and the fact
that the fragment size is inversely proportional to the frequency of cuts, AFLP
fragments resulting from A + T -rich isochores will on average be smaller than
fragments resulting from other parts of the genome. Because these fragments
originate in A + T -rich stretches of the genome, the fragments themselves will
contain relatively high proportions of A + T nucleotides. Inversely, fragments
resulting from G+C-rich isochores will on average be longer and contain relatively
high proportions of G + C nucleotides (the relation between fraction G + C and
fragment length in the Arabidopsis in silico AFLP data is approximately G+C =
0.34379 + 0.00012036 × length). Using T/A selective nucleotides in the AFLP
procedure will favor the shorter A + T -rich sequences over the longer G + C-rich
sequences, yielding an asymmetric AFLP FLD with mainly short sequences. Using
C/G selective nucleotides will favor G + C-rich sequences, yielding a more even
distribution of ALFP fragments over length classes. The FLD resulting from an
AFLP procedure with A/C selective nucleotides did not differ significantly from
the FLD generated without selective nucleotides, illustrating that the selective
nucleotides effect is avoided when mixed A + T/G + C selective nucleotides are
used.
On the basis of the Arabidopsis in silico AFLP FLDs, the numbers of nonidentical
bands comigrating across genotypes were calculated as a basis for significance
tests for AFLP similarities. Table 2.1 shows that the proportion of nonidentical
bands comigrating across genotypes increases with the number of bands scored
per genotype. When 10 bands are scored in each genotype and A/C selective
nucleotides are used, the proportion of comigrating nonidentical bands is ∼ 4%.
For 30 bands, this proportion is ∼ 12%, for 60 bands it is ∼ 22%, for 90 bands it is
∼ 31%, and for 120 bands it is ∼ 40%. The increase results from the fact that the
probability for nonidentical AFLP fragments to comigrate at the same position
increases with increasing numbers of total fragments. Relative to the proportion
of comigrating nonidentical bands for A/C nucleotides, the proportions for T/A
selective nucleotides are somewhat higher (4, 13, 24, 33, and 42%), while the
proportions for C/G nucleotides are somewhat lower (4, 10, 20, 29, and 37%).
However, all are in the same order of magnitude. The differences for the various
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combinations of selective nucleotides probably result from selection bias due to
the isochore structure of the genome and the use of different types of selective
nucleotides, as discussed before.
The high numbers of nonidentical comigrating bands apparent from Table 2.1 and
supplemental Table 3 illustrate that overestimation of phenetic or genetic simi-
larities based on AFLP band patterns is a serious problem when 50 − 100 bands
per genotype are scored, as recommended by Vos et al. (1995). However, even for
lower numbers of bands per genotype, a considerable percentage of comigrating
bands are nonidentical. Therefore, overestimation of similarities based on AFLP
band patterns cannot be completely ruled out by limiting the number of bands
within a scoring range. However, the influence of the overestimation on the final
analyses can be diminished by using corrected similarities, or weighted similarities,
or by removing from the data sets those genotypes without any significant simi-
larity to other genotypes. This article provides the procedures that enable this,
all of which are available in the program AFLSIM. The procedures can be applied
in, e.g., genetic diversity studies or phylogenetic studies, which often include less-
related genotypes as reference groups. For any genotype to be useful as a reference,
at least some genetic similarity with the group under study is required. In many
genetic diversity studies, however, the genetic similarities between the groups un-
der study and the reference group are below the 95% critical values indicated in
our tests. Such similarities, usually in the order of 0.15 or 0.20, are mistakenly
taken to indicate a proper level of similarity for a reference group. To select a
proper reference group, pairwise similarities between genotypes in the reference
group and in the group under study should be tested, and at least some similari-
ties between genotypes of both groups should be significant. Reference genotypes
without significant similarity to the group under study should be discarded prior
to further analysis.
By enabling the detection of unrelated genotypes and by the use of corrected and
weighted similarity values, application of the procedures proposed in this article
will make the analysis of AFLP data sets more informative and more reliable.
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Chapter 3
Fragment length distributions and collision

probabilities for AFLP markers 1

by Gerrit Gort, Wim J.M. Koopman and Alfred Stein

3.1 Summary

AFLP is a DNA fingerprinting technique frequently used in the plant and animal
sciences. A drawback of the technique is the occurrence of multiple DNA frag-
ments of the same length in a single AFLP lane, which we name a collision. In this
paper we quantify the problem. The well-known birthday problem plays a role.
Calculation of collision probabilities requires a fragment length distribution (fld).
We discuss three ways to estimate the fld: based on theoretical considerations,
on in-silico determination using DNA sequence data from Arabidopsis thaliana,
or on direct estimation from AFLP data. In the latter case we use a generalized
linear model with monotone smoothing of the fragment length probabilities. Colli-
sion probabilities are calculated from two perspectives, assuming known fragment
counts and assuming known band counts. We compare results for a number of
fld’s, ranging from uniform to highly skewed. The conclusion is that collisions oc-
cur often, with higher probabilities for higher numbers of bands, for more skewed
distributions and, to a lesser extent, for smaller scoring ranges. For a typical plant
genome an AFLP with 19 bands is likely to contain the first collision. Practical
implications of collisions are discussed. AFLP examples from lettuce and chicory
are used for illustration.

1Published as: G. Gort, W.J.M. Koopman and A. Stein (2006). Fragment length distributions
and collision probabilities for AFLP markers. Biometrics, 62:1107-1115
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3.2 Introduction

AFLP is a DNA fingerprinting technique, developed by Keygene N.V. (Vos et al.,
1995). AFLP fingerprints, also called profiles, are generated in four steps: 1) DNA
is cut into fragments by two restriction enzymes. We focus on the enzymes MseI
and EcoRI. MseI cuts the DNA strand at nucleotide sequence T-TAA, whereas
EcoRI cuts at G-AATTC. 2) Adaptors are ligated to the fragments. 3) Selected
fragments are amplified by the Polymerase Chain Reaction using primers comple-
mentary to the adaptors and restriction sites. The number of amplified fragments
can be limited by using primers with more selective nucleotides. Each additional
selective nucleotide will decrease the number of fragments approximately with a
factor 4. The EcoRI primer is labelled with a radioisotope or fluorophore. 4)
Fragments are separated by length on a gel on capillary electrophoresis system.
The labelled fragments become visible as bands on the gel. A gel contains mul-
tiple lanes and within a lane the DNA fragments from one genome are sorted by
length. Shorter fragments travel further in the gel, and therefore the position of a
band in a lane corresponds to the length of the DNA fragments in the band. The
length of the fragments in a band can be determined by comparing their position
with the position of DNA fragments of known lengths (so-called sizers). Only
fragments within a certain size domain, the scoring range, are observed, e.g. frag-
ments with lengths 100-600 (yielding 501 possible band positions). AFLP bands
are usually scored dominantly, meaning that a band is scored as either present or
absent. From now on we will refer to both the AFLP technique and the AFLP
fingerprint as “AFLP”. It will be clear from the context whether the technique or
the fingerprint is meant.
AFLP’s can be generated for any organism, but the technique is most frequently
used in the plant and animal sciences. It has become popular for a wide range
of purposes, because it combines a high reproducibility with a high information
content. AFLP’s are used for e.g. genome mapping and marker assisted breeding
(M. J. W. Jeuken & Lindhout, 2004), phylogenetic studies (Koopman et al., 2001),
conservation of plant genetic resources (McGregor, van Treuren, Hoekstra, & van
Hintum, 2002) and identification of cultivars (Imazio et al., 2002).
Besides the advantages, AFLP’s also have a number of drawbacks. The most im-
portant drawback is the possible lack of homology of comigrating bands (Robinson
& Harris, 1999). Homology of comigrating bands means that bands occurring at
the same band position in different lanes indeed represent the same DNA frag-
ment, originating from the same locus. Lack of homology of comigrating bands
will be referred to as band size homoplasy. The effect of band size homoplasy
on measures of association was examined in a previous study (Koopman & Gort,
2004). Closely related to band size homoplasy is comigration of different fragments
of the same length within a single lane. With this type of comigration a band at a
certain position comprises two or more fragments of the same length, originating
from different loci. Comigration of different fragments within a single lane will be
referred to as collision.
Collisions have been demonstrated in empirical data sets, mostly in a qualitative
way. For example, Rouppe van der Voort et al. (1997) reported the recovery of mul-
tiple fragments from single AFLP bands “occasionally”. Mechanda et al. (2004)
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conducted a detailed examination of the sequence identity of two AFLP markers
in Echinacea and found multiple fragments. In a study on sugarbeet Hansen et
al. (1999) reported that 13.2% out of 456 bands likely contained collisions. Hence,
it seems that the occurrence of collisions is a general phenomenon and a possible
serious source of error.
The aim of the present study is to quantify the occurrence of collisions from a
theoretical point of view. A probabilistic description of AFLP is given in section
3.3. Collision probabilities are calculated based on fragment length distributions
(fld’s). In section 3.4 estimators of the fld are derived in three ways: in 3.4.1
from theoretical considerations, in 3.4.2 from sequence data and in 3.4.3 from
empirical AFLP data. In section 3.5 the theory needed for the calculation of
collision probabilities is described from two perspectives: in 3.5.1 from that of
known fragment counts and in 3.5.2 (more realistically) from that of known band
counts. Results for four different fld’s are compared in section 3.6. In section 3.7
an example of AFLP data from a study on species relationships in lettuce and
chicory (Koopman et al., 2001) is analysed. Results and biological implications of
our findings are discussed in section 3.8.

3.3 Probabilistic description of AFLP

3.3.1 Basic assumptions, notation and probability model

We treat AFLP as a random sampling procedure of DNA fragments from a genome.
Let m be the sample size, i.e. the number of amplified fragments. Since m is small
compared to the total number of possible fragments in the genome, we treat the
procedure as sampling with replacement.
A first representation of AFLP data is as fragment lengths l1, l2, . . . , lm. We as-
sume that the lengths li are i.i.d. variables from a discrete fld F (i = 1, . . . ,m).
Let N be the number of band positions in the AFLP. A typical value of N is in
the range 400-600. A value of N = 501 could arise e.g. when the scoring range is
100-600, or 50-550. We denote the lengths as 1, 2, . . . , N . Length 1 is the minimum
length that can be scored on the gel. Denote with pj = P (l = j) (j = 1, . . . , N)
the probability that a randomly drawn fragment has length l equal to j. Clearly,∑N
j=1 pj = 1. Notice that m and li are not directly observable and that not all li

need to be different.
A second representation of AFLP data is as counts. Let kj be the count of frag-
ments of length j. Then, given m, the vector k = (k1, .., kN )′ has a multinomial
distribution Multinom(m,F ). The kj ’s are not directly observable.
We do observe bands at specific positions. We represent a band at position j
(j = 1, . . . , N) as a binary variable yj : yj = 0 if the jth position does not contain
a band and yj = 1 otherwise. Define the band probabilities Pj = P (yj = 1).
Then yj ∼ Bernoulli(Pj). We assume that the yj ’s are independent, which seems
reasonable if AFLP is treated as a random sampling procedure of fragments with
replacement. The yj ’s need not be identically distributed however, since Pj ’s
generally are not the same for different j’s. Notice that yj = 1 means that at least
1 fragment of length j was formed. Therefore, the events {yj = 1} and {kj ≥ 1}
coincide.
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Fragment length probabilities pj and band probabilities Pj have the following
relationship:

Pj = 1− (1− pj)m (3.1)

because the probability of not finding a band at position j is the probability of no
fragments at all of length j in a random sample of size m.
Let n be the number of bands in a lane, so n =

∑N
j=1 yj . The number of collisions

z = m−n. Notice that z has range 0 (no collisions) to m−1 (all fragments equally
long).

3.3.2 Occupancy and birthday problems for AFLP

The situation here described is well known in the field of Probability Theory.
The number of bands n, given N , m and a uniform fld F , has an occupancy
distribution (see Johnson, Kotz, & Kemp, 1992). The probability that n < m,
i.e. the number of bands smaller than the number of fragments or at least one
collision, is the probability of interest in the birthday problem (see e.g. Feller,
1968). The birthday problem, explained in AFLP terminology, states that the
smallest number of fragments needed to have a collision probability of at least 1

2
equals only m = 23 for an AFLP with N = 365 and a uniform fld FU . A more
realistic N = 500 results in m = 27.
The fld in AFLP’s, however, is not uniform, but highly skewed (Koopman &
Gort, 2004). The situation with a non-uniform F is called a generalized birthday
problem, which is a recurrent topic of interest in probability theory, see e.g. Holst
(1995) and Henze (1998). The probability of at least one collision will be at least
as large as in the uniform case, as shown by Munford (1977). The distribution of
n given N , m and a general fld F is called a generalized occupancy distribution
(Chakraborty, 1993).

3.4 Fragment Length Distributions

Calculation of collision probabilities requires an estimate of the fld F . We obtain
estimators in three different ways:

1. Use intrinsic properties of the AFLP procedure and simple assumptions about
nucleotides to arrive at a theoretical (non-data driven) estimator FT of F .

2. Use sequence data and simulation of the AFLP procedure to arrive at an “in-
silico” estimator FS of F .

3. Use empirical AFLP data to obtain an estimator FA of F .

Estimation procedures 1 and a simpler version of 2 are described in Koopman and
Gort (2004). We give an outline here, as they are at the basis of the present study.
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3.4.1 Fld from theoretical assumptions

Innan et al. (1999) derived FT based on theoretical considerations, assuming equal
relative frequencies of the nucleotides pA = pC = pG = pT = 1

4 , which are constant
across the genome and random nucleotide order. They find that

pj =
f (j−1)(1− f)

1− fN
(3.2)

where f = (1− pApApT pT )(1− pGpApApT pT pC) = (1− 1
4

4)(1− 1
4

6) = 0.99585; f
is the probability that, walking along the DNA strand, no restriction site for MseI
or for EcoRI is found at the next nucleotide. The probabilities described by (3.2)
form a truncated geometrical distribution. Truncation occurs, since no fragments
longer than N are observable on the gel. We name the fld obtained in this way
FT1 .
Innan et al. (1999) assume equal relative frequencies of nucleotides. In real
genomes however, the relative frequencies of A+T and G+C may be different,
depending on the organism. The majority of plants have relative frequencies of
G+C ranging from 0.35 to 0.50 (see e.g. Marie & Brown, 1993). E.g. the plant
Arabidopsis thaliana has a GC content of 36%, resulting in f = 0.98918. We name
the resulting fld FT2 . FT1 and FT2 are shown in figure 3.1. Lower GC content
will generally result in smaller fragments. This effect is caused mainly by the use
of restriction enzyme MseI, which will find more restriction sites, and therefore
shorter fragment lengths, in GC-poor genomes.

3.4.2 Fld from sequence data

A second way of estimating the fld of a genome is to use available sequence data
of a related organism and simulate the AFLP procedure using computer software.
We used SAS (version 8.0) to this end. This “in silico” approach was applied to
Arabidopsis thaliana, the entire genome sequence of which is available at The In-
stitute for Genomic Research (TIGR) at http://www.tigr.org. Steps 1 and 2 of the
AFLP procedure (restriction and adaptor ligation) were applied to the Arabidop-
sis genome. Only fragments with at least one EcoRI site were selected, rendering
fragments containing numbers of nucleotides in the range 32-1024. In figure 3.1
the relative frequencies (left axis) and counts (right axis) for fragments with 51-
700 nucleotides (lengths coded as 1-650) are shown, together with a histogram
smoother FS as estimator of the fld F . The histogram smoother comprises a gen-
eralized linear model (McCullagh & Nelder, 1989) using the Poisson distribution
and log link for the counts and P-splines (Eilers & Marx, 1996). The penalty
used in the P-splines was chosen at eyesight to arrive at a smooth fld. The ef-
fective dimension of the fit was about 6, with a residual Pearson’s X2 of 1150
on 644 df. This indicates that there is some overdispersion compared to Poisson
variation. Investigation into the causes of the overdispersion revealed that some
counts were extraordinary high and resulted often from centromeric regions of A.
thaliana-chromosomes. We ignore the observed overdispersion, since it does not
have a large impact on the estimate of the smooth fld FS .
Comparison of the fld’s FT1 , FT2 and FS in figure 3.1 shows that FS favors larger
fragments than FT2 , but smaller fragments than FT1 . An obvious reason for the
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discrepancy between FS and FT2 (and FT1) is violation of underlying assumptions
of FT , like local variation in GC-content across the genome and non-randomness
of the nucleotide order. On the other hand, FS might be faulty as well, because we
left out the third step of the AFLP procedure, which is the selective amplification
using primers. If the nucleotide order is not random, the selection by a primer
may disturb the original fld.
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Figure 3.1: AFLP Fragment length distributions for A. thaliana. In-silico
estimate FS compared to theoretical estimates FT2 and FT1 based on 36%
and 50% GC content

3.4.3 Fld from empirical AFLP data

Different species will generally have different fld’s, depending e.g. on the GC
content. Therefore, working with an estimate based on a possibly not too related
species, e.g. the one from A. thaliana, is an oversimplification. Since sequence
data are available for only a limited number of species, it is desirable to estimate
F directly from the AFLP.
As described in section 3.3.1, AFLP data can be represented as a binary vector
y = (y1, . . . , yN ) with yj ∼ Bernoulli(Pj). From (3.1) it can be seen that

log(−log(1−Pj)) = log(−log((1− pj)m) = log(m) + log(−log(1− pj)). (3.3)

This suggests a generalized linear model for the binary vector y with complemen-
tary log-log (cll) link function and linear predictor ηj = cll(Pj) = log(m)+cll(pj).
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Without restrictions this model is not useful, as we have as many parameters as bi-
nary observations. Therefore, we force the linear predictor ηj to change smoothly
with the fragment length j. As in section 3.4.2 we use the P-spline approach. Mo-
tivated by the general shape of the fld’s FT1 , FT2 and FS , we enforce monotonicity
of the smooth function, using an extra penalty (Bollaerts, Eilers, & van Mechelen,
2006). As result linear predictions η̂j are obtained.
Rewriting the systematic part of the model into cll(pj) = cll(Pj) − log(m) and
noting that

∑N
j=1 pj = 1 we arrive at

N∑
j=1

1− (e1/m)−e
ηj = 1, (3.4)

from which, for the linear predictions η̂j , m may be solved (e.g. using Newton-
Raphson), rendering estimator m̂. The resulting estimator FA1 of F is given by

p̂j = 1− e−e
η̂j−log(m̂)

. (3.5)

A simpler route to estimator FA2 is as follows. For small pj (in the paper all
pj < 0.011), −log(1 − pj) ≈ pj , so that (3.3) can be rewritten as ηj = log(m) +
log(−log(1 − pj)) ≈ log(m) + log(pj) = log(mpj). Therefore eηj ≈ mpj and∑N
j=1 e

ηj = m
∑N
j=1 pj = m. The estimator FA2 is given by

p̂j = eη̂j/

N∑
i=1

eη̂i . (3.6)

Note that the same results follow by considering the unobserved fragment counts
kj , Poisson(λj) distributed with expected counts λj and a log link function. Since
Pj = P (kj > 0) = 1−P (kj = 0) = 1− e−λj , it follows that ηj = cll(Pj) = log(λj)
(cf the derivation of the cll link in the dilution assay in McCullagh and Nelder
(1989)). Estimator of pj would be eη̂j/

∑N
i=1 e

η̂i , equal to (3.6).
In a small simulation study with 10 randomly drawn AFLP’s based on A. thaliana’s
FS with m = 50 we found negligible differences between FA1 and FA2 , and no
systematic deviations of the estimates FA1 and FA2 from FS . The estimates for
p1 (for FS p1 = 0.0079) were in the range 0.0056-0.0094, for p650 (= 0.00013) in
the range 0.000032− 0.00025.

3.5 Collisions

In this section we focus on the occurrence of collisions. Since a band of an AFLP
is supposed to represent a single DNA-fragment, the event that no collision occurs
is of special importance. Theory is developed from two perspectives:

1. Fragment counts. The question how many fragments are allowed in order to
have confidence in the absence of collisions has relevance for different aspects
of the AFLP procedure, e.g. for the choice of restriction enzymes and primers,
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and for the number of selective nucleotides. We are interested in the proba-
bility distribution of the collision count, given the fragment count. From this
distribution the probability of no collision given the fragment count P0(m) and
the smallest number of fragments m for which P0(m) < 1

2 are deduced in a
straightforward way. Another quantity of interest is the expected number of
fragments until the first collision occurs.

2. Band counts. In empirical AFLP datasets band counts are observed instead of
fragment counts. Therefore, the probability distribution of the collision count,
given the band count, is of interest. From it the probability of no collision given
the band count P0(n) and the smallest number of bands for which P0(n) < 1

2
can be deduced.

3.5.1 Probability distribution of the number of collisions
given the number of fragments

The required probability distribution is P (z = z0|m = m0) with z0 = 0, . . . ,m0−1,
or written as probabilities for the band count P (n = m0 − z0|m = m0). These
probabilities form an occupancy distribution, as seen in section 3.3.2. The classical
occupancy distribution refers to a situation with equal probabilities (uniform FU ),
for which exact probabilities can be calculated easily. The generalized occupancy
distribution with unequal probabilities is much less tractable.
Chakraborty (1993) derives exact formulae for all factorial moments µ[r] of the
generalized occupancy distribution. Because of computational limitations calcula-
tions in our situation are only feasible for the first 4 factorial moments.
Some specific occupancy probabilities are relatively easy to obtain. Take the prob-
ability of no collision given m: P0(m) = P (z = 0|m). From 3.3.1 we know that
an AFLP with m fragments can be represented as a multinomial vector of counts
k = (k1, . . . , kN ) ∼Multinom(m,F ), for which

P0(m) = P (k1 ≤ 1, k2 ≤ 1, . . . , kN ≤ 1 |
∑
j

kj = m) (3.7)

This is a probability from the multinomial cumulative distribution function (cdf).
For large N straightforward computation of the cdf probabilities is troublesome.
In the literature a number of solutions is suggested. A remarkably good approxi-
mation of the cdf using Edgeworth expansions is given by Levin (1981), who writes
the cdf probability as a product of terms that involves the convolution of N in-
dependent truncated Poisson variables. An improvement of his approximation is
given by Butler and Sutton (1998), employing a saddlepoint approximation. A
recursive calculation scheme resulting in the exact probability (3.7) is given by
Sandell (1991). His approach is only applicable for probabilities that all ki are
less or equal to the same value j, being j = 1 in (3.7). We apply his recursive
algorithm in section 3.6.1.
Calculation of P0(m) for increasing numbers of fragments m solves the generalized
birthday problem. The smallest m for which P0(m) < 1

2 is the required number.
The probability that exactly one collision occurs P (z = 1|m), can be calculated in
the same way. The collision may have occurred at any of the N possible positions,
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so we have to sum N multinomial probabilities P (k1 ≤ 1, . . . , kj = 2, . . . , kN ≤
1 |

∑
j kj = m), each of which may be approximated with a saddlepoint approx-

imation. The situation becomes more difficult for higher values of z. For z = 2
there may be a collision at two different positions, or 2 collisions at a single po-
sition, requiring

(
N
2

)
+ N evaluations of approximated multinomial probabilities.

This number becomes intractable for large numbers of collisions.
Holst (1995) studies, phrased in AFLP terminology, the expected number of frag-
ments until a given number of collisions occurs. Application of his results to the
situation of the first collision gives

E(m) =
∫ ∞

0

e−t
N∏
i=1

(1 + pit) dt (3.8)

which, using the gamma-function Γ (i) =
∫∞

0
e−ttidt = i! can be written as

E(m) = 1+1!
∑
i

pi+2!
∑
i 6=j

pipj+3!
∑
i 6=j 6=k

pipjpk+. . .+N !p1p2 . . . pN−1pN . (3.9)

We developed a special calculation scheme to calculate (3.9).

3.5.2 Probability distribution of the number of collisions
given the number of bands

The required probability distribution equals P (z = z0|n = n0) = P (m = n0 +
z0|n = n0). With Bayes’ rule (and m0 = n0 + z0) we get

P (m = m0|n = n0) =
P (n = n0|m = m0)× P (m = m0)

P (n = n0)
=

=
P (n = n0|m = m0)× P (m = m0)∑
i≥n0

P (n = n0|m = i)× P (m = i)
. (3.10)

The prior distribution of m is unknown, as it depends for instance on the genome
size and the number of selective nucleotides of the primers. If we assume a uniform
distribution of m, which can be only approximately the case, (3.10) simplifies into

P (m = m0|n = n0) =
P (n = n0|m = m0)∑
i≥n0

P (n = n0|m = i)
. (3.11)

The probabilities making up the right hand side of (3.11) stem from the gener-
alized occupancy distribution. Because this distribution is intractable in general
(see 3.5.1), we approximate it and calculate probabilities (3.11) using the ap-
proximating distribution. A promising paper by Kathman and Terrell (2003),
suggesting a Poisson approximation by constrained exponential tilting, did not
give useful results. Instead we use a simple binomial approximation by equating
the first two moments of the distribution of z (see section 3.5.1) and the bino-
mial distribution, resulting in values for the binomial parameters p and (possibly
non-integer) n. This procedure gives acceptable approximations for values of z
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not too far in the tail. As an example take FU with N = 500 and m = 20, giv-
ing first 2 central moments of z 0.375 and 0.357. The approximating binomial
distribution has parameters n = 7.688 and p = 0.0488. Exact probabilities are
P (z = 0) = 0.6804, P (z = 1) = 0.2688, P (z = 2) = 0.04600, whereas the bino-
mial approximation gives resp. 0.6805, 0.2686 and 0.04612. The approximation
deteriorates in the tail: exact P (z = 6) = 3.357× 10−7, P (z = 7) = 6.679× 10−9

and approximated P (z = 6) = 2.354 × 10−7, P (z = 7) = 2.915 × 10−9. Better
approximations, incorporating the information from the higher moments, should
be possible, but for this study the binomial distribution seems good enough for
calculation of expectation and standard deviation of z given n.
Using the same approach we can approximate the probability of no collision given
n P0(n) and find the minimum number of bands n for which P0(n) < 1

2 .

3.6 Results for collision probabilities, comparing
fld’s based on theoretical considerations and
estimated from A. thaliana

In all calculations the fld is assumed to be known. We compare results for different
fld’s: 1)FU as reference, 2) FT1 , 3) FT2 and 4) FS (with scoring range starting at
51). Comparison of the results gives an indication of sensitivity for differences
in fld’s. We use numbers of band positions N = 400, 500 and 600, as these are
common values. Furthermore, results are produced for fragment counts or band
counts 10, 20,. . . , 120.

3.6.1 Probability distribution of the number of collisions
given the number of fragments

Table 3.1 gives expectations and standard deviations of the number of collisions
given the number of fragments and the probabilities of no collision P0(m). The fld
FU gives a lower bound for the expectation and upper bound for P0(m). Observe
that: 1) larger fragment counts lead to more, and more likely collisions; 2) larger
values of N result in only slightly less, and less likely collisions; 3) more skewed fld’s
have more, and more likely collisions. Clearly, fragments from such distributions
tend to concentrate at smaller lengths and therefore have more collisions.
Results for the birthday problem for fragments with N = 500 and FU , FT1 , FT2

and FS are 27, 24, 17 and 20, respectively. So, for a realistic situation (FS and
N = 500) only m = 20 fragments are needed to have a likely collision (P0(m) < 1

2 ).
For N = 500 the expected numbers of fragments until the first collision according
to Holst (1995) for FU , FT1 , FT2 and FS are 28.7, 25.0, 17.8 and 21.0.

3.6.2 Probability distribution of the number of collisions
given the number of bands

Table 3.2 gives expected numbers of collisions, standard deviations and probabil-
ities of no collision given the number of bands P0(n). The values for FU , serving
as lower bounds for expectations, are based on exact occupancy probabilities, the
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N=400 N=500 N=600
m FU FT1 FT2 FS FU FT1 FT2 FS FU FT1 FT2 FS

Expected number of collisions
10 0.11 0.14 0.25 0.19 0.09 0.12 0.24 0.17 0.07 0.11 0.24 0.17
20 0.47 0.57 1.02 0.77 0.38 0.50 1.00 0.72 0.31 0.46 0.99 0.69
30 1.06 1.28 2.27 1.73 0.85 1.13 2.23 1.61 0.71 1.04 2.22 1.54
40 1.89 2.28 3.98 3.05 1.52 2.00 3.91 2.84 1.27 1.84 3.89 2.72
50 2.94 3.54 6.11 4.71 2.37 3.11 6.01 4.39 1.99 2.86 5.98 4.20
60 4.22 5.05 8.63 6.69 3.41 4.45 8.49 6.23 2.86 4.10 8.45 5.98
70 5.71 6.82 11.51 8.97 4.62 6.01 11.33 8.37 3.88 5.54 11.27 8.03
80 7.41 8.82 14.74 11.55 6.00 7.79 14.51 10.77 5.05 7.18 14.44 10.34
90 9.32 11.06 18.29 14.40 7.56 9.77 18.01 13.44 6.36 9.01 17.91 12.90
100 11.42 13.52 22.13 17.50 9.28 11.96 21.80 16.35 7.82 11.03 21.68 15.70
110 13.72 16.19 26.26 20.86 11.17 14.34 25.86 19.50 9.42 13.23 25.73 18.73
120 16.22 19.08 30.64 24.45 13.22 16.91 30.18 22.87 11.16 15.61 30.03 21.97

Standard deviation of number of collisions
10 0.33 0.36 0.48 0.42 0.30 0.34 0.48 0.41 0.27 0.33 0.48 0.40
20 0.66 0.73 0.95 0.84 0.60 0.68 0.94 0.81 0.55 0.66 0.94 0.80
30 0.98 1.07 1.38 1.23 0.89 1.01 1.37 1.20 0.82 0.98 1.37 1.17
40 1.29 1.40 1.77 1.60 1.17 1.33 1.76 1.56 1.08 1.28 1.76 1.53
50 1.58 1.72 2.14 1.94 1.44 1.63 2.13 1.89 1.34 1.58 2.12 1.87
60 1.86 2.02 2.47 2.26 1.71 1.92 2.46 2.21 1.58 1.86 2.46 2.18
70 2.13 2.30 2.77 2.57 1.96 2.20 2.77 2.52 1.82 2.14 2.76 2.49
80 2.39 2.57 3.06 2.85 2.21 2.47 3.05 2.80 2.06 2.40 3.05 2.77
90 2.63 2.82 3.32 3.12 2.44 2.72 3.31 3.07 2.28 2.65 3.31 3.04
100 2.87 3.07 3.56 3.37 2.67 2.96 3.56 3.33 2.51 2.89 3.55 3.30
110 3.09 3.30 3.78 3.60 2.89 3.20 3.78 3.57 2.72 3.13 3.78 3.54
120 3.30 3.52 3.98 3.82 3.10 3.42 3.99 3.80 2.93 3.35 3.99 3.77

Probability of no collision
10 0.89 0.87 0.78 0.83 0.91 0.89 0.78 0.84 0.93 0.90 0.78 0.85
20 0.62 0.56 0.34 0.45 0.68 0.60 0.35 0.47 0.73 0.63 0.35 0.49
30 0.32 0.26 0.084 0.16 0.41 0.31 0.088 0.18 0.48 0.34 0.089 0.20
40 0.13 0.086 0.011 0.035 0.20 0.12 0.012 0.046 0.27 0.14 0.013 0.053
50 0.041 0.021 < 0.001 0.005 0.079 0.035 < 0.001 0.008 0.12 0.046 0.001 0.010
60 0.009 0.004 < 0.001 < 0.001 0.025 0.008 < 0.001 < 0.001 0.047 0.012 < 0.001 0.001

Table 3.1: Expectation and standard deviation of the number of collisions, and proba-
bilities of no collision given the fragment count

others on binomial approximations. In line with the results in 3.6.1 we observe
that: 1) larger band counts lead to more, and more likely collisions; 2) the number
of band positions N has only a mild influence; 3) more skewed fld’s have more,
and more likely collisions.
Comparison of tables 3.1 and 3.2 shows that probabilities of no collision given n
are, obviously, smaller than given m. Differences in expected collision counts are
small for small counts m and n, but huge for larger counts. E.g. for N = 500 and
FS we find for m = 120 23 collisions but for n = 120 47 collisions. Also notice the
much larger standard deviations in the latter table.
Results for the birthday problem for bands with N = 500 and FU , FT1 , FT2 and FS
are 26, 23, 16 and 19 respectively. So, for a realistic situation (FS and N = 500)
only n = 19 bands are needed to have a likely collision (P0(n) < 1

2 ).
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N=400 N=500 N=600
n FU FT1 FT2 FS FU FT1 FT2 FS FU FT1 FT2 FS

Expected number of collisions
10 0.14 0.17 0.32 0.24 0.11 0.15 0.31 0.22 0.09 0.14 0.31 0.21
20 0.54 0.67 1.26 0.93 0.43 0.58 1.24 0.86 0.36 0.53 1.23 0.82
30 1.23 1.51 2.88 2.11 0.97 1.31 2.83 1.94 0.80 1.19 2.81 1.84
40 2.20 2.71 5.27 3.81 1.73 2.35 5.16 3.50 1.43 2.14 5.13 3.33
50 3.48 4.31 8.50 6.08 2.74 3.72 8.32 5.57 2.25 3.38 8.26 5.29
60 5.10 6.32 12.67 8.97 3.98 5.43 12.38 8.19 3.27 4.93 12.29 7.77
70 7.05 8.77 17.89 12.53 5.49 7.51 17.47 11.40 4.50 6.80 17.33 10.79
80 9.38 11.69 24.30 16.81 7.27 9.97 23.69 15.24 5.94 9.01 23.49 14.40
90 12.10 15.12 32.05 21.88 9.34 12.85 31.19 19.76 7.60 11.58 30.90 18.63
100 15.24 19.10 41.30 27.81 11.70 16.15 40.12 25.02 9.49 14.52 39.73 23.53
110 18.82 23.66 52.27 34.69 14.37 19.92 50.67 31.07 11.63 17.87 50.15 29.15
120 22.88 28.86 65.19 42.60 17.38 24.17 63.06 37.97 14.01 21.62 62.36 35.55

Standard deviation of number of collisions
10 0.38 0.42 0.58 0.50 0.34 0.39 0.57 0.48 0.31 0.37 0.57 0.47
20 0.75 0.84 1.18 1.00 0.67 0.78 1.17 0.96 0.61 0.74 1.17 0.94
30 1.14 1.27 1.84 1.54 1.01 1.18 1.82 1.47 0.91 1.13 1.81 1.44
40 1.54 1.73 2.56 2.11 1.35 1.60 2.53 2.02 1.22 1.53 2.52 1.96
50 1.95 2.21 3.35 2.73 1.71 2.04 3.31 2.60 1.55 1.94 3.29 2.52
60 2.38 2.71 4.22 3.38 2.08 2.50 4.16 3.21 1.87 2.37 4.14 3.12
70 2.83 3.24 5.18 4.09 2.47 2.97 5.10 3.87 2.21 2.82 5.08 3.75
80 3.30 3.80 6.24 4.85 2.86 3.47 6.14 4.57 2.56 3.28 6.11 4.42
90 3.79 4.39 7.43 5.67 3.27 3.99 7.30 5.32 2.91 3.76 7.26 5.14
100 4.30 5.00 8.76 6.55 3.69 4.53 8.59 6.13 3.28 4.27 8.53 5.90
110 4.83 5.66 10.25 7.50 4.12 5.11 10.03 6.99 3.65 4.79 9.96 6.71
120 5.39 6.35 11.92 8.54 4.57 5.70 11.64 7.91 4.03 5.34 11.55 7.58

Probability of no collision
10 0.87 0.84 0.73 0.79 0.90 0.86 0.74 0.81 0.91 0.87 0.74 0.81
20 0.59 0.52 0.30 0.41 0.65 0.57 0.31 0.44 0.70 0.59 0.31 0.45
30 0.30 0.23 0.070 0.14 0.39 0.28 0.074 0.16 0.46 0.32 0.075 0.17
40 0.12 0.076 0.009 0.030 0.19 0.11 0.010 0.039 0.25 0.13 0.010 0.046
50 0.036 0.018 < 0.001 0.004 0.071 0.030 < 0.001 0.006 0.11 0.041 < 0.001 0.008
60 0.008 0.003 < 0.001 < 0.001 0.022 0.006 < 0.001 < 0.001 0.043 0.010 < 0.001 0.001

Table 3.2: Approximated expectation and standard deviation of the number of colli-
sions, and probabilities of no collision given the band count

3.7 AFLP examples on lettuce and chicory

In a study on species relationships in lettuce Koopman et al. (2001) generated
AFLP’s (N = 392, shortest fragment length 110) on lettuce and chicory. We
selected 4 species from this study to cover a wide range of band counts: Lactuca
tenerrima with 10 individual plants (n in the range 28 − 33), Cichorium intybus
with 5 plants (n in the range 37 − 40), L. sativa with 11 plants (n in the range
47− 56) and L. tatarica with 12 plants (n in the range 75− 100). Taxonomically
the selected plants are close to A. thaliana: all are angiosperms with GC contents
in the range 36-38%. Therefore, FS is expected to be a reasonable fld. In figure 3.2
the fld’s FA1 estimated from the individual AFLP’s are plotted. FS is plotted as a
reference. The estimated 11 fld’s for L. sativa resemble FS well. There are larger
differences for the estimated fld’s of L. tenerrima (running flatter), L. tatarica
(running flatter) and C. intybus (running steeper). The variability of the fld’s
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Species n FU FT1 FT2 FS FA1

L. tenerrima 28 1.09 (1.07) 1.33 (1.19) 2.51 (1.71) 1.70 (1.37) 1.31 (1.18)
C. intybus 40 2.25 (1.55) 2.75 (1.74) 5.28 (2.56) 3.55 (2.02) 5.18 (2.53)
L. sativa 56 4.51 (2.24) 5.54 (2.53) 10.91 (3.86) 7.18 (2.97) 7.63 (3.08)
L. tatarica 100 15.62 (4.36) 19.43 (5.06) 41.45 (8.76) 25.65 (6.17) 22.33 (5.57)

Table 3.3: Approximated expected number of collisions (s.d.) given the band count for
four AFLP profiles from Lactuca and Cichorium

within a species is comparable to the variability found in a small simulation study
on randomly drawn AFLP’s from FS (see section 3.4.3). This suggests that the
fld is constant for a species and can better be estimated from all available AFLP
information of plants of that species.
For each of the four species used in figure 3.2 we choose the most extreme individual
plant with respect to the number of bands in its AFLP: for L. tenerrima a plant
with 28 bands, for C. intybus a plant with 40 bands, L. sativa a plant with 56
bands and L. tatarica a plant with 100 bands. Next, we calculated the approximate
expectations and standard deviations of the collision count given the band count
for each of the 4 plants, based on the fld’s FU , FT1 , FT2 , FS and FA1 , estimated
from the individual AFLP profiles. The results are given in table 3.3. We expect
collision counts based on FA1 close to FS as motivated above. Note that the effect
of type of fld is relatively mild for e.g. L. tenerrima with only 28 bands (1-2.5
collisions are expected), but large for L. tatarica with 100 bands (19 collisions for
FT1 but 41 for FT2). The results for FA1 are in the range given by FT1 and FT2

and not far from FS .

3.8 Conclusions and discussion

As a basis for the calculation of collision probabilities we examined different esti-
mators of AFLP fld’s: FT1 , FT2 , FS and, if available, FA1 . The uniform FU was
included as a reference. The general shape is similar for all four fld’s. Our findings
confirm the conclusions of Innan et al. (1999) and Vekemans et al. (2002) that 1)
the fld’s are highly asymmetrical, 2) shorter fragments are more abundant than
longer ones, and 3) the fld’s vary with GC content of the genome. For the 0.36
GC content, typical for the A. thaliana genome, FT2 based on Innan et al. (1999)
shows an excess of short fragments compared to the in-silico estimate FS . Esti-
mator FA1 for plants with GC contents not too different from A. thaliana’s gave
results which were comparable to FS , indicating the utility of FS as standard fld
for plants which are related to A. thaliana. The fld’s FT1 and FT2 can be improved
by allowing for dinucleotide frequencies and dependence between the occurrences
of an TTAA- and GAATTC-restriction site. This is a point for further study.
Collision probabilities were calculated following two approaches: given the frag-
ment count and given the band count. In general, more skewed fld’s and higher
numbers of fragments or bands result in more, and more likely collisions. The
number of band positions has only a mild effect (depending on the skewness of
the fld). Focusing on FS with 500 band positions only 20 fragments (19 bands)
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already result in a collision probability above 0.5. The first collision is expected
in AFLP’s with 21 fragments.
The expected number of collisions rapidly increases with the number of fragments
or bands. For 20 bands it is 0.8(±0.5) , so one of the bands is expected to contain
multiple fragments (4%). For 50 bands, 5.5(±2.6) bands are expected to contain
multiple fragments (12%), whereas for 100 bands this increases to 24(±6) (24%).
These results are in line with an empirical study on sugarbeet by Hansen et al.
(1999), who scored 456 bands in 16 AFLP lanes, giving an average of 28.5 bands
per lane. They report that 13.2% of the bands were likely to contain collisions,
whereas our results suggest ≈ 1.8 ± 1.4 collisions, giving a rough upper limit of
16%.
The present study indicates that collisions are a general phenomenon in AFLP’s.
The most important conclusion from our study is that, in order to avoid collisions,
the number of fragments or bands in an AFLP profile must be much lower than
the 50 to 100 originally recommended by Vos et al. (1995). Even band numbers
as low as 20 are no guarantee for the absence of collisions.
Smaller numbers of bands are undesirable in the sense that they reduce the infor-
mation content of the AFLP profile. Therefore it may be worthwhile to examine
in some applications of AFLP, e.g. diversity studies, approaches to optimize the
signal to noise ratio.
An alternative way to increase the information content of AFLP’s is the codom-
inant scoring of bands (Piepho & Koch, 2000). Here our findings have impli-
cations as well. In codominant scoring efforts are made to infer heterozygosity
or homozygosity from the intensity of a band. Higher band intensities can be
explained by collisions as well as by homozygosity (or other disturbing factors
as PCR-effectiveness). Better inference on zygosity may be achieved by inclu-
sion of fragment length information, since shorter fragments are generally more
abundant and will likely show more collisions. In that respect shorter fragments
have lower data quality. Inclusion of fragment length information, either through
weights or by improved co-dominant scores, may result e.g. in better estimation
of heterozygosity, testing of Hardy-Weinberg Equilibrium and mapping of QTL’s.
Papers about the effect of the band position and about codominant scoring are in
preparation.
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Chapter 4
Collision probabilities for AFLP bands, with an

application to simple measures of genetic

similarity1

by Gerrit Gort, Wim J.M. Koopman, Alfred Stein, and Fred van

Eeuwijk

4.1 Summary

AFLP is a frequently used DNA fingerprinting technique that is popular in the
plant sciences. A problem encountered in the interpretation and comparison of
individual plant profiles, consisting of band presence - absence patterns, is that
multiple DNA fragments of the same length can be generated, that eventually
show up as single bands on a gel. The phenomenon of two or more fragments
coinciding in a band within an individual profile is a type of homoplasy, that we
call collision. Homoplasy biases estimates of genetic similarity. In this study, we
show how to calculate collision probabilities for bands as a function of band length,
given the fragment count, the band count, or band lengths. We also determine
probabilities of higher order collisions, and estimate the total number of collisions
for a profile. Since short fragments occur more often, short bands are more likely to
contain collisions. For a typical plant genome and AFLP procedure, the collision
probability for the shortest band is 25 times larger than for the longest. In a
profile with 100 bands a quarter of the bands may contain collisions, concentrated
at the shorter band lengths. All calculations require a careful estimate of the
monotonically decreasing fragment length distribution. Modifications of Dice and
Jaccard coefficients are proposed. The principles are illustrated on data from a
phylogenetic study in lettuce.

1Published as: G. Gort, W.J.M. Koopman, A. Stein, and F.A. van Eeuwijk. Collision prob-
abilities for AFLP bands, with an application to simple measures of genetic similarity (2008).
Journal of Agricultural Biological and Environmental Statistics, 13(2):1-22
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4.2 Introduction

4.2.1 AFLP

Amplified Fragment Length Polymorphism (AFLP) is a DNA fingerprinting tech-
nique, widely used in the plant sciences (e.g. M. R. Jeuken, Van Wijk, Peleman,
& Lindhout, 2001), and to a lesser extent in the animal (e.g. Duim et al., 2001)
and human sciences (e.g. Prochazka et al., 2001). To understand the problem
addressed in this paper, some insight into the molecular principles of AFLP is
needed. In AFLP a sample of DNA fragments from a genome is produced in
four steps. First, the DNA strands are cut into fragments using two restriction
enzymes. Next, adaptors are ligated to the ends of the fragments. The adaptors al-
low primers to attach to the fragments. In the third step a selection of fragments
is amplified using primers with selective nucleotides. The number of selective
nucleotides determines the proportion of fragments to be amplified, each extra
nucleotide roughly yielding a fourfold reduction. In the last step electrophoresis
is used to separate the fragments by length, causing shorter fragments to travel
further within a lane of a gel or capillary system. The amplified fragments are
visualized as bands. The result for a genome is a kind of bar code of bands, called
a profile. For a detailed description of the technique see Vos et al. (1995). Figure
4.1 shows part of an AFLP gel from a phylogenetic study on lettuce by Koopman
et al. (2001), referred to as “the lettuce study”.
The position of a band in a profile depends on the fragment length and is called
band length. Only bands within a certain size domain are scored. In the let-
tuce study, only bands corresponding to fragments with 111-502 basepairs were
taken into consideration. Usually bands are scored as present or absent, so-called
dominant scoring. A profile can then be represented as a binary vector.
AFLP has a high replicability, and is able to produce large numbers of highly poly-
morphic bands (Mueller & LaReesa Wolfenbarger, 1999). However, it has a number
of drawbacks. An important drawback in AFLP is size homoplasy (Robinson &
Harris, 1999): comigrating bands in two different profiles are not necessarily ho-
mologous, that is, two bands with the same length may represent different DNA
fragments, originating from different loci. The problem is well recognized (e.g.
O’Hanlon & Peakall, 2000b). Mechanda et al. (2004) performed an extensive case
study on comigrating bands, sequencing one monomorphic and one polymorphic
band for plants from different taxonomic levels within the genus Echinacea. They
found 59% sequence similarity within the genus for the monomorphic band, and
as low as 1% for the polymorphic band. Althoff et al. (2007) studied homoplasy
by electronically simulating AFLP on genomes from eight organisms, and found
increasing homoplasy for increasing numbers of fragments. Koopman and Gort
(2004) studied the effect of band size homoplasy on measures of similarity.
Another type of size homoplasy is comigration of fragments within a profile. Since
fragments are separated by length, two or more fragments of the same length but
from different loci with different nucleotide composition will appear as a single
band. To discriminate the second type of size homoplasy from the first, we call
the occurrence of multiple different fragments of the same length within a profile
a collision. Hansen et al. (1999) reported in a study on sugar beet that 60 out of
of 456 bands (13%) likely contained collisions. Vekemans et al. (2002) did a more
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Figure 4.1: Part of an AFLP gel from a study on lettuce
and related genera. Each of the 15 profiles represents a
genome. The reference genotype L. sativa “Norden” oc-
curs twice. The numbers behind the species names in-
dicate accession numbers of the Centre for Genetic Re-
sources, The Netherlands. The horizontal line segments
are the AFLP bands with scoring range of 111-502 base
pairs. Fragment lengths for a selection of bands are de-
noted to the right of the gel. The profiles, delimited with
dashed lines, are used in further analysis.



52 CHAPTER 4. COLLISION PROBABILITIES FOR AFLP BANDS

general study, observing a relationship between degree of homoplasy and fragment
size.

4.2.2 Motivating example

In the analysis of AFLP data, collisions and band size homoplasy are largely ig-
nored. Here we focus on one of the applications of AFLP data: the estimation
of genetic similarity between genotypes, e.g. in relationship studies like the let-
tuce study (Koopman et al., 2001), and in essential derivation (Eeuwijk & Law,
2004). In these studies simple pairwise similarity coefficients for binary data serve
as estimators of genetic similarity between two genotypes (Kosman & Leonard,
2005). Usually a number of primer pairs is employed, resulting in multiple gels,
and multiple profiles per genotype. In the lettuce study 95 accessions from 20
species of lettuce and related genera were fingerprinted with two primer combi-
nations. From the binary scores Dice (D) and Jaccard (J) similarity coefficients
were calculated. The coefficients were analysed with cluster analysis and principal
coordinate analysis to study the species relationships.
D and J are defined as follows. For any pair of genotypes, a is the total number
of shared bands from all profiles, b the number of bands occurring in the profiles
of the first, but not of the second genotype, and c the number of bands occurring
in the profiles of the second, but not of the first genotype. D is defined as 2a

2a+b+c .
J = a

a+b+c , and is directly related to D, since J = D/(2 − D). We define the
genetic similarity S between two genotypes as the fraction of the genome that the
two genotypes have in common, assuming for simplicity that the two genomes are
equally sized. Now also a fraction S of the AFLP fragments is expected to be
shared. D is supposed to estimate S, whereas J estimates S/(2 − S). This can
be seen from an example: assume that two individuals share half of their equally
sized genomes, so S = 1

2 . Then also half of the AFLP fragments are expected to be
shared, so in expectation a = b = c, and Dice D = 2a

2a+a+a = 1
2 , whereas Jaccard

J = a
a+a+a = 1

3 . The Dice similarity coefficient has a natural interpretation in
the genetic context, as we define it here, and is therefore to be preferred. In the
following we will consider AFLP profiles generated by a single primer combination.
Note that in most practical studies multiple primer combinations are used, and
the information from the resulting multiple profiles is combined.
To appreciate the possible consequences of ignoring size homoplasy and collision in
studies like the lettuce study, we performed a small simulation study. We sampled
pairs of related profiles for given band counts (range 1-150), and for given genetic
similarities S = 0, 0.25, 0.50, 0.75, and 0.90. Each pair was sampled in two steps.
First, fragments were sampled for the first profile until a given number of bands was
reached. In the second step, each fragment from the first profile had probability
S to occur in the second, and new fragments were added until the given number
of bands was reached for the second profile. Figure 4.2 shows averages of D and
J , calculated from the binary band scores of the simulated pairs of profiles. Both
D and J seriously overestimate the true similarity, with increasing bias for larger
band counts and for smaller similarities. E.g. at true similarity S = 0, the biases
of the average Dice coefficients are 0.18, 0.33, and 0.46 for band counts 50, 100,
and 150 respectively. At true similarity S = 0.50 these values are 0.071, 0.14,
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and 0.20, and at S = 0.90 0.011, 0.022, and 0.032. Biases are caused both by
comigrating fragments between profiles and by collision. In practice band counts
larger than 100 are uncommon.
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Figure 4.2: Average Dice and Jaccard coefficients as a function of
number of bands for simulated AFLP profiles with genetic similarities
0, 0.25, 0.5, 0.75 and 0.9. Fragments are sampled from the fld FS with
scoring range 51-550 (see section 4.3). Horizontal lines indicate the true
genetic similarity. Equal numbers of bands for the pairs of profiles are
taken.

4.2.3 Collisions and band lengths

Gort, Koopman, and Stein (2006) studied the collision problem from a probabilistic
point of view. They estimated the distribution of fragment lengths (fld) in different
ways, based on theoretical considerations, in-silico AFLP on DNA sequence data,
and empirical band data. It was found that shorter fragments occur more often
than longer ones. Based on the fld, they calculated collision probabilities, and
concluded that for plants like lettuce a profile with only 19 bands likely contains
a collision, whereas a quarter of the bands may be collision infested for large band
counts (say 100).
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The present study focuses on the relationship between collision occurrence and
band length. The finding of Vekemans et al. (2002) that shorter bands are more
prone to collisions than longer bands, is elaborated and quantified. For application
of our results we selected a subset of profiles from the lettuce study, to cover a
wide range of band counts: L. tenerrima 9387 with 28 bands, L. serriola 14314
with 45 bands, L. sativa “Norden” with 56 bands, and L. tatarica W9530 with
100 bands. The profiles of L. serriola and L. sativa are visible in figure 4.1.
Section 4.3 contains notation and earlier results. In section 4.4 collision proba-
bilities for single bands are calculated as a function of band length. Calculations
are simplest with known fragment count in a profile (§4.4.1), but in practice only
the band count (§4.4.2), and sometimes the band lengths (§4.4.3) are known, as
in the lettuce study. Higher order collisions are studied in §4.4.4. In section 4.5
the total number of collisions within a profile is estimated, given the band lengths.
The results are applied to arrive at modified Dice and Jaccard coefficients. Notice
that in the estimation of genetic similarity both comigration of fragments between
profiles and collision are important, whereas the main topic of this paper is col-
lision. The results on collision allow us to estimate the extent of size homoplasy.
Section 4.6 contains conclusions and discusses some further topics. Appendix 4.A
describes some collision calculations in more detail.

4.3 Notation, assumptions, and earlier results

The AFLP technique produces profiles, containing bands at approximately discrete
band positions, representing DNA fragments of specific lengths. In the following,
notation for a profile is introduced:

N = total number of observable band lengths, e.g. N = 500 if band lengths
51-550 are observed; the range 51-550 is called the scoring range;

j = index for band length; j = 1, . . . , N ; the minimum observable length lmin,
e.g. 51, is indexed as 1, the maximum lmax(e.g. 550) as N ; a band with length
index j will be referred to as a band with length j;

y = (y1, . . . , yN ) = vector of binary band length scores, with yj = 0 if no band
is present and yj = 1 if a band is present with length j;

n =
∑N
j=1 yj = number of bands.

Not directly observed are the following:

k = (k1, . . . , kN ) with kj = number of fragments of length j; notice that {yj =
0} ⇔ {kj = 0}, i.e. no band of length j means that no fragment of length j
was amplified, and {yj = 1} ⇔ {kj ≥ 1}, i.e. a band of length j means that at
least one fragment of length j was amplified;

m =
∑N
j=1 kj = number of fragments in the profile;

c = m− n = number of collisions.
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In the first step of AFLP, restriction enzymes cut the DNA into fragments. We
call this set of fragments the population of candidate fragments. The lengths of
these candidate fragments form a fragment length distribution (fld). The sampling
of fragments from this population takes place at the third step of the procedure,
when primers select fragments for amplification and visualization. We assume
that the selected fragments are a random sample from the population of candidate
fragments. The sampling of fragment lengths from the fld is treated as sampling
with replacement, since the sample size is small compared to the population size
(see section 4.6). The visualization step of the AFLP procedure also comprises
truncation of the sample, since only fragments with lengths within the scoring
range appear in the profile as bands. The following notation is used:

pj = the probability that a fragment, drawn at random from the population of
candidate fragments, has length index j;

F = (p1, . . . , pN ) = a discrete fld;

bj = P (yj = 1) = band probability for length j; probability that in a sample of
m fragments from fld F a band with length j is observed; notice that 1− bj =
(1− pj)m.

According to Gort et al. (2006), the fld F is monotonically decreasing, so that
smaller fragments occur more often than longer fragments. When the usual re-
striction enzymes MseI and EcoRI are used, the fld mainly depends on the fraction
of GC nucleotides in the genome, as these enzymes cut the DNA at specific AT-
rich restriction sites. Therefore, genomes with a lower GC content will be more
frequently cut than GC rich genomes yielding more short fragments. Results on
collisions for the following estimated fld’s were compared:

FS = fld derived from an in-silico AFLP procedure on the genome sequence
of Arabidopsis thaliana; A. thaliana has a GC-content of 36%, and is thus
representative for plants with GC-content ≈ 36%; ratio p1/p500 ≈ 28;

FT1 = fld derived from theoretical considerations by Innan et al. (1999), assuming
GC-content 50%; flatter than FS with p1/p500 ≈ 8;

FT2 = idem, assuming GC-content 36%; steeper than FS with p1/p500 ≈ 228;

FA = empirical estimate of the fld based on the binary scores y of the profile;

FU = uniform fld; highly unrealistic fld, included as reference, giving lower
bounds on collision probabilities (Munford, 1977).

The fld plays an important role in the estimation of collision probabilities. There-
fore, careful determination of the fld is needed before collision calculations can be
performed. The described estimators of the fld give reasonable options for most
situations. If a priori information on GC-content and sequence data from a re-
lated organism with comparable GC-content are available, an estimator like FS
from an in-silico AFLP approach can be used. Without sequence data but with
GC-information, an estimator like FT can be used. The most general approach
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is to estimate the fld directly from the empirical AFLP data using FA, but band
length information is needed.
Vector k , given the fragment count m and fld F , has a multinomial(m;F ) distri-
bution. The probability of no collision P0|m = P (k1 ≤ 1, . . . , kN ≤ 1 | m) is a
probability from the multinomial cumulative distribution function.
The collision problem, i.e. the case that the band count n is smaller than m,
is known as an occupancy problem in probability theory (Feller, 1968, p. 38).
The distribution of the band count n, given m and F , is a generalized occupancy
distribution (Chakraborty, 1993). It may also be formulated for the number of
collisions c, since P (c = c0|m = m0) = P (n = m0 − c0|m = m0). The generalized
occupancy distribution is generally intractable, but can be approximated by a
binomial distribution using the easily obtained first two moments. In practice not
the fragment count, but the band count is observed. Therefore, the interest is in
P (m|n), not in P (n|m). The former can be calculated by first applying Bayes’
rule, and next approximating the resulting occupancy probabilities.

4.4 Probability of no collision per band

4.4.1 Probability of no collision per band, given the frag-
ment count

Theory

The probability of no collision for a band with length j given the unobservable
fragment count m is

P0|m(j) = P (kj = 1 | m; kj ≥ 1) =
P (kj = 1 | m)

1− P (kj = 0 | m)
. (4.1)

Since kj given m has a Binom(m, pj) distribution, P0|m(j) is the ratio of two

binomial probabilities: P0|m(j) = mpj(1−pj)m−1

1−(1−pj)m , which can be written as

P0|m(j) = m
pj

1− pj
/

bj
1− bj

. (4.2)

We propose to use the ratio Rm of largest over smallest collision probability given
the fragment count m as measure for the effect of band length on collision probabil-
ity. Since the fld’s are monotonically decreasing (pj > pj+1), the largest collision
probability occurs for the smallest fragment. Therefore, the ratio of largest over
smallest collision probability is

Rm =
1− P0|m(1)
1− P0|m(N)

. (4.3)

Results

Figure 4.3 shows P0|m(j) as a function of band length for fragment counts m =
10, 20, . . . , 140 (at N = 500) in subplots 1, 2, 3 and 4 for the four fld’s FU ,
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FT1 , FS , and FT2 . Observe that, for FU , a small fragment will have a collision
probability close to 7% for m = 20, 18% for m = 50, and 35% for m = 100. For
the longest fragments these probabilities drop to approximately 0.3%, 0.7%, and
1.5% respectively. Therefore, longer bands may be considered more reliable.
In table 4.1 Rm is shown for all combinations of fld (FT1 , FS , FT2), N (with values
400, 500, and 600), and fragment count m (with values 20, 50 and 100). Observe
that the effect of the fld is large: at N = 500 and m=50 Rm is 7.7 for FT1 , 25.9
for FS , and 209.3 for FT2 . For m = 20 these values are 7.9, 27.0, and 221.8,
and for m = 100 they are 7.4, 24.1, and 189.1. The fragment count m, although
important for the absolute probabilities of collision, has only a mild influence on
the probability ratio Rm. A higher number of band positions N results in higher
ratios Rm, as might be expected: e.g. for FS and m = 50, for N = 400, 500, and
600 probability ratios of 15.3, 25.9, and 43.3 are found.

N=400 N=500 N=600

FU FT1 FS FT2 FT1 FS FT2 FT1 FS FT2

m = 20 1.0 5.2 16.0 74.7 7.9 27.0 221.8 11.9 45.1 658.4
Rm m = 50 1.0 5.1 15.3 70.5 7.7 25.9 209.3 11.7 43.3 621.4

m = 100 1.0 4.9 14.2 63.7 7.4 24.1 189.1 11.3 40.3 561.4

n = 20 1.0 5.2 15.8 73.9 7.9 26.8 219.2 11.9 44.8 648.3
Rn n = 50 1.0 5.1 15.1 68.8 7.7 25.5 204.2 11.6 42.8 605.6

n = 100 1.0 4.8 13.5 57.9 7.3 23.1 172.3 11.1 38.7 511.9

Table 4.1: Ratio of largest over smallest collision probability, given the fragment count
(Rm) and given the band count (Rn)

4.4.2 Probability of no collision per band, given the band
count

Theory

In practice the number of bands n in a profile is known, not the number of frag-
ments m. Therefore, the probability of no collision for a band with length j, given
n bands in total, is of interest. Since m ≥ n, the collision probabilities will be at
least as large as the values found in section 4.4.1.
The probability of no collision for a band at position j given n bands is

P0|n(j) = P (kj = 1 | n; kj ≥ 1) =
P (kj = 1 | n)

1− P (kj = 0 | n)
. (4.4)

Unlike the situation in section 4.4.1, the probabilities P (kj | n) in the numerator
and denominator of (4.4) are not from a known distribution. They are handled
in the same way: first, condition on the number of fragments, and next, use
Bayes’ rule to switch the order of argument and condition. In the end expressions
containing probabilities from known distributions appear:
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Figure 4.3: Probability of no collision as function of band length, given the fragment
count m (P0|m(j)), given the band count n (P0|n(j)), and given the binary band scores
y (Pi|y (j)) for different fld’s. In the last column AFLP examples from the lettuce study
are examined. In plots 1-4 the numbers 20, 40, . . . , 140 are fragment counts, whereas in
plots 5-8 they are band counts.
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1. Binmpj (k0) = P (kj = k0 | m) is the binomial probability of k0 successes out of
m with success rate pj ;

2. OccmF (n) = P (n | m) is the generalized occupancy probability that n cells are
occupied if m balls are distributed over cells with cell probabilities from fld F .

The resulting probability of no collision is

P0|n(j) =

∑
i≥nOcc

i−1
F−j

(n− 1) Binipj (1)∑
i≥n (OcciF (n)−Occi

F−j
(n) Binipj (0))

(4.5)

where F−j is the rescaled fld F with the jth fragment length omitted. For a
detailed derivation see appendix 4.A.
Calculation of probabilities from the generalized occupancy distribution in (4.20)
is troublesome. The distribution is therefore approximated by a binomial distri-
bution with correct first two moments.
To express the effect of band length, the ratio Rn of largest over smallest collision
probability given the band count is calculated as:

Rn =
1− P0|n(1)
1− P0|n(N)

. (4.6)

Results

In figure 4.3 P0|n(j) is shown in subplots 5, 6, 7 and 8 for the four fld’s, and for
band counts n = 10, 20, . . . , 140 with N = 500. The same conclusions are drawn
as in section 4.4.1, but the collision probabilities are larger. For fld FS a small
band will have a collision probability close to 0.08 with n = 20 bands (was 0.07
for m = 20), 0.21 for n = 50 (was 0.18), and 0.42 for n = 100 (was 0.35). The
probabilities are 0.003, 0.009, and 0.019 for the longest bands, respectively.
Table 4.1 contains the ratio of largest to smallest collision probability Rn for the
four fld’s, N = 400, 500 and 600, and band counts n = 20, 50 and 100. The same
conclusions as in §4.4.1 are drawn. Notice that for fld FS with N = 500 a collision
for the shortest band is close to 25 times as likely as for the longest band. This
number is only mildly influenced by the band count.

4.4.3 Probability of no collision per band, given the band
lengths

Theory

In this section we suppose that the band lengths are known. This information can
be used to get a more refined estimate of the collision probability for a band with
a specific length. The probability of no collision for a band with length j given
the binary band length vector y (with band count n) is

P0|y (j) = P (kj = 1 | y) =
∑
i≥n

P (kj = 1 | y ; m = i) P (m = i | y), (4.7)

by conditioning on the number of fragments. Notice that P0|y (j) must be 0, if
yj = 0 (no band with length j).
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Using Bayes’ rule, P (m = i | y) from (4.7) is written as

P (m = i | y) =
P (y | m = i)× P (m = i)∑
l≥i P (y | m = l)× P (m = l)

. (4.8)

Use Bayes’ rule for the probability P (kj = 1 | y ; m = i) in (4.7) as well:

P (kj = 1 | y ; m = i) =
P (y | kj = 1; m = i) P (kj = 1 | m = i)

P (y | m = i)
. (4.9)

Combining (4.8) and (4.9) gives:

P0|y (j) =
∑
i≥n

P (y | kj = 1;m = i) P (kj = 1 | m = i) P (m = i)∑
l≥i P (y | m = l) P (m = l)

. (4.10)

The probabilities making up the rhs of (4.10) can now be evaluated :

1. P (y | m = l) is a multinomial tail probability (because {yj = 0} ⇔ {kj = 0},
and {yj = 1} ⇔ {kj ≥ 1}, see section 4.3), with l fragment lengths randomly
drawn from the known fld F . This probability can be approximated with high
accuracy with a saddlepoint approximation, as described in Butler and Sutton
(1998).

2. P (y | kj = 1; m = i) is a multinomial tail probability, but now omitting band
length j from y , with i− 1 remaining fragments distributed over N − 1 remain-
ing positions. Again, the probability can be approximated with a saddlepoint
approximation.

3. P (kj = 1 | m = i) is a binomial probability.

4. P (m = i) is a prior distribution of fragment counts. We take the uniform dis-
tribution, although prior information on the number of fragments is available.
In section 4.6 different sources of prior information are described and conse-
quences for straightforward inclusion into an informative prior distribution are
discussed. We conclude that straightforward inclusion of this information into
a highly informative prior distribution may lead to incorrect results.

As before, the ratio Ry of largest over smallest collision probability, now given the
band lengths, expresses the effect of the band length:

Ry =
1− P0|y (jmin)
1− P0|y (jmax)

(4.11)

with jmin the smallest and jmax the largest observed fragment length.

Results

The four selected AFLP profiles from the lettuce study are analysed. FS is a
reasonable fld, since all four species have GC-contents close to 36%. Figure 4.3
shows the probability of no collision for each observed band, as a function of band
length, for the four fld’s in subplots 9, 10, 11 and 12. Notice again the large effect
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of fld, necessitating the determination of a proper fld. The larger the number of
bands, the larger the collision probabilities, as expected. The shortest band of L.
tatarica has a collision probability close to 0.4.
The ratio Ry for the selected AFLP profiles, using fld FS , is 10.0 for L. tenerrima
(jmin = 3, jmax = 359), 10.9 for L. serriola(3, 380), 10.9 for L. sativa (1, 380) and
9.8 for L. tatarica (2, 376). So, the shortest fragments are approximately 10 times
more likely to contain collisions than the longest fragments.

4.4.4 Higher order collisions per band

In the previous subsections the probability of no collision was calculated. If a
collision does occur, it might be a single collision (2 fragments of the same length),
a double collision (3 fragments of the same length), a triple collision (4 fragments of
the same length), or a multiple collision (5 fragments or more of the same length).
With the theory developed in the previous sections, probabilities of specific higher
order collisions can be calculated as well. Again, situations for known fragment
count m, known band count n, or known band lengths y are discriminated. The
collision probabilities are denoted as Pi|m(j), Pi|n(j), and Pi|y (j), with i the index
for the order of the collision, e.g. P2|m(j) is the probability of a second order
collision for a band with length j, given m fragments in the profile. Results are
plotted in figure 4.4 for Pi|m(j) with m = 20, 50, 100, 120 (subplots 1-4), and for
Pi|n(j) with n = 20, 50, 100, 120 (subplots 5-8) for profiles with N = 500 and fld
FS . The collision probability is split into probabilities for single (i = 1), double
(i = 2), triple (i = 3), and multiple (i > 3) collisions. Results for Pi|y (j) for the
AFLP examples on lettuce are given in subplots 9-12, where the vertical black
lines correspond to the observed bands.
Notice from figure 4.4 that the probability of a higher order collision is negligible
for long bands. However, a short band in an AFLP containing a high number of
bands (e.g. n = 120) has a probability of a double or higher order collision close
to 0.2. The shortest bands in the AFLP example on L. tatarica have probabilities
of a single, double, and triple collision close to 0.27, 0.1, and 0.025, respectively.

4.5 Number of collisions in a profile, given the
band lengths

4.5.1 Theory

Whereas in section 4.4 the collision probability for a single band in a profile was
the quantity of interest, now the focus is on the total number of collisions c in a
profile. In Gort et al. (2006) c was estimated, assuming known fragment count m,
and known band count n. In this section the distribution of c is calculated, using
the binary band information y , allowing more refined estimates. The probability
of interest is P (c | y), which can also be written as P (m | y), with m = c + n,
and number of bands n =

∑N
j=1 yj . Straightforward application of Bayes’ theorem
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Figure 4.4: Probability of higher order collisions per band length given the fragment
counts m = 20, 50, 100, 120 (Pi|m(j)), given the band counts n = 20, 50, 100, 120 (Pi|n(j)),
and given the band lengths for four AFLP examples on lettuce (Pi|y (j)), based on fld
FS .
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gives

P (c | y) =
P (y | m)× P (m)∑

i≥n P (y | m = i)× P (m = i)
=

P (y | m)∑
i≥n P (y | m = i)

(4.12)

assuming, as in §4.4.3, that a priori all fragment counts are equally likely. Numer-
ator and denominator of (4.12) are (sums of) multinomial (tail) probabilities. As
in §4.4.3 these probabilities are approximated with a saddlepoint approximation.
As a result the distribution of c is approximated, from which expectation and s.d.
are easily derived.

4.5.2 Results

The profiles on lettuce are, again, analysed. Table 4.2 contains the expectation
and s.d. of the number of collisions. Results for the four fld’s are given, but also for
the empirical fld FA, estimated from the profile itself (see 4.3). The more skewed
distributions result in higher collision counts. FA leads to collision counts which
are in the range given by FT1 and FT2 . The profile for L. tatarica with 100 bands
is likely to contain 23.7 collisions based on FS , whereas the empirical estimate FA
results in 22.2 collisions.

Species n FU FT1 FS FT2 FA

L. tenerrima 28 1.09 (1.07) 1.33 (1.19) 1.48 (1.26) 1.69 (1.36) 1.32 (1.18)

L. serriola 45 2.86 (1.76) 3.81 (2.06) 4.33 (2.22) 5.06 (2.44) 4.29 (2.21)

L. sativa 56 4.51 (2.24) 6.31 (2.71) 7.60 (3.02) 9.41 (3.45) 7.85 (3.08)

L. tatarica 100 15.62 (4.36) 20.51 (5.17) 23.70 (5.70) 28.49 (6.43) 22.19 (5.44)

Table 4.2: Estimated numbers of collisions (s.d.) for examples of AFLP profiles from
Lactuca

4.5.3 Modified Dice and Jaccard coefficients

The theory of section 4.5.1 can be used to arrive at modified Dice and Jaccard
coefficients for estimation of genetic similarity from AFLP profiles. Given are the
profiles from two genotypes with band counts n1 (= a+b) and n2 (= a+c, with a,
b and c defined in §4.2.2). Let n1+2 (= a+ b+ c) be the band count, by combining
the two profiles into a single profile; n12 = n1 + n2 − n1+2 (= a) is the number
of shared bands. Then the Dice coefficient D = 2n12/(n1 + n2), and Jaccard
coefficient J = n12/n1+2.
We propose the modified Dice and Jaccard coefficients Dmod = 2m12/(m1 + m2)
and Jmod = m12/m1+2, with m1 and m2 the estimated fragment counts for the
two profiles, m1+2 the estimated fragment count for the combination of the two
profiles, and m12 = m1 +m2 −m1+2.
Since the calculations using the saddlepoint approximation are very slow, a second
method for estimation of m is proposed, based on the EM-algorithm (Dempster,
Laird, & Rubin, 1977). The EM-algorithm, however, does not give the precision
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of the estimate. For the EM-algorithm we treat the problem as an incomplete
data problem, where the unobserved fragment counts kj are missing. The band
count n is taken as a starting value of m. For the E-step we calculate the expected
conditional log-likelihood ECLL of kj , given yj . Assuming a Poisson distribution
for kj with mean mpj , we arrive at ECLL =

∑
j(κj log(mpj)−mpj), leaving out

terms not depending on m. In this expression

κj = E(kj |yj) =
{

0 if yj = 0
mpj/(1− empj ) if yj = 1

are the pseudodata, updated by filling in the current value of m. The ECLL can
be recognized as a Poisson log-likelihood for κj (besides terms not depending on
m), which in the M-step can be maximised by fitting a generalized linear model for
κj with Poisson distribution, log-link and systematic part of the model log(m) +
log(pj) with offset log(pj) (McCullagh & Nelder, 1989). From the m.l. estimated
intercept log(m), an updated estimate of m is obtained by exponentiation.
A small simulation study (genetic similarity S = 0.5; n = 10, 60, 120; 2000 repli-
cates), using the EM-algorithm for estimation of the expected fragment counts,
showed that the estimators behave nicely: for n = 10 the average Dmod = 0.501 vs
D = 0.516, for n = 60 Dmod = 0.497 vs D = 0.583, and for n = 120 Dmod = 0.498
vs D = 0.661, so the bias seems to be removed completely.
For the selected species L. tenerrima, L. serriola, L. sativa and L. tatarica, we
find the following matrices of pairwise Dice coefficients MD and modified Dice
coefficients MDmod :

MD =


. 0.25 0.19 0.19

0.25 . 0.69 0.28
0.19 0.69 . 0.31
0.19 0.28 0.31 .

 , MDmod =


. 0.15 0.061 0.049

0.15 . 0.64 0.086
0.061 0.64 . 0.090
0.049 0.086 0.090 .

 .

The estimates of genetic similarity based on Dmod are noticeably smaller than
those based on D, as expected. Stronger corrections are found for profiles with
more bands, e.g. the similarity for L. ser. and L. tat. D24 = 0.28 is corrected
into 0.086, whereas for L. ten. and L. ser. D12 = 0.25 changes to 0.15. We see
stronger corrections for profiles with less genetic similarity, e.g. for L. sat. and L.
tat. D34 = 0.31 is modified into 0.090, whereas for L. ser. and L. sat. D23 = 0.69
becomes 0.64. Notice that the order of modified similarities may differ from the
original order, e.g. D12 is the fourth largest, but Dmod,12 is second largest. A
paper on modified similarity coefficients is in preparation.

4.6 Conclusions and discussion

In this paper we studied the relationship between collision probability and band
length in AFLP. The reason that band lengths relate to collision probabilities is
the non-uniformity of the fld. Short fragments are more frequent, and, hence,
short bands are more likely to contain collisions. Collision probabilities for in-
dividual band positions were calculated. Probabilities of higher order collisions
were calculated as well. The total number of fragments or bands has a strong
impact on the absolute values of the collision probabilities. The ratio of largest
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to smallest collision probability over the band positions is mainly governed by the
fld, with higher ratios for more skewed distributions. The expected collision count
in a profile with standard deviation was estimated for a number of examples.
The collision problem has an impact on all uses of AFLP in which bands are
assumed to represent single fragments of DNA. As an example we examined sim-
ple measures for genetic similarity. A small simulation study suggested that the
proposed modified Dice and Jaccard coefficients estimate the genetic similarity
unbiasedly, but more work is needed to study other properties of these estimators.
Based on our present findings a number of suggestions can be made for the practical
use of AFLP.

� It is strongly suggested that in AFLP analyses band lengths are reported as
much as possible, since band lengths contain valuable information about colli-
sion probabilities.

� Researchers should score all bands within a profile, or at least mention how many
bands are present. If bands are ignored (e.g. monomorphic bands, occurring
in all genotypes of the gel) a proper judgement of the extent of the collision
problem is not possible.

� For procedures such as linkage map construction, where the bands are assumed
to represent single fragments, a safe procedure is to use highly selective primers,
aiming at not more than 20 bands per profile. If more bands per profile are pro-
duced, knowledge of the band length allows the researcher to pinpoint possibly
problematic bands.

� Researchers tend to construct profiles with many bands, up to 100 or more.
They should realize that a quarter or more of those bands may contain collisions,
crowded at the shorter band positions.

In the collision calculations given the band count and given the band positions, a
prior distribution of the fragment count is needed. In the calculations we take a
rather naive approach by assuming a uniform prior distribution. Usually, however,
a priori information is available. Some sources of information are related to the
AFLP procedure:

� Restriction enzymes. Two restriction enzymes, usually MseI and EcoRI, are
used to cut the total DNA into fragments. These fragments make up the popu-
lation of candidate fragments. Different restriction enzymes will lead to different
and differently sized populations of candidate fragments.

� Primers. The selective nucleotides of the primers determine the selection of
fragments to be amplified. Each additional nucleotide roughly yields a fourfold
reduction in the number of fragments. One of the primers is labeled, and only
fragments including this primer will be visualized.

� Scoring range. Only bands with lengths in the scoring range are scored. Smaller
scoring ranges lead to less fragments.

� Flaws in DNA amplification. Due to competition in the polymerase chain re-
action during the amplification procedure not all selected fragments may be
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properly amplified. As a result some fragments may remain undetected. This
problem is more serious for larger genomes and for larger fragments.

Other sources of information are related to the genome:

� Genome size. Larger genomes yield larger populations of candidate fragments,
and therefore higher fragment counts.

� Repetitive DNA. If a selected fragment is located within a section of repetitive
DNA, multiple copies of the fragment will occur. Since larger genomes generally
contain more repetitive DNA, it is likely that they also yield larger proportions
of fragments from repetitive stretches. Hence, the number of fragments with
different nucleotide sequences may be lower than projected from the genome
size.

� Zygosity. Self-pollinators like L. sativa are mainly homozygous, but cross-
pollinators like L. tatarica are heterozygous for a large number of loci. Higher
heterozygosity leads to a higher number of different candidate fragments.

Given the above sources of information, the question arises whether it is possible to
use this information to arrive at an informative prior distribution for the number
of fragments. We take L. sativa as an example. It has a genome size of 6 picogram
of DNA (Koopman, 2002), which is about 6 × 109 basepairs (bp; 1 picogram =
0.98× 109 bp, Bennett, Bhandol, and Leitch (2000)). Since it is homozygous, the
relevant amount of DNA is 3 × 109 bp. In the AFLP procedure the restriction
enzymes MseI and EcoRI were used. From an in-silico AFLP procedure on A.
thaliana (Koopman & Gort, 2004, see), we find an average fragment length of 119
bp for all restricted fragments, leading to almost 25 × 106 candidate fragments.
The fragments are of three types: Mse-Mse, Mse-Eco and Eco-Eco. Selection takes
place at different steps: the primers select only 0.02% of the Mse-Eco fragments
and 0.034% of the Eco-Eco fragments, only the Mse-Eco (6.9%) and Eco-Eco
(0.24%) fragments are labelled, and about 50% of fragments fall within the scoring
range. This results in approximately 175 fragments. Notice that the observed
number of bands for L. sativa was 56 (table 4.2), with an estimated number of
fragments equal to 56 + 7.6 = 63.6, based on fld FS and a uniform prior.
To assess the effect of inclusion of a-priori information on the collision count we
performed a small case study, using the AFLP example on L. sativa. If we take
as prior distribution a (discretized) normal distribution with µ = 175 and σ =
50, reflecting roughly the information described above with the high σ indicating
high uncertainty, the collision count becomes 7.9. A highly informative prior
distribution N(175,10) results in 15.3. A prior distribution N(80,15), with mean
closer to the found band count, leads to collision count of 8.2. We conclude that
inclusion of a highly informative prior distribution can have a noticeable effect on
the estimated collision count. Careless application of genome and AFLP procedure
information as described above may lead to erroneous conclusions. Use of the
uniform prior distribution should be adequate for most cases.
Our definition of a collision is the comigration of two or more fragments, origi-
nating from different loci and with different nucleotide compositions. If a diploid
genotype is homozygous for an AFLP fragment, two identical DNA fragments will
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be amplified, and the two fragments will be comigrating. However, we do not call
this a collision. The result would be a band with an intensity that is on average
higher than for a heterozygous genotype. This property is employed in codomi-
nant scoring of AFLPs. In codominant scoring the zygosity of fragments is inferred
from the intensity of the band score (Piepho & Koch, 2000). Collision calculation
and codominant scoring are intertwined if band intensities are studied. A paper
on this topic is in preparation. The same type of problem occurs if a fragment
is sampled from a repetitive stretch of DNA, so that there are multiple identical
copies originating from different loci. We again do not call this collision.
Software in R (R Development Core Team, 2005) for the calculation of the collision
probabilities is available from the authors.
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4.A Appendix: Probability of no collision given
the band count

The required probability is P0|n(j) = P (kj = 1 | n = n0, kj ≥ 1). For clarity, we
write P (kj = 1 | n = n0, kj ≥ 1) instead of P (kj = 1 | n, kj ≥ 1) as we did in
equation 4.4. Work out the conditional probability:

P0|n(j) = P (kj = 1, kj ≥ 1 | n = n0) / P (kj ≥ 1 | n = n0)
= P (kj = 1 | n = n0) / (1− P (kj = 0 | n = n0))
= P1 / (1− P0). (4.13)

The probabilities P1 and P0 of (4.13) are dealt with in the same way by condition-
ing on the number of fragments:

P1 =
∑
i≥n0

P (kj = 1 ,m = i | n = n0)

=
∑
i≥n0

P (kj = 1 | n = n0, m = i) P (m = i | n = n0) (4.14)

Now work out the last two probabilities in (4.14).
The probability P (m = i | n = n0) of (4.14) is the probability of the fragment
count given the band count. In Gort et al. (2006) this probability is approximated,
firstly by application of Bayes’ rule arriving at expression

P (m = i | n = n0) =
P (n = n0 | m = i) P (m = i)∑
l≥n0

P (n = n0 | m = l) P (m = l)
(4.15)

As described in section 4.5 P (n = n0 | m = i) stems from a generalized occupancy
distribution (Chakraborty, 1993), which we approximate by a binomial distribu-
tion with correct first two moments. Since we use the uniform distribution as prior
distribution of m, the probabilities for the fragment lengths cancel out.
Apply Bayes rule to the first probability of (4.14) as well:

P (kj = 1 | n = n0,m = i) =
P (n = n0 | kj = 1,m = i) P (kj = 1 | m = i)

P (n = n0 | m = i)
(4.16)

for which the components can be written as:

1. P (n = n0 | kj = 1, m = i) = P (n′ = n0 − 1 | m = i − 1) because given i
fragments and only one fragment of size j, there remain i − 1 fragments to be
distributed of N −1 positions (leaving out position j) to arrive at n0−1 bands;
this is a probability from a generalized occupancy distribution;

2. P (kj = 1 | m = i) =
(
i
1

)
pj(1− pj)i−1 is an ordinary binomial probability;

3. P (n = n0 | m = i) is a probability from a generalized occupancy distribution.

Because the term P (n = n0 | m = i) vanishes and we again assume that a priori
all fragment counts are equally likely, the result for the numerator of (4.13) is:

P (kj = 1 | n = n0) =

∑
i≥n0

P (n′ = n0 − 1 | m = i− 1) P (kj = 1 | m = i)∑
l≥n0

P (n = n0 | m = l)
(4.17)
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The denominator of (4.13) is handled in the same way as the numerator:

1− P (kj = 0 | n = n0) = 1−
∑
i≥n0

P (kj = 0, m = i | n = n0) =
= 1−

∑
i≥n0

P (kj = 0 | n = n0, m = i) P (m = i | n = n0) (4.18)

where only P (kj = 0 | n = n0, m = i) is slightly different compared to P (kj =
1 | n = n0, m = i) :

P (kj = 0 | n = n0, m = i) =
P (n = n0 | kj = 0, m = i) P (kj = 0 | m = i)

P (n = n0 | m = i)
(4.19)

Now the components are:

1. P (n = n0 | kj = 0, m = i) = P (n′ = n0 | m = i) again leaving out the
j − th category, but now distributing all i fragments over N − 1 remaining po-
sitions to arrive at n0 bands; this is a probability from a generalized occupancy
distribution;

2. P (kj = 0 | m = i) again is a binomial probability;

3. P (n = n0 | m = i) is the same generalized occupancy probability as before.

Piecing all elements together results in:

P0|n(j) =

∑
i≥n0

Occi−1
F−j

(n0 − 1) Binipj (1)∑
i≥n0

(OcciF (n0)−Occi
F−j

(n0) Binipj (0))
(4.20)

where

F−j is the rescaled fld F with the jth fragment length omitted,

Binipj (k0) = P (kj = k0 | i) is the binomial probability of k0 successes out of i
with success rate pj ,

OcciF (n0) = P (n = n0 | i) is the generalized occupancy probability that n0 cells
are occupied if i balls are distributed over cells with cell probabilities from fld
F .
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Chapter 5
Homoplasy corrected estimation of genetic

similarity from AFLP bands, and the effect of the

number of bands on the precision of estimation 1

by Gerrit Gort, Theo van Hintum and Fred A. van Eeuwijk

5.1 Summary

AFLP is a DNA fingerprinting technique, resulting in binary band presence-
absence patterns, called profiles, with known or unknown band positions. We
model AFLP as a sampling procedure of fragments, with lengths sampled from a
distribution. Bands represent fragments of specific lengths. We focus on estimation
of pairwise genetic similarity, defined as average fraction of common fragments,
by AFLP. Usual estimators are Dice (D) or Jaccard coefficients. D overestimates
genetic similarity, since identical bands in profile pairs may correspond to different
fragments (homoplasy). Another complicating factor is the occurrence of different
fragments of equal length within a profile, appearing as a single band, which we
call collision. The bias of D increases with larger numbers of bands, and lower
genetic similarity. We propose two homoplasy- and collision-corrected estimators
of genetic similarity. The first is a modification of D, replacing band counts by
estimated fragment counts. The second is a maximum likelihood estimator, only
applicable if band positions are available. Properties of the estimators are studied
by simulation. Standard errors and confidence intervals for the first are obtained
by bootstrapping, and for the second by likelihood theory. The estimators are
nearly unbiased, and have for most practical cases smaller standard error than
D. The likelihood based estimator generally gives highest precision. The rela-
tionship between fragment counts and precision is studied using simulation. The
usual range of band counts (50-100) appears nearly optimal. The methodology is
illustrated using data from a phylogenetic study on lettuce.

1Published as: Gerrit Gort, Theo van Hintum and Fred van Eeuwijk (2009). Homoplasy
corrected estimation of genetic similarity from AFLP bands, and the effect of the number of
bands on the precision of estimation. Theoretical and Applied Genetics 119:397-416
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5.2 Introduction

AFLP is a DNA fingerprinting technique, that has been employed in many studies
on plants (e.g. Tams, Melchinger, & Bauer, 2005), but also in studies on fungi
(e.g. Mebrate, Dehne, Pillen, & Oerke, 2006), bacteria (e.g. Duim et al., 2001),
and animals (e.g. Foulley et al., 2006). The resulting DNA fingerprints, also called
profiles, are used in a wide spectrum of applications, like QTL studies (e.g. Zhong,
Menge, Temu, Chen, & Yan, 2006), diversity studies (e.g. Berloo, Zhu, et al.,
2008), and optimization of genebank management (e.g. J. Jansen & van Hintum,
2007). The question has been raised whether AFLP will remain useful in the near
future, given the advances in genome sequencing, and new large-scale genotyping
techniques like DArT (Wenzl et al., 2004). Meudt and Clarke (2007) suggest that
fingerprinting techniques in general, and AFLP in particular, will remain valuable,
especially if new analysis methods are developed, which overcome the problems
arising in the analysis of AFLP data.
In this paper we study the estimation of pairwise genetic similarity from dominant
AFLP data. Estimation of similarity may be hampered by errors in, or erroneous
interpretation of the binary band information from the AFLP profiles. As Bonin et
al. (2007) mention, two types of errors prevail in AFLP genotyping: scoring errors
and homoplasy. Many papers study the problem of scoring errors (e.g. parts of
Meudt & Clarke, 2007, and papers cited therein), but here we focus on homoplasy.
Estimation of genetic similarity is biased due to size homoplasy, see figure 5.1 (to
be discussed later in greater detail). Size homoplasy occurs if, for two individuals,
equally sized, but different DNA fragments comigrate in two AFLP lanes, resulting
in identical bands. The two bands are usually considered homologous. Hence,
part of the observed similarity can be attributed to chance. Size homoplasy is
considered to be one of the major problems in the analysis of AFLP data (Meudt &
Clarke, 2007; Robinson & Harris, 1999). Caballero, Quesada, and Rolán-Alvarez
(2008) study the effect of size homoplasy on estimates of genetic diversity and
detection of selective loci. Empirical estimates of the amount of homoplasy can be
found e.g. in O’Hanlon and Peakall (2000b), who report that among congeneric
thistles comigrating fragments showed on average 2.5% size homoplasy, but among
different subtribes up to 100%. Because of this problem, AFLP is commonly
advised to be used only to assess relationships of closely related taxa (Althoff et
al., 2007).
Another problem, related to the size homoplasy mentioned above, is the occurrence
of two or more equally sized, but different fragments within a single lane. As two
equally sized different fragments in two lanes generally comigrate, and are wrongly
interpreted as homologous, they will also comigrate if amplified within a single
lane, colliding in a single band, and wrongly interpreted as single fragment. We
call the comigration of equally sized fragments within a single lane collision. In an
empirical study on sugarbeet, Hansen et al. (1999) quantified the problem. They
found 13.2% of the bands to contain collisions. In an in-silico study of AFLP for
a wide variety of species, Althoff et al. (2007) found fractions of bands containing
collisions up to 49%, depending on the number of bands in a lane. Vekemans et al.
(2002) reported in a Monte Carlo simulation study an average percentage of 30% of
undetectable fragments. Collisions were studied from a probabilistic point of view
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in Gort et al. (2006) and Gort, Koopman, Stein, and van Eeuwijk (2008). Their
theoretical results, which are at the basis of the present paper, are in line with
the empirical results given above. Collisions also affect the estimation of genetic
similarity. Although it is recognized that both size homoplasy and collision may
occur in AFLP, no attempts are usually made to correct for the problems: two
equally sized bands are considered homologous, and a single band is interpreted
as a single fragment. The reasons for this negligence are at least twofold: it is
felt that the problems are minor (in the cases where AFLPs are suggested to be
used), and hardly any methodology exists to correct for it. In Koopman and
Gort (2004) a crude approach was proposed for the calculation of similarities from
AFLP profiles.
In the present paper new estimators of genetic similarity from AFLP bands, cor-
rected for homoplasy and collision, are proposed, one based on modification of the
Dice and Jaccard coefficients, and one based on maximum likelihood. We take the
following steps in the Material and Methods part to arrive at these estimators.
� We first review the AFLP procedure as a sampling method of DNA fragments.
� Next, the procedure and data are described from a modeling point of view,

introducing notation, and a definition of pairwise genetic similarity for binary
AFLP data is given.

� We review some commonly used similarity coefficients.
� We demonstrate, by simulation, that homoplasy and collision may seriously bias

similarity estimates, resulting in figure 5.1.
� A first step towards a solution is to estimate the number of fragments in a lane

from the number of bands. We describe two ways to do this, depending on the
availability of band position information.

� Using estimated fragment counts, modified Dice (and Jaccard) coefficients in
two versions are proposed, depending on availability of band position informa-
tion.

� If band position information is available, a second estimator of genetic similarity
is proposed, based on maximum likelihood (m.l.).

� Standard errors and confidence intervals are obtained, using the bootstrap for
the modified coefficients, and standard likelihood theory for the m.l. estimator.

� Further distributional characteristics of the estimators are studied by simula-
tion. We describe precisely how we sample AFLP profiles.

Using the m.l. estimator and its precision, we next focus on the question how many
bands in a lane should be used to estimate genetic similarity optimally. The theory
is illustrated by a small case study on lettuce, using data from a phylogenetic study
by Koopman et al. (2001). Results of the simulations and the case study are shown
in the Results section. Conclusions are compiled and discussed in the Discussion
section. The paper ends with appendices on bootstrapping and an overview of all
symbols used.
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Figure 5.1: a) Average Dice, and b) average Jaccard similarities as a function of
number of fragments for 100, 000 simulated pairs of profiles with genetic similarities
pgs = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95. Fragments are sampled from fld FS with scoring
range 51− 500. The top axes show the average number of bands on a non-linear scale.

5.3 Material and Methods

AFLP reviewed
To understand the ideas we are proposing, a short review of the AFLP finger-
printing technique is useful. The AFLP technique, developed by Keygene N.V.
(Vos et al., 1995)), can be looked upon as a sampling technique of DNA fragments
from, hopefully, random locations within a genome. To arrive at a sample of DNA
fragments representing an individual genome four steps are taken:

1. The total genomic DNA is cut into fragments by two restriction enzymes, often
MSeI (“frequent cutter”) and EcoRI (“rare cutter”). The result is a soup of
fragments, flanked with EcoRI-EcoRI, EcoRI-MSeI, or MSeI-MSeI sites.

2. Two adaptors, specific for the restriction enzymes, are ligated to the fragments,
allowing primers to adhere in the third step.

3. Two primers, complementary to the two adaptors, with one or more selective
nucleotides select a number of fragments for PCR amplification. In this way
a sample of fragments is drawn. Primers with more selective nucleotides will
select fewer fragments. If the four nucleotides A-C-T-G occur equally often in
the genome, one extra selective nucleotide on e.g. the EcoRI primer will cause
a fourfold reduction in sample size of EcoRI-MSeI fragments, and a sixteenfold
reduction of the EcoRI-EcoRI fragments.

4. The amplified fragments are separated by length in a lane of a gel or capillary
electrophoresis system. Shorter fragments travel further. Usually only frag-
ments with at least one EcoRI primer are labeled, and will become visible as
bands. Only fragments with lengths within a certain scoring range (e.g. 51-500
nucleotides long) are visualized as bands.
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On a single gel multiple individual genomes are fingerprinted, one per lane. The
lengths of the bands are determined by comparison with the position of DNA
fragments of known lengths (sizers) in size ladders. For a complete review of the
AFLP technique see e.g. Mueller and LaReesa Wolfenbarger (1999).

AFLP modeled: single profile
In this section we again step through the AFLP procedure, but now aim to statis-
tically model the procedure and data. For convenience, we compile all introduced
symbols in appendix 2. We describe the procedure for a single lane of a gel. In the
first two steps of the procedure, the total genomic DNA is cut into fragments, and
adaptors are ligated. Only part of these fragments are eligible for visualization:
fragments containing at least one labeled site (e.g. EcoRI site), and within the
used scoring range (e.g. with 51-500 nucleotides) are candidates. We call this
subset the population of fragments Π, containing, say, M fragments. Different
restriction enzymes will result in different populations of fragments. The size and
nucleotide composition of the genome also affect Π.
The length of a fragment is the number of nucleotides, adaptors included. We label
the possible lengths of the fragments in Π with index i, ranging from 1 (referring to
the smallest length in the scoring range) to N (referring to the largest length; e.g.
with scoring range 51-500 N = 450). The probability distribution of the lengths
is called the fragment length distribution fld. With pi the probability that a frag-
ment, randomly drawn from Π, has length i, we can write fld = (p1, p2, . . . , pN );
note that

∑N
i=1 pi = 1. Shorter fragments are more frequent than longer frag-

ments, i.e. the fld is monotonically decreasing and skewed to the right (Gort et
al., 2006). The amount of skewness is mainly determined by the GC content of the
genome, if the frequent cutter MSeI is used. Lower GC content results in shorter
fragments.
We assume the fld is known, or, at least, there is a reliable estimate of it. For all
simulations we use fld FS , estimated from the Arabidopsis thaliana genome based
on in-silico AFLP, as in Gort et al. (2006). This fld is reasonable for genomes
with GC content close to 36%. For the estimation of the fld for other genomes
we refer to the same publication.
In step 3 the primers select a sample of fragments from Π, selecting only those
fragments, which have specific nucleotides next to the restriction sites. This re-
sembles systematic sampling, but with unknown sample size. We treat the lengths
of the sampled fragments as a random sample from fld. Assuming a constant but
unknown sampling probability π for the fragments of Π, the number of fragments
in the sample, called k, has approximately a Poisson distribution with expected
count m = πM .
In step 4 the k fragments are separated by length, and visualized as bands. We
assume that the position of a band within a lane is determined principally by the
fragment length. Hence, a band will occur approximately at one of N discrete
positions within a lane, which we call band lengths. A consequence is that two
different fragments of the same length will occur as a single band.
The end product is a profile, containing bands at discrete positions, which can
be represented by a binary vector y = (y1, y2, . . . , yN ). The binary variable yi
(i = 1, . . . , N) indicates whether a band with length i is present. The number of
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bands in a lane is n =
∑N
i=1 yi. Notice that the number of bands cannot be larger

than the number of fragments (n ≤ k).

AFLP modeled: pairs of profiles and their similarity
Two related individuals share parts of their DNA. As a consequence, they share
part of their two populations of fragments Π1 and Π2, containing M1 and M2

fragments, formed at step 2. This common part is called Πa, and contains Ma

fragments. The complement of Πa within Π1 is called Πb, consisting of Mb frag-
ments present in individual 1, but absent in 2. The complement of Πa within Π2

is called Πc, and consists of Mc fragments, present in 2, but absent in 1. Πb and
Πc are called the populations of unique fragments. Notice that M1 = Ma + Mb,
and M2 = Ma + Mc. All population sizes Ma, Mb, and Mc are unknown. The
fractions of common fragments are F1 = Ma/M1 and F2 = Ma/M2, which need
not be the same, e.g. if the genomes have different sizes. We define the pairwise
genetic similarity pgs of a pair of genotypes as the weighted average of fractions
F1 and F2, with weights proportional to the population sizes:

pgs =
M1

M1 +M2
F1 +

M2

M1 +M2
F2 = w1F1 + w2F2 (5.1)

Notice that pgs can be written as 2Ma/(2Ma +Mb +Mc).
We assume that Πa, Πb, and Πc have the same fragment length distribution fld.
In step 3 samples from fld are taken, resulting in samples sizes of fragments ka, kb,
and kc, approximately Poisson distributed with expected fragment counts ma, mb,
and mc, proportional to Ma, Mb, and Mc. The expected numbers of fragments of
the two profiles are m1 = ma+mb and m2 = ma+mc. The end product after step
4 is a pair of profiles, represented by two binary band vectors y1 = (y11, . . . , yN1),
and y2 = (y12, . . . , yN2), with band counts nj =

∑N
i=1 yij (j = 1, 2).

We use the following notation for band counts:
a = number of shared bands in the two profiles =

∑N
i=1 yi1yi2;

b = number of bands present in the first profile, but absent in the second =∑N
i=1 yi1(1− yi2);

c = number of bands present in the second profile, but absent in the first =∑N
i=1(yi1 − 1)yi2;

d = number of empty positions in both profiles =
∑N
i=1(yi1 − 1)(yi2 − 1).

Hence, a, b, c and d are the number of 1-1, 1-0, 0-1, and 0-0 matches, respectively.
If more than two profiles are compared, d is often defined as the number of 0-0
matches in two lanes, limited to those band lengths with at least one band in one
of the other lanes.

Commonly used similarity coefficients
We now review some commonly used similarity coefficients for binary AFLP data.
From the similarity coefficients, reviewed by Reif, Melchinger, and Frisch (2005),
only the Dice, Jaccard’s, and simple matching coefficient are relevant, because we
treat AFLP as a dominant marker system.
The Dice coefficient (Dice, 1945) D is an estimator of pgs:
D = 2a

2a+b+c = ŵ1F̂1 + ŵ2F̂2 with weights ŵ1 = n1
n1+n2

, ŵ2 = n2
n1+n2

, and F̂1 = a
n1

,
F̂2 = a

n2
. In genetic contexts the Dice similarity is often referred to as the Nei-Li
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similarity (Nei & Li, 1979).
The Jaccard coefficient (Jaccard, 1908) J = a

a+b+c is the fraction of common
bands compared to the total number of different bands for the two profiles. It
is an estimator of Ma/(Ma + Mb + Mc), and not of the genetic similarity, as we
define it. A non-linear relationship exists between J and D: J = D/(2−D). For
example, taking equal band counts in the two profiles: if half of the bands in each
profile is shared, then D = 1/2, and J = 1/3. Examples of applications of Dice
and Jaccard’s coefficients as measures of genetic similarity are Drossou, Katsiotis,
Leggett, Loukas, and Tsakas (2004), and Tams et al. (2005).
The simple matching coefficient (Sneath & Sokal, 1973) measures similarity in-
cluding the 0-0 matches in the profiles as well, counting the 1-1 and 0-0 matches
alike.
To illustrate the differences between the coefficients, take two genotypes with
profiles containing 100 bands each, with N = 450, a = 50, b = 50, c = 50, hence
d = 300. Since half of the bands of each profile is shared, D = 0.5, and J = 0.33,
whereas S = 0.78. Suppose that for the same genotypes a second set of profiles is
made, using primers with more selective nucleotides, and hence smaller samples
of amplified fragments. Assuming a proportional decrease of band counts of 50%
(so a = 25, b = 25, c = 25, and d = 375), we still have D = 0.5, and J = 0.33, but
S = 0.89. Hence, S changes if the band counts decrease proportionally, whereas
D and J remain constant.
Usually more than two genotypes are compared in a study. Often, for S only
the 0-0 matches are counted for the occupied band positions in the whole set
of genotypes. With a proportional decrease of the band counts a, b and c, the
null count d will also decrease, but likely at a different rate. Hence, S will likely
change, whereas D and J remain constant. S can also change if the set of other
genotypes under study is changed. Wong, Forbes, and Smith (2007) supply reasons
in the realm of codominance of AFLP to avoid similarity measures exploiting 0-0
matches. Therefore, S has a number of undesirable properties. Only D is an
estimator of pairwise genetic similarity, as we have defined it.

The problem: homoplasy and collision
To appreciate the possible consequences of homoplasy and collisions in relationship
studies based on AFLP data, we performed a simulation study. We sampled
100,000 pairs of profiles for a range of genetic similarities pgs (=0, 0.1, 0.3, 0.5, 0.7,
0.9, 0.95) and fragment counts m1 = m2(= 1, . . . , 200). The maximum fragment
count m = 200 corresponds to 140 bands, which is about the maximum number
of bands per lane to be found in practice. Each pair was sampled in three steps.
First, a random draw ka from the binomial(m1, pgs) distribution determined the
sample size of fragments from the common part Πa, the remaining kb = m1 − ka
and kc = m2−ka fragments to be sampled from the unique parts Πb and Πc. Next,
ka, kb, and kc lengths were sampled from the fld, and results were combined into
two vectors of length N = 450, containing the counts of lengths 1, . . . , 450 for
the two profiles. In the last step, a pair of binary vectors was created, containing
absence / presence information of at least one fragment of length 1, . . . , 450, and
representing a pair of AFLP profiles. Dice and Jaccard coefficients D and J were
calculated for each pair, and averaged over all pairs to produce Fig. 5.1. The graph
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shows the average D and J as a function of the fragment count. The average band
count is shown at the top axis on a non-linear scale. As an example, profiles with
100 fragments tend to produce approximately 83 bands, hence 17 collisions.
D overestimates the true genetic similarity seriously, increasingly so for larger
fragment or band counts, and for smaller genetic similarities. For example, at
band count 60 the average D has approximate biases 0.015, 0.085, and 0.23 for
pgs = 0.9, 0.5, and 0.0 respectively. At band count 100 the biases are 0.025, 0.14,
and 0.34, respectively. J is for band counts in the range 60, .. ,100 sometimes
lower than the true pgs (if pgs > 0.3), sometimes close to pgs (if pgs ≈ 0.3) and
sometimes higher (if pgs < 0.3).

Estimation of number of fragments
The basic idea in this paper is that, in order to estimate genetic similarity, we
need to know how many fragments from the two profiles are identical, whereas
the profiles indicate how many bands are identical. The first step to solve this
problem is to estimate the expected number of fragments m that gave rise to the
n observed bands in a single profile. The difference between number of fragments
and number of bands is called the collision count.
To estimate m, we discriminate between situations without and with band length
information. Notice that band lengths are not always available, although in prin-
ciple the information can be read from an AFLP gel, if size ladders are used.
The lack of band length information is often based on limitations in the realm of
intellectual property, as commercial players like Keygene N.V. propagate.
In the case of unknown band lengths, the collision count for a given fld is estimated
from the band count, using Bayes’ rule and generalized occupancy distributions,
see Gort et al. (2006). The resulting estimator of the expected number of fragments
m is called m̂L̄.
With known band lengths, the number of collisions can be estimated using Bayes’
rule and approximated multinomial tail probabilities, or applying the EM-algorithm,
as in Gort et al. (2008). In the present paper we report a simpler approach to arrive
at an estimator of m. We propose a generalized linear model (g.l.m.) (McCullagh
& Nelder, 1989) for the binary band scores yi. The scores yi are assumed to be
independent, and Bernoulli(Pi) distributed, with expected score E(yi) = Pi the
probability that a band occurs with length i, if a sample of m fragments has been
drawn from fld = (p1, . . . , pN ). The band probability Pi and fragment probability
pi are related as: (1 − Pi) = (1 − pi)m, because the event “no band of length i”
is equivalent with “none of the m fragments has length i”. This equation can be
transformed into

log(−log(1− Pi)) = log(m) + log(−log(1− pi)), (5.2)

revealing the systematic part of the g.l.m. Hence, we fit a regression model for
the band scores yi, using log(m) as intercept, offset log(−log(1 − pi)), and com-
plementary log-log link. The estimator m̂L of m is obtained by exponentiation of
the estimator of the intercept log(m).
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Modified Dice and Jaccard coefficients using binary AFLP data
Suppose we have two profiles with observed band counts n1 = a+b, and n2 = a+c.
The expected numbers of fragments m1 and m2 are estimated by m̂1 and m̂2

by either of the two estimators from the previous section. The pairwise genetic
similarity to be estimated is pgs = M1

M1+M2
F1 + M2

M1+M2
F2 = w1F1 + w2F2, as in

eq. 5.1. For weights w1 and w2, we have straightforward estimators ŵ1 = m̂1
m̂1+m̂2

,
and ŵ2 = m̂2

m̂1+m̂2
, since expected fragments counts are assumed to be proportional

to population sizes. However, for the fractions common fragments F1 = Ma

M1
and

F2 = Ma

M2
, an estimator m̂a of the number of common fragments ma is needed.

We estimate ma as m̂a = m̂1 + m̂2 − m̂1+2, by analogy with the number of
shared bands a, which can be calculated as a = n1 + n2 − n1+2. In this formula
n1+2 = a + b + c is the total number of different bands, as if combining the two
profiles into a single profile, and counting the bands. In the formula for m̂a, m̂1+2

is the estimated fragment count for the combination of the two profiles. The
rationale of estimator m̂a is the following: m̂1 estimates the number of fragments
from the n1 bands of profile 1, and m̂2 from the n2 bands of profile 2. The sum
m̂1 + m̂2 estimates the total number of fragments in the two lanes. Some of the
fragments are counted twice, as they occur in both profiles. If we overlay profiles 1
and 2, we see what would have happened if we mixed the populations of fragments
for the two genomes, and made a profile for the mixture. Identical fragments in
the two populations, selected for amplification, will appear as a single band now,
and m̂1+2 estimates the total number of fragments in the profile for the mixture,
that is the number of different fragments in the mixture. Then the difference
m̂1 + m̂2− m̂1+2 estimates m̂a, i.e. the number of fragments the two profiles have
in common.
This results in F̂1 = m̂a

m̂1
and F̂2 = m̂a

m̂2
. Estimators of unique fragment counts are

m̂b = m̂1 − m̂a , and m̂c = m̂2 − m̂a. As estimator of genetic similarity pgs we
now propose the modified Dice coefficient

Dmod =
m̂1

m̂1 + m̂2

m̂a

m̂1
+

m̂2

m̂1 + m̂2

m̂a

m̂2
=

2m̂a

2m̂a + m̂b + m̂c
, (5.3)

replacing the band counts in the original Dice coefficient by estimated fragment
counts.
The Jaccard coefficient may be modified in the same way:

Jmod =
m̂a

m̂a + m̂b + m̂c
. (5.4)

The maximum of both Dmod and Jmod is 1, occurring if the two profiles are
identical. At the other end of the scale, there is no intrinsic limitation both for
Dmod and Jmod to take on negative values, whereas pgs ≥ 0. A solution to the
problem is truncation of the estimator at 0.
The modified coefficients come in two versions, for situations without and with
band length information. If band lengths are unknown, estimator m̂L̄ is used,
resulting in modified Dice and Jaccard coefficients

Dmod
L̄ =

2m̂L̄a

2m̂L̄a + m̂L̄b + m̂L̄c

, and JmodL̄ =
m̂L̄a

m̂L̄a + m̂L̄b + m̂L̄c

. (5.5)
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If band lengths are known, we use estimator m̂L, and the modified coefficients
become

Dmod
L =

2m̂La

2m̂La + m̂Lb + m̂Lc
, and JmodL =

m̂La

m̂La + m̂Lb + m̂Lc
. (5.6)

Maximum likelihood estimator of genetic similarity from binary AFLP data
In the case of known band lengths, a second estimator Dmle of the genetic sim-
ilarity pgs is proposed, based on maximum likelihood (m.l.) (Silvey, 1975). For
this estimator we need a statistical model for the data, consisting of the N pairs
of binary scores (y11, y12), (y21, y22), . . . , (yN1, yN2). We treat these pairs as in-
dependent. The two profiles have expected fragment counts m1 = ma + mb and
m2 = ma +mc, as before. The four possible outcomes of a pair (yi1, yi2) are:
(0, 0): no fragment of length i at all;
(0, 1): no fragment from the unique part Πb of genotype 1 and the common part

Πa, and at least one fragment from the unique part Πc of genotype 2;
(1, 0): at least one fragment from Πb, and no fragment from Πc and Πa;
(1, 1): either at least one fragment from Πa, or at least one fragment from both

Πb and Πc, but not from Πa.
For the i-th pair the likelihoods of these 4 outcomes are:
(0, 0): `i = (1− pi)mb+ma+mc

(0, 1): `i = (1− pi)mb+ma(1− (1− pi)mc)
(1, 0): `i = (1− (1− pi)mb)(1− pi)ma+mc

(1, 1): `i = (1− (1− pi)ma) + (1− (1− pi)mb)(1− pi)ma(1− (1− pi)mc).
Next, the log-likelihood of the data LL =

∑N
i=1 log(`i) is maximized with respect

to the parameters ma, mb, and mc, resulting in m.l. estimators m̂a, m̂b, and m̂c.
As in the previous section, we can define a modified Dice coefficient, now based
on m.l. estimators, as

Dmle
1 =

2m̂a

2m̂a + m̂b + m̂c
= ŵ1p̂1 + ŵ2p̂2, (5.7)

with weights ŵ1 = m̂a+m̂b
m̂a+m̂b+m̂a+m̂c

, ŵ2 = m̂a+m̂c
m̂a+m̂b+m̂a+m̂c

, and p̂1 = m̂a
m̂a+m̂b

, p̂2 =
m̂a

m̂a+m̂c
.

The m.l. procedure returns approximate standard errors of m̂a, m̂b, and m̂c, but
not of Dmle

1 as an estimator of pgs. To get the precision of an estimator of pgs,
we reparameterize the likelihood. From pgs = 2Ma

2Ma+Mb+Mc
, it follows pgs

1−pgs =
Ma

(Mb+Mc)/2
, since we assume expected fragment counts proportional to population

counts. Now, we replace ma in the likelihood above by pgs
1−pgs (mb + mc)/2. Now

the log-likelihood is maximized with respect to pgs, mb, and mc, resulting in a
direct m.l. estimator of pgs , which we call Dmle

2 .
A third parameterization replacesma by 1

2 (ma+mb)exp(lgs) , with lgs = logit(pgs),
yielding an estimator on the logit-scale, to be back-transformed to Dmle

3 =
logit−1(l̂gs) = exp(l̂gs)/(1 + exp(l̂gs)). This estimator may have better distribu-
tional properties for pgs close to 0 or 1.
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Precision of the estimators
The precisions of estimators Dmod

L̄
and Dmod

L are determined by bootstrapping
(Efron & Tibshirani, 1993), whereas for Dmle the precision follows from standard
likelihood theory. For estimator Dmod

L̄
the following bootstrap method is used.

The data for a pair of profiles consists of a pairs 1-1, b pairs 1-0, c pairs 0-1, and
d pairs 0-0, collected in the vector (a, b, c, d), without knowledge of band lengths.
For one bootstrap resample we take a sample of size N from the pairs 1-1, 1-0,
0-1, and 0-0, with probabilities given by a/N , b/N , c/N , and d/N , respectively.
For this bootstrap sample the modified Dice coefficient is calculated as described,
and stored.
For estimator Dmod

L a different bootstrap method is used. Now the band lengths
are known. A bootstrap resample consists of a sample with replacement of N pairs
(yi1, yi2) and connected fld probabilities pi from theN pairs (y11, y12), (y21, y22), . . .
. . . , (yN1, yN2), and a rescaling of the set of pi’s to have sum 1. Notice that the
same pair (yi1, yi2), i.e. with the same band length, may occur more than once
in the bootstrap resample. Therefore, a single bootstrap resample does not neces-
sarily correspond to a pair of profiles, which could occur in practice. The method
nevertheless works well, as shown later.
For Dmod

L̄
and Dmod

L we took 1000 bootstrap samples, resulting in estimates of bias
(defined as bootstrap mean−estimate), standard error, and bootstrap confidence
intervals. We used accelerated bias-corrected percentile bootstrap confidence in-
tervals, also known as BCa confidence intervals (DiCiccio & Efron, 1996). For a
description of the calculation of these confidence intervals, as well as a comparison
between different types of bootstrap confidence intervals, we refer to the appendix.
For estimator Dmle

2 approximate standard errors follow from standard likelihood
theory, leading to Wald confidence intervals for pgs as Dmle

2 ± se(Dmle
2 )× z1−α/2,

with z1−α/2 the 1 − α/2 quantile from the standard normal distribution. For
Dmle

3 we back-transform the Wald-confidence intervals l̂gs ± se(l̂gs)z1−α/2 using
logit−1. Besides Wald-type confidence intervals we calculated profile likelihood
confidence intervals for pgs (see e.g. Venzon & Moolgavkar, 1988). For profile
likelihood confidence intervals the parameters mb and mc are treated as nuisance
parameters, resulting in a profile likelihood for pgs by maximizing over mb and
mc.

Sampling of AFLPs and simulation
To study the behavior of the proposed estimators, we performed a simulation
study. For a wide range of parameter settings (pgs, m1, and m2) pairs of profiles
were simulated by

1. calculating the expected counts of common fragments ma = (m1 +m2)pgs, and
unique fragments mb = m1 −ma, and mc = m2 −ma;

2. drawing random counts from Poisson distributions with means ma, mb, and
mc to arrive at fragment counts ka, kb, and kc for the pair of profiles to be
generated;

3. sampling separately ka, kb, and c fragment lengths from the fld;
4. combining the ka + kb sampled fragments into the first profile, and ka + kc

fragments into the second, condensing the information into binary vectors y1

and y2 of length N .
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For all combinations of pgs = (0, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95) and m1 = m2 = (40, 70,
120), we sampled 10,000 pairs of profiles. We also included a selection of unequal
m’s for some values of pgs, to show that the methodology works in that case as
well. For each pair of profiles the estimates Dmod

L̄
, Dmod

L (with 1000 bootstrap
samples), and the three versions of Dmle were calculated.

Application of methodology: effect of number of fragments on precision
In AFLP profiling the number of fragments in a lane, and hence the number of
bands, can be steered by the researcher by changing the number and/or type of
selective nucleotides of the primers. Typical band counts per lane are between 50
and 100, corresponding to fragment counts from 60 to 125. The question arises
whether these typical counts are optimal, i.e. whether the estimators of genetic
similarity have highest possible precision.
In a simulation study we investigated for a number of examples (as before, pgs=0.0,
0.1, 0.3, 0.5, 0.7, 0.9, and 0.95 using N = 450 and fld FS), how the standard error
and width of the 95% profile likelihood confidence interval of pgs based on Dmle

2

depends on the fragment count. Expected fragment counts were varied from 15
to 500 (in steps of 5, equal expected counts for pairs of profiles), using 10,000
replicates at each step. We pushed the number of fragments to unrealistically
high values now, to show the properties of Dmle in that case, at the same time
realizing that in practice it is impossible to score profiles with very large numbers
of bands per lane. In the simulations numbers of fragments up to 500 were allowed,
resulting in profiles with more than 225 bands on average. In that case more than
half of the band positions are occupied, since N = 450.

Case study: phylogenetic relations between Lactuca genera
The lettuce study by Koopman et al. (2001) aims at inferring species relationships
in Lactuca and related genera from AFLP fingerprints. We selected one of the
two primer combinations (E35/M49), and only 5 of the 20 species: L. tenerrima,
M. muralis, L. serriola, L. sativa, and L. tatarica. We took 6-9 accessions for
each of the 5 selected species. We selected the 5 species to have a wide range of
band counts: mean counts (± s.d.) are 29.6 (±1.9), 32.4 (±2.5), 49.6 (±3.0), 52.6
(±2.8), and 84.1 (±5.1) for L. tenerrima, M. muralis, L. serriola,L. sativa, and L.
tatarica, respectively.
For all pairs of accessions we calculated D, J , and Dmle. We used FS from
A. thaliana as fld. This seems reasonable, since the GC content of lettuce is
close to that of A. thaliana: 36.6%, 37%, 38.2%, 38.3%, and 36.4% for the five
species (Koopman, 2002) versus 36% for A. thaliana. The relationships between
the species are visualized with UPGMA dendrograms, using dissimilarities 1−D,
1− J , and 1−Dmle.
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5.4 Results

General results from the simulation study
Table 5.1 shows some general results from the simulation study. For all simulation
settings of pgs, m1 and m2, the average band counts n1, n2, and average Dice
similarity D are given. From the comparison of expected fragment counts with
average band counts, we note that profiles with m = 40 have on average 3 colli-
sions, with m = 70 on average 8.7 collisions, and with m = 120 on average 23.6
collisions. The ordinary Dice coefficient seriously overestimates the true similarity,
with largest biases for small similarities and large fragment counts. The maximum
observed bias is 0.334 for pgs = 0 and m = 120. The smallest bias is 0.0034 for
pgs = 0.95 and m = 40.

Parameter settings Results

pgs m1 m2 n1 n2 D
0.0 40 40 37.0 37.0 0.1388

70 70 61.3 61.2 0.2232
120 120 96.4 96.3 0.3343

0.1 40 40 36.9 36.9 0.2192
70 70 61.3 61.4 0.2936
120 120 96.3 96.4 0.3902

0.3 40 40 36.9 37.0 0.3828
70 70 61.3 61.3 0.4369
120 120 96.4 96.4 0.5088

0.5 40 40 37.0 37.0 0.5522
70 70 61.3 61.3 0.5870
120 120 96.2 96.3 0.6355

0.7 40 40 36.9 36.9 0.7261
70 70 61.2 61.1 0.7462
120 120 96.4 96.3 0.7728

0.9 40 40 37.0 37.0 0.9061
70 70 61.1 61.2 0.9131
120 120 96.4 96.3 0.9213

0.95 40 40 37.0 37.0 0.9534
70 70 61.3 61.3 0.9563
120 120 96.4 96.4 0.9603

0.5 100 50 83.0 45.3 0.5736
100 80 83.0 68.7 0.6057

0.7 70 40 61.3 37.0 0.7277
80 70 68.7 61.3 0.7482

Table 5.1: Average band counts n1 and n2, and Dice similarities D for
10,000 simulated pairs of AFLP profiles for a range of values of genetic
similarity pgs and expected numbers of fragments m1 and m2. Fld FS

from A. thaliana is used, with N = 450 band positions.

Results from the simulation study for modified Dice coefficients
Table 5.2 shows the results from the simulation study for the modified Dice coef-
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ficient Dmod
L̄

, using profiles without band length information. In Table 5.3 results
for Dmod

L are given. We notice the following.
1. Almost all of the bias of the original Dice coefficient is removed. Dmod

L̄
and

Dmod
L slightly underestimate pgs (mean observed biases −0.0018 and −0.0015,

averaged over all settings of pgs and m, for Dmod
L̄

and Dmod
L , resp.), with largest

observed bias equal to −0.0030 occurring for Dmod
L̄

in case pgs = 0 and m = 120.
The remaining small negative bias can be removed even further by using a boot-
strap bias correction. Mean observed biases are then −0.00058 and −0.00025.

2. The 95% (BCa bootstrap) confidence intervals for the genetic similarity pgs
show reasonably good coverage properties. In 21 and 18 out of the 25 exper-
imental settings the observed non-coverage is between 4.5% and 5.5%, hence
deviations less than 0.5% from the nominal value of 5%. For both estimators
the largest deviation from 5% is found for pgs = 0.90 and m = 40, with observed
non-coverages of 3.8% and 3.8%, respectively. In these cases the confidence in-
tervals are slightly too wide. For pgs = 0.95 andm = 40 the overall non-coverage
behaves better (5.2% and 5.3%), but we find that in 1.6% and 1.7% of the cases
the confidence intervals are too low, and in 3.6% and 3.5% too high, compared
to the nominal 2.5% and 2.5%. In this case the intervals are too wide if the
estimate is smaller than pgs = 0.95, and too narrow for estimates larger than
0.95.

3. The bootstrap standard errors of Dmod
L̄

and Dmod
L are smaller for larger number

of expected fragments, with the exception of pgs = 0 and pgs = 0.1. Hence,
in the examples for pgs > 0.1 larger fragment counts result in more precise
estimates. The same can be said for the lengths of the 95% confidence intervals.
If pgs = 0.1 the smallest standard error is observed for m = 70.

4. The estimates Dmod
L̄

and Dmod
L may become negative for small values of pgs.

In the table this can be seen for pgs = 0, resulting in a negative average of
Dmod, but it also occurs for pgs = 0.1. For pgs = 0.3 the lower bound of the
95% confidence interval may become negative. In practice a negative value
of Dmod would be truncated at 0. Therefore, we added the bottom parts II
of Tables 5.2 and 5.3, showing results for the truncated versions of Dmod

L̄
and

Dmod
L for pgs = 0.0, 0.1, and 0.3. Since the truncation causes more distributional

asymmetry we give medians instead of averages of Dmod
L̄

and Dmod
L . For Dmod

L̄

the bias-correction decreases the bias, but this is not always the case for Dmod
L .

For pgs = 0 we give the non-coverage of the (97.5%) confidence interval only
at the right of pgs = 0. For pgs = 0 we observe the largest standard errors for
the cases with largest m, suggesting that the optimal number of fragments is
smaller than m = 120.

5. In all cases Dmod
L̄

has narrower 95% confidence intervals than Dmod
L , although

differences are small (average difference in length is only 0.0019). In all cases
the bootstrap s.e.(Dmod

L̄
) le s.e.(Dmod

L ), but again differences are small. The
coverage of the 95% confidence interval of Dmod

L̄
is slightly better than that

of Dmod
L : average absolute deviation from the nominal 5% is 0.33% for Dmod

L̄

compared to 0.36% for Dmod
L . Intuitively better behavior of Dmod

L was expected,
since Dmod

L exploits band length information, but we conclude, surprisingly, that
Dmod
L̄

has slightly better characteristics than Dmod
L .
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Parameter Part I Results for Dmod
L̄

settings mean and se 95% BCa bootstrap ci

pgs m1 m2 mean mean after bootstrap non-coverage % length
bias correction se (too low, too high)

0.0 40 40 -0.0016 -0.0014 0.0643 5.34 (3.04,2.30) 0.2584
70 70 -0.0028 -0.0022 0.0685 5.45 (2.88,2.57) 0.2680

120 120 -0.0030 -0.0024 0.0733 5.38 (3.11,2.27) 0.2862
0.1 40 40 0.0986 0.0998 0.0743 4.53 (2.28,2.25) 0.2942

70 70 0.0987 0.0995 0.0712 4.93 (2.53,2.40) 0.2781
120 120 0.0970 0.0978 0.0717 4.92 (2.80,2.12) 0.2797

0.3 40 40 0.2976 0.3002 0.0821 4.73 (2.16,2.57) 0.3205
70 70 0.2981 0.2997 0.0713 5.29 (2.55,2.74) 0.2780

120 120 0.2978 0.2989 0.0661 5.08 (2.58,2.50) 0.2582
0.5 40 40 0.4976 0.5007 0.0788 4.30 (2.17,2.13) 0.3070

70 70 0.4974 0.4993 0.0653 4.72 (2.30,2.42) 0.2548
120 120 0.4977 0.4989 0.0576 4.99 (2.68,2.31) 0.2250

0.7 40 40 0.6973 0.7000 0.0658 4.76 (2.47,2.29) 0.2586
70 70 0.6987 0.7003 0.0529 4.76 (2.41,2.35) 0.2078

120 120 0.6984 0.6993 0.0451 5.38 (2.73,2.65) 0.1770
0.9 40 40 0.8978 0.8990 0.0391 3.83 (2.18,1.65) 0.1613

70 70 0.8994 0.9001 0.0309 4.29 (2.36,1.93) 0.1250
120 120 0.8996 0.9000 0.0258 4.65 (2.36,2.29) 0.1032

0.95 40 40 0.9495 0.9501 0.0267 5.16 (1.59,3.57) 0.1173
70 70 0.9497 0.9500 0.0215 4.63 (2.22,2.41) 0.0907

120 120 0.9498 0.9500 0.0180 4.37 (2.30,2.07) 0.0742

0.5 100 50 0.4975 0.4991 0.0599 5.03 (2.56,2.47) 0.2336
100 80 0.4979 0.4993 0.0606 5.03 (2.65,2.38) 0.2367

0.7 70 40 0.6979 0.6998 0.0551 4.81 (2.17,2.64) 0.2157
80 70 0.6983 0.6998 0.0515 5.21 (2.83,2.38) 0.2021

Part II Results for truncated Dmod
L̄

median and se 95% BCa bootstrap ci

median median after bootstrap non-coverage % length
bias correction se (too low, too high)

0.0 40 40 0 0 0.0386 2.30 (2.30) 0.1522
70 70 0 0 0.0374 2.57 (2.57) 0.1396

120 120 0 0 0.0403 2.27 (2.27) 0.1387
0.1 40 40 0.0980 0.0992 0.0649 4.53 (2.28,2.25) 0.2511

70 70 0.0987 0.0998 0.0616 4.93 (2.53,2.40) 0.2297
120 120 0.0985 0.0997 0.0609 4.92 (2.80,2.12) 0.2223

0.3 40 40 0.2985 0.3012 0.0818 4.73 (2.16,2.57) 0.3197
70 70 0.2990 0.3006 0.0712 5.29 (2.55,2.74) 0.2776

120 120 0.2974 0.2989 0.0660 5.08 (2.58,2.50) 0.2579

Table 5.2: Results from a simulation study on Dmod
L̄ for a range of values of genetic

similarity pgs and expected numbers of fragments m1 and m2, 10,000 replicated pairs
of AFLP profiles, 1000 bootstrap resamples, fld FS from A. thaliana with N = 450.
Part I shows mean, mean after bias correction, mean of the bootstrap standard error,
non-coverage percentage of 95% BCa bootstrap confidence intervals (with left and right
non-coverage percentages), and mean length of the interval. Part II shows, for pgs ≤ 0.3,
the same type of results as part I, but for Dmod

L̄ truncated at zero. Instead of means,
medians are given. At pgs = 0.0, only non-coverage at the right of pgs = 0.0 is considered.
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Parameter Part I Results for Dmod
L̄

settings mean and se 95% BCa bootstrap ci

pgs m1 m2 mean mean after bootstrap non-coverage % length
bias correction se (too low, too high)

0.0 40 40 -0.0009 -0.0008 0.0651 5.55 (3.15,2.40) 0.2605
70 70 -0.0017 -0.0014 0.0698 5.17 (2.68,2.49) 0.2725

120 120 -0.0021 -0.0015 0.0754 5.55 (2.99,2.56) 0.2944
0.1 40 40 0.0989 0.1000 0.0749 4.52 (2.28,2.24) 0.2957

70 70 0.0996 0.1005 0.0721 5.05 (2.50,2.55) 0.2815
120 120 0.0978 0.0986 0.0733 5.17 (2.93,2.24) 0.2861

0.3 40 40 0.2978 0.3004 0.0824 4.78 (2.34,2.44) 0.3213
70 70 0.2987 0.3003 0.0718 5.11 (2.43,2.68) 0.2798

120 120 0.2984 0.2995 0.0672 5.14 (2.56,2.58) 0.2622
0.5 40 40 0.4977 0.5008 0.0789 4.38 (2.17,2.21) 0.3075

70 70 0.4978 0.4996 0.0655 4.80 (2.36,2.44) 0.2558
120 120 0.4982 0.4994 0.0582 5.26 (2.83,2.43) 0.2275

0.7 40 40 0.6974 0.7001 0.0658 4.67 (2.43,2.24) 0.2587
70 70 0.6988 0.7003 0.0531 4.69 (2.41,2.28) 0.2085

120 120 0.6987 0.6997 0.0455 5.29 (2.51,2.78) 0.1786
0.9 40 40 0.8979 0.8991 0.0391 3.78 (2.32,1.46) 0.1618

70 70 0.8994 0.9001 0.0309 4.28 (2.43,1.85) 0.1253
120 120 0.8997 0.9001 0.0259 4.62 (2.44,2.18) 0.1040

0.95 40 40 0.9495 0.9501 0.0267 5.26 (1.74,3.52) 0.1188
70 70 0.9497 0.9500 0.0215 4.02 (2.21,1.81) 0.0914

120 120 0.9498 0.9500 0.0181 4.43 (2.34,2.09) 0.0749

0.5 100 50 0.4978 0.4994 0.0600 5.19 (2.60,2.59) 0.2342
100 80 0.4982 0.4997 0.0610 5.09 (2.69,2.40) 0.2381

0.7 70 40 0.6981 0.6999 0.0551 4.97 (2.37,2.60) 0.2160
80 70 0.6985 0.6999 0.0517 4.94 (2.71,2.23) 0.2030

Part II Results for truncated Dmod
L̄

median and se 95% BCa bootstrap ci

median median after bootstrap non-coverage % length
bias correction se (too low, too high)

0.0 40 40 0 0 0.0390 2.40 (2.40) 0.1524
70 70 0 0 0.0395 2.49 (2.49) 0.1409

120 120 0 0 0.0414 2.56 (2.56) 0.1419
0.1 40 40 0.0982 0.0992 0.0652 4.52 (2.28,2.24) 0.2510

70 70 0.0997 0.1007 0.0621 5.05 (2.50,2.55) 0.2311
120 120 0.1002 0.1011 0.0618 5.17 (2.93,2.24) 0.2249

0.3 40 40 0.2985 0.3013 0.0821 4.78 (2.34,2.44) 0.3204
70 70 0.2999 0.3017 0.0716 5.11 (2.43,2.68) 0.2798

120 120 0.2986 0.2997 0.0670 5.14 (2.56,2.58) 0.2618

Table 5.3: Results from a simulation study on Dmod
L for a range of values of genetic

similarity pgs and expected numbers of fragments m1 and m2, 10,000 replicated pairs
of AFLP profiles, 1000 bootstrap resamples, fld FS from A. thaliana with N = 450.
Part I shows mean, mean after bias correction, mean of the bootstrap standard error,
non-coverage percentage of 95% BCa bootstrap confidence intervals (with left and right
non-coverage percentages), and mean length of the interval. Part II shows, for pgs ≤ 0.3,
the same type of results as part I, but for Dmod

L truncated at zero. Instead of means,
medians are given. At pgs = 0.0, only non-coverage at the right of pgs = 0.0 is considered.
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Results from the simulation study for maximum likelihood estimators Dmle

Table 5.4 shows the results from the simulation study for Dmle. We notice the
following.

1. Estimators Dmle
1 , Dmle

2 , and Dmle
3 almost always return the same estimate.

Only for pgs ≥ 0.9 we see minor differences, resulting in means differing in the
fourth decimal. Hence, only results for Dmle

2 are shown.
2. The large positive bias of the original Dice coefficient is removed. For pgs > 0.1,

a negligible negative bias of Dmle
2 remains: the mean bias is 0.0015. For pgs ≤

0.1 a small positive bias is observed, because of the necessarily non-negative
value of the estimators. For pgs = 0 the medians (not shown) are 0, and for
pgs = 0.1 they are 0.0965 (m = 40), 0.0982 (m = 70), and 0.0995 (m = 120).

3. The 95% Wald confidence intervals for pgs are conservative for small values of
pgs (non-coverage rates smaller than nominal value), but are becoming more
and more liberal for larger values. Obviously, the approximate standard error
of Dmle

2 is too large for small values of Dmle
2 , and too small for large values.

The deviations from 5% seem acceptable for 0.3 ≤ pgs ≤ 0.7 and m > 40. The
number of intervals with a lower bound larger than the true pgs outnumber those
with an upper bound smaller than pgs. This is also an indication of standard
errors which are too high for low values of the estimate, and too small for large
values.

4. The 95% profile likelihood confidence intervals for pgs have for a large number
of settings non-coverage rates close to 5%. In 16 out of the 25 settings the
deviation of the non-coverage rate from the nominal value is less than 0.5%.
Larger deviations are found for larger values of pgs and smaller fragment counts.
The largest deviation is observed for pgs = 0.95 and m = 40, with a non-
coverage rate equal to 19%, making the profile likelihood interval useless in
this situation. The number of intervals with an upper bound smaller than pgs
becomes exceedingly large in these cases. The profile likelihood intervals work
well for pgs < 0.7, irrespective of the studied fragment counts, and for larger
values of pgs, but only if the fragment count is large enough.

5. The 95% back-transformed (from logit-scale) Wald confidence intervals gen-
erally have a non-coverage rate close to the nominal 5%. However, for small
values of pgs they are highly asymmetrically distributed (with respect to pgs).
Intervals with lower bounds exceeding pgs dominate in these cases. If pgs = 0,
estimates of pgs on the logit scale tend to ∞, and the approximate standard
errors are badly determined, resulting in useless confidence intervals. For high
values of pgs, intervals with upper bounds lower than pgs get the upper hand.
The back-transformed Wald confidence intervals are usable for pgs ≥ 0.5, and
tend to be conservative then.

6. The standard error of Dmle
2 decreases with larger expected fragment counts, as

expected. For all 3 types of confidence intervals larger numbers of fragments
result in narrower confidence intervals.

7. None of the three types of confidence intervals are usable for all values of pgs.
The profile likelihood intervals have the broadest range of application of pgs:
pgs < 0.7 irrespective of m, and pgs ≥ 0.7 for larger values of m. The back-
transformed Wald intervals perform best for large values of pgs. The Wald
confidence intervals are widest (at pgs = 0.5 and 0.7), making them the least
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attractive in this range.
8. For all cases with pgs ≥ 0.3, Dmle

2 has smaller standard errors than Dmod
L̄

and
Dmod
L . Furthermore, in all cases the profile likelihood confidence intervals based

on Dmle
2 are narrower than the bootstrap confidence intervals based on Dmod

L̄

and Dmod
L . These results suggest that Dmle

2 is to be preferred over the modified
coefficients Dmod

L̄
and Dmod

L .

Comparing standard errors
The simulation study has shown that the proposed estimators are approximately
unbiased. Although attractive in itself, unbiasedness does not guarantee a higher
precision, since se =

√
bias2 + var. Using the data from the simulation study,

we estimated bias(D), and var(D) by bootstrapping, and compared se(D) with
se(Dmod

L ). For most cases we find se(D) > se(Dmod
L ), with the most extreme

outcome for pgs = 0.0 and m = 120, where se(D) is 4.5 × se(Dmod
L ). For large

values of pgs (pgs = 0.95, all m; pgs = 0.9, m = 40, 70; pgs = 0.7, m = 40), we find
that se(D) < se(Dmod

L ), but se(D) is never smaller than 0.95× se(Dmod
L ). Hence,

depending on the combination of pgs and m, very large gains in standard error can
be obtained, or, for large pgs (in combination with small fragment counts) minor
losses. In the last cases, the gain in bias is outweighed by the loss in variance, and
the new estimator Dmod

L is marginally less precise compared to D.

Results for the effect of expected number of fragments on precision
Figure 5.2 shows the results of the simulation study on the relationship between
the expected number of fragments m and precision of Dmle

2 . In the left-hand side
figure the expected number of fragments is plotted against the average standard
error of Dmle

2 . At the top axis the average band count is shown. We observe the
following:
1. Starting at small numbers of fragments, the standard error of Dmle

2 decreases
as the number of fragments increases. The rate of change of the standard error
is high at low fragment counts, but decreases. As the number of fragments in-
creases, the standard error reaches a minimum, and afterwards increases again.

2. The optimal number of fragments depends on pgs. Smaller values of pgs allow
smaller numbers of fragments. For pgs = 0 or 0.1 the optimal number of frag-
ments is close to m = 140 (or n = 110 bands). For pgs = 0.3 this count is
approximately m = 250 (n = 165), for pgs = 0.5 m = 350 (n = 205), and for
pgs = 0.7 m = 500 (n = 245). For pgs = 0.9 or 0.95 the optimal fragment count
is larger than 500 fragments.

3. In general a large range of near-optimal fragment counts exists.
4. The usual range of band counts (between 50 and 100) is not optimal, especially

if the focus is on highly related species with high pgs. However, the gain in
accuracy will generally be small if larger band counts are used. The small gain
in accuracy must be balanced against the possible scoring problems that may
occur with large band counts.
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In the right-hand side figure the expected number of fragments is plotted against
the average Dmle

2 , and average Dice similarity. Furthermore, the average lower
and upper bounds of the 95% profile likelihood confidence intervals are shown.
For clarity, only results for pgs = 0.1, 0.5, and 0.9 are given. We observe the
following:
5. Dmle

2 is an (almost) unbiased estimator of pgs, even for extremely large fragment
counts. For very small fragment counts (m ≤ 25) there appears to be small
negative bias.

6. Starting at small m, the width of the confidence interval quickly decreases. For
large enough m (depending on pgs) the width remains approximately constant.

7. The usual range of band counts, although not optimal, seems reasonable. Only
little gain in the width of the confidence intervals can be expected from higher
fragment counts, as in 4.

8. The confidence intervals are rather wide. The only way to reach narrower
intervals is to use multiple gels with different primer combinations, and combine
the information from the different profiles.

Results for case study on lettuce and related genera
Fig. 5.3 shows the UPGMA dendrograms for the 5 species, split out for the 3
dissimilarity measures. The dendrograms for 1−D and 1−J are largely the same.
With all 3 dissimilarities the species are separated well. Notice that the 1−Dmle

dissimilarities are closer to 0, as expected. Notice further that the 1 − Dmle

dissimilarities are not a simple shift. In the hierarchical clustering scheme for D
and J , L. tenerrima joins after clustering of L. serriola, L. sativa, and L. tatarica,
but for Dmle L. tenerrima joins after clustering of L. serriola and L. sativa only.
Apparently, L. tenerrima and L. tatarica have switched places. This behaviour
can be understood from the band count. The AFLP profiles for L. tenerrima
contain a small number of bands, whereas L. tatarica profiles have large counts.
Hence, bias corrections for comparisons with L. tenerrima are smaller than those
with L. tatarica.
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5.5 Conclusions and discussion

In this study we propose new estimators of pairwise genetic similarity pgs from
binary AFLP data, correcting for homoplasy. We define pairwise genetic similarity
for AFLP data as the weighted average of fractions of common fragments. Using
this definition, the Dice coefficient is a natural candidate for replacement, but a
homoplasy corrected version of the Jaccard coefficient is suggested as well. For
most practical cases the new estimators are better than the ordinary Dice coef-
ficient, because the bias is removed, at the cost of a small increase in variance.
Only for large genetic similarities in combination with low band counts (roughly:
pgs = 0.95 and n < 100, pgs = 0.90 and n < 65, pgs = 0.70 and n < 38), Dice
performs better.
For profiles without band length information, we propose the modified Dice co-
efficient Dmod

L̄
. Using the bootstrap, standard errors and confidence intervals are

obtained. The bootstrap allows a further reduction of the already small nega-
tive bias of Dmod

L̄
. For AFLP profiles with band length information, we have 3

candidate estimators: Dmle, Dmod
L , and Dmod

L̄
. Best results were obtained using

the maximum likelihood estimator Dmle, although differences were small. Second
best was, surprisingly, Dmod

L̄
, ignoring the band length information. The standard

error of Dmle follows from likelihood theory, hence no bootstrapping is needed.
Profile likelihood confidence intervals for pgs were narrowest. However, care has
to be taken in the choice of type of confidence interval. Profile likelihood intervals
are only acceptable, if pgs < 0.7 irrespective of the number of fragments, and for
pgs ≥ 0.7 if the fragment counts are large enough. For small fragment counts and
large pgs, more acceptable results were obtained for the back transformed Wald
intervals, using an estimator on the logit-scale. The modified Dice coefficients
Dmod
L̄

or Dmod
L are good alternatives as well. Over the whole range of pgs the con-

fidence intervals based on Dmod
L̄

and Dmod
L show more stable coverage properties

than those on Dmle.
The homoplasy corrected estimate of genetic similarity is always smaller than the
ordinary Dice coefficient, because part of the observed band similarity is attributed
to chance. The magnitude of this correction depends on the true genetic similarity,
but also on the fragment counts. Both smaller similarities and larger numbers of
fragments lead to larger corrections.
The standard error of the similarity estimatorDmle and the width of the confidence
interval cannot be made arbitrarily small by increasing the number of fragments
in the profiles. The optimal number of fragments exists, but its value depends
on the true genetic similarity, and there is a large range of near-optimal fragment
counts. The usual range of band counts (between 50 and 100) is suboptimal, but
in general the gain in precision is small if higher numbers of fragments are used,
and should be balanced against increasing scoring problems.
To get more precise estimates of genetic similarity, multiple gels with different
primer combinations or restriction enzymes should be used, and the information
from the different profiles should be combined. Dmle can easily be modified to
estimate a single genetic similarity from multiple pairs of profiles, even allowing
for possibly different fld’s for the different profiles. Modifications of this type
(beyond ordinary averaging) are less straightforward for the modified coefficients
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Dmod
L̄

and Dmod
L . This flexibility is a further argument in favor of Dmle.

To account for homoplasy and collisions properly, all bands in the profiles must
be scored, not just the non-monomorphic bands. The effect of scoring non-
monomophic bands only is that Dice and Jaccard coefficients are lowered in a
way that depends on the set of individuals under study. Inclusion or exclusion of a
less related individual in the study, could result in exclusion or inclusion of bands,
which are polymorphic with the individual, but monomorphic without. Hence, the
similarity coefficient would be different with or without this individual.
Conclusions drawn here are mainly based on a single simulation study. Further-
more, we have to rely on a number of assumptions. For instance, we assume to
know the fld, which in reality hardly ever is the case. Only if full DNA sequence
information is available and by using in-silico AFLP procedures, do we have an
estimate of the fld very close to the true fld. In other cases, a less reliable esti-
mate of the fld may come from the GC content or directly from the binary AFLP
data, as described in Gort et al. (2006).
Another topic related to the fld, is the fact that two distantly related individuals,
e.g. with highly different GC contents, may have different fld’s. In this paper
we have assumed that there is a common fld. Further study on the effect of
misspecification of the fld’s on the statistical properties of the proposed estimators
is needed.
In the present paper we studied the effect of homoplasy and collision on the es-
timation of genetic similarity from binary AFLP data. Examples of studies that
may directly benefit from the proposed homoplasy corrected estimates of genetic
similarity are studies on genetic diversity, e.g. in plant genetic resources or breed-
ing programs, but also phylogenetic and taxonomic studies, and studies of essential
derivation, in which plant breeders try to establish thresholds for genetic similarity
between initial and new, allegedly derived varieties (Eeuwijk & Law, 2004).
In other studies where AFLP profiles are analyzed, the problem of homoplasy may
have an impact as well. For example, in linkage studies for tracing quantitative
trait loci (QTLs) or for mapping purposes, a band is interpreted as a single DNA
fragment, residing at one unique locus of the genome. Here the best strategy may
be to avoid homoplasy as much as possible, by limiting the number of fragments
per lane, or avoiding bands corresponding to short fragments.
In population genetic applications of AFLP, homoplasy and collision may also af-
fect estimation of parameters. For example, if the allele frequency of the DNA
fragment corresponding to a band is the parameter of interest, like in Kraus
(2000), who tested three procedures for estimation of null allele frequencies, homo-
plasy may cause some bands to be non-homologous, thereby changing the relative
frequency of absent bands. Derived quantities like heterozygosity, coefficient of
coancestry, or genetic distances, may need corrections for homoplasy and/or col-
lision as well. These corrections require careful consideration, and are beyond the
scope of the present paper. An example of a recent study of homoplasy in popula-
tion genetics is Caballero et al. (2008), who focus on population genetic diversity
and detection of selective loci.
In a study by Holland, Clarke, and Meudt (2008) about automated scoring of
AFLPs, the suggestion is made to decrease the bin width for scoring fragments
on a capillary system. This is another route towards a solution of the homoplasy
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problem, because the resulting profiles will likely have less homoplasy, albeit at
the cost of an increased error rate for homologous fragments. In future work this
approach may be joined with ours to arrive at improved evaluation of homoplasy.
The problem of homoplasy described here is not limited to the AFLP marker sys-
tem. In a study on homology among RAPD fragments for three very closely related
species of sunflowers, Rieseberg (1996) reports that of 220 pairwise comparisons
of comigrating fragments only 79% identified loci useful for comparative genetic
studies. For RAPD comparable corrections for homoplasy can be envisioned, as
we propose here for AFLP.
Software in R (R Development Core Team, 2005) for calculation of the proposed
estimators is available from the authors.
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5.A Appendix Comparison of bootstrap confidence
intervals

We compare three types of bootstrap confidence intervals (c.i.):
1. simple percentile c.i.
2. bias-corrected percentile c.i.
3. accelerated bias-corrected percentile (BCa) c.i.
These c.i.’s are calculated as described in (Manly, 1997, pp 39-56). For the accel-
erated bias-corrected percentile c.i.’s calculation of the constant aacc is required.
Manly (1997) suggests to approximate aacc by∑N
j=1(Θ̂. − Θ̂−j)3/[6{

∑N
j=1(Θ̂. − Θ̂−j)2}1.5] with Θ̂−j the partial estimate of the

parameter Θ based on all but the j-th observation, and Θ̂. the average of Θ̂−j
(j = 1, . . . , N). In our case the parameter is the fraction of common fragments
pgs, estimated by either Dmod

L̄
or Dmod

L .
For Dmod

L we take a pair of binary scores (y1j , y2j) (j = 1, . . . , N) to be an obser-
vation. The constant aacc is calculated by removing observation j from the pair
of profiles, rescaling the fragment length distribution, calculating Dmod

L from the
reduced dataset, and repeating over all band positions (j = 1, . . . , N), resulting in
partial estimates Θ̂−j .
For Dmod

L̄
the information on band lengths is missing, and a pair of profiles can

be summarized as a vector of counts (a, b, c, d). The observations are the pairs of
binary scores 1-1 (occurring a times), 1-0 (b times), 0-1 (c times), and 0-0 (d times).
The partial estimates Θ̂−j consist of weighted averages (with weights (a, b, c, d))
of Dmod

L̄
values. We label the weighted averages Θ̂a

−j (occurring a times), Θ̂b
−j

(b times), Θ̂c
−j (c times), and Θ̂d

−j (d times). Θ̂a
−j is the weighted average of

the 4 Dmod
L̄

values calculated for the profile pairs (a, b, c, d), (a − 1, b + 1, c, d),
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(a − 1, b, c + 1, d), (a − 1, b, c, d + 1), Θ̂b
−j is calculated from profile pairs (a +

1, b− 1, c, d), (a, b, c, d), (a, b− 1, c+ 1, d), (a, b− 1, c, d+ 1), Θ̂c
−j from profile pairs

(a + 1, b, c − 1, d), (a, b + 1, c − 1, d), (a, b, c, d), (a, b, c − 1, d + 1), and Θ̂d
−j from

profile pairs (a+ 1, b, c, d− 1), (a, b+ 1, c, d− 1), (a, b, c+ 1, d− 1), (a, b, c, d).
For the simulation dataset with 10,000 replicates, we calculated 95% bootstrap
c.i.’s for Dmod

L̄
, based on a bootstrap resample size of 1000. The results are shown

in table 5.5. The non-coverage rates for the 95% simple percentile c.i. range from
0.0497 to 0.0915 (average 0.0581), a bit larger than the nominal 0.05. The larger
error rates occur for the profiles with smallest expected fragment counts (m = 40),
and extreme values of pgs (pgs = 0.0, 0.9, 0.95). In general the c.i.’s are slightly too
narrow. The 95% bias-corrected percentile c.i.’s have better non-coverage rates,
ranging from 0.0475 to 0.0707 (average 0.0550). The non-coverage rates of the
95% BCa c.i.’s range from 0.0383 to 0.0545 (average 0.0486). This last method
seems to be a bit too conservative, delivering intervals which are slightly too wide.
Over the whole range of pgs values this last method performed best.
For the same simulation data we calculated 95% bootstrap c.i.’s for Dmod

L (see
table 5.6). The non-coverage rates for the simple percentile method range from
0.0514 to 0.0878 (average 0.0584), for the bias-corrected method from 0.0499 to
0.065 (average 0.0548), and for the accelerated bias-corrected method from 0.0378
to 00555 (average 0.0487). Again, the accelerated bias-corrected method performs
best with slightly conservative c.i.’s.
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5.B Appendix Overview on symbols

Symbol Description Type

N number of observable band lengths, derived from scoring range; constant
e.g. 450 if scoring range is 51-500

i index of band length (i = 1, . . . , N) index
j index of lane number or genotype number (j = 1, 2) index
Πj population of fragments after restriction, eligible for visualization, population

for genotype j
Mj number of fragments of Πj parameter
pi probability that a fragment randomly drawn from Π has length i constant
fld fragment length distribution = (p1, . . . , pN ) constant
FS fld from in-silico AFLP for A. thaliana, see Gort et al. (2006) constant
π probability of a fragment in Π to be sampled parameter
mj expected number of fragments in lane j = πMj , parameter

proportional to Mj
kj number of fragments in lane j; distributed as Poisson(mj) stochastic
yij binary score for absence/presence of a band of length i in lane j stochastic

nj number of bands in lane j =
∑N

i=1 yij stochastic
Πa population of common fragments; Π1 ∩Π2 population
Πb population of fragments unique to genotype 1; Π1 ∩ Π̄2 population
Πc population of fragments unique to genotype 2; Π̄1 ∩Π2 population
Fj fraction of common fragments in population j = Ma/Mj parameter

pgs pairwise genetic similarity for AFLP = M1
M1+M2

F1 + M2
M1+M2

F2 parameter
a number of shared bands in the two profiles stochastic

=
∑N

i=1 yi1yi2
b number of bands in the first profile, which are absent in the second stochastic

=
∑N

i=1 yi1(1− yi2)
c number of bands in the second profile, which are absent in the first stochastic

=
∑N

i=1(1− yi1)yi2
d number of empty positions in both profiles stochastic

=
∑N

i=1(1− yi1)(1− yi2)
D Dice coefficient = 2a/(2a+ b+ c) stochastic
J Jaccard coefficient = a/(a+ b+ c) stochastic
Pi probability of a band of length i, given m fragments = 1− (1− pi)

m parameter
m̂L̄ estimator of m without band length information (Gort et al., 2006) stochastic
m̂L estimator of m with band length information, based on g.l.m. stochastic
m̂ estimator of m with band length information, based on m.l. stochastic
Dmod

L̄
modified Dice coefficient, without band length info stochastic
= 2m̂L̄a/(2m̂L̄a + m̂L̄b + m̂L̄c)

Dmod
L modified Dice coefficient, with band length info stochastic

= 2m̂La/(2m̂La + m̂Lb + m̂Lc)
Jmod

L̄
modified Jaccard coefficient, without band length info stochastic
= m̂L̄a/(m̂L̄a + m̂L̄b + m̂L̄c)

Jmod
L modified Jaccard coefficient, with band length info stochastic

= m̂La/(m̂La + m̂Lb + m̂Lc)
Dmle

1 modified Dice coefficient based on m.l. estimation of m stochastic
= 2m̂a/(2m̂a + m̂b + m̂c)

Dmle
2 direct m.l. estimator of pgs stochastic

Dmle
3 back-transformed estimator of pgs, using m.l. estimation of logit(pgs) stochastic
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Chapter 6
Codominant Scoring of AFLP in Association

Panels 1

by Gerrit Gort and Fred A. van Eeuwijk

6.1 Summary

A study on the codominant scoring of AFLP markers in association panels without
prior knowledge on genotype probabilities is described. Bands are scored codom-
inantly by fitting normal mixture models to the band intensities, employing the
EM-algorithm. We study features that improve the performance of the algorithm,
and the unmixing in general, like parameter initialization, restrictions on param-
eters, data transformation, and outlier removal. Parameter restrictions include
equal component variances, equal or nearly equal distances between component
means, and mixing probabilities according to Hardy-Weinberg Equilibrium. His-
togram visualization of band intensities with superimposed normal densities, and
optional classification scores and other grouping information, assists further in the
codominant scoring. We find empirical evidence favoring the square root trans-
formation of the band intensity, as was found in segregating populations. Our
approach provides posterior genotype probabilities for marker loci. These proba-
bilities can form the basis for association mapping and are more useful than the
standard scoring categories A,H,B,C,D. They can also be used to calculate pre-
dictors for additive and dominance effects. Diagnostics for data quality of AFLP
markers are described: preference for three components mixture model, good sep-
aration between component means, and lack of singletons for the component with
highest mean. Software has been developed in R, containing the models for normal
mixtures with facilitating features, and visualizations. The methods are applied
to an association panel in tomato, comprising 1175 polymorphic markers on 94
tomato hybrids, as part of a larger study within the Dutch Center for BioSystem
Genomics.

1Submitted to Theoretical and Applied Genetics
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6.2 Introduction

AFLP, or amplified fragment length polymorphism (Vos et al., 1995), is a widely
used DNA fingerprinting system. The physical end product of the AFLP procedure
is a slab gel, containing bands at different positions within columns of the gel.
Instead of gels, capillary systems are nowadays often used. The columns are
called lanes, and correspond to the different individual genomes (individuals).
The bands visualize amplified DNA fragments of specific lengths, traveling in
the lanes by electrophoresis. The position of a band within a lane is mainly
determined by the size of the fragment, with shorter fragments traveling further.
The pattern of bands within a lane is called a profile. Usually, AFLP bands are
scored dominantly, that is, binary, as absent or present. In this way, AFLP bands
are dominant markers, which do not distinguish between individuals with one
copy of the DNA fragment (heterozygous individuals) and two copies (homozygous
individuals). However, the gels or capillary systems allow the intensities of the
band to be scored as well. Assuming that the intensity of a band is a measure of
the amount of amplified DNA, the band intensity can be exploited to infer the copy
number of a DNA fragment. In the case of diploid organisms, an individual with
the DNA fragment on two homologous chromosomes (homozygous AA) should
have a more intense band than an individual with the DNA fragment on only one
of two homologous chromosomes (heterozygous Aa). The heterozygous individual
in turn should have a more intense band than an individual, lacking the fragment
completely (homozygous absent aa). Therefore, it must be possible to infer the
copy number of an AFLP fragment from the band intensity, making the AFLP
marker a codominant marker. Scoring the copy number of the AFLP fragment is
also named genotype calling.
The idea to codominantly score AFLPs using the band intensities is not new. An
early mention can be found in van Eck et al. (1995), and later Piepho and Koch
(2000), and, in a reaction, R. C. Jansen et al. (2001) published about the statistical
principles of the approach. These authors illustrate their methods by codominantly
scoring AFLP markers from segregating F2 populations, with a priori known geno-
type frequencies 0.25, 0.50, and 0.25 for AA, Aa, and aa, respectively. As Meudt
and Clarke (2007) report, codominant AFLP scoring so far is limited to model
organisms and commercial crop organisms, for which genetic information already
exists for accurate identification of the codominant scores. Vuylsteke (2007) men-
tions that codominant scoring of AFLP markers has become routine in segregating
populations, as in F2 or backcross populations. Examples of studies of segregating
populations, with known segregation ratio for the offspring, are e.g. Castiglioni,
Ajmone-Marsan, van Wijk, and Motto (1999), Reamon-Büttner, Schondelmaier,
and Jung (1998), and Deniau et al. (2006).
The aim of our study is to extend existing methodology for the codominant scoring
of AFLP markers in association panels, without a priori knowledge of allele fre-
quencies. The methodology is illustrated using AFLP markers in a collection of 94
tomato hybrids, for which, due to confidentiality reasons, no pedigree information
was made available.
An overview of the dataset, and analyses concerning diversity and linkage disequi-
librium, containing a concise description of the codominant scoring, can be found
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in van Berloo, Zhu, et al. (2008). Commercially available software, like Quantar
Pro (Keygene products B.V., 2004), is rather limited in output facilities, as it gives
hard classifications only, and does not contain options to back up the codominant
scoring in case of an association panel. We therefore developed software ourselves,
and used it for the codominant scoring of the AFLP data.
In the present paper we describe
1. the method of codominant scoring of AFLP bands by normal mixture models;
2. some features, that may enhance or stabilize the unmixing of the groups in

association panels, where the mixing proportions are unknown in advance;
3. the output from codominant scoring: a) posterior genotype probabilities of

the 3 codominant classes, replacing the hard A-B-H-C-D classification which is
usually given; b) predictors for additive and dominance effects in QTL analysis
calculated from the posterior class probabilities;

4. the dataset, used for illustration of the codominant scoring, consisting of an
unstructured association panel of 94 tomato hybrids;

5. the software we developed for the codominant scoring of AFLP profiles in as-
sociation panels by normal mixture models;

6. an application of the methodology, using the software, to the collection of
tomato hybrids.

6.3 Material and Methods

6.3.1 Codominant scoring of AFLP band intensities by nor-
mal mixture models

Band intensities
The intensity of an AFLP band, named optical density by Piepho and Koch (2000),
is a non-negative number, indicating the darkness of a band on a gray scale. Be-
cause band intensities vary from lane to lane (e.g. caused by differences in amount
of DNA loaded in a lane), and due to background variation in intensity and image
artifacts, the raw band intensities need to be corrected to make bands compara-
ble between lanes. Corrections can be done in different ways. Piepho and Koch
(2000) suggest to remove systematic trends discernible from monomorphic bands
with the use of a quadratic polynomial regression models and random lane effects,
and to check for spatial correlation. In the present study, we use the correction as
performed by the proprietary software of Keygene NV. This correction accounts
for total lane intensity and intensity of monomorphic bands, and divides intensities
per marker by the maximum value, resulting in a range 0− 1.

Codominant scoring
The (corrected) band intensity is related to the amount of amplified DNA at the
band position. We assume a monotonous relationship: more amplified DNA tends
to produce darker bands. This means for diploid organisms, like tomato, that
a homozygous individual with two copies of a fragment tends to have a band
with higher intensity than a heterozygous individual with a single copy, which in
turn has a higher intensity band than an individual lacking the fragment com-
pletely. Codominant scoring of a band is the prediction of the copy number of
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the fragment (or genotype class AA, Aa, or aa) from the intensity of the band.
Codominant scoring is straightforward in the case that the intensities fall into
three well-separated groups. But more often, groups overlap, e.g. because the
relationship between band intensity and copy number is non-linear, as indicated
by Piepho and Koch (2000). The intensity may be upwardly bounded due to
saturation, hampering the discrimination between heterozygous and homozygous
individuals. Other problems, blurring simple inference on zygosity, are errors in the
AFLP procedure itself (like amplification errors in the Polymerase Chain Reaction
(PCR), and gel mobility errors), and measurement errors of the band intensities.
To take account of these problems, a formal approach using a statistical model is
beneficial.

Normal mixture models
Statistically speaking, codominant scoring is a type of cluster analysis with a
predefined number of classes (3 in the case of diploid organisms). Although or-
dinary clustering techniques could be used, the common approach described in
the literature is to fit a Gaussian (or normal) mixture model. This is an example
of model-based clustering (Fraley & Raftery, 2002), because a proper statistical
model is used to describe the data. For an association panel of n individuals,
we have per marker n intensities, labeled y1 . . . yn. The Gaussian mixture model
(G. McLachlan & Peel, 2000) for intensity yi of variety i is:

f(yi) =
3∑
j=1

πjfj(yi) (6.1)

with fj the density of a normal distribution with mean µj and standard deviation
σj . The mixing probability πj is the prior probability that a randomly drawn
individual belongs to group, or component, j. In the standard situation, we have
3 groups: 1=no copies, 2=one copy, and 3=two copies. We assume for the expected
intensities µj , that µ1 < µ2 < µ3. The posterior probability of cultivar i to belong
to group k (k = 1, 2, 3) is

τik =
πkfk(yi)∑3
j=1 πjfj(yi)

, (6.2)

which are conditional genotype probabilities given the marker phenotype (inten-
sity). In total 8 unknown parameters are to be estimated: µ1, µ2, µ3, σ1, σ2, σ3,
and π1, π2 (and π3 = 1 − π1 − π2), using maximum likelihood. For segregating
populations parameter values may be known. E.g. in case of F2 populations, the
segregation ratio is 1:2:1, hence π1 = 0.25, π2 = 0.5, π3 = 0.25. We use the EM-
algorithm (Dempster et al., 1977) to get maximum likelihood estimates, treating
the situation as an incomplete data problem with missing class memberships, as in
R. C. Jansen (1993). In the algorithm, the E-step, in which estimates of the pos-
terior class probabilities τ̂ik are returned by conditioning on data and parameters,
and M-step, returning new parameter estimates µ̂k, σ̂k, π̂k, alternate until conver-
gence. The M-step consists of separate update steps for πj , fitting a generalized
linear model for multinomial data to the weights τ̂ik, and for µj and σj , fitting a
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linear model allowing for 3 group means (ANOVA model) and weights τ̂ik to the
replicated intensities.
In non-standard situations the number of components g of the normal mixture
model may deviate from 3. We refer to item 4a of the next section.

6.3.2 Features for enhanced and stabilized unmixing, data
quality and model selection

We study a number of features relevant to the codominant scoring methodology in
association panels. Some of them relate to the EM-algorithm, aiming at enhance-
ment or stabilization of the unmixing, others at assessment of the quality of the
AFLP marker data for codominant scoring, or model selection.
1. Starting values

To start up, the EM-algorithm needs either starting values of the parameters
(µk, σk, πk), followed by an E-step, or starting values of posterior probabilities
(τik), followed by an M-step. Badly chosen starting values could result in con-
vergence to a local likelihood maximum or non-convergence of the algorithm.
We investigate two types of starting values for the EM-algorithm:
a) guesstimates of the parameters, based on the number of groups (g), and

minimum and maximum of the intensities, assuming equidistant µ̂k, constant
σ̂k = (max−min)/2g, and constant π̂k = 1/g;

b) cluster based starting values, obtained from a hierarchical cluster analysis
(UPGMA), cutting the dendrogram at the desired number of clusters, and
calculating means, standard deviations, and relative frequencies within the
clusters.

2. Restrictions on parameters
The modeling principle of parsimony dictates to find models as simple as pos-
sible, yet capturing the essence of the data. In our case, putting restrictions on
standard deviations, means, and/or prior probabilities may be beneficial.
a) Standard deviations σj

Models with different standard deviations for the different components tend
to produce unstable results, especially if the number of observations in a
group is small. Therefore, a model with a single standard deviation, common
to all components, is to be preferred. Usually a data transformation is needed
to achieve approximate homoscedasticity, see item 3.

b) Means µj
Assuming a linear relationship between band intensity and copy number,
the restriction µ2 − µ1 = µ3 − µ2, or µ1 − 2µ2 + µ3 = 0, may be in place.
With this restriction only 2 mean parameters are left. This restriction can
be easily built into the mixture model by fitting at the M-step for µk not an
ANOVA model, but a simple linear regression model with the copy number
as regressor. A less stringent restriction, still preventing the means to “go
anywhere”, penalizes the second order differences between µ’s, but needs a
smoothing parameter λ to be specified. This leads to penalized weighted
least squares at the M-step of the EM-algorithm.

c) Prior probabilities πj
In the codominant scoring of an association panel no knowledge is available
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about the prior probabilities πj . Yet it may be fruitful to restrict the pa-
rameters assuming Hardy-Weinberg equilibrium (HWE), as in R. C. Jansen
(1994), rendering a single parameter p, representing the allele frequency of
the marker in the population. The restrictions on πj according to HWE are:
π1 = p2, π2 = 2p(1− p), π3 = (1− p)2.

3. Allowance for heteroscedasticity
Band intensities generally show non-constant standard deviation: larger inten-
sities tend to have larger variability. Taking the relationship between variance
and mean into consideration, we may arrive at a simpler model with a single
dispersion parameter, as described in 2a. This could be done in different ways:
a) Transformation of band intensity

R. C. Jansen et al. (2001) mention that band intensities need to be square-
root transformed, as this leads to distributions with constant variance. Note
however, that this transformation stabilizes the variance only if the variance
is proportional to the mean. To allow for other variance-mean relationships,
we will study power transformations yλ, with power λ possibly different from
0.5.

b) Non-normal mixtures
Another way to deal with the relationship between variance and mean is
to model it directly, allowing a mixture of non-normal distributions. To
this end, at the M-step for µ a generalized linear model may be fitted
with variance proportional to the mean and log link, using quasi likelihood
(McCullagh & Nelder, 1989). We will not pursue this topic further in the
results section.

4. Diagnostics for quality of AFLP band intensity data in codominant scoring
a) Number of groups g

In case of diploid organisms we assume mixture models with 3 components,
allowing for 0, 1, or 2 copies of a DNA fragment. We may, however, face
situations with only 2 components, if 0 or 1 copy, 0 or 2 copies, or 1 or
2 copies of a DNA fragment occur in the collection of individuals. Even
situations with more than 3 components cannot be ruled out, because col-
lisions may have occurred (Gort et al., 2008). In case of collision two or
more different fragments of the same length were amplified for one or more
individuals, appearing as single bands. Each fragment may then occur singly
(heterozygous) or doubly (homozygous). The band intensity is expected to
be highest for the individual with collision. Outliers in band intensity from
unknown origin could also cause the number of components to deviate from
the expected g = 3. The relative goodness of fit of the mixture model with
3 components, compared to models with other numbers of components, will
be used as diagnostic for data quality of an AFLP marker for codominant
scoring (see also paragraph on Model comparison below).

b) Separation of groups
If groups are not well separated, it may be difficult to infer the correct num-
ber of groups. Lindsay (1995, pg 18-19) mentions that, for a 2-component
normal mixture with means less than two standard deviations apart (corre-
sponding to a unimodal mixture), there is almost no information about the
mixing proportion. With a separation of 4 standard deviations or more
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the information is almost complete. To check the separation of groups,
we propose to calculate for each AFLP marker sep1 = (µ̂2 − µ̂1)/σ̂ and
sep2 = (µ̂3− µ̂2)/σ̂ in the 3-component normal mixture model with constant
standard deviation σ. We call the separation “poor” if sep1 ≤ 2 or sep2 ≤ 2,
“moderate” if not “poor”, but 2 < sep1 ≤ 4 or 2 < sep2 ≤ 4, and “good”
if sep1 > 4 and sep2 > 4. The classification of the separation is a second
diagnostic for data quality of AFLP markers in codominant scoring.

c) Outliers
For some markers, one or two individuals may have excessively high inten-
sities. Many approaches exist to handle outlying observations in mixture
models, like filtering out outliers by addition of a uniformly distributed com-
ponent to the mixture, or robustification of the procedure using mixtures of
t-distributions (see e.g. G. J. McLachlan, Ng, & Bean, 2006). We take a
simpler route here, and use two approaches: 1) identify outlying observations
by simple visual inspection of the histogram (see item 5), and, if needed, refit
the mixture model after removal of these observations; 2) check the num-
ber of individuals in the component with highest (and lowest) group mean,
according to the classification by the mixture model; if a single observation
(singleton) is observed, the band intensity may be outlying. Lack of outliers
is a third diagnostic for data quality.

5. Visualization of data and results
As a helpful tool in judging the fit of a mixture model to the data, we use his-
togram visualization of the band intensities with superimposed density plots, as
in R. C. Jansen et al. (2001), and optionally a color-coded hard classification of
individuals. Because the mixture model is fitted to corrected intensities (in the
range 0− 1, see section 6.3.1), it may be helpful to add as extra information to
the histogram the minimum and maximum value of the raw uncorrected inten-
sities (in the range 0− ≈ 106), because these reveal relevant information about
the gray levels of the bands. Plotting optionally extra grouping information, like
tomato type (with levels beef, round, or cherry in the tomato dataset), along
the top part of the histogram, may also help the interpretation of the mixture
results.

Model comparison
Comparison of nested models is usually done by likelihood ratio tests, but in the
case of mixture models theoretical problems of non-identifiability arise. Hypothesis
testing in mixture models is a topic of ongoing statistical research (see e.g. Garel,
2007; Chen & Li, 2009). We take special interest in
1. Testing for Hardy-Weinberg Equilibrium

To test the null hypothesis of mixing probabilities according to HWE, we use
the likelihood ratio test (LRT ), assuming under H0 a χ2

1 distribution of the
test statistic LR = 2(LL(FM) − LL(RM)), with LL(FM) the log-likelihood
of the full model with unrestricted πi, and LL(RM) the log-likelihood of the
restricted model with estimated πi according to HWE. Given the theoretical
problems with LRT ’s in mixture models, we underpin this approach by a small
simulation study. We simulate band intensities for 100 individuals, by sampling
from a 3-component normal mixture with means µ = 0.3, 0.5, 0.7, a range of
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standard deviations σ = 0.025, 0.030, 0.035, 0.040, 0.045, 0.050, and a range of
allele frequencies p = 0.5, 0.4, 0.3, 0.2, 0.1. (This set of parameters results in his-
tograms similar to those that occur in the tomato dataset used for illustration,
see section 6.3.4.) For the simulation, we first sample the genotype for 100 indi-
viduals, using a multinomial distribution with prior probabilities p2, 2p(1− p),
and (1−p)2, resulting in counts (k1, k2, k3) representing k1 homozygous present,
k2 heterozygous, and k3 homozygous absent genotypes. We do not allow the
counts to be zero. Next, we sample ki intensities from N(µi,σ). From the fitted
full and reduced models LR is calculated, and compared to the 95% critical
value 3.84 of the χ2

1 distribution. This procedure is replicated 10.000 times, and
type I error rates are calculated.

2. Order selection, i.e. the choice of the number of components of the mixture
model. Following Fraley and Raftery (2002), we use the Bayesian Information
Criterion BIC = −2LL+ d× ln(n) to compare models with different numbers
of groups, where d is the number of parameters, and n is the number of obser-
vations. A smaller value of BIC indicates a better fitting model. The “best
fitting model” thus corresponds to best fitting according to BIC.

In other cases we compare fits of models by comparing BIC’s. If the compared
models have equal numbers of parameters, the comparison by BIC is equivalent
to the comparison by LL.

6.3.3 Output from codominant scoring

Hard classification versus posterior probabilities
The usual result from the codominant scoring of AFLP markers is a hard classifi-
cation of markers into categories. The classification can be done in different ways.
Piepho and Koch (2000) suggest to take the category with highest posterior prob-
ability. The proprietary genotyping software of Keygene NV uses classification
rules suggested by R. C. Jansen et al. (2001): genotype i is classified as:
A= homozygous = genotype class AA (= 2 copies), if the posterior probability
τ̂i3 ≥ 0.98;

B= homozygous absent = aa (= 0 copies), if τ̂i1 ≥ 0.98;
H= heterozygous = Aa (= 1 copy), if τ̂i2 ≥ 0.98;
C= not homozygous = not AA (= 0 or 1 copy), if none of first three conditions

is satisfied, but τ̂i1 + τ̂i2 ≥ 0.98 for an intensity yi in the left tail of the normal
distribution with mean µ̂2;

D= not homozygous absent = not aa (= 1 or 2 copies), if none of first three
conditions is satisfied, but τ̂i2 + τ̂i3 ≥ 0.98 for an intensity yi in the right tail of
the normal distribution with mean µ̂2;

U= missing.
The threshold probability 0.98 is the default value, but other values can be chosen
as well. We notice that an extra region of doubt is necessary, because it may
happen that genotypes exist, which cannot be classified as A, B, H, C or D.
This may occur if the groups are not well separated, so that for some genotypes,
τ̂i1 + τ̂i2 < 0.98, but also τ̂i2 + τ̂i3 < 0.98. The right hand side plot of figure 6.1
shows an example. We call this extra region of doubt Z = unknown, meaning 0, 1,
or 2 copies. The left hand side plot shows the classification if probability threshold
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0.95 is used. In that case all genotypes can be classified as A, B, H, C, or D.
The above mentioned commonly used hard classification has a number of disadvan-
tages. For instance, the classification rule, following from the probability threshold
0.98, is rather arbitrarily chosen. Furthermore, it is not clear how to deal with
genotypes, once they are classified into one of the regions of doubt. Therefore,
we propose to use instead the set of 3 posterior probabilities (τ̂i1, τ̂i2, τ̂i3) as result
of the codominant scoring for genotype i. Using this approach, each genotype is
allowed to belong to more than one class, with the posterior probabilities indicat-
ing the levels of membership to the classes. This type of clustering is called fuzzy
clustering, see e.g. Bezdek (1981).
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Figure 6.1: Histograms of band intensities of marker 1039 with superimposed normal
densities. Subplots a and b show color coded hard classifications based on probabil-
ity thresholds 0.95, and 0.98 resp. In the last case some observations are classified as
unknown (Z).

Predictors for additive and dominance effects
Given the 3 posterior probabilities, it is straightforward to calculate predictors
for the additive and dominance effects of the loci. The additive predictor for an
individual is defined as xa = τ̂3 − τ̂1, with values between −1 and 1. The value
−1 is obtained for loci which are classified as B (=aa) with probability 1. A locus
has additive predictor value 1 if it is classified as A (=AA) with probability one.
The dominance predictor xd depends only on the probability of a heterozygous
genotype, and is defined as xd = τ̂2, with values between 0 and 1.
The additive and dominance predictors may be used e.g. in QTL-analysis, relating
the codominant scores to phenotypic information by mixed models. A paper on
genome wide association mapping using these scores is in preparation.

6.3.4 Data: association panel of tomato hybrids

Within the Centre for BioSystems Genomics, a Dutch plant genomic initiative
(Berloo, van Heusden, et al., 2008), one project aims at processes and mechanisms
affecting fruit quality in tomato. Within this project an association panel, con-
sisting of a diverse set of 94 tomato hybrids, was genotyped using AFLP with gel
electrophoresis (Berloo, Zhu, et al., 2008). This set consists of 20 beef, 21 cherry,
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and 53 round tomato hybrids. The AFLP fingerprinting was performed at Key-
gene NV using standard in-house developed protocols. Fifty primer combinations
were used, labeled A, B, . . . , Z,AA,AB,. . . ,AX, based mostly on EcoRI / MSeI
and some PstI / MSeI restriction enzyme combinations. The scoring range is ap-
proximately 50-550. Typically, between 50 and 100 bands are visible per primer
combination per variety, the majority of which is monomorphic. Band intensities
of a total of 1175 polymorphic bands were scored by Keygene NV using the pro-
prietary genotyping software. For 378 bands the map position is available from an
integrated proprietary linkage map. We study both raw uncorrected intensities,
with values in the range 0− ≈ 106, and corrected intensities with values in the
range 0− 1. We refer to the dataset of band intensities of 1175 AFLP markers on
94 tomato hybrids as the “tomato data”.

6.3.5 Studying the scoring features in the complete tomato
dataset

We study how the features mentioned in section 6.3.2 help in the codominant
scoring of all 1175 AFLP markers in the tomato data, focusing on the following
topics.
1. Starting values of parameters. We study the performance of the two types

of parameter initialization for the EM-algorithm. For each marker, mixture
models with 2, 3, 4 and 5 components are fitted, once using guesstimates and
once using cluster based starting values. We tabulate how often each type of
starting values performs best (highest LL).

2. Power transformation of the band intensity. We try to find empirical evidence
favoring the square root transformation, as suggested by R. C. Jansen et al.
(2001), in two ways:
a) Comparing the fits of homoscedastic and heteroscedastic 3-component mix-

ture models for power transformations in the range 0.25-1.0 with BIC. Per
transformation we count how often the homoscedastic model (with d = 6
parameters) is preferred over the heteroscedastic model (with d = 8). If the
estimated standard deviation σ̂ in a mixture component is smaller than 0.01,
or if a component contains a single observation, we fix σ̂ at 0.01. The power
transformation, giving most often variance stabilization, is called best with
respect to variance.

b) Comparing the fits of mixture models with 2, 3, 4, and 5 components for
power transformations in the range 0.25-1.0, using BIC. Per power transfor-
mation and marker, the best fitting model is selected. The transformation,
selecting most often the preferred 3-component mixture model, is called best
with respect to order selection.

3. Diagnostics for data quality of the 1175 AFLP markers:
a) number of components: compare g-components homoscedastic mixture mod-

els (with g = 2, 3, 4, 5 components, and d = 4, 6, 8, 10 parameters, resp.) by
BIC;

b) separation: count how often separation is poor, moderate or good in the
best-fitting g-components model;

c) outliers: count how often singletons exist in the first or last component in
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the best-fitting g-components model.
4. Hardy-Weinberg Equilibrium. We test the null hypothesis of mixing probabil-

ities according to HWE for a subset of markers, using the LRT described in
section 6.3.2. We use a selection of 300 mapped markers, following the paper
by Berloo, Zhu, et al. (2008). Out of the 797 unmapped markers, we select 349
with best fitting 3-components mixture model.

6.4 Results

6.4.1 Software

We developed software routines in R (Ihaka & Gentleman, 1996) for the codom-
inant scoring of AFLP band intensities in an association panel, using the EM-
algorithm. We built features into the software, as described in section 6.3, allowing
for different starting values of parameters, transformation of the response, restric-
tion on parameters, different numbers of components, and for the types of output
as described earlier. For a more detailed description of the software we refer to
appendix 6.A. All plots and mixture model output in this paper are results from
applications of the R routines.

6.4.2 Examples

Examples with well fitting mixture models
In figure 6.2 we show some examples of codominantly scored AFLP markers with
well fitting 3-component homoscedastic normal mixture models. The corrected
band intensities are square-root transformed, unless mentioned otherwise. In sub-
plots a) and b) no variety is classified into a region of doubt. In subplots c) and d)
a few hybrids are classified as “D”. We added the boundaries of the classes into the
plot, and minimum and maximum value of the raw band intensities. The variety in
plot c) classified as “D” has posterior probabilities (τ̂i1, τ̂i2, τ̂i3) = (0, 0.050, 0.950).

Examples of features helping unmixing
Figure 6.3 illustrates problems encountered in the codominant scoring of AFLP
band intensities of the tomato dataset, that can be handled with the features
described in section 6.3.2. The subplots are labeled accordingly.
1. Starting values. Subplots 1a) and 1b) show an example where cluster ini-

tialization of the parameters in the EM-algorithm results in a better solution
(LL = 120.1) than initialization by guesstimates (LL = 109.1).

2. Restrictions on parameters.
a) Standard deviation σj . In subplots 2a1) and 2a2) an example of the dif-

ferences in fit between models with free and equal standard deviations is
given. The rather outlying observation is accommodated in subplot 2a1)
by allowing for a mixture component with a very large standard deviation.
Although the model with free σj (with d = 8 parameters versus d = 6 for
the homoscedastic model) has a substantially higher LL (76.6 vs 70.5), re-
sulting in a smaller BIC (−116.9 vs −113.7), visual inspection shows that
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Figure 6.2: Four examples of AFLP markers from the tomato data with histograms of
band intensities, and well fitting normal mixture densities.

the restricted model has a more reasonable fit.
b) Means µj . For the marker in subplots 2b1) and 2b2) the equidistance restric-

tion on µj results in a better solution (LL = 31.2) than the model with free
µj ’s (LL = 21.9). This is an example of a pathological situation, because
the EM-algorithm converges to an inferior solution for the full model (free
µj ’s) compared to the restricted (equidistant) model, whereas by definition
the larger model must fit better.

c) Prior probabilities πj . In subplots 2c1) and 2c2) an example is shown, where
the model with restricted πj according to HWE (π1 = p2, π2 = 2p(1 − p),
π3 = (1 − p)2) results in a higher LL (46.8), than the model with free πj
(LL = 46.0). Again, the reason must be convergence of the EM-algorithm
to an inferior solution for the model with free πj , in this case by allowing a
separate component with small mixing probability for the two hybrids with
very low band intensity.

3. Transformation of band intensity. Subplots 3a1) to 3a4) show the interplay
between data transformation and restriction on σj . In 3a1) and 3a2) mixture
models are fitted for untransformed band intensities. The heteroscedasticity
has to be taken care of by allowing for different σj ’s. In 3a3) and 3a4) the
same AFLP marker is studied, but now the band intensities are square root
transformed. For the square root transformed intensities, the simpler model
with equal σj ’s is reasonable.

4. Diagnostics for quality of AFLP band intensity data.
a) Number of groups. Subplots 4a1) and 4a2) show an example with a better

fitting 4-component mixture, compared to 3 components, according to BIC.
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Figure 6.3: Examples of features helping unmixing of marker intensities for the tomato
data. Subplots 1a-b deal with starting values of parameters; 2a1-a2 restriction on σ:
hetero- vs homoscedasticity; 2b1-b2 restriction on µ: equidistant component means;
2c1-c2 HWE restriction on π; 3a1-a4 transformation of band intensity; 4a1-a2 number
of components of mixture model; 4b1-b3 separation of group means; 4c1-c2 outliers; 5
extra information in plot.
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b) Separation. Three examples of markers with good, moderate, and poor
separation are shown in subplots 4b1), 4b2), and 4b3). In all three cases the
separation between the Aa and AA is worse than between aa and Aa.

c) Outliers. Subplots 4c1) and 4c2) show the effect of removal of an outlier.
A separate component of the mixture is devoted to the outlier, if included.
Without the outlier the mixing probabilities are nicely according to HWE.

5. Data visualization. In subplot 5) we include extra information: minimum and
maximum of the raw intensities, and values of an extra grouping variable, in
this case type of tomato, shown as colored dots along the top of the graph. The
AFLP marker indicates population substructure, because it is related to tomato
type: all genotypes with high intensities are cherry tomatoes (shown as green
colored dots).

6.4.3 Results for the complete tomato dataset

Parameter initialization
Table 6.1 shows the comparisons of the two types of parameter initialization of
the EM-algorithm (by guesstimates and hierarchical clustering) for 2-, 3-, 4-, and
5-component homoscedastic mixture models for all 1175 markers. We find that
parameter initialization becomes more critical for more complex models. In case
of mixture models with 2 groups, initialization by guesstimates and by hierarchical
clustering results in identical parameter estimates (with maximized log-likelihood
differing less than 10−6) for 95% of the markers. For models with 3, 4 and 5
groups this percentage is 74%, 55%, and 34% respectively. For models with more
than 2 groups the cluster initialization outperforms the guesstimates. We conclude
that cluster initialization is a better procedure for supplying starting values for
parameters. To avoid being trapped in a local maximum, however, we advise to
try other starting values as well, using e.g. the described guesstimates. In the
following analyses we fit models using both types of parameter initialization, and
choose the results corresponding to the model with highest LL.

number of groups
2 3 4 5

no difference 1118 870 651 405
guesstimate best 30 73 92 142

cluster best 27 232 432 628
total 1175 1175 1175 1175

Table 6.1: Comparison of parameter initialization by
log-likelihood of fitted models: guesstimates versus hier-
archical clustering

Transformation of band intensity
Table 6.2 shows the comparison of homoscedastic and heteroscedastic 3-component
mixture models by BIC for a range of power transformations. Between 3 and 15
markers, depending upon the transformation used, are discarded, because the
LL of the heteroscedastic model is erroneously lower than that of the (smaller)
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homoscedastic model, due to convergence to local minima. Among the different
power transformations, the square root transformation gives most often (63%)
variance stabilization.

Power transformation
0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90 1.0
57% 59% 61% 63% 58% 49% 45% 40% 32% 27%

Table 6.2: Comparison of homoscedastic and heteroscedastic 3-component
mixture models by BIC for a range of power transformations of band inten-
sities. Shown are percentages of markers with the homoscedastic model selected
as best.

Table 6.3 shows the results of the comparisons of 2-, 3-, 4-, and 5-component
homoscedastic mixture models for a range of power transformations. We find
some very distinctive patterns. If the square root transformation is used, the 3-
component model is selected most frequently (for 561 markers). Transformation
by power 0.6 shows almost similar results. With powers larger than 0.5, models
with more groups tend to be favored, probably because large observations tend
to become more outlying, which are accommodated by more components. Using
a transformation with a power smaller than 0.5, both models with 2, and with 4
or 5 groups tend to be selected more often. We conclude from tables 6.2 and 6.3
that the square root transformation is best, both for variance stabilization and for
order selection.

Power transformation
g 0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90 1.0
2 202 197 172 158 147 132 127 122 117 107
3 458 472 505 561 557 517 476 434 357 315
4 334 334 348 332 310 295 308 313 301 261
5 181 172 150 124 161 231 264 306 400 492

total 1175 1175 1175 1175 1175 1175 1175 1175 1175 1175

Table 6.3: Model selection of g-component mixtures models by BIC for a range of
power transformations. For each power transformation, the numbers of markers out of
1175 are shown with a g-components normal mixture model (g = 2, 3, 4, 5 selected as
best).

Diagnostics of data quality
Table 6.4 shows results for the diagnostics of data quality. In the comparison
of normal mixture models with 2, 3, 4 and 5 components by BIC, we find that
the desired model with 3 components fits best for 561 markers (≈ 50%). For
158 markers a model with 2 components fits best. Models with more than 3
components are chosen for 456 markers.
Results on the separation of group means in the best-fitting g-components model
are shown in the middle part of table 6.4. Notice that the majority of the markers
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(69%) have well separated group means, 31% is moderately separated, and only 1
marker is poorly separated. The percentages well separated markers monotonically
decrease with the order g of the model: 89%, 80%, 53%, and 34%, resp. We
conclude that the separation of group means shows a relationship with the choice
of best fitting model.
The bottom part of table 6.4 shows counts of markers with singletons in the last
and first component of the best fitting g-component mixture model (g = 2, 3, 4, 5).
We find that 62 (5%) of the markers have a first component with a singleton.
This percentage is not heavily dependent on which model fits best. However, the
counts of markers with a singleton in the last component are much higher, and
now we do see a clear relationship with best fitting model: for markers with a best
fitting 3-component model, only 42 (7.5%) have a singleton in the last component,
whereas markers with best fitting 2-, 4-, and 5-component mixture models have
singletons in 25%, 26%, and 36% of the cases.
The problem with outlying observations is that they may be, but not necessarily
are, erroneous: a component with a singleton may represent a true genotypic sit-
uation. If we assume that rare genotypes AA and aa occur approximately equally
often across all markers, and that most singletons in the first component repre-
sent true aa genotypes, we conclude that if markers with best fitting 3-component
mixture model have singletons in the last component, most of these represent true
AA genotypes. The much higher percentages of singletons in the last component
found for markers with 2-, 4- or 5-component models, suggest that the intensity is
erroneous outlying (whatever the reason may be), and need further examination.

number of components
2 3 4 5 total

selected as best 158 561 332 124 1175
poor separation 1 0 0 0 1
moderate separation 17 113 157 82 369
good separation 140 448 175 42 805
singleton in first component 7 24 19 12 62
singleton in last component 39 42 85 44 210

Table 6.4: Diagnostics for data quality: counts of markers with best fitting
mixture models with 2, 3, 4, or 5 components using BIC, counts of markers
with poor, moderate, or good separation of group means, split with respect
to model choice according to BIC, and counts of markers with singletons
in the first or last component of the best fitting mixture model.

Testing for mixing probabilities according to Hardy-Weinberg Equilibrium
Table 6.5 shows the results of the simulation study to underpin the LRT for HWE,
as described in section 6.3.2. We note that for allele frequencies p = 0.3, 0.4, 0.5
the type I error rates are close to the nominal value 0.05. For smaller values of
p the LRT is slightly conservative, rejecting the null hypothesis not often enough
(with error rates between 0.034 and 0.045). We suspect that the reason is data
sparseness: if p is small, π1 = p2 is close to zero, rendering frequently mixtures
with only 1 or 2 observations for the first component. We conclude that the LRT
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is justified to test for mixing probabilities according to HWE.

Allele frequency p
σ 0.5 0.4 0.3 0.2 0.1

0.025 0.052 0.052 0.055 0.045 0.034
0.030 0.054 0.048 0.054 0.043 0.035
0.035 0.052 0.050 0.052 0.043 0.036
0.040 0.053 0.051 0.047 0.039 0.040
0.045 0.053 0.053 0.049 0.038 0.041
0.050 0.052 0.051 0.049 0.038 0.044

Table 6.5: Type I error rate of the likelihood ratio test
for the null hypothesis of mixing probabilities according to
HWE (α = 0.05) for simulated intensities of 100 genotypes
using a 3-components normal mixture model with means
0.3, 0.5, 0.7, using 10.000 replicates.

Figure 6.4 shows an example of a marker with mixing probabilities according to
HWE. First a mixture model with unrestricted πj is fitted, shown in subplot 4a),
with LL = 94.2. Second, a mixture model with πj according to HWE is fitted,
shown in 4b), with LL = 93.8 and estimated allele frequency p̂ = 0.78. The
hypothesis test of πj according to HWE uses the test statistic LR = 2 × (94.2 −
93.8) = 0.8, and has P-value P (χ2

1 ≥ 0.8) = 0.37. Hence, the null hypothesis of
HWE is not rejected.

a) not Hardy−Weinberg; LL=94.2
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Figure 6.4: Histogram and fitted normal mixtures with unrestricted πj (subplot a) and
restricted πj according to HWE (b).

The results for all selected markers are shown in table 6.6 (cf table 2 in Berloo,
Zhu, et al. (2008)). If the LRT gives a P-value > 0.05, the null hypothesis of
HWE for the marker is not rejected, and we accept the mixture model with mixing
probabilities according to HWE. We find large differences in percentages of markers
in HWE over the chromosomes, with low percentages on chromosomes 4, 5, and 8,
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to (almost) 100% on chromosome 3 and 9. In the selection of unmapped markers
53% does not show evidence against HWE.

chromosome 1 2 3 4 5 6 7 8 9 10 11 12 unmapped
nr markers 14 5 3 34 28 44 6 7 120 6 19 14 349
nr in HWE 4 3 3 2 5 42 4 1 114 4 10 11 184

Table 6.6: Total numbers of markers and numbers of markers with mixing probabilities
according to HWE for a selection of mapped markers on the 12 chromosomes, and of
unmapped markers.

6.5 Conclusions and discussion

In this paper we describe a method for the codominant scoring of AFLP markers
in association panels without prior knowledge of genotype probabilities. AFLP
bands are scored codominantly by fitting normal mixture models to the band
intensities per marker, using the EM-algorithm. The EM-algorithm is used for
maximum likelihood estimation of normal mixture parameters. It is known for its
slow convergence rate, but proved fast enough for the size of the example dataset
we analyze here. We study a number of features that facilitate the codominant
scoring of AFLP bands, like different parameter initializations for the normal
mixture fitting, restrictions on parameters (equal standard deviations, equal or
nearly equal distances between component means, mixing probabilities according
to HWE), easy data transformation, and outlier removal. Histogram visualization
with superimposed normal densities, and optional classification scores and other
grouping information assists further in the codominant scoring of the bands. The
methods for codominant scoring with facilitating features are implemented in a
program in R, that is available from the authors.
Traditionally, the output from codominant scoring based on mixture models is the
“hard” classification of genotypes into categories “A”,“H”,“B”, augmented with
regions of doubt “C” (=“not A”) and “D” (=“not B”), for which an extra region
of doubt “Z” (=“B or H or A”) is needed for completeness. It remains unclear how
cultivars classified into regions of doubt should be dealt with in further analysis.
We therefore propose to replace the hard classification by a fuzzy classification: use
the posterior probabilities of individuals to belong to each of the three genotype
classes AA, Aa, or aa. The posterior probabilities are direct results of the fitted
mixture model without the intervening threshold needed for a hard classification.
Given the posterior genotype probabilities, predictors of additive or dominance
effects are easy to calculate, and can be used e.g. in association studies.
The EM-algorithm for fitting normal mixture models needs starting values of the
parameters. We have studied two types of starting values, and find that cluster
based starting values outperform (what we call) guesstimates of the starting values,
especially for more complex models. We recommend to fit models twice using
both methods for starting values, and choose the fitted model with highest LL.
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We find empirical evidence favoring the square root transformation to arrive at
homoscedastic normal mixture models.
We have studied criteria for data quality of AFLP markers with respect to codom-
inant scoring, focusing on optimal number of components of the mixture model,
separation of components, and occurrence of outliers. In our example dataset (an
association panel of tomato), the desired normal mixture model with 3 compo-
nents, valid for diploid organisms, is selected by BIC for about half of the 1175
polymorphic bands (if choosing from models with 2, 3, 4, or 5 components). A
model with more than 3 components is selected for about 38% of the markers.
Models with more than 3 components make no sense for diploid organisms, if the
components of the mixture model correspond to copy numbers of a unique DNA
fragment for the different genotypes. However, if an AFLP band would consist of
two different DNA fragments of equal length, which we call collision (see Gort et
al., 2006, 2008), a 4 or 5-components model cannot be ruled out. A model with 2
components, which could have a biologically sound interpretation, is selected by
BIC for only 13% of the markers.
In total 69% of the markers with best-fitting g-components models have well sepa-
rated components. This percentage declines with g. Models with good separation
are to be preferred, because they will lead to crisp classifications: posterior prob-
abilities close to 0 or 1.
Markers with best fitting 2-, 4-, or 5-components models have in 25-35% of the
cases a single observation assigned to the component with highest mean, whereas
for markers with best fitting 3-components model this is only 7%. For the com-
ponent with lowest mean we find 5-10% singletons in all cases. From this, we
cautiously conclude that markers, with 2-, 4- or 5-component mixture models se-
lected as best, contain more often an erroneous outlying observation than markers
with 3-components models selected best.
From the above we can distill a recipee for the automatic selection of AFLP mark-
ers, which can be reliably and consistently scored: select markers with best fit-
ting 3-components mixture model according to BIC, good separation of compo-
nents, lack of singletons, robustness against parameter initialization, and robust-
ness against slight data transformation.
The LRT to test for mixing probabilities according to HWE appears to be reason-
able, as we find from a simulation study. In the example association panel, large
differences in percentages of markers in HWE are found between the chromosomes,
with percentages ranging from 5% (chromosome 4) to 95-100% (chromosomes 3,
6, and 9). These differences may be caused by recent breeding efforts in tomato
focusing on chromosome 4 (Berloo, Zhu, et al., 2008).
For completeness, we note that AFLP markers can be codominant in another sense.
If two AFLP fragments differ in size by a few basepairs, e.g. by an indel, but are
identical in other respects, and originate from the same locus, they can be used as
codominant markers. Such bands or fragments are called allelic markers. Special
algorithms and software can find such markers, and score them codominantly
(Meudt & Clarke, 2007). An example of a study of this type of codominance is
Wong et al. (2007).
Zhanjiang (2007) urges caution in the use of codominant scoring because of the
nonlinear nature of the Polymerase Chain Reaction, which is at the basis of the
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AFLP procedure, and even discourages the use in case of samples from random
mating populations. We have demonstrated, though, in this study of an unstruc-
tured association panel of hybrids, that large numbers of AFLP markers can be
scored codominantly in a satisfactory way. The main advantage of codominantly
scoring AFLPs is obviously being able to distinguish heterozygous from homozy-
gous individuals. Even if some uncertainty about the true genotypic class of a
cultivar remains, and some AFLP bands are lost due to low data quality, this ad-
vantage makes the codominant scoring of AFLPs in association panels worthwhile.
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6.A Appendix Software description

We wrote software routines for the codominant scoring of AFLP profiles in R
(Ihaka & Gentleman, 1996), which are available from the authors. In the software
we fit and visualize mixture models, using the EM-algorithm. The main rou-
tine takes, besides the normalized intensities and optionally the raw intensities,
a number of arguments to allow for the different features described earlier. The
arguments are concisely described below.

argument default description
ng =3 number of groups
modeltype =2 1= free π, free σ

2= free π, constant σ
3= fixed π, free σ
4= fixed π, constant σ
5= Hardy Weinberg, free σ
6= Hardy Weinberg, constant σ

clust =TRUE is clustering initialization of parameters used?
Pois =FALSE is quasi-Poisson regression used to fit models?
p =1/ng starting values and/or fixed values of prior

probabilities πi
equaldist =FALSE are means restricted to be equidistant?
lambda =0 value of the smoothing parameter in case of

restriction on means
boxcox =0.5 transformation of intensities, default is square

root
rm.max =0 the number of outlying observations that should

be removed before unmixing
pthresh =0.98 threshold of τ for regions of doubt
plothist =TRUE should a histogram be plotted?
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xlim =c(0,1) range of values for x-axis of histogram
plotscores =TRUE should class scores be plotted?
plotbound =TRUE should class boundaries be plotted?
freq =TRUE histogram shows frequencies or densities?
nbreaks =NULL number of classes for histogram
maintitle =NULL the title of the histogram
showminmax =TRUE print minimum and maximum of raw intensities

as subtitle
xlabel =NULL extra label at the x-axis
extrainfo =NULL color coded extra grouping information plotted

along the top of the plot

The definition of the R function CodomAFLP with all arguments follows here:

CodomAFLP <- function(y, yraw=NULL, ng=3, modeltype=2, clus=TRUE, Pois=FALSE,

p=rep(1/ng,ng), equaldist=FALSE, lambda=0, boxcox=0.5, rm.max=0,

pthresh=0.98, plothist=TRUE, xlim=c(0,1), plotscores=TRUE, plotbound=FALSE,

freq=TRUE, nbreaks=40, maintitle=NULL, showminmax=FALSE, xlabel=NULL,

extrainfo=NULL)

Routine CodomAFLP returns the estimated means, standard deviations, prior prob-
abilities, and posterior probabilities. For mixtures of 2 or 3 groups also the hard
classifications are given. In case of Gaussian mixtures the log likelihood is returned
as well. Based on the data and the model fit, a histogram visualization with fitted
densities can be produced. Optionally, the observations can be plotted on the
x-axis using a color coding corresponding to the hard classification. We use the
following color codes: red=B, green=H, blue=B, violet=C, magenta=D, black=Z.
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Chapter 7
General Discussion

7.1 Introduction

In this thesis we have described some studies on statistical properties of AFLP.
These studies were born from a practical question: if similarity between individuals
is calculated from AFLP profiles, which values would indicate true phylogenetic
relationship? We addressed this question in chapter 2, and proposed a Monte
Carlo approach to simulate the distribution of similarity coefficients for unrelated
individuals. From this distribution critical values for testing the unrelatedness
of individuals could be determined. We also suggested weighted similarity coeffi-
cients. After gaining more insight into collision from a probabilistic point of view
as described in chapters 3 and 4, a better answer was given in chapter 5. In this
chapter we defined modifications of similarity coefficients, that automatically cor-
rect for homoplasy and collision. In chapter 6 we studied another aspect of AFLP
that relates to collisions: codominant scoring. In that chapter we already touched
upon this relationship, but in the present discussion chapter we will take it a bit
further in section 7.5.
We find some of our results surprising, in the same way as the birthday problem
is surprising: the size of the problem is larger than one would believe at first
thought. In a relative small group, the probability that two or more people share
a birthday is higher than people tend to believe. Likewise, in an AFLP profile
with relatively few fragments, more fragments have equal length, and hence cluster
together within a single band, than one may think. Hence the title of the thesis:
on some surprising statistical properties of AFLP. The surprising aspect is clear
from the poster (see figure 7.1) that could be found in the London underground
in the year 2000, being one of a series of 12 monthly mathematical posters, which
were meant to raise awareness of the importance of mathematics among the broad
public. A second poster about the Human Genome project, also related to our
work when we considered the complete Arabidopsis genome in chapter 2, is shown
in figure 7.2. The posters were one of the expressions of a campaign sponsored
by the Isaac Newton Institute in Cambridge, following Unesco’s decision to label
the year 2000 as World Mathematical Year. The posters showed the public that
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mathematics has an enormous range of important practical applications. As Keith
Moffatt, the then president of the Isaac Newton Institute, stated: “We are trying
to bring it to life, to show people it is not just this awful business of numbers and
sets and diagrams.” (The Guardian, Dec 30th, 1999).
In this discussion chapter we look back at our findings, and relate them to the
findings of others that we compiled in chapter 1. We will make some critical
remarks with respect to our own work. Next, we sketch some potential future
work. Finally, we wrap things up, and reach our final verdict.

Figure 7.1: Poster on birthday problem in the London underground (source:
http://www.newton.ac.uk/wmy2kposters, ©Isaac Newton Institute for Mathematical
Sciences, Cambridge, UK).

7.2 Theory and empiricism

We started this thesis in section 1.4 with a compilation of papers that study
homoplasy and collision. These were all empirical studies, focussing more on cases
than on methods. In contrast, our work emphasizes methods, with theory and
statistics as driving forces. What have we learned? How do our results compare
to the findings of others? In this section we make a comparison between the
results reported by the mentioned authors and the results we would get given their
data. The problem with this approach is, that often some necessary information
is missing in the papers. For example, to estimate the number of collisions within
a lane, we need the total number of bands within a lane or the lengths of all bands
within a lane, and the fragment length distribution or at least the GC content of
the genome involved. In some cases we impute the missing information, but this
may make a fair comparison difficult. In other cases we don’t even try to fill the
gaps, but just comment on the findings by the authors in the light of our results.
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Figure 7.2: Poster on the human genome project in the London underground (source:
http://www.newton.ac.uk/wmy2kposters, ©Isaac Newton Institute for Mathematical
Sciences, Cambridge, UK).

1. Monte Carlo and in-silico AFLP studies
a) Vekemans et al. (2002) report for P. lunatus 83 collisions in 250 fragments

(33.2%) and ≈ 34.7 collisions in 150 fragments (23.1%), and for L. perenne
60 collisions in 220 fragments (27.3%) and ≈ 9.8 collisions in 80 fragments
(12.3%). They use fld’s based on GC content 0.45% for P. lunatus and 0.50%
for L. perenne, and a scoring range of 75− 450. Using methods described in
sections 3.4.1 and 3.5.1, we get the following results: for P. lunatus 82.9±5.6
collisions in case of 250 fragments, and 33.7 ± 4.3 collisions in case of 150
fragments (cf. 83 and ≈ 34.7 mentioned above); for L. perenne 60.1 ± 5.1
collisions for 220 fragments, and 9.2 ± 2.6 collisions in case of 80 fragments
(cf. 60 and ≈ 9.8 mentioned above). These results are strikingly similar.
This should not surprise us too much, though, because the authors sample
AFLP data using the fld, according to Innan et al. (1999), which we can use
in our calculations as well. Furthermore, they report averages over many
simulated profiles, resulting in expected numbers of collisions, as we do.

b) Althoff et al. (2007) uses in-silico AFLP on sequenced genomes from eight
organisms, from bacteria to humans, representing a range of genome sizes.
The authors report total numbers of bands per profile, and numbers of bands
containing collisions, split into collisions within and among chromosomes.
Unfortunately, this information is not enough to derive the total number
of bands with collisions, because a band containing more than one collision
could have collisions of fragments within the same chromosome, and with
other fragments on another chromosome. This band would be counted twice,
once within chromosomes and once among chromosomes. Therefore, the
total number of bands with collisions is at most the number reported. On
the other hand, no information is given about the number of collisions per
band, and, especially in cases of large band counts, double, and higher order
collisions are to be expected. Hence, the number of collisions will be at least
as large as the number of bands reported. These two effects will partly cancel



126 CHAPTER 7. GENERAL DISCUSSION

out. We estimate the numbers of collisions given the band count, using the
method described in section 3.5.2, and compare with the reported sum of
band counts with collisions within and among chromosomes. We quantify
correspondence of results by the tail probability of the collision count by
Althoff et al. (2007) in our estimated distribution. A small tail probability
indicates little correspondence.

Althoff’s results Our results
Species GC band bands with expected st.dev. tail

content count collisions nr collisions prob

S. cerevisiae 0.38 2 0 0.01 0.12 0.99
4 0 0.05 0.23 0.95
3 0 0.03 0.17 0.97

C. elegans 0.36 34 2 3.7 2.1 0.31
14 1 0.61 0.81 0.44
17 0 0.90 0.99 0.42
27 0 2.9 1.6 0.12

A. thaliana 0.36 34 7 3.7 2.1 0.10
16 2 0.79 0.93 0.19
10 1 0.32 0.58 0.26
19 1 1.1 1.1 0.66

D. melanogaster 0.43 27 1 1.5 1.3 0.56
16 3 0.53 0.75 0.02
7 0 0.11 0.33 0.90
29 2 1.8 1.4 0.51

O. sativa 0.44 43 4 3.8 2.1 0.51
20 3 0.79 0.92 0.05
24 4 1.1 1.1 0.03
43 8 3.8 2.1 0.05

M. musculus 0.47 166 66 62.9 10.4 0.39
134 50 37.7 7.5 0.07
157 56 54.9 9.5 0.46
182 86 79.2 12.0 0.29

H. sapiens 0.41 189 87 137.1 19.0 0.002
134 57 56.0 10.2 0.46
148 50 71.7 12.0 0.03
174 86 109.3 16.1 0.07

Table 7.1: Comparison of results on collision of Althoff et al. (2007) and results,
based on Gort et al. (2006), for 7 species with different GC contents. A row in
the table corresponds to one in-silico AFLP profile. Per profile, the band count
and sum of the band counts with collisions within and among chromosomes,
reported by Althoff et al. (2007), are shown, together with estimated expectation
and standard deviation of the collision count, given the band count, according
to Gort et al. (2006). The column labeled “tail prob” gives the tail probability
of the result by Althoff et al. (2007) in our estimated distribution.

Results are shown in table 7.1, based on fld’s calculated according to the
method by Innan et al. (1999) with proper GC-content, as described in
section 3.4.1. We conclude that the calculated results on collisions are close
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to the values reported by Althoff et al. (2007). In one case (first profile
from H. sapiens), is the reported value of 87 bands with collisions not in
accordance with the values we predict. Notice that this is the case with
highest number of bands, where we expect the problem of non-comparable
results to be largest. Also notice that for M. musculus and H. sapiens the
in-silico profiles contain unrealistically large numbers of bands.
The authors also check the homology of bands between 3 species of Drosophila.
Their table 2 shows for 8 primer combinations (pc’s) the numbers of bands,
numbers of pairwise shared bands, and numbers of pairwise homologous
bands. From this information we calculate per pc the Dice coefficients for
two pairs of profiles, and corresponding Dice coefficients Dhom based on ho-
mologous bands. We compare Dhom with the modified Dice coefficient Dmod

proposed in section 5.3. Notice that Dmod expresses similarity as fraction of
homologous fragments, whereas Dhom is based on band counts. Therefore,
we do not necessarily expect the same values for Dhom and Dmod. For a
fair comparison, we would need the numbers of homologous fragments, but
these are not available. The results are shown in table 7.2 for two pairwise
comparisons of Drosophila species. Dmod gives a slightly stronger correction
than Dhom.

melanogaster and simulans melanogaster and yakuba

pc D Dhom Dmod D Dhom Dmod

caa 0.26 0.22 0.19 0.08 0.04 0.00
cac 0.13 0.13 0.08 0.00 0.00 0.00
cag 0.00 0.00 0.00 0.00 0.00 0.00
cat 0.12 0.08 0.04 0.12 0.08 0.03
tta 0.26 0.15 0.19 0.00 0.00 0.00
ttc 0.12 0.12 0.07 0.06 0.00 0.00
ttg 0.26 0.14 0.13 0.13 0.03 0.00
ttt 0.22 0.07 0.03 0.11 0.00 0.00

average 0.17 0.11 0.09 0.06 0.02 0.004

Table 7.2: Comparison of Dice coefficients for pairs of profiles on
Drosophila (melanogaster/simulans and melanogaster/yakuba) using 8
pc’s (cf. table 2 of Althoff et al. (2007)): D=Dice coefficient, Dhom =
Dice coefficient based on homologous bands, as reported by Althoff et
al. (2007), Dmod = Modified Dice coefficient defined in section 5.3.

2. Single nucleotide primer extension
a) Hansen et al. (1999) report that of 456 investigated bands from 8 pc’s on 2

genotypes of Beta, 60 bands (13.2%) contained at least two fragments. They
do not report the total numbers of bands per pc, nor is it reported whether
shared bands among the two genotypes occur only once in the set of 456. The
scoring range is also missing. Assuming that all bands are investigated, the
average number of bands per profile would equal 456/(2 × 8) = 28.5, lower
than the 44.3 bands reported as average in the complete study. Assuming a
scoring range of 101-550, in-silico Arabidopsis fld FS (chapter 2), and band
count 29, we estimate the number of collisions as 1.9 ± 1.5 (using methods
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described in 3.5.2). Assuming no higher order collisions, we estimate that
6.6%±5.2% of the bands contain collisions. The reported 13.2% is well within
the 2 σ upper limit. Assuming band count 44, we estimate the number of
collisions as 4.4±2.3 or 10%±5.2%. We conclude that our calculated collision
counts are comparable to the results by Hansen et al. (1999).

b) O’Hanlon and Peakall (2000a) report that 3 out of 94 bands in profiles on
Carduinae thistles were amplified by more than one extra primer (collision).
A single pc was used, but it remains unclear from how many profiles (geno-
types) the 94 bands originate. If there would have been a single profile with
94 bands, our estimated number of collisions (assuming scoring range 101-
550, fld from Arabidopsis as before) is 22.8±5.8. The reported 3 bands with
collisions is much lower. This could be due to 1) higher order collisions; 2)
deficient detection of bands with collisions; 3) multiple profiles, instead of
the assumed single profile.
The authors also report on homoplasy of bands between two genotypes.
The amount of relevant information about the AFLP profiles is so limited,
however, that we judge it useless to make any predictions.

3. Sequencing of fragments
a) Rouppe van der Voort et al. (1997), in potato, find homoplasious fragments,

even in a selected set of 20 putatively homologous markers. The paper con-
tains incomplete information about the total numbers of bands per profile
and the numbers of common bands per pair of profiles, making it impossible
to estimate collision counts or counts of homoplasious bands satisfactorily.
From their table 3 on sequence comparisons we observe that the size of a
fragment differs up to 4.6 base pairs (bp) from the estimated size, based on
the position of the band within the lane. We also observe that almost always
some internal nucleotides of equally sized fragments from different individ-
uals differ (in the range 0-10 different nucleotides), but these fragments are
still called homologous, as they, most likely, originate from the same genomic
locus within the different individuals.

b) Meksem et al. (2001), in soybean, find in a selection of six bands 1-15 dif-
ferent sequences per band (average 6), using 4-30 clones per band. As we
understand this, the authors report on average 5 collisions per band. This
result contradicts ours, because we would predict the occurrence of 5 colli-
sions to be a highly unlikely event. The high number of collisions may be
explained from the fact that the targeted AFLP markers are all linked to
one or two loci that confer resistance, in this case resistance to the soybean
cyst nematode. Genomic regions conferring resistance are known to harbour
repeated DNA sequences. If an AFLP fragment is amplified in this region,
neighbouring (almost) identical fragments containing the same restriction
sites and selective nucleotides will be amplified as well, resulting in higher
than expected collision counts. The authors report that the fragments per
band are equally sized (within 1-2 bp).

c) El-Rabey et al. (2002) sequence 59 bands comigrating for different species
of barley. Sequence identity of comigrating bands depends on taxonomic
distance between individuals, but also on physical characteristics of the
bands (differences in alignment and/or band intensity). Insufficient data are
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available to do collision or homoplasy calculations. Their finding that more
distantly related individuals show more homoplasy (less sequence identity)
agrees with our conclusions in chapter 5.

d) Mechanda et al. (2004), in Echinacea, also find the relationship between
sequence identity and taxonomic distance, by studying one single monomor-
phic marker of 273 bp (for 79 individuals), and one single polymorphic
marker of 159 bp for 48 individuals at 4 taxonomic levels (genus, species,
variety, population). For sequencing 1-7 clones per band are taken. Obvi-
ously, collision cannot be detected in the case of a single clone. For the bands
with at least 2 clones, multiple fragments are often found, but in the case
of the monomorphic marker the sequence identities are always higher than
90%, suggesting DNA repeat sequences. For the polymorphic marker, no
collision is found in some bands, but in other bands fragments with ≈ 50%
sequence identity are reported. For the monomorphic marker band all found
fragments have length 273, but for the polymorphic marker with expected
size 159 bp, also fragments with lengths 91, 108, and 125 are found. Such
large differences in sequence lengths of comigrating bands are not reported
by other authors. We could only speculate about the cause of these differ-
ences. Maybe hairpin structures of AFLP fragments, or contamination of
DNA play a role.

e) Mendelson and Shaw (2005), in crickets, report the occurrence of homoplasy
in 1 out 8 sets of comigrating bands without any further details.

f) Ipek et al. (2006), in garlic, study sequence homology of 7 polymorphic
AFLP markers in 37 varieties. Two pc’s were used, to give 64 and 63 poly-
morphic markers in the collection of 37 varieties (?, ?). Neither information
on the numbers of bands per lane (including monomorphic bands) is given,
nor are the numbers of shared bands per pair of varieties mentioned. There-
fore, collision and homoplasy calculations are not feasible. For the the 7
markers detailed information about numbers of fragments per band (up to
5), and type of fragment (high sequence or low sequence identity) are given.
Fragments with high sequence identity (> 90%) are labeled as homologous.
Not all fragments sequenced for one marker have exactly equal lengths. The
maximum difference in length is 13.

The general conclusion we draw from these comparisons is that our results are
largely, but not always, in accordance with the findings in the literature. For the
sequencing studies it is not feasible to estimate collision and homoplasy occurrences
due to lack of information. In some of these studies results are obtained, which do
not agree fully with our findings. These differences could be due to repeated DNA
sequences, or maybe the sequencing of fragments itself introduces extra errors.
For a proper judgement of collision and homoplasy, we recommend that in papers
on studies employing AFLP detailed information about scoring range, total num-
bers of bands per lane, including monomorphic bands, numbers of shared band
for pairs of individuals, and band lengths is given. It would be even better to
make all AFLP information available, e.g. by means of additional web-sources,
giving gel-pictures, raw band intensities or peak heights, and interpreted AFLP
information, like binary matrices, and codominant scores.
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7.3 Relevance for AFLP practice

The problem of homoplasy in AFLP is well known, as may be clear from the com-
pilation of papers in section 1.4, which are revised above. The solutions, suggested
by authors, are solutions of restriction: the appliers of AFLP are advised not to
use AFLP in certain cases, or are advised not to score certain bands. Here we cite
a number of authors. Althoff et al. (2007) concludes: “AFLP data are best suited
for examining phylogeographic patterns within species and among very recently
diverged species”; O’Hanlon and Peakall (2000a) concludes: “Studies of phylogeny
with AFLPs are therefore only suited to closely related taxa.”; Mechanda et al.
(2004) even stronger concludes: “Comigrating bands cannot be considered ho-
mologous. Thus, the use AFLP band data for comparative studies is appropriate
only if results emanating from such analyses are considered as approximations and
are interpreted as phenotypic, but not genotypic.” Sometimes appliers of AFLP
are advised not to use short bands. These advises are reasonable, but could be
improved upon. The problem of collision in AFLP is less well known.
We believe the relevance of our work is four-fold:

1. Our results urge appliers of AFLP to become aware of the size of the problems.
Appliers may not be aware of the number of collisions that may occur in their
profiles. Recognition of the size of the problem will lead to better understanding
of the data and its potentially strange behavior. An example would be the
strange behavior of some bands in mapping studies. Collision could be the
cause of the problem.

2. Refinements in the design of AFLP studies are suggested. If a genotypic inter-
pretation of bands is important, like in QTL studies, it may be better to use
highly selective primers, limiting the number of bands per lane. In that case the
advise is to go for quality, not for quantity. Our results also allow the applier
to pinpoint possibly problematic bands.

3. By modeling the AFLP procedure in a general way, we can quantify the extent
of the collision and homoplasy problem, not targeting any special cases. There-
fore, we are able to suggest corrections for derived quantities, like the corrected
similarity coefficients described in chapter 5.

4. Our work widens the applicability of AFLP. The general advise to use AFLP
only for studies of closely related taxa, may be loosened. The problems of
collision and homoplasy will always occur, with a smooth transition from small
problems in case of AFLP profiles with few bands and closely related taxa,
to large problems in case of profiles with many bands and distantly related
taxa. The rather artificial dichotomy into situations appropriate for AFLP
studies, pretending that problems are non-existing, and inappropriate situations
for AFLP studies is suboptimal. Corrections for homoplasy and collisions allow
AFLP to be used in a wider range of studies with more reasonable results.
This becomes extra relevant at present, where association studies are performed
using association panels, consisting of diverse collections of genotypes with little
knowledge about their genetic relationships.
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7.4 Critical remarks

The core of AFLP is the sampling of DNA fragments from a genome. Next,
the fragments need to be identified. To do so, the fragments are separated on
an electrophoretic gel or microcapillary system. The DNA molecules have a net
negative charge, and migrate within an electric field from the negative to the
positive potential through the gel. Longer molecules move slower because they are
more easily trapped in the gel. Therefore, the separation of DNA fragments by
electrophoresis is mainly by size.
From these facts it seems reasonable to assume that equally long fragments travel
equally fast through the lanes of a gel, arriving at the same position within the
lanes. In our model of AFLP, we indeed assumed that comigrating fragments are
equally sized, hence have equal fragment length probabilities, and that equally
sized fragments within a lane appear as a single band. We further assumed that
fragments arrive at discrete distances within a lane.
Both assumptions are approximately, but not exactly, right. From the empirical
studies it appears that slightly shorter or longer fragments may travel the same
distance, may be due to differences in the distribution of the charge. The different
studies contradict each other, however, to some extent: Meksem et al. (2001)
report that all fragments per band are equally sized, Ipek et al. (2006) find rather
small differences in lengths (up to 13 bp), but Mechanda et al. (2004) reports for
one of the two studied markers huge differences in lengths (comigrating fragments
have lengths in the range 91-161). More study is needed here.
It is not clear how this will influence our results. We could argue that results will
remain approximately the same, because some equally long fragments may arrive
at a different distance, but some shorter or longer fragments will arrive instead.
And hence, the net effect may be approximately nil.
The assumption that fragments arrive at discrete distances corresponding to base-
pair lengths within a lane is also too simplistic. Maybe with a better scoring
algorithm with sub-basepair resolution, part of the homoplasy could be prevented
from the start.
Another topic, ignored in our work, is the occurrence of repetitive DNA. If an
AFLP fragment is amplified within a repeated stretch of nucleotides, it will be
automatically amplified multiple times. We are not inclined to call the occurrence
of multiple fragments of the same length within a single lane collision now, because
the different fragments are not sampled independently.

7.5 Codominant scoring and collision

So far, the work on collision and homoplasy, as described in chapters 2-5 of the
thesis, and the work on codominant scoring, described in chapter 6, are only loosely
related. In this section, we sketch how the two topics may be united.
As the band intensity in AFLP is related to the amount of amplified DNA, the
intensity is not telling only about the copy number of a DNA fragment, but also
about collision. Mixture models with more than 3 components for the band inten-
sity would need to be fitted. An example is shown in figure 7.3. It would be a great
challenge to estimate all parameters in this model. The posterior probabilities for
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an individual to belong to one of the components of the mixture, would partly be
determined by collision probabilities, which can be calculated a priori.

Figure 7.3: Mixture of six normal distributions for
band intensities with collisions from a diploid genotype;
aa=homozygous absent, Aa = heterozygous, AA = homozy-
gous present, caa = collision of 2 heterozygous fragments, cAa
= collision of 1 heterozygous and 1 homozygous fragments,
cAA = collision of 2 homozygous fragments.

The collision calculations become more complex now, because we are not dealing
with a single individual, but with a collection of related individuals. Below we
sketch how collision probabilities in case of a single lane, of two lanes, and more
than two lanes can be calculated:
� One lane

Suppose we have a single AFLP lane with m fragments lengths sampled from
a fld F . We are interested in the probability that a collision occurs for a band
at position j, i.e. fragment length j, within the lane. Let kj be the fragment
count of fragments with length j, shorter denoted as k. This probability is
P (k > 1|k1 ≥ 1), and is easily calculated as 1 − P (k = 1|k ≥ 1) = 1 − P (k =
1)/P (k ≥ 1) = 1 − mpj(1−pj)m−1

1−(1−pj)m , where pj is the probability of a fragment of
length j (cf. formula 4.2). As an example, take F = FS with scoring range
51-500, and suppose that m = 80 fragments were amplified. Suppose that a
band at position 3 is present, which corresponds to a relative abundant short
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fragment. For this band the collision probability is 0.288. For a band at position
448, which occurs more than 20 times less frequently, the collision probability
is only 0.0154.

� Two lanes
Suppose we have a pair of AFLP lanes, corresponding to two individuals, with
equal fragment counts m. The fragment lengths in the two lanes form two
related samples from the same fld. We assume that the populations of candidate
fragments for the two individuals share a fraction pc, i.e. the probability of a
common fragment is equal to pc. Since a fraction pc of the fragments is shared,
the presence of a band at position j is likely to have an impact on the collision
probability in the first lane. Let k1 and k2 be the fragment counts at position
j in the first and second lanes. Two probabilities are of interest now:
1. P (k1 > 1|k1 ≥ 1, k2 ≥ 1), i.e. the probability of a collision for a band in the

first lane, if a band is present in the second lane
2. P (k1 > 1|k1 ≥ 1, k2 = 0), i.e. the probability of a collision in the first lane,

without a band in the second lane.
Using basic calculation rules we can work out these probabilities, using at the
right hand side shorthand notation:

P (k1 > 1|k1 ≥ 1, k2 ≥ 1) = 1− P (k1 = 1|k2 ≥ 1)
P (k1 ≥ 1|k2 ≥ 1)

= 1−
px|1

p1|1

P (k1 > 1|k1 ≥ 1, k2 = 0) = 1− P (k1 = 1|k2 = 0)
P (k1 ≥ 1|k2 = 0)

= 1−
px|0

p1|0

We need the conditional probabilities px|1, p1|1, px|0, p1|0. Using Bayes-rule, and
splitting events according to a fragment being sampled from the common part
of the two populations of candidate fragments or unique parts of the two pop-
ulations, we ultimately arrive at:

px|1 =
(pc + pc̄j(1− pc))pbx

pb0

p1|1 = 1−
(1− pc̄j)pb0

1− pb0

px|0 =
(1− (pc + pc̄j(1− pc)))pbx

pb0

p1|0 = 1− pc̄j
In these formulae we use the binomial probabilities pb0 = P (k1 = 0) = (1−pj)m,
and pbx = P (k1 = 1) = pj(1− pj)m−1; pc̄j = (1− (1−pc)pj

1−pcpj )m is the probability
that none of the m fragments of lane 2 has length j, given in lane 1 a single
fragment of length j not from the common part.
Here is an example with pc = 0.8 and m = 80. For a band at position 3, we
find that the probability that a collision occurs given a band in the second lane
P (k1 > 1|k1 ≥ 1, k2 ≥ 1) = 0.323, so slightly larger than the unconditional
probability 0.288, found earlier. The collision probability, given the absence of



134 CHAPTER 7. GENERAL DISCUSSION

a band in lane 2, is 0.0633. This value is much lower than the unconditional
probability.
For less related species, say pc = 0.5, these values become 0.347 and 0.153. For
unrelated species with pc = 0.0 the probabilities are equal to the unconditional
probability, as the absence or presence of a band in the second lane does not
reveal any information about lane 1. For rarely occurring bands, say with length
448, we find for pc = 0.8 collision probabilities 0.0184 and 0.00310.

� Three or more lanes
Suppose we have three AFLP lanes, corresponding to three individuals with
equal fragment counts m. For each lane the fragments are a sample from the
fld F , but the three samples are related. We assume that the three populations
of candidate fragments share a fraction pc123 of the fragments, that populations
1 and 2 share fraction pc12, populations 1 and 3 pc13, and populations 2 and
3 pc23. A fraction pc1 of the fragments from population 1 is unique, whereas
fraction pc2 from population 2, and pc3 from population 3 is unique. Notice
that pc123 +pc12 +pc13 +pc1 = 1,pc123 +pc12 +pc23 +pc2 = 1, and pc123 +pc13 +
pc23 + pc3 = 1.
As before, focussing on fragments with length j, ki is the count of fragments
(of length j) in lane i. The probabilities that we are interested in, are:
1. P (k1 > 1|k1 ≥ 1, k2 ≥ 1, k3 ≥ 1)
2. P (k1 > 1|k1 ≥ 1, k2 ≥ 1, k3 = 0)
3. P (k1 > 1|k1 ≥ 1, k2 = 0, k3 = 0)
The question is how the information on absence or presence of bands in other
lanes leaks towards the probability of a collision in the first lane. We are able
to calculate these probabilities in the general case, using a recursive algorithm.
In the formulae for collision probabilities the proportions of common parts of
the populations of candidate fragments are assumed to be known, but they are
not in practice. We may estimate them by comparing the AFLP lanes, like we
did for the pairwise case in chapter 5.
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7.6 Future work

Many topics need further attention. We summarize a few here.

� The ideas described in the previous section 7.5 need to be extended to arrive at
improved codominant scoring of AFLP based on collision probabilities.

� Combining information from multiple profiles
Our work so far looked at AFLP profiles from a single primer combination, e.g.
to estimate the pairwise genetic similarity. In practice, however, often multiple
primer combinations are used, resulting in multiple profiles per individual. It is
worthwhile to investigate how the information from multiple primer combina-
tions may be joined to arrive at better estimates.

� Homoplasy corrected versions of AFLP based quantities
AFLPs are used to estimate e.g. gene diversity or heterozygosity in populations.
These quantities will be biased due to collision and homoplasy. It is of great
interest to investigate how these quantities may be corrected for collision and
homoplasy.

� Other marker systems
AFLP is just one of many DNA fingerprinting techniques. Other procedures
include SSR (microsatellites), RFLP (Restriction Fragment Length Polymor-
phism), RAPD (Random Amplification of Polymorphic DNA), SNP (Single
Nucleotide Polymorphism), SCAR (Sequence Characterized Amplified Region),
and DArT (Diversity Arrays Technology). It is worthwhile to investigate how
our findings can be applied to other techniques. In AFLP, the basic problem
is the incomplete information that we get from electrophoretic gels or micro-
capillary systems: we only get information about the length of the fragments,
not of the sequence identity. This results into the problems of collision and
homoplasy. We expect to see the same type of problems in RFLP, RAPD,
and possibly SSR’s, but not in the other mentioned (more modern) techniques,
where electrophoresis does not play a role.

� The effect of unequally sized comigrating fragments
So far, we assumed that comigrating fragments have equal lengths. How do the
estimates of collision and homoplasy change, if we allow comigrating fragments
to have lengths deviating from each other?

� The effect of repetitive DNA
If an AFLP fragment originates from a repeated DNA sequence, multiple copies
of the same fragment may be amplified. Especially in codominant scoring this
may have consequences.

� The effect of the scoring precision of bands on estimates of collision and homo-
plasy. If the band position is scored more precisely, i.e. with a resolution higher
than 1 bp, how do our estimates of collision and homoplasy change?

� In-silico AFLP
Over the past years huge databases with genome sequences have been filled, and
still are being filled. These resources seem to be underexploited at this moment.
Especially the comparison between empirical wet-lab work and in-silico AFLP
needs further attention.
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7.7 Final remarks

The focus on a molecular marker technique like AFLP, a volatile topic in the
dynamic world of molecular biology and genetics, puts our work inevitably at risk
of getting early out of date. The cracks in the building called AFLP are visible, as
the stabilization of numbers of publications mentioning AFLP seems to indicate.
An optimist would say that this grand old lady of DNA fingerprinting is still going
strong, but for how long? May be AFLP will be polished up, improved upon,
and made ready for another 10 years or so. But gradually and inevitably other
marker techniques, maybe SNP, will take over. And also these cannot be kept
fresh forever. In the end, what we want to know is the full DNA sequence, not
just the bits and pieces sampled by RAPD, RFLP, AFLP, SNP, DArT, or any
other DNA fingerprinting technique. The resulting fast, full genomic datasets will
be accompanied by fast, powerful methods for extracting relevant information,
like the presence of dangerous mutations. These methods will be developed by
statisticians, mathematicians, bio-informaticians, or whatever name they will carry
by then. We just have to wait longer until full genome scans will be done on a
regular basis. You go to the doctor, and while you get undressed, a full genome
scan is performed, and a list of all possible genomic risk factors will be spit out
by the computer. That will be the future. But at present, our work adds to
the already extensive literature on AFLP, aiming at the diagnosis and repair of
some of its weaknesses, making the technique fitter and more reliable than before.
And, from a general point of view, we see a nice illustration and a fruitful join of
quantitative methods and biology, an example of Biometri(c)s at work.
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Summary

AFLP is a DNA fingerprinting technique, that is used in a wide variety of genetic
applications. An AFLP fingerprint (or profile) of an individual, be it a plant,
bacterium, yeast, animal, or human being, consists of bands, visible on different
positions within a lane of an electrophoretic gel or microcapillary system. The
bands represent DNA fragments sampled from the genome. Profiles are usually
interpreted as binary band presence - absence patterns, making AFLP bands dom-
inant markers: they do not distinguish between homozygous (AA) and heterozy-
gous (Aa) situations. It is assumed that equally long fragments travel equally far
(comigrate) through the lanes of a gel by electrophoresis. Therefore, the position
of a band within a lane indicates the length of the underlying DNA fragment.
By comparing the profiles of two individuals, the pairwise genetic similarity be-
tween two individuals can be determined, which is one of the many applications
of AFLP. Usually some of the bands of the pair of profiles are shared, whereas
others are unique. Commonly used similarity coefficients are Dice and Jaccard
similarities, in which the fraction of shared bands is calculated in different ways.
Comigrating bands occur if in two individuals an identical DNA fragment orig-
inating from the same genomic locus is amplified. It is also possible, however,
that two equally sized fragments, but of different nucleotide composition and of
different genomic origin, were amplified and comigrate. This type of band sharing
by chance is called homoplasy. Homoplasy is undesirable: we see two correspond-
ing bands, but the correspondence is false. Homoplasy will e.g. bias similarity
coefficients.
Another type of homoplasy is the comigration of equally sized fragments of differ-
ent nucleotide composition within a lane, i.e. for a single individual. To distinguish
this type of homoplasy from the first, we call it collision. Like homoplasy, collision
is undesirable: we interpret a single band as a single fragment, but two or more
fragments are hidden within the band.
The main topic in this thesis is the study of collision and homoplasy in AFLP.
We answer questions like: How often do they occur? What are the main deter-
minants? What are the possible consequences, and how can we correct for them?
To answer these questions we model the AFLP procedure. The first step of the
AFLP procedure is the creation of a population of candidate fragments, by cutting
the genome into fragments by restriction enzymes. Depending on the genome size,
this population may contain millions of fragments. The frequency distribution of
the lengths of the candidate fragments is called the fragment length distribution
(fld). Only fragments with lengths within a scoring range (e.g. 50-600) are scored.
The next step is the (random) sampling of fragment lengths from the fld, using
primers with selective nucleotides. The last step is the binary scoring of the bands,
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only indicating whether at least one fragment of a given length is present.
The fld plays a central role in the study of homoplasy and collision. We study it
from different perspectives: in chapter 2 from theoretical considerations (cf. Innan
et al., 1999) and by an in-silico approach, and in chapter 3 by estimating it from the
AFLP profile itself, using a monotonic smoother and generalized linear models.
For the in-silico approach the AFLP procedure was mimicked on the computer
and applied to the available genome sequences of Arabidopsis thaliana and Oryza
sativa. The fld is highly asymmetric, with shorter fragments much more abundant
than long fragments.
The research in this thesis starts off with a phylogenetic study in lettuce, where the
question is raised whether similarity between species calculated from binary AFLP
profiles can be due to chance alone. In chapter 2 we answer this question using a
Monte Carlo approach. We simulate the distribution of similarity coefficients for
unrelated individuals, that is, assuming that all band sharing is caused by chance.
We find that chance similarity can be extensive, mainly depending on the number
of bands in the lanes. For instance, for two lanes with 120 bands each the average
Dice coefficient is 0.4. Critical regions to test the null hypothesis of unrelatedness
are derived. Also, weighted similarity coefficients are suggested.
Based on findings of chapter 2, a theoretical study on collisions is done, described
in chapter 3. The collision problem is analogous to the birthday problem, telling
that only 23 persons are needed to have a probability of a shared birthday of
more than 1/2. It is a generalized birthday problem, because, unlike the birthday
distribution, the fld is not uniform. For a typical plant genome, an AFLP with 19
bands is likely to contain a first collision. A profile with 100 bands may contain 25
(±6) collisions. The distribution of the total collision count in a profile is calculated
for three situations: 1) given the fragment count, 2) given the band count, and 3)
given the band lengths (in chapter 4). For known fragment count, the distribution
is a generalized occupancy distribution, approximated by a binomial distribution.
The probability of no collision is a multinomial tail probability, calculated by a
saddlepoint approximation. Larger collision counts are found for profiles with more
bands, more skewed fld, and smaller scoring range.
Chapter 4 describes a continued study on collision, now focusing on the collision
probability for individual bands. We demonstrate how the probability of no colli-
son for an individual band is calculated for the above mentioned three situations.
Since short fragments occur more often, short bands are more likely to contain col-
lisions. For a typical plant genome and AFLP procedure, the collision probability
for the shortest band is 25 times larger than for the longest. The findings are sum-
marized in a list of recommendations for AFLP practice. We show how collision
calculations can be used to get modified Dice and Jaccard similarity coefficients,
corrected for collision an homoplasy.
In chapter 5 the topic of homoplasy corrected estimation of pairwise genetic sim-
ilarity is studied further. Estimators Dice (D) and Jaccard overestimate genetic
similarity, due to homoplasy. The bias of D increases with larger numbers of
bands, and lower genetic similarity. We propose two estimators of genetic simi-
larity, which correct for homoplasy and collision. Properties of the estimators are
studied by simulation and bootstrapping. The estimators are nearly unbiased, and
have for most practical cases smaller standard error than D. The relationship be-
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tween fragment counts and precision is studied using simulation. The usual range
of band counts (50-100) appears nearly optimal.
Chapter 6 describes a study on the codominant scoring of AFLP markers in associ-
ation panels. In codominant scoring the intensity of a band is classified into one of
three groups (AA, Aa, aa), by fitting a normal mixture model. Association panels
are collections of individuals without prior information on genotype probabilities.
We study features to improve or stabilize the unmixing of the band intensities, and
diagnostics for data quality. Our approach provides posterior genotype probabili-
ties for marker loci, that can form the basis for association mapping. Software has
been developed in R, containing the models for normal mixtures with facilitating
features, and visualizations. The methods are applied to an association panel in
tomato (which is part of a larger study within the Dutch Center for BioSystem
Genomics).
The connection between chapters 2 − 5 on collision and homoplasy, and chapter
6 on codominant scoring is reinforced in the discussion chapter 7, hinting on how
collision probabilities may be used in mixture models. It is also described how
collision probabilities depend on information from other lanes. Examples of AFLP
in lettuce and tomato serve as illustrations throughout the manuscript.
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Samenvatting

AFLP is een DNA fingerprinting techniek, die veel toepassingen kent. Een AFLP
fingerprint (ook wel: profiel) van een individu, zij het een plant, bacterie, gist, dier,
of mens, bestaat uit bandjes, die zichtbaar zijn op verschillende posities in een laan
van een electroforetische gel of microcapillair systeem. De bandjes stellen DNA
fragmenten voor, verkregen door het genoom te bemonsteren. Het is gebruike-
lijk dat profielen gëınterpreteerd worden als binaire aan- en afwezigheidspatronen
van bandjes. In dat geval zijn AFLP-bandjes dominante markers: ze maken geen
onderscheid tussen homozygote (AA) en heterozygote (Aa) situaties. We veron-
derstellen dat bij electroforese even lange fragmenten even snel door de lanen van
de gel reizen (comigreren). Daardoor is de positie van een bandje binnen een laan
een indicatie voor de lengte van het achterliggende DNA fragment.
Door de profielen van twee individuen te vergelijken, kan de paarsgewijze genetische
similariteit tussen twee individuen worden bepaald. Dit is één van de vele toepassin-
gen van AFLP. Gewoonlijk is een aantal bandjes van een paar profielen gemeen-
schappelijk, terwijl de overige uniek zijn. Gebruikelijke similariteitscoëfficiënten
zijn Dice en Jaccard similariteiten, die op verschillende manieren de fractie gemeen-
schappelijke bandjes berekenen.
Comigrerende bandjes treden op als bij twee individuen een identiek DNA fragment
van dezelfde positie op het genoom is geamplificeerd. Het is echter ook mogelijk,
dat twee even grote fragmenten geamplificeerd zijn en comigreren, terwijl ze een
verschillende nucleotidesamenstelling hebben en afkomstig zijn van verschillende
posities op het genoom. Het verschijnsel dat twee verschillende banden comigre-
ren en als een enkele band worden gëınterpreteerd, heet homoplasie. Homoplasie
is ongewenst: we zien twee corresponderende banden, maar de correspondentie
is schijn. Door homoplasie overschatten similariteitscoëfficiënten de werkelijke
similariteit.
Een ander type homoplasie is de comigratie van even lange fragmenten van ver-
schillende nucleotidesamenstelling binnen één laan, dat wil zeggen voor een enkel
individu. Om dit type homoplasie te onderscheiden van het eerste type, noemen
we het collisie. Net zoals homoplasie, is collisie ongewenst: we interpreteren een
bandje als een enkel fragment, maar twee of meer fragmenten zijn verscholen in
het bandje.
Het hoofdonderwerp van dit proefschrift is de studie van collisie en homoplasie
in AFLP. We beantwoorden vragen zoals: Hoe vaak treden collisie en homoplasie
op? Wat zijn de belangrijkste determinanten? Wat zijn de mogelijke gevolgen, en
hoe kunnen we er voor corrigeren? Om deze vragen te beantwoorden, hebben we
AFLP gemodelleerd. In de eerste stap van de AFLP procedure wordt het genoom
in fragmenten geknipt met behulp van restrictie-enzymen, waardoor een populatie
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van kandidaatfragmenten ontstaat. Afhankelijk van de grootte van het genoom,
kunnen zo tot miljoenen fragmenten gevormd worden. De frequentieverdeling van
de lengte van de kandidaatfragmenten heet de fragment lengte verdeling (fld).
Alleen fragmenten met lengtes in een scoringsbereik (bijvoorbeeld 50-600) worden
op de gel gescoord. Vervolgens wordt een (aselecte) steekproef van fragmentlengtes
uit de fld getrokken met behulp van primers met selectieve nucleotiden. In de
laatste stap worden de bandjes binair gescoord. De binaire score geeft aan of er
minstens één fragment van een bepaalde lengte aanwezig is.
De fld speelt een centrale rol in de studie van collisie en homoplasie. We hebben
de fld vanuit verschillende perspectieven bestudeerd: in hoofdstuk 2 vanuit theore-
tische overwegingen (zie Innan et al., 1999) en door middel van een in-silico be-
nadering, en in hoofdstuk 3 door de fld rechtstreeks te schatten vanuit het AFLP
profiel zelf, met behulp van een monotone gladde functie en gegeneralizeerde li-
neaire modellen. Voor de in-silico aanpak hebben we de AFLP procedure op
de computer nagespeeld, en toegepast op de beschikbare genoomsequenties van
Arabidopsis thaliana en Oryza sativa. De fld is asymmetrisch, waarbij korte frag-
menten veel vaker voorkomen dan lange.
Het onderzoek in dit proefschrift begint met een phylogenetische studie van sla. In
dit onderzoek wordt de vraag gesteld of de berekende similariteiten tussen soorten
op basis van binaire AFLP profielen louter door toeval verklaard kunnen worden.
In hoofdstuk 2 beantwoorden we deze vraag door middel van een Monte Carlo
aanpak. We simuleren de kansverdeling van enkele similariteitscoëfficiënten voor
niet-gerelateerde individuen, dat wil zeggen, veronderstellend dat iedere comigratie
van banden op toeval berust. We vinden dat kanssimilariteit groot kan zijn, en
vooral afhangt van het aantal bandjes in de lanen. Bijvoorbeeld de gemiddelde
Dice coëfficiënt bij twee lanen, ieder met 120 bandjes, is 0.4. Kritieke waarden
om de nulhypothese van ongerelateerdheid te toetsen zijn afgeleid. Tevens zijn
gewogen similariteitscoëfficiënten gëıntroduceerd.
Op basis van de bevindingen van hoofdstuk 2, is een theoretische studie uitge-
voerd, zoals beschreven in hoofdstuk 3. Het collisieprobleem is analoog aan het
verjaardagsprobleem, waarvan de oplossing luidt dat er slechts 23 personen nodig
zijn, zodat de kans, dat er minstens twee mensen zijn met dezelfde verjaardag,
groter is dan 1/2. Het probleem bij collisie is een gegeneralizeerd verjaardagspro-
bleem, want, in tegenstelling tot de kansverdeling van verjaardagen, is de fld niet
uniform. Een AFLP met slechts 19 bandjes heeft, bij een typisch plantengenoom,
een kans op minstens één collisie groter dan 1/2. Een profiel met 100 bandjes kan
25 (±6) collisies bevatten. De kansverdeling van het totaal aantal collisies in een
profiel is bepaald voor drie situaties: 1) gegeven het totale aantal fragmenten,
2) gegeven het totale aantal bandjes, en 3) gegeven de bandlengtes (in hoofd-
stuk 4). Voor bekend fragmentaantal, is deze kansverdeling een gegeneralizeerde
occupancy-verdeling, benaderd met een binomiale verdeling. De kans dat in een
profiel geen collisie optreedt, is een multinomiale staartkans, berekend met behulp
van een zadelpuntbenadering. Een groter aantal collisies treedt op bij profielen
met meer bandjes, schevere fld, en kleiner scoringsbereik.
In hoofdstuk 4 is de studie van collisie vervolgd, maar nu met nadruk op de col-
lisiekansen voor individuele bandjes. We laten zien hoe de kans dat geen collisie
optreedt voor een individueel bandje kan worden berekend voor de drie bovenge-
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noemde situaties. Omdat korte fragmenten vaker voorkomen, hebben ze een
grotere kans op collisie. De collisiekans voor de kortste band is 25 keer groter
dan voor de langste band, bij een typisch plantengenoom en standaard AFLP pro-
cedure. We hebben onze bevindingen samengevat in een aantal aanbevelingen voor
de praktijk. We laten ook zien hoe collisieberekeningen gebruikt kunnen worden
om gemodificeerde Dice en Jaccard similariteiten te verkrijgen, die corrigeren voor
collisie en homoplasie.
In hoofdstuk 5 wordt het homoplasie-gecorrigeerd schatten van paarsgewijze gene-
tische similariteit verder uitgediept. De Dice (D) en Jaccard similariteiten over-
schatten genetische similariteit ten gevolge van homoplasie. De onzuiverheid van
D neemt toe met grotere aantallen bandjes, en met lagere genetische similariteit.
We introduceren twee schatters van genetische similariteit, die corrigeren voor
homoplasie en collisie. Enkele eigenschappen van deze schatters zijn bestudeerd
door middel van simulatie en de bootstrap. De schatters zijn nagenoeg zuiver, en
hebben in de meeste praktische gevallen een kleinere standaardfout dan D. Het
verband tussen aantallen fragmenten en precisie is onderzocht via simulatie. Het
blijkt dat het gebruikelijke aantal bandjes (50-100) bijna optimaal is.
Hoofdstuk 6 beschrijft een studie over het codominant scoren van AFLP mar-
kers in associatiepanelen. Bij codominant scoren wordt de intensiteit van een
bandje geclassificeerd in één van de drie genotype klassen AA, Aa, of aa, door het
aanpassen van een normaal mengselmodel. We bedoelen met associatiepanelen
groepen individuen zonder a priori informatie over genotypekansen. We intro-
duceren mogelijkheden om het ontmengen van de intensiteiten te verbeteren of te
stabiliseren, en diagnostische grootheden voor datakwaliteit met betrekking tot het
codominant scoren. Onze aanpak levert posterior genotypekansen voor marker loci
op, die als basis kunnen dienen voor verdere associatiestudie. We hebben software
in R ontwikkeld, die de modellen voor normale mengsels met faciliterende opties
en visualisaties bevat. De methoden zijn toegepast op een associatiepaneel van
tomaten (dat onderdeel is van een grotere studie binnen het Nederlandse Center
for BioSystems Genomics).
De samenhang tussen hoofdstukken 2 − 5 over collisie en homoplasie, en hoofd-
stuk 6 over codominant scoren wordt verder uitgewerkt in hoofdstuk 7. Hierin
wordt aangegeven hoe collisiekansen benut kunnen worden in mengselmodellen.
Tevens wordt besproken hoe collisiekansen afhangen van informatie uit andere la-
nen. AFLP voorbeelden van sla en tomaat dienen op vele plaatsen als illustratie
in het manuscript.
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alle ondersteuning gedurende de afgelopen jaren.

154


	Title
	Abstract
	Table of contents
	List of tables
	List of figures
	1 Introduction
	1.1 Introduction
	1.2 AFLP: technique and data
	1.3 Pros and problems in AFLP
	1.4 Collision and homoplasy
	1.5 Objectives
	1.6 Outline of the thesis

	2 Significance of AFLP Similarities
	2.1 Summary
	2.2 Introduction
	2.3 Methods and Results
	2.4 Discussion
	2.5 Acknowledgements

	3 Fragment Lengths and Collisions
	3.1 Summary
	3.2 Introduction
	3.3 Probabilistic description of AFLP
	3.3.1 Basic assumptions, notation and probability model
	3.3.2 Occupancy and birthday problems for AFLP

	3.4 Fragment Length Distributions
	3.4.1 Fld from theoretical assumptions
	3.4.2 Fld from sequence data
	3.4.3 Fld from empirical AFLP data

	3.5 Collisions
	3.5.1 Probability distribution of the number of collisions given the number of fragments
	3.5.2 Probability distribution of the number of collisions given the number of bands

	3.6 Results for collision probabilities
	3.6.1 Probability distribution of the number of collisions given the number of fragments
	3.6.2 Probability distribution of the number of collisions given the number of bands

	3.7 AFLP examples on lettuce and chicory
	3.8 Conclusions and discussion
	3.9 Acknowledgements

	4 Collision probabilities for AFLP bands
	4.1 Summary
	4.2 Introduction
	4.2.1 AFLP
	4.2.2 Motivating example
	4.2.3 Collisions and band lengths

	4.3 Notation, assumptions, and earlier results
	4.4 Probability of no collision per band
	4.4.1 Probability of no collision per band, given the fragment count
	4.4.2 Probability of no collision per band, given the band count
	4.4.3 Probability of no collision per band, given the band lengths
	4.4.4 Higher order collisions per band

	4.5 Number of collisions, given band lengths
	4.5.1 Theory
	4.5.2 Results
	4.5.3 Modified Dice and Jaccard coefficients

	4.6 Conclusions and discussion
	4.7 Acknowledgements
	4.A Probability of no collision given band count

	5 Estimation of genetic similarity
	5.1 Summary
	5.2 Introduction
	5.3 Material and Methods
	5.4 Results
	5.5 Conclusions and discussion
	5.6 Acknowledgements
	5.A Bootstrap confidence intervals
	5.B Overview symbols

	6 Codominant Scoring of AFLP
	6.1 Summary
	6.2 Introduction
	6.3 Material and Methods
	6.3.1 Codominant scoring of AFLP band intensities by normal mixture models
	6.3.2 Features for enhanced and stabilized unmixing, data quality and model selection
	6.3.3 Output from codominant scoring
	6.3.4 Data: association panel of tomato hybrids
	6.3.5 Studying the scoring features in the complete tomato dataset

	6.4 Results
	6.4.1 Software
	6.4.2 Examples
	6.4.3 Results for the complete tomato dataset

	6.5 Conclusions and discussion
	6.6 Acknowledgements
	6.A Software description

	7 General Discussion
	7.1 Introduction
	7.2 Theory and empiricism
	7.3 Relevance for AFLP practice
	7.4 Critical remarks
	7.5 Codominant scoring and collision
	7.6 Future work
	7.7 Final remarks

	References
	Summary
	Samenvatting
	Curriculum vitae
	Dankwoord

